
 Basic Laws 

 Kirchhoff’s Voltage Law 

Kirchhoff’s Voltage Law states that for a closed loop series path the algebraic sum of all the 

voltages around any closed loop in a circuit is equal to zero.  

The algebraic sum of ALL the potential differences around the loop must be equal to 

zero as: ΣV = 0. Note here that the term “algebraic sum” means to take into account 

the polarities and signs of the sources and voltage drops around the loop.  

A Single Circuit Element 

  For this simple example we will assume that the 

current, I is in the same direction as the flow of positive 

charge, that is conventional current flow. 

Here the flow of current through the resistor is from 

point A to point B, that is from positive terminal to a 

negative terminal. 

 Thus as we are travelling in the same direction as current flow, there will be a fall in 

potential across the resistive element giving rise to a -IR voltage drop across it. 

If the flow of current was in the opposite direction from point B to point A, then there 

would be a rise in potential across the resistive element as we are moving from 

a - potential to a + potential giving us a +IR voltage drop. 

Thus to apply Kirchhoff’s voltage law correctly to a circuit, we must first understand 

the direction of the polarity and as we can see, the sign of the voltage drop across the 

resistive element will depend on the direction of the current flowing through it. As a 

general rule, you will loose potential in the same direction of current across an 

element and gain potential as you move in the direction of an emf source. 

The direction of current flow around a closed circuit can be assumed to be either 

clockwise or anticlockwise and either one can be chosen. If the direction chosen is 

different from the actual direction of current flow, the result will still be correct and 

valid but will result in the algebraic answer having a minus sign. 

To understand this idea a little more, lets look at a single circuit loop to see if 

Kirchhoff’s Voltage Law holds true. 



A Single Circuit Loop 

  Kirchhoff’s voltage law states that the 

algebraic sum of the potential differences in 

any loop must be equal to zero as: ΣV = 0. 

Since the two resistors, R1 and R2 are wired 

together in a series connection, they are both 

part of the same loop so the same current 

must flow through each resistor. 

Thus the voltage drop across resistor, 

R1 = I*R1 and the voltage drop across 

resistor, R2 = I*R2 giving by KVL: 

 

 We can see that applying Kirchhoff’s Voltage Law to this single closed loop 

produces the formula for the equivalent or total resistance in the series circuit and we 

can expand on this to find the values of the voltage drops around the loop.  

 

Example 1 

 Three resistor of values: 10 ohms, 20 ohms and 30 ohms, respectively are connected 

in series across a 12 volt battery supply. Calculate: a) the total resistance, b) the circuit 



current, c) the current through each resistor, d) the voltage drop across each resistor, 

e) verify that Kirchhoff’s voltage law, KVL holds true.  

a) Total Resistance (RT) 

RT = R1 + R2 + R3  =  10Ω + 20Ω + 30Ω = 60Ω 

Then the total circuit resistance RT is equal to 60Ω 

b) Circuit Current (I) 

 

Thus the total circuit current I is equal to 0.2 amperes or 200mA 

c) Current Through Each Resistor 

The resistors are wired together in series, they are all part of the same loop and 

therefore each experience the same amount of current. Thus: 

IR1 = IR2 = IR3 = ISERIES  =  0.2 amperes 

d) Voltage Drop Across Each Resistor 

VR1 = I x R1 = 0.2 x 10  =  2 volts 

VR2 = I x R2 = 0.2 x 20  =  4 volts 

VR3 = I x R3 = 0.2 x 30  =  6 volts 

e) Verify Kirchhoff’s Voltage Law 

 

Thus Kirchhoff’s voltage law holds true as the individual voltage drops around the 

closed loop add up to the total. 



Kirchhoff’s Circuit Loop 

 

 

 

Kirchhoff’s Current Law 

Kirchhoff’s current law (KCL) states that the algebraic sum of the currents at a node is zero. Or 

the sum of all currents entering a node equals to the sum of all currents leaving it.  

 

 Here in this simple single junction example, the 

current IT leaving the junction is the algebraic sum of the 

two currents, I1 and I2 entering the same junction. That 

is IT = I1 + I2. 

