4. Analysis Methods
4.1 The Branch Current Method

In the branch current method a current is assigned to each branch in an active network. Then
Kirchhoff’s current law is applied at the principal nodes and the voltages between the nodes

employed to relate the currents. This produces a set of simultaneous equations which can be

solved to obtain the currents.

EXAMPLE 1 Obtain the current in each branch of the network shown below using the branch
current method.
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Currents f, f-, and f; arc assigned to the branches as shown,  Applying KCL at node a,
|Ir| = !'z'l' -f]. I:”

The voltage ¥, can be written in terms of the elements in each of the branches; V, = 20 — £j{5), ¥, = £(10) and
Fa = LiZ)+ 8 Then the following couations can be writlen
20 — L5 = L) [¥]
20— N5 = A2+ 8 [Ej]

Solving the three equations (1), (2), and (3) simullaneously gives £, =2A, L =1 A: and f; = 1 AL

Other directions may be chosen for the branch currents and the answers will simply include the
approprate sign.  In a more complex network, the branch current method 15 difficult to apply because it
does not suggest either a starting point or a logical progression through the network Lo produce the
necessary equations. It also results in more independent equations than either the mesh current or node
voltage method requires.

4.2 The Mesh Current Method

In the mesh current method a current is assigned to each window of the network such that the
currents complete a closed loop. They are sometimes referred to as loop currents. Each element
and branch therefore will have an independent current. When a branch has two of the mesh
currents, the actual current is given by their algebraic sum. The assigned mesh currents may have
either clockwise or counterclockwise directions, although at the outset it is wise to assign to all
of the mesh currents a clockwise direction. Once the currents are assigned, Kirchhoff’s voltage
law 1s written for each loop to obtain the necessary simultaneous equations.

EXAMPLE 2 Obtain the current in each branch of the network shown below using the mesh
current method.



The currents 11 and 12 are chosen as shown on the circuit diagram. Applying KVL around the
left loop, starting at point a,

20 4 51, + 1007, — 1) =0

And around the right loop, starting at point f3,

1005 — R4+ 25 =0

Rearranging terms,

150, — 100, = 20
104, + 12, = —8

Solving these simultaneously results in I1 =2A and 12 = 1A. The current in the center branch,
shown dotted, is [1-I12=1A. In the above example this was branch current 13.

4.3 The Node Voltage Method

The network shown in Fig. below contains five nodes, where 4 and 5 are simple nodes and 1, 2,
and 3 are principal nodes. In the node voltage method, one of the principal nodes is selected as
the reference and equations based on KCL are written at the other principal nodes. At each of
these other principal nodes, a voltage is assigned, where it is understood that this is a voltage
with respect to the reference node. These voltages are the unknowns and, when determined by a
suitable method, result in the network solution.
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KCL requires that the total current out of node 1 be zero:
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Similarly, the total current out of node 2 must be zero:
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Re Rc'+Ru+RJ; * b/ R

Note the symmetry of the coefficient matrix. The 1,1-element contains the sum of the reciprocals
of all resistances connected to note 1; the 2,2-element contains the sum of the reciprocals of all
resistances connected to node 2. The 1,2- and 2,1-elements are each equal to the negative of the
sum of the reciprocals of the resistances of all branches joining nodes 1 and 2.

On the right-hand side, the current matrix contains Va=RA and Vb=RE, the driving currents.
Both these terms are taken positive because they both drive a current into a node.

Example 3: Solve the following circuit using the node voltage method.

50 ] 20

Vi—20 ¥, V-8

5 tpt—=z 7

From which V1 =10V. Then, I1 = (10-20)/5 = -2A (the negative sign indicates that current I1
flows into node 1); 12 = (10-8)/2 =1A; I3 =10/10 = 1A.

4.4 Source Transformation

Source transformation is another tool for simplifying circuits. Basic to these tools is the concept
of equivalence. We recall that an equivalent circuit is one whose v-i characteristics are identical
with the original circuit.



Figure4.13  Trameformation of indepandent sourcas.

A
A source transformation ks the process of replacing a voltage source v,
¢ In series with a resistor R by a current source i, in parallel
with a resictor R, or vice versa,

The two circuits in Fig. 4.15 are equivalent—provided they have the same
voltage-current relation at terminals a-b. It 1z easy to show that they are
indeed equivalent If the sources are turned off, the equivalent resistance
at terminals a-b in both circuits 1= B, Also, when terminals a-b are short-
circuited, the short-circuit current flowing from ato bz i, = v, /R in
the circuit on the left-hand side and i;. = i, for the circoit on the right-
hand side. Thus, v, /R = i, in order for the two circuits to be equivalent.

Hence, source transformation requires that
. . g }
v, =R or = ? (4.5

Source transformation also applies to dependent sources, provided
we carefully handle the dependent variable. As shown mn Fig. 416, a
dependent voltage source in series with a resistor can be transformed to
a dependent current source in parallel with the resistor or vice versa.
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Agured.16  Transformation of dependent sources.

