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Features
In spite of the numerous textbooks on circuit analysis
available in the market, students often find the course
difficult to learn.  The main objective of this book is
to present circuit analysis in a manner that is clearer,
more interesting, and easier to understand than earlier
texts.  This objective is achieved in the following 
ways:

• A course in circuit analysis is perhaps the first
exposure students have to electrical engineering.
We have included several features to help stu-
dents feel at home with the subject. Each chapter
opens with either a historical profile of some
electrical engineering pioneers to be mentioned in
the chapter or a career discussion on a subdisci-
pline of electrical engineering.  An introduction
links the chapter with the previous chapters and
states the chapter’s objectives.  The chapter ends
with a summary of the key points and formulas.

• All principles are presented in a lucid, logical,
step-by-step manner.  We try to avoid wordiness
and superfluous detail that could hide concepts
and impede understanding the material.

• Important formulas are boxed as a means of
helping students sort what is essential from what
is not; and to ensure that students clearly get the
gist of the matter, key terms are defined and
highlighted.

• Marginal notes are used as a pedagogical aid.  They
serve multiple uses—hints, cross-references, more
exposition, warnings, reminders, common mis-
takes, and problem-solving insights.

• Thoroughly worked examples are liberally given at
the end of every section. The examples are regard-
ed as part of the text and are explained clearly, with-
out asking the reader to fill in missing steps.
Thoroughly worked examples give students a good
understanding of the solution and the confidence to
solve problems themselves. Some of the problems
are solved in two or three ways to facilitate an
understanding and comparison of different
approaches.

• To give students practice opportunity, each illus-
trative example is immediately followed by a
practice problem with the answer.  The students can
follow the example step-by-step to solve the prac-
tice problem without flipping pages or searching
the end of the book for answers. The practice prob-

lem is also intended to test students’ understanding
of the preceding example. It will reinforce their 
grasp of the material before moving to the next
section.

• In recognition of ABET’s requirement on integrat-
ing computer tools, the use of PSpice is encouraged
in a student-friendly manner. Since the Windows
version of PSpice is becoming popular, it is used
instead of the MS-DOS version. PSpice is covered
early so that students can use it throughout the text.
Appendix D serves as a tutorial on PSpice for
Windows.

• The operational amplifier (op amp) as a basic ele-
ment is introduced early in the text.

• To ease the transition between the circuit course
and signals/systems courses, Fourier and Laplace
transforms are covered lucidly and thoroughly.

• The last section in each chapter is devoted to appli-
cations of the concepts covered in the chapter. Each
chapter has at least one or two practical problems or
devices. This helps students apply the concepts to
real-life situations.

• Ten multiple-choice review questions are provided
at the end of each chapter, with answers. These are
intended to cover the little “tricks” that the exam-
ples and end-of-chapter problems may not cover.
They serve as a self-test device and help students
determine how well they have mastered the chapter.

Organization
This book was written for a two-semester or three-semes-
ter course in linear circuit analysis. The book may 
also be used for a one-semester course by a proper selec-
tion of chapters and sections. It is broadly divided into 
three parts. 

• Part 1, consisting of Chapters 1 to 8, is devoted to
dc circuits. It covers the fundamental laws and the-
orems, circuit techniques, passive and active ele-
ments.

• Part 2, consisting of Chapters 9 to 14, deals with ac
circuits. It introduces phasors, sinusoidal steady-
state analysis, ac power, rms values, three-phase
systems, and frequency response. 

• Part 3, consisting of Chapters 15 to 18, is devoted
to advanced techniques for network analysis. 
It provides a solid introduction to the Laplace
transform, Fourier series, the Fourier transform,
and two-port network analysis.

The material in three parts is more than suffi-
cient for a two-semester course, so that the instructor
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must select which chapters/sections to cover. Sections
marked with the dagger sign (†) may be skipped,
explained briefly, or assigned as homework. They can
be omitted without loss of continuity. Each chapter has
plenty of problems, grouped according to the sections
of the related material, and so diverse that the instruc-
tor can choose some as examples and assign some as
homework. More difficult problems are marked with a
star (*). Comprehensive problems appear last; they are
mostly applications problems that require multiple
skills from that particular chapter.

The book is as self-contained as possible. At the
end of the book are some appendixes that review 
solutions of linear equations, complex numbers, math-
ematical formulas, a tutorial on PSpice for Windows,
and answers to odd-numbered problems. Answers to
all the problems are in the solutions manual, which is
available from the publisher.

Prerequisites
As with most introductory circuit courses, the main
prerequisites are physics and calculus. Although famil-
iarity with complex numbers is helpful in the later part
of the book, it is not required.

Supplements
Solutions Manual—an Instructor’s Solutions Manual is
available to instructors who adopt the text. It contains
complete solutions to all the end-of-chapter problems.
Transparency Masters—over 200 important figures
are available as transparency masters for use as over-
heads.
Student CD-ROM—100 circuit files from the book are
presented as Electronics Workbench (EWB) files; 15–20
of these files are accessible using the free demo of Elec-
tronics Workbench. The students are able to experiment
with the files. For those who wish to fully unlock all 100
circuit files, EWB’s full version may be purchased from
Interactive Image Technologies for approximately
$79.00. The CD-ROM also contains a selection of prob-
lem-solving, analysis and design tutorials, designed to
further support important concepts in the text.
Problem-Solving Workbook—a paperback work-
book is for sale to students who wish to practice their
problem solving techniques. The workbook contains a 
discussion of problem solving strategies and 150 addi-
tional problems with complete solutions provided.
Online Learning Center (OLC)—the Web site for
the book will serve as an online learning center for stu-
dents as a useful resource for instructors. The OLC

will provide access to:
300 test questions—for instructors only
Downloadable figures for overhead 

presentations—for instructors only
Solutions manual—for instructors only
Web links to useful sites
Sample pages from the Problem-Solving 

Workbook
PageOut Lite—a service provided to adopters

who want to create their own Web site. In 
just a few minutes, instructors can change 
the course syllabus into a Web site using 
PageOut Lite.

The URL for the web site is www.mhhe.com.alexander.
Although the textbook is meant to be self-explanatory
and act as a tutor for the student, the personal contact
involved in teaching is not to be forgotten. The book
and supplements are intended to supply the instructor
with all the pedagogical tools necessary to effectively
present the material.

We wish to take the opportunity to thank the staff of
McGraw-Hill for their commitment and hard
work: Lynn Cox, Senior Editor; Scott Isenberg, 
Senior  Sponsoring Editor; Kelley Butcher, Senior
Developmental Editor; Betsy Jones, Executive
Editor; Catherine Fields, Sponsoring Editor;
Kimberly Hooker, Project Manager; and Michelle
Flomenhoft, Editorial Assistant.  They got numerous
reviews, kept the book on track, and helped in many
ways.  We really appreciate their inputs.  We are
greatly in debt to Richard Mickey for taking the pain
ofchecking and correcting the entire manuscript.  We
wish to record our thanks to Steven Durbin at Florida
State University and Daniel Moore at Rose Hulman
Institute of Technology for serving as accuracy
checkers of examples, practice problems, and end-
of-chapter problems.  We also wish to thank the fol-
lowing reviewers for their constructive criticisms
and helpful comments.
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Moe Wasserman, Boston University

Robert J. Krueger, University of Wisconsin
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John O’Malley, University of Florida
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This may be your  first course in electrical engineer-
ing. Although electrical engineering is an exciting and
challenging discipline, the course may intimidate you.
This book was written to prevent that. A good textbook
and a good professor are an advantage—but you are
the one who does the learning. If you keep the follow-
ing ideas in mind, you will do very well in this course.

• This course is the foundation on which most
other courses in the electrical engineering cur-
riculum rest. For this reason, put in as much
effort as you can. Study the course regularly.

• Problem solving is an essential part of the learn-
ing process. Solve as many problems as you can.
Begin by solving the practice problem following
each example, and then proceed to the end-of-
chapter problems. The best way to learn is to
solve a lot of problems. An asterisk in front of a
problem indicates a challenging problem.

• Spice, a computer circuit analysis program, is
used throughout the textbook. PSpice, the per-
sonal computer version of Spice, is the popular
standard circuit analysis program at most uni-

versities. PSpice for Windows is described in
Appendix D. Make an effort to learn PSpice,
because you can check any circuit problem with
PSpice and be sure you are handing in a correct
problem solution.

• Each chapter ends with a section on how the
material covered in the chapter can be applied to
real-life situations. The concepts in this section
may be new and advanced to you. No doubt, you
will learn more of the details in other courses.
We are mainly interested in gaining a general
familiarity with these ideas.

• Attempt the review questions at the end of each
chapter. They will help you discover some
“tricks” not revealed in class or in the textbook.

A short review on finding determinants is cov-
ered in Appendix A, complex numbers in Appendix B,
and mathematical formulas in Appendix C. Answers to
odd-numbered problems are given in Appendix E.

Have fun!

C.K.A. and M.N.O.S.

A NOTE TO THE STUDENT

ix
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C H A P T E R

BASIC CONCEPTS

1

It is engineering that changes the world.
—Isaac Asimov

Historical Profiles
Alessandro Antonio Volta (1745–1827), an Italian physicist, invented the electric
battery—which provided the first continuous flow of electricity—and the capacitor.

Born into a noble family in Como, Italy, Volta was performing electrical
experiments at age 18. His invention of the battery in 1796 revolutionized the use of
electricity. The publication of his work in 1800 marked the beginning of electric circuit
theory. Volta received many honors during his lifetime. The unit of voltage or potential
difference, the volt, was named in his honor.

Andre-Marie Ampere (1775–1836), a French mathematician and physicist, laid the
foundation of electrodynamics. He defined the electric current and developed a way to
measure it in the 1820s.

Born in Lyons, France, Ampere at age 12 mastered Latin in a few weeks, as he
was intensely interested in mathematics and many of the best mathematical works were
in Latin. He was a brilliant scientist and a prolific writer. He formulated the laws of
electromagnetics. He invented the electromagnet and the ammeter. The unit of electric
current, the ampere, was named after him.



4 PART 1 DC Circuits

1.1 INTRODUCTION
Electric circuit theory and electromagnetic theory are the two fundamen-
tal theories upon which all branches of electrical engineering are built.
Many branches of electrical engineering, such as power, electric ma-
chines, control, electronics, communications, and instrumentation, are
based on electric circuit theory. Therefore, the basic electric circuit the-
ory course is the most important course for an electrical engineering
student, and always an excellent starting point for a beginning student
in electrical engineering education. Circuit theory is also valuable to
students specializing in other branches of the physical sciences because
circuits are a good model for the study of energy systems in general, and
because of the applied mathematics, physics, and topology involved.

In electrical engineering, we are often interested in communicating
or transferring energy from one point to another. To do this requires an
interconnection of electrical devices. Such interconnection is referred to
as anelectric circuit, and each component of the circuit is known as an
element.

An electric circuit is an interconnection of electrical elements.

A simple electric circuit is shown in Fig. 1.1. It consists of three
basic components: a battery, a lamp, and connecting wires. Such a simple
circuit can exist by itself; it has several applications, such as a torch light,
a search light, and so forth.

+
−

Current

LampBattery

Figure 1.1 A simple electric circuit.

A complicated real circuit is displayed in Fig. 1.2, representing the
schematic diagram for a radio receiver. Although it seems complicated,
this circuit can be analyzed using the techniques we cover in this book.
Our goal in this text is to learn various analytical techniques and computer
software applications for describing the behavior of a circuit like this.