Note that we could also write this correctly as the 

algebraic sum of: IT - (I1 + I2) = 0. 

 Resistors in Parallel 

Let’s look how we could apply Kirchhoff’s current law to resistors in parallel, 

whether the resistances in those branches are equal or unequal. Consider the following 

circuit diagram: 



 

In this simple parallel resistor example there are two distinct junctions for current. 

Junction one occurs at node B, and junction two occurs at node E. Thus we can use 

Kirchhoff’s Junction Rule for the electrical currents at both of these two distinct 

junctions, for those currents entering the junction and for those currents flowing 

leaving the junction.  

For current branch B to E through resistor R1 

  

For current branch C to D through resistor R2 

  

Applying KCL to more complex circuits. 

We can use Kirchhoff’s current law to find the currents flowing around more complex 

circuits. We hopefully know by now that the algebraic sum of all the currents at a 

node (junction point) is equal to zero and with this idea in mind, it is a simple case of 

determining the currents entering a node and those leaving the node. Consider the 

circuit below. 



Example 2 

   

Circuit Resistance RAC 

 

  

Thus the equivalent circuit resistance between nodes A and C is calculated as 1 Ohm. 

Circuit Resistance RCF  

 Thus the equivalent circuit resistance between nodes C and F is calculated as 10 

Ohms. Then the total circuit current, IT is given as: 

 

Giving us an equivalent circuit of: 



Kirchhoff’s Current Law Equivalent Circuit 

 

  

Therefore, V = 132V, RAC = 1Ω, RCF = 10Ω’s and IT = 12A. 

Having established the equivalent parallel resistances and supply current, we can now 

calculate the individual branch currents and confirm using Kirchhoff’s junction rule as 

follows. 

 

  

Thus, I1 = 5A, I2 = 7A, I3 = 2A, I4 = 6A, and I5 = 4A. 

 

 

 

 



 

 

 

Example 3 

Find the currents flowing around the following circuit using Kirchhoff’s Current Law 

only. 

  

Kirchhoff’s Loop Equations 

 

  

We now have two simultaneous equations that relate to the currents flowing around 

the circuit. 

Eq. No 1 :    12 = 10I2 + 4I3 

Eq. No 2 :    12 = 4I2 + 16I3 



By multiplying the first equation (Loop ABC) by 4 and subtracting Loop ABD from 

Loop ABC, we can be reduced both equations to give us the values of I2 and I3 

Eq. No 1 :    12 = 10I2 + 4I3 ( x4 )    ⇒   48 = 40I2 + 16I3 

Eq. No 2 :    12 = 4I2 + 16I3 ( x1 )    ⇒   12 = 4I2 + 16I3 

Eq. No 1 – Eq. No 2   ⇒   36 = 36I2 + 0 

Substitution of I2 in terms of I3 gives us the value of I2 as 1.0 Amps 

Now we can do the same procedure to find the value of I3 by multiplying the first 

equation (Loop ABC) by 4 and the second equation (Loop ABD) by 10. Again by 

subtracting Loop ABC from Loop ABD, we can be reduced both equations to give us 

the values of I2 and I3 

Eq. No 1 :    12 = 10I2 + 4I3 ( x4 )    ⇒   48 = 40I2 + 16I3 

Eq. No 2 :    12 = 4I2 + 16I3 ( x10 )    ⇒   120 = 40I2 + 160I3 

Eq. No 2 – Eq. No 1   ⇒   72 = 0 + 144I3 

Thus substitution of I3 in terms of I2 gives us the value of I3 as 0.5 Amps 

As Kirchhoff’s junction rule states that :  I1 = I2 + I3 

The supply current flowing through resistor R1 is given as :  1.0 + 0.5 = 1.5 Amps 

Thus I1 = IT = 1.5 Amps, I2 = 1.0 Amps and I3 = 0.5 Amps and from that 

information we could calculate the I*R voltage drops across the devices and at the 

various points (nodes) around the circuit. 

Common DC Circuit Theory Terms: 

• Circuit – a circuit is a closed loop conducting path in which an electrical current 

flows. 