We should keep the following points in mind when dealing with source transformation.

1. Note from Fig. 4.15 (or Fig. 4.16) that the arrow of the current source is directed toward the
positive terminal of the voltage source.

2. Note from Eq. (4.5) that source transformation is not possible when R = 0, which is the case
with an ideal voltage source. However, for a practical, non-ideal voltage source, R differ from 0.
Similarly, an ideal current source with R =co cannot be replaced by a finite voltage source.

Example:



Use source transformation to find v, in the circuit in Fig. 4.17.

20 in
3 At
Solation: é L n
We first transform the current and voltage sources to obtain the circuitin 40 T i 19 T R 12V

Fig. 4 15(a). Combining the 4-£2 and 2-£2 resiztors in series and trans-
forming the 12-V voltage source gives us Fig. 4. 18(b). We now combine
the 3-£2 and 6-£2 resistorz in parallel to get 2-£2. We alzo combine the
2-A and 4-A current sources to get a 2-A source. Thus, by repeatedly
applying source transformations, we obtain the circuit in Fig. 4. 18(c).

Figure4.17  For Example 46.

]

A

2A G ED'?I::, ILJQ 44 EDL% llﬂ
1@ of it o @u il

Figure4.18  For Example 46.

We use current division in Fig. 4.18(c) to get
2
= —(2)=04
24+ S{ }

and

v =8i =804 =32V

Alternatively, since the 8-82 and 2-82 resistors in Fig. 4.18(c) are in
parallel, they have the same voltage v, across them. Hence,

8=

10 (2) =32V

v, = (8 || 2M2A) =

4.5 Network Reduction

The mesh current and node voltage methods are the principal techniques of circuit analysis.
However, the equivalent resistance of series and parallel branches, combined with the voltage



and current division rules, provide another method of analyzing a network. This method is
tedious and usually requires the drawing of several additional circuits. Even so, the process of
reducing the network provides a very clear picture of the overall functioning of the network in
terms of voltages, currents, and power. The reduction begins with a scan of the network to pick
out series and parallel combinations of resistors.

EXAMPLE 4 Obtain the total power supplied by the 60-V source and the power absorbed in
each resistor in the network shown below.
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Rp=7+5=12Q
(12)(6)
12+6

Rg= 40

These two equivalents are in parallel (fig a), giving
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Then this 3-Q equivalent is in series with the 7-Q resistor (Fig. b), so that for the entire circuit,
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The total power absorbed, which equals the total power supplied by the source, can now be
calculated as



FE o (e0)y

Py =— 3ol W
TR, 1D

This power is divided between Ry, and R as follows:

F F ! (360) = 252'W P, 3 (360) = 108'W

e ™ 7 | 3 = - el 7 | 3 -
Power P is further divided between R, and Ry, as follows:

P 12 (108} =81'W P 4 (108) = 2TW
“T 42 * 4412

Finally, these powers are divided between the individual resistances as follows:

6 7
W= =2TW = = 15.75'W
F lE+{r(RI} 27 Frg T+5(H} 15.7

12 .
= =5 L —
Pia =175 BD =34W Py =75 Q) = 11.25W

4.6 Superposition

A linear network which contains two or more independent sources can be analyzed to obtain the
various voltages and branch currents by allowing the sources to act one at a time, then
superposing the results. This principle applies because of the linear relationship between current
and voltage.

Superposition cannot be directly applied to the computation of power, because power in an
element is proportional to the square of the current or the square of the voltage, which is
nonlinear.

e A —
The superposition principle states that the voltage across {or current through) an
element In a linear circult ks the algebraic sum of the voltages across (or currents

through that element due to each independent source acting alone.

—3

To apply the superposition principle, we must keep two things in mind:

1. We consider one independent source at a time while all other independent sources are turned
off. This implies that we replace every voltage source by 0 V (or a short circuit), and every
current source by 0 A (or an open circuit). This way we obtain a simpler and more manageable
circuit.

2. Dependent sources are left intact because they are controlled by circuit variables.

With these in mind, we apply the superposition principle in three steps:



Steps to Apply Superposition Principle:

1. Tum off all independent sources except one source. Find the
output (voltage or current) due to that active source using nodal or
mesh analysis.