Electric circuits are used in numerous electrical systems to accom-
plish different tasks. Our objective in this book is not the study of various
uses and applications of circuits. Rather our major concern is the anal-
ysis of the circuits. By the analysis of a circuit, we mean a study of the
behavior of the circuit: How does it respond to a given input? How do
the interconnected elements and devices in the circuit interact?

We commence our study by defining some basic concepts. These
concepts include charge, current, voltage, circuit elements, power, and
energy. Before defining these concepts, we must first establish a system
of units that we will use throughout the text.

1.2 SYSTEMS OF UNITS
As electrical engineers, we deal with measurable quantities. Our mea-
surement, however, must be communicated in a standard language that
virtually all professionals can understand, irrespective of the country
where the measurement is conducted. Such an international measure-
ment language is the International System of Units (SI), adopted by the
General Conference on Weights and Measures in 1960. In this system,
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Figure 1.2 Electric circuit of a radio receiver.
(Reproduced with permission from QST, August 1995, p. 23.)

there are six principal units from which the units of all other physical
quantities can be derived. Table 1.1 shows the six units, their symbols,
and the physical quantities they represent. The SI units are used through-
out this text.

One great advantage of the SI unit is that it uses prefixes based on
the power of 10 to relate larger and smaller units to the basic unit. Table
1.2 shows the SI prefixes and their symbols. For example, the following
are expressions of the same distance in meters (m):

600,000,000 mm 600,000 m 600 km

TABLE 1.2 The SI prefixes.

Multiplier Prefix Symbol

1018 exa E
1015 peta P
1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
10 deka da
10−1 deci d
10−2 centi c
10−3 milli m
10−6 micro µ

10−9 nano n
10−12 pico p
10−15 femto f
10−18 atto a

TABLE 1.1 The six basic SI units.

Quantity Basic unit Symbol

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature kelvin K
Luminous intensity candela cd



6 PART 1 DC Circuits

1.3 CHARGE AND CURRENT
The concept of electric charge is the underlying principle for explaining
all electrical phenomena. Also, the most basic quantity in an electric
circuit is the electric charge. We all experience the effect of electric
charge when we try to remove our wool sweater and have it stick to our
body or walk across a carpet and receive a shock.

Charge is an electrical property of the atomic particles of which
matter consists, measured in coulombs (C).

We know from elementary physics that all matter is made of fundamental
building blocks known as atoms and that each atom consists of electrons,
protons, and neutrons. We also know that the charge e on an electron is
negative and equal in magnitude to 1.602×10−19 C, while a proton carries
a positive charge of the same magnitude as the electron. The presence of
equal numbers of protons and electrons leaves an atom neutrally charged.

The following points should be noted about electric charge:

1. The coulomb is a large unit for charges. In 1 C of charge, there
are 1/(1.602 × 10−19) = 6.24 × 1018 electrons. Thus realistic
or laboratory values of charges are on the order of pC, nC, or
µC.1

2. According to experimental observations, the only charges that
occur in nature are integral multiples of the electronic charge
e = −1.602 × 10−19 C.

3. The law of conservation of charge states that charge can neither
be created nor destroyed, only transferred. Thus the algebraic
sum of the electric charges in a system does not change.

We now consider the flow of electric charges. A unique feature of
electric charge or electricity is the fact that it is mobile; that is, it can
be transferred from one place to another, where it can be converted to
another form of energy.

Battery

I − −
− −

+ −

Figure 1.3 Electric current due to flow
of electronic charge in a conductor.

A convention is a standard way of describing
something so that others in the profession can
understand what we mean. Wewill be using IEEE
conventions throughout this book.

When a conducting wire (consisting of several atoms) is connected
to a battery (a source of electromotive force), the charges are compelled
to move; positive charges move in one direction while negative charges
move in the opposite direction. This motion of charges creates electric
current. It is conventional to take the current flow as the movement of
positive charges, that is, opposite to the flow of negative charges, as Fig.
1.3 illustrates. This convention was introduced by Benjamin Franklin
(1706–1790), the American scientist and inventor. Although we now
know that current in metallic conductors is due to negatively charged
electrons, we will follow the universally accepted convention that current
is the net flow of positive charges. Thus,

1However, a large power supply capacitor can store up to 0.5 C of charge.
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Electric current is the time rate of change of charge, measured in amperes (A).

Mathematically, the relationship between current i, charge q, and time t
is

i = dq

dt
(1.1)

where current is measured in amperes (A), and

1 ampere = 1 coulomb/second

The charge transferred between time t0 and t is obtained by integrating
both sides of Eq. (1.1). We obtain

q =
∫ t

t0

i dt (1.2)

The way we define current as i in Eq. (1.1) suggests that current need not
be a constant-valued function. As many of the examples and problems in
this chapter and subsequent chapters suggest, there can be several types
of current; that is, charge can vary with time in several ways that may be
represented by different kinds of mathematical functions.

If the current does not change with time, but remains constant, we
call it a direct current (dc).

A direct current (dc) is a current that remains constant with time.

By convention the symbol I is used to represent such a constant current.
A time-varying current is represented by the symbol i. A com-

mon form of time-varying current is the sinusoidal current or alternating
current (ac).

An alternating current (ac) is a current that varies sinusoidally with time.

Such current is used in your household, to run the air conditioner, refrig-
erator, washing machine, and other electric appliances. Figure 1.4 shows
direct current and alternating current; these are the two most common
types of current. We will consider other types later in the book.

I

0 t

(a)

(b)

i

t0

Figure 1.4 Two common types of
current: (a) direct current (dc),
(b) alternating current (ac).

Once we define current as the movement of charge, we expect cur-
rent to have an associated direction of flow. As mentioned earlier, the
direction of current flow is conventionally taken as the direction of positive
charge movement. Based on this convention, a current of 5 A may be
represented positively or negatively as shown in Fig. 1.5. In other words,
a negative current of −5 A flowing in one direction as shown in Fig.
1.5(b) is the same as a current of +5 A flowing in the opposite direction.

5 A

(a)

−5 A

(b)

Figure 1.5 Conventional current flow:
(a) positive current flow, (b) negative current
flow.
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E X A M P L E 1 . 1

How much charge is represented by 4,600 electrons?

Solution:

Each electron has −1.602 × 10−19 C. Hence 4,600 electrons will have

−1.602 × 10−19 C/electron × 4,600 electrons = −7.369 × 10−16 C

P R A C T I C E P R O B L E M 1 . 1

Calculate the amount of charge represented by two million protons.

Answer: +3.204 × 10−13 C.

E X A M P L E 1 . 2

The total charge entering a terminal is given by q = 5t sin 4πt mC. Cal-
culate the current at t = 0.5 s.

Solution:

i = dq

dt
= d

dt
(5t sin 4πt) mC/s = (5 sin 4πt + 20πt cos 4πt) mA

At t = 0.5,

i = 5 sin 2π + 10π cos 2π = 0 + 10π = 31.42 mA

P R A C T I C E P R O B L E M 1 . 2

If in Example 1.2, q = (10 − 10e−2t ) mC, find the current at t = 0.5 s.

Answer: 7.36 mA.

E X A M P L E 1 . 3

Determine the total charge entering a terminal between t = 1 s and t = 2 s
if the current passing the terminal is i = (3t2 − t) A.

Solution:

q =
∫ 2

t=1
i dt =

∫ 2

1
(3t2 − t) dt

=
(
t3 − t2

2

)∣∣∣∣
2

1

= (8 − 2)−
(

1 − 1

2

)
= 5.5 C

P R A C T I C E P R O B L E M 1 . 3

The current flowing through an element is

i =
{

2 A, 0 < t < 1

2t2 A, t > 1

Calculate the charge entering the element from t = 0 to t = 2 s.

Answer: 6.667 C.
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1.4 VOLTAGE
As explained briefly in the previous section, to move the electron in a
conductor in a particular direction requires some work or energy transfer.
This work is performed by an external electromotive force (emf), typically
represented by the battery in Fig. 1.3. This emf is also known as voltage
or potential difference. The voltage vab between two points a and b in
an electric circuit is the energy (or work) needed to move a unit charge
from a to b; mathematically,

vab = dw

dq
(1.3)

where w is energy in joules (J) and q is charge in coulombs (C). The
voltage vab or simply v is measured in volts (V), named in honor of the
Italian physicist Alessandro Antonio Volta (1745–1827), who invented
the first voltaic battery. From Eq. (1.3), it is evident that

1 volt = 1 joule/coulomb = 1 newton meter/coulomb

Thus,

Voltage (or potential difference) is the energy required to move
a unit charge through an element, measured in volts (V).

Figure 1.6 shows the voltage across an element (represented by a
rectangular block) connected to points a and b. The plus (+) and minus
(−) signs are used to define reference direction or voltage polarity. The
vab can be interpreted in two ways: (1) point a is at a potential of vab
volts higher than point b, or (2) the potential at point a with respect to
point b is vab. It follows logically that in general

vab = −vba (1.4)

For example, in Fig. 1.7, we have two representations of the same vol-
tage. In Fig. 1.7(a), point a is +9 V above point b; in Fig. 1.7(b), point b is
−9 V above point a. We may say that in Fig. 1.7(a), there is a 9-V voltage
drop from a to b or equivalently a 9-V voltage rise from b to a. In other
words, a voltage drop from a to b is equivalent to a voltage rise from
b to a.

a

b

vab

+

−

Figure 1.6 Polarity
of voltage vab .

9 V

(a)

a

b

+

−

−9 V

(b)

a

b
+

−

Figure 1.7 Two equivalent
representations of the same
voltage vab: (a) point a is 9 V
above point b, (b) point b is
−9 V above point a.

Current and voltage are the two basic variables in electric circuits.
The common term signal is used for an electric quantity such as a current
or a voltage (or even electromagnetic wave) when it is used for conveying
information. Engineers prefer to call such variables signals rather than
mathematical functions of time because of their importance in commu-
nications and other disciplines. Like electric current, a constant voltage
is called a dc voltage and is represented by V, whereas a sinusoidally
time-varying voltage is called an ac voltage and is represented by v. A
dc voltage is commonly produced by a battery; ac voltage is produced by
an electric generator.

Keep in mind that electric current is always
through an element and that electric voltage is al-
ways across the element or between two points.
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1.5 POWER AND ENERGY
Although current and voltage are the two basic variables in an electric
circuit, they are not sufficient by themselves. For practical purposes,
we need to know how much power an electric device can handle. We
all know from experience that a 100-watt bulb gives more light than a
60-watt bulb. We also know that when we pay our bills to the electric
utility companies, we are paying for the electric energy consumed over a
certain period of time. Thus power and energy calculations are important
in circuit analysis.

To relate power and energy to voltage and current, we recall from
physics that:

Power is the time rate of expending or absorbing energy, measured in watts (W).

We write this relationship as

p = dw

dt
(1.5)

where p is power in watts (W), w is energy in joules (J), and t is time in
seconds (s). From Eqs. (1.1), (1.3), and (1.5), it follows that

p = dw

dt
= dw

dq
· dq
dt

= vi (1.6)

or

p = vi (1.7)

The power p in Eq. (1.7) is a time-varying quantity and is called the
instantaneous power. Thus, the power absorbed or supplied by an element
is the product of the voltage across the element and the current through
it. If the power has a + sign, power is being delivered to or absorbed
by the element. If, on the other hand, the power has a − sign, power is
being supplied by the element. But how do we know when the power has
a negative or a positive sign?