• Path – a single line of connecting elements or sources. 

• Node – a node is a junction, connection or terminal within a circuit were two or 

more circuit elements are connected or joined together giving a connection point 

between two or more branches. A node is indicated by a dot. 

• Branch – a branch is a single or group of components such as resistors or a source 

which are connected between two nodes. 

• Loop – a loop is a simple closed path in a circuit in which no circuit element or 

node is encountered more than once. 



• Mesh – a mesh is a single closed loop series path that does not contain any other 

paths. There are no loops inside a mesh. 

Note that: 

    Components are said to be connected together in Series if the same current value 

flows through all the components. 

    Components are said to be connected together in Parallel if they have the same 

voltage applied across them. 

 

Circuit Elements in Series 

A simplified series circuit is made up of three elements: 

 a source, 

 resistors, in which the electrical energy is utilized and is commonly referred to as loads, 

 and ideal conductors, with no assumed resistance, to connect the elements in series. 

 Since there is only one path for current to flow in this series circuit, the current or electron flow must be the 

same in each segment of the circuit. This means that the current leaving the source is equal to the amount of 

current through each resistance. 

There are three rules governing the simple series circuits of resistive elements. They are: 

1. The current flow is the same through each element of the series circuit. 

2. The combined resistance of the various loads in series is the sum of the separate resistances. 

3. The voltage across the source or power supply is equal to the sum of the voltage drops across the separate 

loads in series.   

 

 
Example  

 

Applying Ohm's Law for the total circuit, we find 



 

Circuit Elements in Parallel 

 

For three circuit elements connected in parallel as shown in Fig. above, KCL states that the 

current i entering the principal node is the sum of the three currents leaving the node through the 

branches. 

 

For the three passive circuit elements of resistances,  

 

For several resistors in parallel, 



 ……………eq. 2.38 

The equivalent resistance of two resistors in parallel is given by the product over the sum of the 

two resistors. 

 

 

It is often more convenient to use conductance rather than resistance when dealing with resistors 

in parallel. From Eq. (2.38), the equivalent conductance for N resistors in parallel is 

……….eq.2.40 

 

 

 Combinations of inductances in parallel have similar expressions to those of resistors in 

parallel: 

 

Example: Obtain the equivalent resistance of (a) two 60 Ω resistors in parallel and (b) three 

60.Ω resistors in parallel 

 

EXAMPLE. Two inductances L1 = 3:0mH and L2 = 6:0mH are connected in parallel. Find Leq. 

 

 With three capacitances in parallel, 



 

For several parallel capacitors, Ceq = C1 + C2 + ……, which is of the same form as resistors in 

series. 

Voltage Division 

A set of series-connected resistors as shown in Fig. below is referred to as a voltage divider. 

 

To determine the voltage across each resistor in the above Fig., 

 

Since,  and  

 

Notice that the source voltage v is divided among the resistors in direct proportion to their 

resistances; the larger the resistance, the larger the voltage drop. This is called the principle of 

voltage division, and the circuit in Fig. 2.29 is called a voltage divider. In general, if a voltage 

divider has N resistors (R1,R2,...,RN) in series with the source voltage v, the nth resistor (Rn) 

will have a voltage drop of 

 

Current Division 

A parallel arrangement of resistors as shown in Fig. below results in a current divider. The ratio of the 

branch current i1 to the total current i illustrates the operation of the divider. 

We know that the equivalent resistor has the same voltage, or 



 

which shows that the total current i is shared by the resistors in inverse proportion to their resistances. 

This is known as the principle of current division, and the circuit in Fig. 2.36 is known as a current 

divider. Notice that the larger current flows through the smaller resistance. 

 

If a current divider has N conductors (G1,G2,...,GN) in parallel with the source current i, the nth 

conductor (Gn) will have current 

 

In general, it is often convenient and possible to combine resistors in series and parallel and reduce a 

resistive network to a single equivalent resistance Req. Such an equivalent resistance is the resistance 

between the designated terminals of the network and must exhibit the same i-v characteristics as the 

original network at the terminals. 

 