2. Bepeat step 1 for each of the other independent sources.

3. Find the total contribution by adding algebraically all the
confributions due to the mdependent sources.

Example 5: Compute the current in the 23-Q resistor of Fig. (a) by applying the superposition
principle. With the 200-V source acting alone, the 20-A current source is replaced by an open
circuit, Fig. (b).
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(c)

2TH4 4+ 23
a7 =S

54
Iy = % —331A

g = (g){fi.]l} — 1L65A

Reg = —60.59

When the 20-A source acts alone, the 200-V source is replaced by a short circuit, as shown in (c)The equivalent
resistance 1o the el of the source is

Ry =4+ 22D 51150
; 21.15
Then fz_qﬂ - (m){m} =958A

The total current in the 23-2 resistor is

g = Fag + i — 11.23A



4.7 The’ venin’s and Norton’s Theorems

< —
Thevenin's theorem states that a linear two-terminal circuit can be replaced
by an equivalent dircuit consisting of a voltage source ¥, In serles with

& a resistor Ry, where ¥y, ks the open-clrcuit voltage at the tarminals
and Ry, bs the Input or equivalent resistance at the terminals when
the Independent sources are turned off.

A linear, active, resistive network which contains one or more voltage or current sources can be
replaced by a single voltage source and a series resistance (The "venin’s theorem), or by a single
current source and a parallel resistance (Norton’s theorem). The voltage is called the The "venin
equivalent voltage, VO, and the current the Norton equivalent current, I’.

B

{B) Thévenin {c) Nomon

Example:



Find the Thevenin equivalent circuit of the circuit shown in Fig. 427 to

and 36 £2.

Solution:

the left of the terminals g-f. Then find the current through Ry = 6, 16,
2N 12

40

10

We find Ry by turing off the 32-V voltage source (replacing it with
a short circuit) and the 2-A current source (replacing it with an open

circuit). The circuit becomes what is shown in Fig. 4.28(a). Thus, ngre 417  For Example 4.3,
4 x 12
Bp=4|1241= +1=49
40 10 40 Ty, 10
Ay Whih\—=0
+
120 B 311;,-'+ rﬂ:_) 120 % f/a;::- . o,
‘ : I ;
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Figure 4.8 For Bxample 4.8 (z) finding Ry, (b) finding Vy,.

To find Vi, consider the circuit in Fiz. 4 28(k). Applying mesh
analysis to the two loops, we obtain

—32+4i +12i1 — ) =0, p=—2A

Solving for i), we geti; = 0.5 A Thus,
V=120 — i) = 120053 +2.0) =30V
Alternatrvely, it i3 even easier to use nodal analysis. We iznore the 1-0
resistor since no current flows through it At the top node, KCL zives
32—V Vu

T —

PR T

or

06 -3V + 24 =V = V=30V



as obtained before. We could also use source transformation to find Vo,

The Thevenin equivalent circuit is shown in Fig. 4.29. The current

40 . through Ry, is
Wi—o s L Vm 30
 Rm+ R, 44+ R
oV R
© ’1{ 2 When Ry = 6.
o a0
) I = ﬁ =3 A
Flgure42%  The Thevenin When R, = 186,
eguivalant circuit for Exampla 4.8, a
=
I, = == 1.2A
When Rp = 36,
! i 0.75A
L=
AP

Morton's theorem states that a linear two-terminal circuit can be replacad
by an equivalent circult consisting of a current source ly in parallel with

d a resistor Ry, where ly Is the short-circuit current through the terminals

and Ry is the input or equivalent resistance at the terminals when the

Independent sounces are turned off.
Example:
10 Find the Norton equivalent circutt of the circuit in Fig. 4.39.
[T “4  Solution:
40 s . We find Ry in the zame way we find Ry, in the Thevenin equivalent cir-
24 . 2 Q cuit. Set the independent sources equal to zero. This leads to the circuit
v in Fig. 4.40(a), from which we find Ry. Thus,
A 0 b 5
20 = 3
80 Ry=51B+4+8)=520="—" =40

Figure4.39  For Example 4.11.

To find [y, we short-circut terminals ¢ and b, as shown in Fig. 4 40(b).
We ignore the 5-£2 resistor because it has been short-circuited. Applying
mesh analysis, we obtain

h=21A, 200 —4ip =12 =10
From these equaticns, we obtain
h=1A=k.=1y

Alternatively, we may determine fy from W/ Rp. We obtain Vo,
as the open-circuit voltage across terminals a and b in Fig. 4 40(c). Using
mesh analysis, we obtain



i3=2A
250 —4iz —12=10 = iy =08A

and
Vo =V =505 =4V
g0 En ”
o A O a Ay o
b l i,.=1Iy
R, /:) 40 2
403 sa3 < 0@
12V 34
BY EQ
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Figure 440  For Example 4.11; finding: (2) Ry, (b} IN = ise, (€) Vb = Ve
Hence,
a
Voin 4
fhy=—=-=1A4A
N Rt 1 1A 40
as obtained previcusly. This also serves to confirm Eq. (4.7) that Ry = b
Voo /iy = 4/1 = 4 £2. Thus, the Norton equivalent circuit is as shown in FE.IFE 441 Norton equiva-
Fig. 4.41. lerit of the circwt m Fig. 4.39.