Current direction and voltage polarity play a major role in deter-
mining the sign of power. It is therefore important that we pay attention
to the relationship between current i and voltage v in Fig. 1.8(a). The vol-
tage polarity and current direction must conform with those shown in Fig.
1.8(a) in order for the power to have a positive sign. This is known as
the passive sign convention. By the passive sign convention, current en-
ters through the positive polarity of the voltage. In this case, p = +vi or
vi > 0 implies that the element is absorbing power. However, ifp = −vi
or vi < 0, as in Fig. 1.8(b), the element is releasing or supplying power.

p = +vi

(a)

v

+

−

p = −vi

(b)

v

+

−

ii

Figure 1.8 Reference
polarities for power using
the passive sign conven-
tion: (a) absorbing power,
(b) supplying power.

Passive sign convention is satisfied when the current enters through
the positive terminal of an element and p = +vi. If the current

enters through the negative terminal, p = −vi.
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When the voltage and current directions con-
form to Fig. 1.8(b), we have the active sign con-
vention and p = +vi.

Unless otherwise stated, we will follow the passive sign convention
throughout this text. For example, the element in both circuits of Fig. 1.9
has an absorbing power of +12 W because a positive current enters the
positive terminal in both cases. In Fig. 1.10, however, the element is
supplying power of −12 W because a positive current enters the negative
terminal. Of course, an absorbing power of +12 W is equivalent to a
supplying power of −12 W. In general,

Power absorbed = −Power supplied

(a)

4 V

3 A

(a)

+

−

3 A

4 V

3 A

(b)

+

−

Figure 1.9 Two cases of an
element with an absorbing
power of 12 W:
(a) p = 4 × 3 = 12 W,
(b) p = 4 × 3 = 12 W.

3 A

(a)

4 V

3 A

(a)

+

−

3 A

4 V

3 A

(b)

+

−

Figure 1.10 Two cases of
an element with a supplying
power of 12 W:
(a) p = 4 × (−3) = −12 W,
(b) p = 4 × (−3) = −12 W.

In fact, the law of conservation of energy must be obeyed in any
electric circuit. For this reason, the algebraic sum of power in a circuit,
at any instant of time, must be zero:∑

p = 0 (1.8)

This again confirms the fact that the total power supplied to the circuit
must balance the total power absorbed.

From Eq. (1.6), the energy absorbed or supplied by an element from
time t0 to time t is

w =
∫ t

t0

p dt =
∫ t

t0

vi dt (1.9)

Energy is the capacity to do work, measured in joules ( J).

The electric power utility companies measure energy in watt-hours (Wh),
where

1 Wh = 3,600 J

E X A M P L E 1 . 4

An energy source forces a constant current of 2 A for 10 s to flow through
a lightbulb. If 2.3 kJ is given off in the form of light and heat energy,
calculate the voltage drop across the bulb.
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Solution:

The total charge is

�q = i�t = 2 × 10 = 20 C

The voltage drop is

v = �w

�q
= 2.3 × 103

20
= 115 V

P R A C T I C E P R O B L E M 1 . 4

To move charge q from point a to point b requires −30 J. Find the voltage
drop vab if: (a) q = 2 C, (b) q = −6 C .

Answer: (a) −15 V, (b) 5 V.

E X A M P L E 1 . 5

Find the power delivered to an element at t = 3 ms if the current entering
its positive terminal is

i = 5 cos 60πt A

and the voltage is: (a) v = 3i, (b) v = 3 di/dt .

Solution:

(a) The voltage is v = 3i = 15 cos 60πt ; hence, the power is

p = vi = 75 cos2 60πt W

At t = 3 ms,

p = 75 cos2(60π × 3 × 10−3) = 75 cos2 0.18π = 53.48 W

(b) We find the voltage and the power as

v = 3
di

dt
= 3(−60π)5 sin 60πt = −900π sin 60πt V

p = vi = −4500π sin 60πt cos 60πt W

At t = 3 ms,

p = −4500π sin 0.18π cos 0.18π W

= −14137.167 sin 32.4◦ cos 32.4◦ = −6.396 kW

P R A C T I C E P R O B L E M 1 . 5

Find the power delivered to the element in Example 1.5 at t = 5 ms if
the current remains the same but the voltage is: (a) v = 2i V, (b) v =(

10 + 5
∫ t

0
i dt

)
V.

Answer: (a) 17.27 W, (b) 29.7 W.
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E X A M P L E 1 . 6

How much energy does a 100-W electric bulb consume in two hours?

Solution:

w = pt = 100 (W) × 2 (h) × 60 (min/h) × 60 (s/min)

= 720,000 J = 720 kJ

This is the same as

w = pt = 100 W × 2 h = 200 Wh

P R A C T I C E P R O B L E M 1 . 6

A stove element draws 15 A when connected to a 120-V line. How long
does it take to consume 30 kJ?

Answer: 16.67 s.

1.6 CIRCUIT ELEMENTS
As we discussed in Section 1.1, an element is the basic building block of
a circuit. An electric circuit is simply an interconnection of the elements.
Circuit analysis is the process of determining voltages across (or the
currents through) the elements of the circuit.

There are two types of elements found in electric circuits: passive
elements and active elements. An active element is capable of generating
energy while a passive element is not. Examples of passive elements
are resistors, capacitors, and inductors. Typical active elements include
generators, batteries, and operational amplifiers. Our aim in this section
is to gain familiarity with some important active elements.

The most important active elements are voltage or current sources
that generally deliver power to the circuit connected to them. There are
two kinds of sources: independent and dependent sources.

An ideal independent source is an active element that provides a specified voltage
or current that is completely independent of other circuit variables.

V

(b)

+

−
v

(a)

+
−

Figure 1.11 Symbols for
independent voltage sources:
(a) used for constant or
time-varying voltage, (b) used for
constant voltage (dc).

In other words, an ideal independent voltage source delivers to the circuit
whatever current is necessary to maintain its terminal voltage. Physical
sources such as batteries and generators may be regarded as approxima-
tions to ideal voltage sources. Figure 1.11 shows the symbols for inde-
pendent voltage sources. Notice that both symbols in Fig. 1.11(a) and (b)
can be used to represent a dc voltage source, but only the symbol in Fig.
1.11(a) can be used for a time-varying voltage source. Similarly, an ideal
independent current source is an active element that provides a specified
current completely independent of the voltage across the source. That is,
the current source delivers to the circuit whatever voltage is necessary to
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maintain the designated current. The symbol for an independent current
source is displayed in Fig. 1.12, where the arrow indicates the direction
of current i.

i

Figure 1.12 Symbol
for independent
current source.

An ideal dependent (or controlled) source is an active element in which the source
quantity is controlled by another voltage or current.

Dependent sources are usually designated by diamond-shaped symbols,
as shown in Fig. 1.13. Since the control of the dependent source is ac-
hieved by a voltage or current of some other element in the circuit, and
the source can be voltage or current, it follows that there are four possible
types of dependent sources, namely:

1. A voltage-controlled voltage source (VCVS).

2. A current-controlled voltage source (CCVS).

3. A voltage-controlled current source (VCCS).

4. A current-controlled current source (CCCS).

(a) (b)

v +
− i

Figure 1.13 Symbols for:
(a) dependent voltage source,
(b) dependent current source.

Dependent sources are useful in modeling elements such as transistors,
operational amplifiers and integrated circuits. An example of a current-
controlled voltage source is shown on the right-hand side of Fig. 1.14,
where the voltage 10i of the voltage source depends on the current i
through element C. Students might be surprised that the value of the
dependent voltage source is 10i V (and not 10i A) because it is a voltage
source. The key idea to keep in mind is that a voltage source comes
with polarities (+ −) in its symbol, while a current source comes with
an arrow, irrespective of what it depends on.

i

A B

C 10i5 V
+
−

+

−

Figure 1.14 The source on the right-hand
side is a current-controlled voltage source.

It should be noted that an ideal voltage source (dependent or in-
dependent) will produce any current required to ensure that the terminal
voltage is as stated, whereas an ideal current source will produce the
necessary voltage to ensure the stated current flow. Thus an ideal source
could in theory supply an infinite amount of energy. It should also be
noted that not only do sources supply power to a circuit, they can absorb
power from a circuit too. For a voltage source, we know the voltage but
not the current supplied or drawn by it. By the same token, we know the
current supplied by a current source but not the voltage across it.

E X A M P L E 1 . 7

Calculate the power supplied or absorbed by each element in Fig. 1.15.p2

p3

I = 5 A

20 V

6 A

8 V 0.2 I

12 V

+
−

+

−

+ −

p1 p4

Figure 1.15 For Example 1.7.

Solution:

We apply the sign convention for power shown in Figs. 1.8 and 1.9. For
p1, the 5-A current is out of the positive terminal (or into the negative
terminal); hence,

p1 = 20(−5) = −100 W Supplied power

For p2 and p3, the current flows into the positive terminal of the element
in each case.
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p2 = 12(5) = 60 W Absorbed power

p3 = 8(6) = 48 W Absorbed power

Forp4, we should note that the voltage is 8 V (positive at the top), the same
as the voltage for p3, since both the passive element and the dependent
source are connected to the same terminals. (Remember that voltage is
always measured across an element in a circuit.) Since the current flows
out of the positive terminal,

p4 = 8(−0.2I ) = 8(−0.2 × 5) = −8 W Supplied power

We should observe that the 20-V independent voltage source and 0.2I
dependent current source are supplying power to the rest of the network,
while the two passive elements are absorbing power. Also,

p1 + p2 + p3 + p4 = −100 + 60 + 48 − 8 = 0

In agreement with Eq. (1.8), the total power supplied equals the total
power absorbed.

P R A C T I C E P R O B L E M 1 . 7

Compute the power absorbed or supplied by each component of the circuit
in Fig. 1.16.

8 A

5 V 3 V

2 V

3 A

I = 5 A

0.6I+
−

+ −

+
−

+

−
+

−
p2

p1 p3 p4

Figure 1.16 For Practice Prob. 1.7.

Answer: p1 = −40 W, p2 = 16 W, p3 = 9 W, p4 = 15 W.

†1.7 APPLICATIONS 2

In this section, we will consider two practical applications of the concepts
developed in this chapter. The first one deals with the TV picture tube
and the other with how electric utilities determine your electric bill.

1 . 7 . 1 TV P i c t u re Tube
One important application of the motion of electrons is found in both
the transmission and reception of TV signals. At the transmission end, a
TV camera reduces a scene from an optical image to an electrical signal.
Scanning is accomplished with a thin beam of electrons in an iconoscope
camera tube.

At the receiving end, the image is reconstructed by using a cath-
ode-ray tube (CRT) located in the TV receiver.3 The CRT is depicted in

2The dagger sign preceding a section heading indicates a section that may be skipped,
explained briefly, or assigned as homework.
3Modern TV tubes use a different technology.
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Fig. 1.17. Unlike the iconoscope tube, which produces an electron beam
of constant intensity, the CRT beam varies in intensity according to the
incoming signal. The electron gun, maintained at a high potential, fires
the electron beam. The beam passes through two sets of plates for vertical
and horizontal deflections so that the spot on the screen where the beam
strikes can move right and left and up and down. When the electron beam
strikes the fluorescent screen, it gives off light at that spot. Thus the beam
can be made to “paint” a picture on the TV screen.

Vertical
deflection

plates

Horizontal
deflection

plates

Electron
trajectory

Bright spot on
fluorescent screen

Electron gun

Figure 1.17 Cathode-ray tube.
(Source: D. E. Tilley, Contemporary College Physics [Menlo Park, CA:
Benjamin/Cummings, 1979], p. 319.)

E X A M P L E 1 . 8

The electron beam in a TV picture tube carries 1015 electrons per second.
As a design engineer, determine the voltage Vo needed to accelerate the
electron beam to achieve 4 W.

Solution:

The charge on an electron is

e = −1.6 × 10−19 C

If the number of electrons is n, then q = ne and

i = dq

dt
= e

dn

dt
= (−1.6 × 10−19)(1015) = −1.6 × 10−4 A

The negative sign indicates that the electron flows in a direction opposite
to electron flow as shown in Fig. 1.18, which is a simplified diagram of
the CRT for the case when the vertical deflection plates carry no charge.
The beam power is

p = Voi or Vo = p

i
= 4

1.6 × 10−4
= 25,000 V

Thus the required voltage is 25 kV.

i

q

Vo

Figure 1.18 A simplified diagram of the
cathode-ray tube; for Example 1.8.

P R A C T I C E P R O B L E M 1 . 8

If an electron beam in a TV picture tube carries 1013 electrons/second and
is passing through plates maintained at a potential difference of 30 kV,
calculate the power in the beam.

Answer: 48 mW.
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1 . 7 . 2 E l e c t r i c i t y B i l l s
The second application deals with how an electric utility company charges
their customers. The cost of electricity depends upon the amount of
energy consumed in kilowatt-hours (kWh). (Other factors that affect the
cost include demand and power factors; we will ignore these for now.)
However, even if a consumer uses no energy at all, there is a minimum
service charge the customer must pay because it costs money to stay
connected to the power line. As energy consumption increases, the cost
per kWh drops. It is interesting to note the average monthly consumption
of household appliances for a family of five, shown in Table 1.3.

TABLE 1.3 Typical average monthly consumption of household
appliances.

Appliance kWh consumed Appliance kWh consumed

Water heater 500 Washing machine 120
Freezer 100 Stove 100
Lighting 100 Dryer 80
Dishwasher 35 Microwave oven 25
Electric iron 15 Personal computer 12
TV 10 Radio 8
Toaster 4 Clock 2

E X A M P L E 1 . 9

A homeowner consumes 3,300 kWh in January. Determine the electricity
bill for the month using the following residential rate schedule:

Base monthly charge of $12.00.

First 100 kWh per month at 16 cents/kWh.

Next 200 kWh per month at 10 cents/kWh.

Over 200 kWh per month at 6 cents/kWh.

Solution:

We calculate the electricity bill as follows.

Base monthly charge = $12.00

First 100 kWh @ $0.16/kWh = $16.00

Next 200 kWh @ $0.10/kWh = $20.00

Remaining 100 kWh @ $0.06/kWh = $6.00

Total Charge = $54.00

Average cost = $54

100 + 200 + 100
= 13.5 cents/kWh
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P R A C T I C E P R O B L E M 1 . 9

Referring to the residential rate schedule in Example 1.9, calculate the
average cost per kWh if only 400 kWh are consumed in July when the
family is on vacation most of the time.

Answer: 13.5 cents/kWh.

†1.8 PROBLEM SOLVING
Although the problems to be solved during one’s career will vary in
complexity and magnitude, the basic principles to be followed remain
the same. The process outlined here is the one developed by the authors
over many years of problem solving with students, for the solution of
engineering problems in industry, and for problem solving in research.

We will list the steps simply and then elaborate on them.

1. Carefully Define the problem.

2. Present everything you know about the problem.

3. Establish a set of Alternative solutions and determine the one
that promises the greatest likelihood of success.

4. Attempt a problem solution.

5. Evaluate the solution and check for accuracy.

6. Has the problem been solved Satisfactorily? If so, present the
solution; if not, then return to step 3 and continue through the
process again.

1. Carefully Define the problem. This may be the most important
part of the process, because it becomes the foundation for all the rest of the
steps. In general, the presentation of engineering problems is somewhat
incomplete. You must do all you can to make sure you understand the
problem as thoroughly as the presenter of the problem understands it.
Time spent at this point clearly identifying the problem will save you
considerable time and frustration later. As a student, you can clarify a
problem statement in a textbook by asking your professor to help you
understand it better. A problem presented to you in industry may require
that you consult several individuals. At this step, it is important to develop
questions that need to be addressed before continuing the solution process.
If you have such questions, you need to consult with the appropriate
individuals or resources to obtain the answers to those questions. With
those answers, you can now refine the problem, and use that refinement
as the problem statement for the rest of the solution process.

2. Present everything you know about the problem. You are now
ready to write down everything you know about the problem and its
possible solutions. This important step will save you time and frustration
later.
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3. Establish a set of Alternative solutions and determine the one
that promises the greatest likelihood of success. Almost every problem
will have a number of possible paths that can lead to a solution. It is highly
desirable to identify as many of those paths as possible. At this point, you
also need to determine what tools are available to you, such as Matlab
and other software packages that can greatly reduce effort and increase
accuracy. Again, we want to stress that time spent carefully defining the
problem and investigating alternative approaches to its solution will pay
big dividends later. Evaluating the alternatives and determining which
promises the greatest likelihood of success may be difficult but will be
well worth the effort. Document this process well since you will want to
come back to it if the first approach does not work.

4. Attempt a problem solution. Now is the time to actually begin
solving the problem. The process you follow must be well documented
in order to present a detailed solution if successful, and to evaluate the
process if you are not successful. This detailed evaluation may lead to
corrections that can then lead to a successful solution. It can also lead to
new alternatives to try. Many times, it is wise to fully set up a solution
before putting numbers into equations. This will help in checking your
results.

5. Evaluate the solution and check for accuracy. You now thor-
oughly evaluate what you have accomplished. Decide if you have an
acceptable solution, one that you want to present to your team, boss, or
professor.

6. Has the problem been solved Satisfactorily? If so, present the
solution; if not, then return to step 3 and continue through the process
again. Now you need to present your solution or try another alternative.
At this point, presenting your solution may bring closure to the process.
Often, however, presentation of a solution leads to further refinement of
the problem definition, and the process continues. Following this process
will eventually lead to a satisfactory conclusion.

Now let us look at this process for a student taking an electrical
and computer engineering foundations course. (The basic process also
applies to almost every engineering course.) Keep in mind that although
the steps have been simplified to apply to academic types of problems,
the process as stated always needs to be followed. We consider a simple
example.

Assume that we have been given the following circuit. The instruc-
tor asks us to solve for the current flowing through the 8-ohm resistor.

2 Ω 4 Ω

8 Ω5 V 3 V+
−

1. Carefully Define the problem. This is only a simple example,
but we can already see that we do not know the polarity on the 3-V
source. We have the following options. We can ask the professor what
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the polarity should be. If we cannot ask, then we need to make a decision
on what to do next. If we have time to work the problem both ways, we
can solve for the current when the 3-V source is plus on top and then plus
on the bottom. If we do not have the time to work it both ways, assume a
polarity and then carefully document your decision. Let us assume that
the professor tells us that the source is plus on the bottom.

2. Present everything you know about the problem. Presenting all
that we know about the problem involves labeling the circuit clearly so
that we define what we seek.

Given the following circuit, solve for i8�.

2 Ω 4 Ω

8 Ω5 V 3 V+
− +

−
i8Ω

We now check with the professor, if reasonable, to see if the problem
is properly defined.

3. Establish a set of Alternative solutions and determine the one
that promises the greatest likelihood of success. There are essentially
three techniques that can be used to solve this problem. Later in the text
you will see that you can use circuit analysis (using Kirchoff’s laws and
Ohm’s law), nodal analysis, and mesh analysis.

To solve for i8� using circuit analysis will eventually lead to a
solution, but it will likely take more work than either nodal or mesh
analysis. To solve for i8� using mesh analysis will require writing two
simultaneous equations to find the two loop currents indicated in the
following circuit. Using nodal analysis requires solving for only one
unknown. This is the easiest approach.

2 Ω 4 Ω

8 Ω
5 V 3 V+

− +
−

i2

i1 i3

+ −v1
+ −v3

+

−
v2Loop 1 Loop 2

v1

Therefore, we will solve for i8� using nodal analysis.

4. Attempt a problem solution. We first write down all of the
equations we will need in order to find i8�.

i8� = i2, i2 = v1

8
, i8� = v1

8

v1 − 5

2
+ v1 − 0

8
+ v1 + 3

4
= 0
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Now we can solve for v1.

8

[
v1 − 5

2
+ v1 − 0

8
+ v1 + 3

4

]
= 0

leads to (4v1 − 20)+ (v1)+ (2v1 + 6) = 0

7v1 = +14, v1 = +2 V, i8� = v1

8
= 2

8
= 0.25 A

5. Evaluate the solution and check for accuracy. We can now use
Kirchoff’s voltage law to check the results.

i1 = v1 − 5

2
= 2 − 5

2
= −3

2
= −1.5 A

i2 = i8� = 0.25 A

i3 = v1 + 3

4
= 2 + 3

4
= 5

4
= 1.25 A

i1 + i2 + i3 = −1.5 + 0.25 + 1.25 = 0 (Checks.)

Applying KVL to loop 1,

−5 + v1 + v2 = −5 + (−i1 × 2)+ (i2 × 8)

= −5 + (−(−1.5)2)+ (0.25 × 8)

= −5 + 3 + 2 = 0 (Checks.)

Applying KVL to loop 2,

−v2 + v3 − 3 = −(i2 × 8)+ (i3 × 4)− 3

= −(0.25 × 8)+ (1.25 × 4)− 3

= −2 + 5 − 3 = 0 (Checks.)

So we now have a very high degree of confidence in the accuracy
of our answer.

6. Has the problem been solved Satisfactorily? If so, present the
solution; if not, then return to step 3 and continue through the process
again. This problem has been solved satisfactorily.

The current through the 8-ohm resistor is 0.25 amp flowing
down through the 8-ohm resistor.

1.9 SUMMARY
1. An electric circuit consists of electrical elements connected

together.

2. The International System of Units (SI) is the international mea-
surement language, which enables engineers to communicate their
results. From the six principal units, the units of other physical
quantities can be derived.

3. Current is the rate of charge flow.

i = dq

dt
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4. Voltage is the energy required to move 1 C of charge through an
element.

v = dw

dq

5. Power is the energy supplied or absorbed per unit time. It is also the
product of voltage and current.

p = dw

dt
= vi

6. According to the passive sign convention, power assumes a positive
sign when the current enters the positive polarity of the voltage
across an element.

7. An ideal voltage source produces a specific potential difference
across its terminals regardless of what is connected to it. An ideal
current source produces a specific current through its terminals
regardless of what is connected to it.

8. Voltage and current sources can be dependent or independent. A
dependent source is one whose value depends on some other circuit
variable.

9. Two areas of application of the concepts covered in this chapter are
the TV picture tube and electricity billing procedure.

R E V I EW QU E S T I ON S

1.1 One millivolt is one millionth of a volt.
(a) True (b) False

1.2 The prefix micro stands for:
(a) 106 (b) 103 (c) 10−3 (d) 10−6

1.3 The voltage 2,000,000 V can be expressed in powers
of 10 as:
(a) 2 mV (b) 2 kV (c) 2 MV (d) 2 GV

1.4 A charge of 2 C flowing past a given point each
second is a current of 2 A.
(a) True (b) False

1.5 A 4-A current charging a dielectric material will
accumulate a charge of 24 C after 6 s.
(a) True (b) False

1.6 The unit of current is:
(a) Coulomb (b) Ampere
(c) Volt (d) Joule

1.7 Voltage is measured in:
(a) Watts (b) Amperes
(c) Volts (d) Joules per second

1.8 The voltage across a 1.1 kW toaster that produces a
current of 10 A is:
(a) 11 kV (b) 1100 V (c) 110 V (d) 11 V

1.9 Which of these is not an electrical quantity?
(a) charge (b) time (c) voltage
(d) current (e) power

1.10 The dependent source in Fig. 1.19 is:
(a) voltage-controlled current source
(b) voltage-controlled voltage source
(c) current-controlled voltage source
(d) current-controlled current source

vs

io

6io
+
−

Figure 1.19 For Review Question 1.10.