EXAMPLE 4.8 Obtain the Thévenin and Norton equivalent circuits for the active network in Fig. 4-13{a).

With terminals @b open, the two sources drive a clockwise corrent through the 3-8 and 6-22 resistors
[Fig. 4-13(k)].

20410 30

I+6 9

Since no current passes through the upper right 3-82 resistor, the Thévenin voltage can be taken Mrom either active
branch:
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30
V= F' =120 (?)(3} =10V
or Vd,=V’=(%)ﬁ—ll}=m\"

The resistance B can be oblained by shorting oul the voltage sources [Fig. 4.13(c)] and finding the cquivalent
resistance of this network atl terminals afr

36
R =3 + m — 50

9
When a short circuit is applied to the terminals, current [/, . resulis from the two sources,

Assuming that it
runs through the short from a to b, we have, by superposition,

. {6 w | (3 |
he =1 _(ﬁ+3) ANEIO] (3+3) 64+ 00 A
9 6

Figure 4-14 shows the itwo equivalent circuits. In the present case, V', R', and ' were oblained

independently.  Since they are related by Ohm™s law, any two may be used 1o obtain the third.
MM 0a ..;
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-
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Fig. 4-14

The usefulness of Thevenin and Norton equivalent circuits is clear when an active network is to be
examined under a number of load conditions, each represented by a resistor.  This is suggested in



Fig. 4-15, where it is evident that the resistors Ry, K, ..
resulting current and power readily obtained.

., R, can be connected one at a time, and the
If this were attempted in the original circuit using, for

example, network reduction, the task would be very tedious and tme-consuming.

£
R
v R, R; -« R,
b

Fig. 4-15

4.8 Maximum Power Transfer Theorem
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Figure 448  The cireuit used for

mamimm power transfar
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Fgure 449 Power deliversd to the load
as a fimetion of Ry,

The Thevenin equivalent is useful in finding the maximum power a
linear circuit can deliver to a load. We assume that we can adjust the load
resistance Rj. Ifthe entire circuit is replaced by its Thevenin equivalent
except for the load, as shown in Fig. 4 48, the power delivered to the load
is

" ( Vi )2
p=iR,=|——| R (4.21)
R + Ry,

For a given circuit, Vi, and Ry are fixed. By varying the load resistance
Ry, the power delivered to the load varies as sketched in Fig. 449 We
notice from Fig. 4.49 that the power is small for small or large values of
Ry, but maximum for some value of Ky between 0 and 00, We now want
to show that this maximum power occurs when Ry, is equal to Ry, This
iz known as the macimum power theorem.

==

Maximum power is transferred to the load when the load resistance equals the
Thevenin resistance as seen from the load (R, = Ry ).

To prove the maximum power transfer theorem, we differentiate
pin Eq. (4.21) with respect to Ry, and set the result equal to zero. We
obtain

4 _\» [(Rn+ R —2RL(Rm + R;,}]
dr, T (Ry + Ry

—y2 [Rmt R —2R0)|
L (R + R P



This implies that
0={(Rm+ RL—2IR1)=(Rm — Ry1) (4.22)

which yields

Rp = Rm 4.23)

showing that the maximum power transfer takes place when the load
resistance R} equals the Thevenin resistance Ry, We can readily confirm
that Eq. (4.23) gives the maximum power by showing that d” p /d R} = 0.

The maximum power transferred is obtained by substituting Eq.
(4.23) into Eq. (4.21), for

= b 424

Equation (4.24) applies only when Ry = Rrp. When R # Ry, we
compute the power delivered to the load using Eq. (4.21).
Example:

Find the value of Ry, for maximum power transfer in the circuit of Fig.
4.50. Find the maximum power.

600 in 10 =&
iy Aty ‘Ww—c»—l
12V 120 248 -
&

Figure 450  For Example 4.13.

Solation:

We need to find the Thevenin resistance Ry and the Thevenin voltage
V1 across the terminals a-b. To get Ry, we use the circuitin Fig. 4.51(a)
and obtain

6 =12

Rm=2+346]12=5+ =oQ
60 30 10 60 10 10
y ANA——AAN—O AN A AMA—O
120 Xn 12V (:-F_) 120 r’:} 24
5]
@ (b)

Figure4 5|  For Example 4.13: (a) finding Ry, (b) finding Vi,



To get Vp, we consider the circuit in Fig. 4. 51(b). Applying mezh anal-
Vi3,

—12 4185 —12i =10, ih=—-1A

Solving for f;, we get i) = —2/3. Applying KVL around the cuter loop
to get Vi across terminals a-b, we obtain

=12 460 4+ 302+ 2(0) 4+ VI =0 = Vip =22V
For maximum power transfer,
Rp=FRnp=9%

and the maximum power i3

=13.44W

vi o 22
Pes =R, " axo