Answers: 1.1b, 1.2d, 1.3c, 1.4a, 1.5a, 1.6b, 1.7c, 1.8c, 1.9b, 1.10d.
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P RO B L E M S

Section 1.3 Charge and Current

1.1 How many coulombs are represented by these
amounts of electrons:
(a) 6.482 × 1017 (b) 1.24 × 1018

(c) 2.46 × 1019 (d) 1.628 × 1020

1.2 Find the current flowing through an element if the
charge flow is given by:
(a) q(t) = (t + 2) mC
(b) q(t) = (5t2 + 4t − 3) C
(c) q(t) = 10e−4t pC
(d) q(t) = 20 cos 50πt nC
(e) q(t) = 5e−2t sin 100t µC

1.3 Find the charge q(t) flowing through a device if the
current is:
(a) i(t) = 3 A, q(0) = 1 C
(b) i(t) = (2t + 5) mA, q(0) = 0
(c) i(t) = 20 cos(10t + π/6) µA, q(0) = 2µC
(d) i(t) = 10e−30t sin 40t A, q(0) = 0

1.4 The current flowing through a device is
i(t) = 5 sin 6πt A. Calculate the total charge flow
through the device from t = 0 to t = 10 ms.

1.5 Determine the total charge flowing into an element
for 0 < t < 2 s when the current entering its
positive terminal is i(t) = e−2t mA.

1.6 The charge entering a certain element is shown in
Fig. 1.20. Find the current at:
(a) t = 1 ms (b) t = 6 ms (c) t = 10 ms

q(t) (mC)

t (ms)0 2 4 6 8 10 12

80

Figure 1.20 For Prob. 1.6.

1.7 The charge flowing in a wire is plotted in Fig. 1.21.
Sketch the corresponding current.

q (C)

t (s)

50

−50

0
2 4 6 8

Figure 1.21 For Prob. 1.7.

1.8 The current flowing past a point in a device is shown
in Fig. 1.22. Calculate the total charge through the
point.

i (mA)

t (ms)0 1 2

10

Figure 1.22 For Prob. 1.8.

1.9 The current through an element is shown in Fig.
1.23. Determine the total charge that passed through
the element at:
(a) t = 1 s (b) t = 3 s (c) t = 5 s

0 1 2 3 4 5

5

10

i (A)

t (s)

Figure 1.23 For Prob. 1.9.

Sections 1.4 and 1.5 Voltage, Power, and
Energy

1.10 A certain electrical element draws the current
i(t) = 10 cos 4t A at a voltage v(t) = 120 cos 4t V.
Find the energy absorbed by the element in 2 s.

1.11 The voltage v across a device and the current i
through it are

v(t) = 5 cos 2t V, i(t) = 10(1 − e−0.5t ) A

Calculate:
(a) the total charge in the device at t = 1 s
(b) the power consumed by the device at t = 1 s.
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1.12 The current entering the positive terminal of a
device is i(t) = 3e−2t A and the voltage across the
device is v(t) = 5 di/dt V.
(a) Find the charge delivered to the device between

t = 0 and t = 2 s.
(b) Calculate the power absorbed.
(c) Determine the energy absorbed in 3 s.

1.13 Figure 1.24 shows the current through and the
voltage across a device. Find the total energy
absorbed by the device for the period of 0 < t < 4 s.

0 2 4

50
i (mA)

t (s)

10

0 1 3 4

v (V)

t (s)

Figure 1.24 For Prob. 1.13.

Section 1.6 Circuit Elements

1.14 Figure 1.25 shows a circuit with five elements. If
p1 = −205 W, p2 = 60 W, p4 = 45 W, p5 = 30 W,
calculate the power p3 received or delivered by
element 3.

31

2 4

5

Figure 1.25 For Prob. 1.14.

1.15 Find the power absorbed by each of the elements in
Fig. 1.26.

I = 10 A 10 V

30 V

8 V

14 A

20 V 12 V

4 A

0.4I
+
−

+ −

+

−

+

−

+ −

p2

p1 p3

p4

p5

Figure 1.26 For Prob. 1.15.

1.16 Determine Io in the circuit of Fig. 1.27.

5 A

3 A

20 V 20 V 8 V

12 V

3 AIo

+

−

+

−

+
−

+ −

Figure 1.27 For Prob. 1.16.

1.17 Find Vo in the circuit of Fig. 1.28.

6 A

6 A

1 A

3 A

3 A

Vo 5Io

Io = 2 A

28 V

12 V

+

−

+ −

28 V
+ −

+ −

30 V –
+

+
−

Figure 1.28 For Prob. 1.17.

Section 1.7 Applications

1.18 It takes eight photons to strike the surface of a
photodetector in order to emit one electron. If
4 × 1011 photons/second strike the surface of the
photodetector, calculate the amount of current flow.

1.19 Find the power rating of the following electrical
appliances in your household:
(a) Lightbulb (b) Radio set
(c) TV set (d) Refrigerator
(e) Personal computer (f ) PC printer
(g) Microwave oven (h) Blender

1.20 A 1.5-kW electric heater is connected to a 120-V
source.
(a) How much current does the heater draw?
(b) If the heater is on for 45 minutes, how much

energy is consumed in kilowatt-hours (kWh)?
(c) Calculate the cost of operating the heater for 45

minutes if energy costs 10 cents/kWh.

1.21 A 1.2-kW toaster takes roughly 4 minutes to heat
four slices of bread. Find the cost of operating the
toaster once per day for 1 month (30 days). Assume
energy costs 9 cents/kWh.
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1.22 A flashlight battery has a rating of 0.8 ampere-hours
(Ah) and a lifetime of 10 hours.
(a) How much current can it deliver?
(b) How much power can it give if its terminal

voltage is 6 V?
(c) How much energy is stored in the battery in

kWh?

1.23 A constant current of 3 A for 4 hours is required to
charge an automotive battery. If the terminal voltage
is 10 + t/2 V, where t is in hours,
(a) how much charge is transported as a result of the

charging?
(b) how much energy is expended?
(c) how much does the charging cost? Assume

electricity costs 9 cents/kWh.

1.24 A 30-W incandescent lamp is connected to a 120-V
source and is left burning continuously in an

otherwise dark staircase. Determine:
(a) the current through the lamp,
(b) the cost of operating the light for one non-leap

year if electricity costs 12 cents per kWh.

1.25 An electric stove with four burners and an oven is
used in preparing a meal as follows.
Burner 1: 20 minutes Burner 2: 40 minutes
Burner 3: 15 minutes Burner 4: 45 minutes
Oven: 30 minutes
If each burner is rated at 1.2 kW and the oven at
1.8 kW, and electricity costs 12 cents per kWh,
calculate the cost of electricity used in preparing the
meal.

1.26 PECO (the electric power company in Philadelphia)
charged a consumer $34.24 one month for using
215 kWh. If the basic service charge is $5.10, how
much did PECO charge per kWh?

COM P R E H EN S I V E P RO B L E M S

1.27 A telephone wire has a current of 20 µA flowing
through it. How long does it take for a charge of
15 C to pass through the wire?

1.28 A lightning bolt carried a current of 2 kA and lasted
for 3 ms. How many coulombs of charge were
contained in the lightning bolt?

1.29 The power consumption for a certain household for
a day is shown in Fig. 1.29. Determine:
(a) the total energy consumed in kWh
(b) the average power per hour.

12 2 4 6 8 10 12
noon 

2 4 6 8 10 12

p(t)

t
(hour)

400 W

1000 W

200 W

1200 W

400 W

Figure 1.29 For Prob. 1.29.

1.30 The graph in Fig. 1.30 represents the power drawn
by an industrial plant between 8:00 and 8:30 A.M.

Calculate the total energy in MWh consumed by the
plant.

8.00 8.05 8.10 8.15 8.20 8.25 8.30

5
4
3

8
p (MW)

t

Figure 1.30 For Prob. 1.30.

1.31 A battery may be rated in ampere-hours (Ah). An
lead-acid battery is rated at 160 Ah.
(a) What is the maximum current it can supply for

40 h?
(b) How many days will it last if it is discharged at

1 mA?

1.32 How much work is done by a 12-V automobile
battery in moving 5 × 1020 electrons from the
positive terminal to the negative terminal?

1.33 How much energy does a 10-hp motor deliver in 30
minutes? Assume that 1 horsepower = 746 W.

1.34 A 2-kW electric iron is connected to a 120-V line.
Calculate the current drawn by the iron.
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C H A P T E R

BASIC LAWS

2

The chessboard is the world, the pieces are the phenomena of the universe,
the rules of the game are what we call the laws of Nature. The player
on the other side is hidden from us, we know that his play is always fair,
just, and patient. But also we know, to our cost, that he never overlooks
a mistake, or makes the smallest allowance for ignorance.

— Thomas Henry Huxley

Historical Profiles
Georg Simon Ohm (1787–1854), a German physicist, in 1826 experimentally deter-
mined the most basic law relating voltage and current for a resistor. Ohm’s work was
initially denied by critics.

Born of humble beginnings in Erlangen, Bavaria, Ohm threw himself into
electrical research. His efforts resulted in his famous law. He was awarded the Copley
Medal in 1841 by the Royal Society of London. In 1849, he was given the Professor
of Physics chair by the University of Munich. To honor him, the unit of resistance was
named the ohm.

Gustav Robert Kirchhoff (1824–1887), a German physicist, stated two basic laws
in 1847 concerning the relationship between the currents and voltages in an electrical
network. Kirchhoff’s laws, along with Ohm’s law, form the basis of circuit theory.

Born the son of a lawyer in Konigsberg, East Prussia, Kirchhoff entered
the University of Konigsberg at age 18 and later became a lecturer in Berlin. His
collaborative work in spectroscopy with German chemist Robert Bunsen led to the
discovery of cesium in 1860 and rubidium in 1861. Kirchhoff was also credited with
the Kirchhoff law of radiation. Thus Kirchhoff is famous among engineers, chemists,
and physicists.
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2.1 INTRODUCTION
Chapter 1 introduced basic concepts such as current, voltage, and power
in an electric circuit. To actually determine the values of these variables
in a given circuit requires that we understand some fundamental laws that
govern electric circuits. These laws, known as Ohm’s law and Kirchhoff’s
laws, form the foundation upon which electric circuit analysis is built.

In this chapter, in addition to these laws, we shall discuss some
techniques commonly applied in circuit design and analysis. These tech-
niques include combining resistors in series or parallel, voltage division,
current division, and delta-to-wye and wye-to-delta transformations. The
application of these laws and techniques will be restricted to resistive cir-
cuits in this chapter. We will finally apply the laws and techniques to
real-life problems of electrical lighting and the design of dc meters.

2.2 OHM’S LAW
Materials in general have a characteristic behavior of resisting the flow
of electric charge. This physical property, or ability to resist current, is
known asresistance and is represented by the symbolR. The resistance
of any material with a uniform cross-sectional areaA depends onA and
its length�, as shown in Fig. 2.1(a). In mathematical form,

R = ρ
�

A
(2.1)

whereρ is known as theresistivity of the material in ohm-meters. Good
conductors, such as copper and aluminum, have low resistivities, while
insulators, such as mica and paper, have high resistivities. Table 2.1
presents the values ofρ for some common materials and shows which
materials are used for conductors, insulators, and semiconductors.

l

Cross-sectional
area A

(a)

Material with
resistivity r

v R

i

+

−

(b)

Figure 2.1 (a) Resistor, (b) Circuit symbol
for resistance.

TABLE 2.1 Resistivities of common materials.

Material Resistivity (�·m) Usage

Silver 1.64 × 10−8 Conductor
Copper 1.72 × 10−8 Conductor
Aluminum 2.8 × 10−8 Conductor
Gold 2.45 × 10−8 Conductor
Carbon 4 × 10−5 Semiconductor
Germanium 47 × 10−2 Semiconductor
Silicon 6.4 × 102 Semiconductor
Paper 1010 Insulator
Mica 5 × 1011 Insulator
Glass 1012 Insulator
Teflon 3 × 1012 Insulator

The circuit element used to model the current-resisting behavior of
a material is the resistor. For the purpose of constructing circuits, resistors
are usually made from metallic alloys and carbon compounds. The circuit
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symbol for the resistor is shown in Fig. 2.1(b), where R stands for the
resistance of the resistor. The resistor is the simplest passive element.

Georg Simon Ohm (1787–1854), a German physicist, is credited
with finding the relationship between current and voltage for a resistor.
This relationship is known as Ohm’s law.

Ohm’s law states that the voltage v across a resistor is directly proportional
to the current i flowing through the resistor.

That is,

v ∝ i (2.2)

Ohm defined the constant of proportionality for a resistor to be the resis-
tance, R. (The resistance is a material property which can change if the
internal or external conditions of the element are altered, e.g., if there are
changes in the temperature.) Thus, Eq. (2.2) becomes

v = iR (2.3)

which is the mathematical form of Ohm’s law. R in Eq. (2.3) is measured
in the unit of ohms, designated �. Thus,

The resistance R of an element denotes its ability to resist the flow
of electric current; it is measured in ohms (�).

We may deduce from Eq. (2.3) that

R = v

i
(2.4)

so that

1 � = 1 V/A

To apply Ohm’s law as stated in Eq. (2.3), we must pay careful
attention to the current direction and voltage polarity. The direction of
current i and the polarity of voltage v must conform with the passive sign
convention, as shown in Fig. 2.1(b). This implies that current flows from
a higher potential to a lower potential in order for v = iR. If current
flows from a lower potential to a higher potential, v = −iR.

(a)

(b)

R = 0

i

R = ∞

i = 0

v = 0

+

−

v

+

−

Figure 2.2 (a) Short circuit (R = 0),
(b) Open circuit (R = ∞).

Since the value of R can range from zero to infinity, it is important
that we consider the two extreme possible values of R. An element with
R = 0 is called a short circuit, as shown in Fig. 2.2(a). For a short circuit,

v = iR = 0 (2.5)

showing that the voltage is zero but the current could be anything. In
practice, a short circuit is usually a connecting wire assumed to be a
perfect conductor. Thus,
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A short circuit is a circuit element with resistance approaching zero.

Similarly, an element with R = ∞ is known as an open circuit, as shown
in Fig. 2.2(b). For an open circuit,

i = lim
R→∞

v

R
= 0 (2.6)

indicating that the current is zero though the voltage could be anything.
Thus,

An open circuit is a circuit element with resistance approaching infinity.

(a)

(b)

Figure 2.3 Fixed resistors: (a) wire-
wound type, (b) carbon film type.
(Courtesy of Tech America.)

(a) (b)

Figure 2.4 Circuit symbol for: (a) a variable
resistor in general, (b) a potentiometer.

A resistor is either fixed or variable. Most resistors are of the fixed
type, meaning their resistance remains constant. The two common types
of fixed resistors (wirewound and composition) are shown in Fig. 2.3.
The composition resistors are used when large resistance is needed. The
circuit symbol in Fig. 2.1(b) is for a fixed resistor. Variable resistors
have adjustable resistance. The symbol for a variable resistor is shown
in Fig. 2.4(a). A common variable resistor is known as a potentiometer
or pot for short, with the symbol shown in Fig. 2.4(b). The pot is a
three-terminal element with a sliding contact or wiper. By sliding the
wiper, the resistances between the wiper terminal and the fixed terminals
vary. Like fixed resistors, variable resistors can either be of wirewound or
composition type, as shown in Fig. 2.5. Although resistors like those in
Figs. 2.3 and 2.5 are used in circuit designs, today most circuit components
including resistors are either surface mounted or integrated, as typically
shown in Fig. 2.6.

(a) (b)

Figure 2.5 Variable resistors: (a) composition type, (b) slider pot.
(Courtesy of Tech America.)

Figure 2.6 Resistors in a thick-film circuit.
(Source: G. Daryanani, Principles of Active
Network Synthesis and Design [New York:
John Wiley, 1976], p. 461c.)

It should be pointed out that not all resistors obey Ohm’s law. A
resistor that obeys Ohm’s law is known as a linear resistor. It has a con-
stant resistance and thus its current-voltage characteristic is as illustrated
in Fig. 2.7(a): its i-v graph is a straight line passing through the ori-
gin. A nonlinear resistor does not obey Ohm’s law. Its resistance varies
with current and its i-v characteristic is typically shown in Fig. 2.7(b).
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Examples of devices with nonlinear resistance are the lightbulb and the
diode. Although all practical resistors may exhibit nonlinear behavior
under certain conditions, we will assume in this book that all elements
actually designated as resistors are linear.

Slope = R

(a)

v

i

Slope = R

(b)

v

i

Figure 2.7 The i-v characteristic of:
(a) a linear resistor,
(b) a nonlinear resistor.

A useful quantity in circuit analysis is the reciprocal of resistance
R, known as conductance and denoted by G:

G = 1

R
= i

v
(2.7)

The conductance is a measure of how well an element will conduct
electric current. The unit of conductance is the mho (ohm spelled back-
ward) or reciprocal ohm, with symbol

�

, the inverted omega. Although
engineers often use the mhos, in this book we prefer to use the siemens
(S), the SI unit of conductance:

1 S = 1

�= 1 A/V (2.8)

Thus,

Conductance is the ability of an element to conduct electric current; it is
measured in mhos (

�

) or siemens (S).

The same resistance can be expressed in ohms or siemens. For
example, 10 � is the same as 0.1 S. From Eq. (2.7), we may write

i = Gv (2.9)

The power dissipated by a resistor can be expressed in terms of R.
Using Eqs. (1.7) and (2.3),

p = vi = i2R = v2

R
(2.10)

The power dissipated by a resistor may also be expressed in terms of G
as

p = vi = v2G = i2

G
(2.11)

We should note two things from Eqs. (2.10) and (2.11):

1. The power dissipated in a resistor is a nonlinear function of
either current or voltage.

2. Since R and G are positive quantities, the power dissipated in
a resistor is always positive. Thus, a resistor always absorbs
power from the circuit. This confirms the idea that a resistor is
a passive element, incapable of generating energy.

E X A M P L E 2 . 1

An electric iron draws 2 A at 120 V. Find its resistance.
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Solution:

From Ohm’s law,

R = v

i
= 120

2
= 60 �

P R A C T I C E P R O B L E M 2 . 1

The essential component of a toaster is an electrical element (a resistor)
that converts electrical energy to heat energy. How much current is drawn
by a toaster with resistance 12 � at 110 V?

Answer: 9.167 A.

E X A M P L E 2 . 2

In the circuit shown in Fig. 2.8, calculate the current i, the conductance
G, and the power p.

30 V

i

+
− 5 kΩ v

+

−

Figure 2.8 For Example 2.2.

Solution:

The voltage across the resistor is the same as the source voltage (30 V)
because the resistor and the voltage source are connected to the same pair
of terminals. Hence, the current is

i = v

R
= 30

5 × 103
= 6 mA

The conductance is

G = 1

R
= 1

5 × 103
= 0.2 mS

We can calculate the power in various ways using either Eqs. (1.7), (2.10),
or (2.11).

p = vi = 30(6 × 10−3) = 180 mW

or

p = i2R = (6 × 10−3)25 × 103 = 180 mW

or

p = v2G = (30)20.2 × 10−3 = 180 mW

P R A C T I C E P R O B L E M 2 . 2

For the circuit shown in Fig. 2.9, calculate the voltage v, the conductance
G, and the power p.

2 mA

i

10 kΩ v
+

−

Figure 2.9 For Practice Prob. 2.2

Answer: 20 V, 100 µS, 40 mW.
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E X A M P L E 2 . 3

A voltage source of 20 sinπt V is connected across a 5-k� resistor. Find
the current through the resistor and the power dissipated.

Solution:

i = v

R
= 20 sinπt

5 × 103
= 4 sinπt mA

Hence,

p = vi = 80 sin2 πt mW

P R A C T I C E P R O B L E M 2 . 3

A resistor absorbs an instantaneous power of 20 cos2 t mW when con-
nected to a voltage source v = 10 cos t V. Find i and R.

Answer: 2 cos t mA, 5 k�.

†2.3 NODES, BRANCHES, AND LOOPS
Since the elements of an electric circuit can be interconnected in several
ways, we need to understand some basic concepts of network topology. To
differentiate between a circuit and a network, we may regard a network as
an interconnection of elements or devices, whereas a circuit is a network
providing one or more closed paths. The convention, when addressing
network topology, is to use the word network rather than circuit. We
do this even though the words network and circuit mean the same thing
when used in this context. In network topology, we study the properties
relating to the placement of elements in the network and the geometric
configuration of the network. Such elements include branches, nodes,
and loops.

A branch represents a single element such as a voltage source or a resistor.

In other words, a branch represents any two-terminal element. The circuit
in Fig. 2.10 has five branches, namely, the 10-V voltage source, the 2-A
current source, and the three resistors.

10 V 2 A

a b

c

5 Ω

+
− 2 Ω 3 Ω

Figure 2.10 Nodes, branches, and loops.

b

c

a

10 V

5 Ω

2 Ω
3 Ω 2 A

+
−

Figure 2.11 The three-node circuit of Fig. 2.10
is redrawn.

A node is the point of connection between two or more branches.

A node is usually indicated by a dot in a circuit. If a short circuit (a
connecting wire) connects two nodes, the two nodes constitute a single
node. The circuit in Fig. 2.10 has three nodes a, b, and c. Notice that
the three points that form node b are connected by perfectly conducting
wires and therefore constitute a single point. The same is true of the four
points forming node c. We demonstrate that the circuit in Fig. 2.10 has
only three nodes by redrawing the circuit in Fig. 2.11. The two circuits in
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Figs. 2.10 and 2.11 are identical. However, for the sake of clarity, nodes
b and c are spread out with perfect conductors as in Fig. 2.10.

A loop is any closed path in a circuit.

A loop is a closed path formed by starting at a node, passing through a
set of nodes, and returning to the starting node without passing through
any node more than once. A loop is said to be independent if it contains a
branch which is not in any other loop. Independent loops or paths result
in independent sets of equations.

For example, the closed path abca containing the 2-� resistor in
Fig. 2.11 is a loop. Another loop is the closed path bcb containing the
3-� resistor and the current source. Although one can identify six loops
in Fig. 2.11, only three of them are independent.

A network with b branches, n nodes, and l independent loops will
satisfy the fundamental theorem of network topology:

b = l + n − 1 (2.12)

As the next two definitions show, circuit topology is of great value
to the study of voltages and currents in an electric circuit.

Two or more elements are in series if they are cascaded or connected sequentially
and consequently carry the same current.

Two or more elements are in parallel if they are connected to the same two nodes
and consequently have the same voltage across them.

Elements are in series when they are chain-connected or connected se-
quentially, end to end. For example, two elements are in series if they
share one common node and no other element is connected to that com-
mon node. Elements in parallel are connected to the same pair of termi-
nals. Elements may be connected in a way that they are neither in series
nor in parallel. In the circuit shown in Fig. 2.10, the voltage source and
the 5-� resistor are in series because the same current will flow through
them. The 2-� resistor, the 3-� resistor, and the current source are in
parallel because they are connected to the same two nodes (b and c)
and consequently have the same voltage across them. The 5-� and 2-�
resistors are neither in series nor in parallel with each other.

E X A M P L E 2 . 4

Determine the number of branches and nodes in the circuit shown in Fig.
2.12. Identify which elements are in series and which are in parallel.

Solution:

Since there are four elements in the circuit, the circuit has four branches:
10 V, 5 �, 6 �, and 2 A. The circuit has three nodes as identified in
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Fig. 2.13. The 5-� resistor is in series with the 10-V voltage source
because the same current would flow in both. The 6-� resistor is in
parallel with the 2-A current source because both are connected to the
same nodes 2 and 3.

5 Ω

6 Ω 2 A10 V +
−

Figure 2.12 For Example 2.4.

1 25 Ω

6 Ω 2 A10 V +
−

3

Figure 2.13 The three nodes in the circuit
of Fig. 2.12.

P R A C T I C E P R O B L E M 2 . 4

How many branches and nodes does the circuit in Fig. 2.14 have? Identify
the elements that are in series and in parallel.

Answer: Five branches and three nodes are identified in Fig. 2.15. The
1-� and 2-� resistors are in parallel. The 4-� resistor and 10-V source
are also in parallel.

5 Ω

1 Ω 2 Ω 4 Ω10 V+
−

Figure 2.14 For Practice Prob. 2.4.

3 Ω

3

1 Ω 2 Ω 4 Ω10 V+
−

1 2

Figure 2.15 Answer for Practice Prob. 2.4.

2.4 KIRCHHOFF’S LAWS
Ohm’s law by itself is not sufficient to analyze circuits. However, when
it is coupled with Kirchhoff’s two laws, we have a sufficient, powerful
set of tools for analyzing a large variety of electric circuits. Kirchhoff’s
laws were first introduced in 1847 by the German physicist Gustav Robert
Kirchhoff (1824–1887). These laws are formally known as Kirchhoff’s
current law (KCL) and Kirchhoff’s voltage law (KVL).

Kirchhoff’s first law is based on the law of conservation of charge,
which requires that the algebraic sum of charges within a system cannot
change.
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Kirchhoff’s current law (KCL) states that the algebraic sum of currents entering
a node (or a closed boundary) is zero.

Mathematically, KCL implies that

N∑
n=1

in = 0 (2.13)

where N is the number of branches connected to the node and in is the
nth current entering (or leaving) the node. By this law, currents entering
a node may be regarded as positive, while currents leaving the node may
be taken as negative or vice versa.

To prove KCL, assume a set of currents ik(t), k = 1, 2, . . . , flow
into a node. The algebraic sum of currents at the node is

iT (t) = i1(t) + i2(t) + i3(t) + · · · (2.14)

Integrating both sides of Eq. (2.14) gives

qT (t) = q1(t) + q2(t) + q3(t) + · · · (2.15)

where qk(t) = ∫
ik(t) dt and qT (t) = ∫

iT (t) dt . But the law of conser-
vation of electric charge requires that the algebraic sum of electric charges
at the node must not change; that is, the node stores no net charge. Thus
qT (t) = 0 → iT (t) = 0, confirming the validity of KCL.

i1
i5

i4

i3
i2

Figure 2.16 Currents at
a node illustrating KCL. Consider the node in Fig. 2.16. Applying KCL gives

i1 + (−i2) + i3 + i4 + (−i5) = 0 (2.16)

since currents i1, i3, and i4 are entering the node, while currents i2 and
i5 are leaving it. By rearranging the terms, we get

i1 + i3 + i4 = i2 + i5 (2.17)

Equation (2.17) is an alternative form of KCL:

The sum of the currents entering a node is equal to the sum
of the currents leaving the node.

Note that KCL also applies to a closed boundary. This may be
regarded as a generalized case, because a node may be regarded as a
closed surface shrunk to a point. In two dimensions, a closed boundary
is the same as a closed path. As typically illustrated in the circuit of
Fig. 2.17, the total current entering the closed surface is equal to the total
current leaving the surface.

Closed boundary

Figure 2.17 Applying KCL to a closed
boundary.

Two sources (or circuits in general) are said to be
equivalent if they have the same i-v relationship
at a pair of terminals.

A simple application of KCL is combining current sources in par-
allel. The combined current is the algebraic sum of the current supplied
by the individual sources. For example, the current sources shown in Fig.
2.18(a) can be combined as in Fig. 2.18(b). The combined or equivalent
current source can be found by applying KCL to node a.

IT + I2 = I1 + I3
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or

IT = I1 − I2 + I3 (2.18)

A circuit cannot contain two different currents, I1 and I2, in series, unless
I1 = I2; otherwise KCL will be violated.

Kirchhoff’s second law is based on the principle of conservation of
energy:

a

(a)

(b)

I1 I2 I3

b

a

IS = I1 – I2 + I3 

b

IT

IT

Figure 2.18 Current sources in parallel:
(a) original circuit, (b) equivalent circuit.

Kirchhoff’s voltage law (KVL) states that the algebraic sum of all voltages
around a closed path (or loop) is zero.

Expressed mathematically, KVL states that

M∑
m=1

vm = 0 (2.19)

where M is the number of voltages in the loop (or the number of branches
in the loop) and vm is the mth voltage.

KVL can be applied in twoways: by taking either a
clockwise or a counterclockwise trip around the
loop. Either way, the algebraic sum of voltages
around the loop is zero.

To illustrate KVL, consider the circuit in Fig. 2.19. The sign on
each voltage is the polarity of the terminal encountered first as we travel
around the loop. We can start with any branch and go around the loop
either clockwise or counterclockwise. Suppose we start with the voltage
source and go clockwise around the loop as shown; then voltages would
be −v1,+v2,+v3,−v4, and +v5, in that order. For example, as we reach
branch 3, the positive terminal is met first; hence we have +v3. For branch
4, we reach the negative terminal first; hence, −v4. Thus, KVL yields

−v1 + v2 + v3 − v4 + v5 = 0 (2.20)

Rearranging terms gives

v2 + v3 + v5 = v1 + v4 (2.21)

which may be interpreted as

Sum of voltage drops = Sum of voltage rises (2.22)

This is an alternative form of KVL. Notice that if we had traveled coun-
terclockwise, the result would have been +v1, −v5, +v4, −v3, and −v2,
which is the same as before except that the signs are reversed. Hence,
Eqs. (2.20) and (2.21) remain the same.

v4v1
+
− +

−

v3v2

v5

+ − + −

+−

Figure 2.19 A single-loop circuit
illustrating KVL.

When voltage sources are connected in series, KVL can be applied
to obtain the total voltage. The combined voltage is the algebraic sum
of the voltages of the individual sources. For example, for the voltage
sources shown in Fig. 2.20(a), the combined or equivalent voltage source
in Fig. 2.20(b) is obtained by applying KVL.

−Vab + V1 + V2 − V3 = 0
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or

Vab = V1 + V2 − V3 (2.23)

To avoid violating KVL, a circuit cannot contain two different voltages
V1 and V2 in parallel unless V1 = V2.

V1

V2

V3

a

b

(a)

VS = V1 + V2 − V3 

a

b

(b)

+
−

+
−

+
−Vab

+

−

Vab

+

−

+
−

Figure 2.20 Voltage sources in series:
(a) original circuit, (b) equivalent circuit.

E X A M P L E 2 . 5

For the circuit in Fig. 2.21(a), find voltages v1 and v2.

(a)

20 V +
− 3 Ωv2

2 Ω

v1+ −

+

−

(b)

20 V +
− 3 Ωv2

2 Ω

v1+ −

+

−

i

Figure 2.21 For Example 2.5.

Solution:

To find v1 and v2, we apply Ohm’s law and Kirchhoff’s voltage law.
Assume that current i flows through the loop as shown in Fig. 2.21(b).
From Ohm’s law,

v1 = 2i, v2 = −3i (2.5.1)

Applying KVL around the loop gives

−20 + v1 − v2 = 0 (2.5.2)

Substituting Eq. (2.5.1) into Eq. (2.5.2), we obtain

−20 + 2i + 3i = 0 or 5i = 20 	⇒ i = 4 A

Substituting i in Eq. (2.5.1) finally gives

v1 = 8 V, v2 = −12 V
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P R A C T I C E P R O B L E M 2 . 5

Find v1 and v2 in the circuit of Fig. 2.22.

10 V +
− 8 V+

−

4 Ω

v1

2 Ω

v2

+ −

+ −

Figure 2.22 For Practice Prob. 2.5

Answer: 12 V, −6 V.

E X A M P L E 2 . 6

Determine vo and i in the circuit shown in Fig. 2.23(a).

4 Ω

(a)

12 V

2vo

i
4 V

i

+ −

+
− +

−

4 Ω

(b)

12 V

2vo

4 V

+ −

+
− +

−

6 Ω

vo

6 Ω

vo+ − + −

Figure 2.23 For Example 2.6.

Solution:

We apply KVL around the loop as shown in Fig. 2.23(b). The result is

−12 + 4i + 2vo − 4 + 6i = 0 (2.6.1)

Applying Ohm’s law to the 6-� resistor gives

vo = −6i (2.6.2)

Substituting Eq. (2.6.2) into Eq. (2.6.1) yields

−16 + 10i − 12i = 0 	⇒ i = −8 A

and vo = 48 V.

P R A C T I C E P R O B L E M 2 . 6

Find vx and vo in the circuit of Fig. 2.24.

35 V 2vx
+
−

+
−

10 Ω

vx

5 Ω

vo+ −

+ −

Figure 2.24 For Practice Prob. 2.6.

Answer: 10 V, −5 V.
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E X A M P L E 2 . 7

Find current io and voltage vo in the circuit shown in Fig. 2.25.a

0.5io 3 A

io

4 Ωvo

+

−

Figure 2.25 For Example 2.7.

Solution:

Applying KCL to node a, we obtain

3 + 0.5io = io 	⇒ io = 6 A

For the 4-� resistor, Ohm’s law gives

vo = 4io = 24 V

P R A C T I C E P R O B L E M 2 . 7

Find vo and io in the circuit of Fig. 2.26.

io
4

6 A

io

2 Ω 8 Ω vo

+

−

Figure 2.26 For Practice Prob. 2.7.

Answer: 8 V, 4 A.

E X A M P L E 2 . 8

Find the currents and voltages in the circuit shown in Fig. 2.27(a).

8 Ω

30 V +
−

(a)

v1 i2

i3i1
a

6 Ωv33 Ωv2

+ −

+

−

+

−

8 Ω

30 V +
−

(b)

v1 i2

i3i1
a

6 Ωv33 Ωv2

+ −

+

−

+

−
Loop 2Loop 1

Figure 2.27 For Example 2.8.

Solution:

We apply Ohm’s law and Kirchhoff’s laws. By Ohm’s law,

v1 = 8i1, v2 = 3i2, v3 = 6i3 (2.8.1)

Since the voltage and current of each resistor are related by Ohm’s
law as shown, we are really looking for three things: (v1, v2, v3) or
(i1, i2, i3). At node a, KCL gives

i1 − i2 − i3 = 0 (2.8.2)

Applying KVL to loop 1 as in Fig. 2.27(b),

−30 + v1 + v2 = 0
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We express this in terms of i1 and i2 as in Eq. (2.8.1) to obtain

−30 + 8i1 + 3i2 = 0

or

i1 = (30 − 3i2)

8
(2.8.3)

Applying KVL to loop 2,

−v2 + v3 = 0 	⇒ v3 = v2 (2.8.4)

as expected since the two resistors are in parallel. We express v1 and v2

in terms of i1 and i2 as in Eq. (2.8.1). Equation (2.8.4) becomes

6i3 = 3i2 	⇒ i3 = i2

2
(2.8.5)

Substituting Eqs. (2.8.3) and (2.8.5) into (2.8.2) gives

30 − 3i2
8

− i2 − i2

2
= 0

or i2 = 2 A. From the value of i2, we now use Eqs. (2.8.1) to (2.8.5) to
obtain

i1 = 3 A, i3 = 1 A, v1 = 24 V, v2 = 6 V, v3 = 6 V

P R A C T I C E P R O B L E M 2 . 8

Find the currents and voltages in the circuit shown in Fig. 2.28.

5 V 3 V+
−

i2

i3i1

8 Ωv2

+

−

2 Ω

v1

4 Ω

v3

+
−

+ − + −

Figure 2.28 For Practice Prob. 2.8.

Answer: v1 = 3 V, v2 = 2 V, v3 = 5 V, i1 = 1.5 A, i2 = 0.25 A,
i3 =1.25 A.

2.5 SERIES RESISTORS AND VOLTAGE DIVISION

v +
−

R1

v1

R2

v2

i

+ − + −

a

b

Figure 2.29 A single-loop circuit
with two resistors in series.

The need to combine resistors in series or in parallel occurs so frequently
that it warrants special attention. The process of combining the resistors
is facilitated by combining two of them at a time. With this in mind,
consider the single-loop circuit of Fig. 2.29. The two resistors are in
series, since the same current i flows in both of them. Applying Ohm’s
law to each of the resistors, we obtain

v1 = iR1, v2 = iR2 (2.24)

If we apply KVL to the loop (moving in the clockwise direction), we have

−v + v1 + v2 = 0 (2.25)
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Combining Eqs. (2.24) and (2.25), we get

v = v1 + v2 = i(R1 + R2) (2.26)

or

i = v

R1 + R2
(2.27)

Notice that Eq. (2.26) can be written as

v = iReq (2.28)

implying that the two resistors can be replaced by an equivalent resistor
Req; that is,

Req = R1 + R2 (2.29)

Thus, Fig. 2.29 can be replaced by the equivalent circuit in Fig. 2.30. The
two circuits in Figs. 2.29 and 2.30 are equivalent because they exhibit the
same voltage-current relationships at the terminals a-b. An equivalent
circuit such as the one in Fig. 2.30 is useful in simplifying the analysis
of a circuit. In general,

v

Req

v

+
−

i

+ −

a

b

Figure 2.30 Equivalent circuit
of the Fig. 2.29 circuit.

The equivalent resistance of any number of resistors connected in series
is the sum of the individual resistances.

Resistors in series behave as a single resistor
whose resistance is equal to the sum of the re-
sistances of the individual resistors.

For N resistors in series then,

Req = R1 + R2 + · · · + RN =
N∑
n=1

Rn (2.30)

To determine the voltage across each resistor in Fig. 2.29, we sub-
stitute Eq. (2.26) into Eq. (2.24) and obtain

v1 = R1

R1 + R2
v, v2 = R2

R1 + R2
v (2.31)

Notice that the source voltage v is divided among the resistors in direct
proportion to their resistances; the larger the resistance, the larger the
voltage drop. This is called the principle of voltage division, and the
circuit in Fig. 2.29 is called a voltage divider. In general, if a voltage
divider hasN resistors (R1, R2, . . . , RN) in series with the source voltage
v, the nth resistor (Rn) will have a voltage drop of

vn = Rn

R1 + R2 + · · · + RN

v (2.32)

2.6 PARALLEL RESISTORS AND CURRENT DIVISION
Consider the circuit in Fig. 2.31, where two resistors are connected in
parallel and therefore have the same voltage across them. From Ohm’s
law,

v = i1R1 = i2R2
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or

i1 = v

R1
, i2 = v

R2
(2.33)

Applying KCL at node a gives the total current i as

i = i1 + i2 (2.34)

Substituting Eq. (2.33) into Eq. (2.34), we get

i = v

R1
+ v

R2
= v

(
1

R1
+ 1

R2

)
= v

Req
(2.35)

where Req is the equivalent resistance of the resistors in parallel:

1

Req
= 1

R1
+ 1

R2
(2.36)

or
1

Req
= R1 + R2

R1R2

or

Req = R1R2

R1 + R2
(2.37)

Thus,

The equivalent resistance of two parallel resistors is equal to the product
of their resistances divided by their sum.

It must be emphasized that this applies only to two resistors in parallel.
From Eq. (2.37), if R1 = R2, then Req = R1/2.

Node b

Node a

v +
− R1 R2

i1 i2

i

Figure 2.31 Two resistors in parallel.

We can extend the result in Eq. (2.36) to the general case of a circuit
with N resistors in parallel. The equivalent resistance is

1

Req
= 1

R1
+ 1

R2
+ · · · + 1

RN

(2.38)

Note that Req is always smaller than the resistance of the smallest resistor
in the parallel combination. If R1 = R2 = · · · = RN = R, then

Req = R

N
(2.39)

For example, if four 100-� resistors are connected in parallel, their equiv-
alent resistance is 25 �.

Conductances in parallel behave as a single con-
ductance whose value is equal to the sum of the
individual conductances.

It is often more convenient to use conductance rather than resistance
when dealing with resistors in parallel. From Eq. (2.38), the equivalent
conductance for N resistors in parallel is

Geq = G1 + G2 + G3 + · · · + GN (2.40)

where Geq = 1/Req,G1 = 1/R1,G2 = 1/R2,G3 = 1/R3, . . . ,GN =
1/RN . Equation (2.40) states:
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The equivalent conductance of resistors connected in parallel is the sum
of their individual conductances.

This means that we may replace the circuit in Fig. 2.31 with that in
Fig. 2.32. Notice the similarity between Eqs. (2.30) and (2.40). The
equivalent conductance of parallel resistors is obtained the same way
as the equivalent resistance of series resistors. In the same manner, the
equivalent conductance of resistors in series is obtained just the same way
as the resistance of resistors in parallel. Thus the equivalent conductance
Geq of N resistors in series (such as shown in Fig. 2.29) is

1

Geq
= 1

G1
+ 1

G2
+ 1

G3
+ · · · + 1

GN

(2.41)

b

a

v +
− Req or Geqv

i

Figure 2.32 Equivalent circuit to
Fig. 2.31.

Given the total current i entering node a in Fig. 2.31, how do we
obtain current i1 and i2? We know that the equivalent resistor has the
same voltage, or

v = iReq = iR1R2

R1 + R2
(2.42)

Combining Eqs. (2.33) and (2.42) results in

i1 = R2 i

R1 + R2
, i2 = R1 i

R1 + R2
(2.43)

which shows that the total current i is shared by the resistors in inverse
proportion to their resistances. This is known as the principle of current
division, and the circuit in Fig. 2.31 is known as a current divider. Notice
that the larger current flows through the smaller resistance.

As an extreme case, suppose one of the resistors in Fig. 2.31 is zero,
say R2 = 0; that is, R2 is a short circuit, as shown in Fig. 2.33(a). From
Eq. (2.43), R2 = 0 implies that i1 = 0, i2 = i. This means that the
entire current i bypasses R1 and flows through the short circuit R2 = 0,
the path of least resistance. Thus when a circuit is short circuited, as
shown in Fig. 2.33(a), two things should be kept in mind:

R2 = 0

(a)

R1

i

i1 = 0 i2 = i

R2 = ∞

(b)

R1

i

i1 = i i2 = 0

Figure 2.33 (a) A shorted circuit,
(b) an open circuit.

1. The equivalent resistance Req = 0. [See what happens when
R2 = 0 in Eq. (2.37).]

2. The entire current flows through the short circuit.

As another extreme case, suppose R2 = ∞, that is, R2 is an open
circuit, as shown in Fig. 2.33(b). The current still flows through the path
of least resistance, R1. By taking the limit of Eq. (2.37) as R2 → ∞, we
obtain Req = R1 in this case.

If we divide both the numerator and denominator by R1R2, Eq.
(2.43) becomes

i1 = G1

G1 + G2
i (2.44a)

i2 = G2

G1 + G2
i (2.44b)
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Thus, in general, if a current divider has N conductors (G1,G2, . . . ,GN)

in parallel with the source current i, the nth conductor (Gn) will have
current

in = Gn

G1 + G2 + · · · + GN

i (2.45)

In general, it is often convenient and possible to combine resistors
in series and parallel and reduce a resistive network to a single equivalent
resistance Req. Such an equivalent resistance is the resistance between
the designated terminals of the network and must exhibit the same i-v
characteristics as the original network at the terminals.

E X A M P L E 2 . 9

Find Req for the circuit shown in Fig. 2.34.

2 Ω
5 ΩReq

4 Ω

8 Ω

1 Ω

6 Ω 3 Ω

Figure 2.34 For Example 2.9.

Solution:

6 Ω
Req

4 Ω

(a)

8 Ω

2 Ω

2 Ω

2.4 Ω
Req

4 Ω

(b)

8 Ω

Figure 2.35 Equivalent circuits for
Example 2.9.

To get Req, we combine resistors in series and in parallel. The 6-� and
3-� resistors are in parallel, so their equivalent resistance is

6 � ‖ 3 � = 6 × 3

6 + 3
= 2 �

(The symbol ‖ is used to indicate a parallel combination.) Also, the 1-�
and 5-� resistors are in series; hence their equivalent resistance is

1 � + 5 � = 6 �

Thus the circuit in Fig. 2.34 is reduced to that in Fig. 2.35(a). In Fig.
2.35(a), we notice that the two 2-� resistors are in series, so the equivalent
resistance is

2 � + 2 � = 4 �

This 4-� resistor is now in parallel with the 6-� resistor in Fig. 2.35(a);
their equivalent resistance is

4 � ‖ 6 � = 4 × 6

4 + 6
= 2.4 �

The circuit in Fig. 2.35(a) is now replaced with that in Fig. 2.35(b). In Fig.
2.35(b), the three resistors are in series. Hence, the equivalent resistance
for the circuit is

Req = 4 � + 2.4 � + 8 � = 14.4 �

P R A C T I C E P R O B L E M 2 . 9

By combining the resistors in Fig. 2.36, find Req.

5 Ω4 Ω6 Ω
Req

2 Ω

1 Ω

3 Ω 4 Ω

3 Ω

Figure 2.36 For Practice Prob. 2.9.

Answer: 6 �.
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E X A M P L E 2 . 1 0

Calculate the equivalent resistance Rab in the circuit in Fig. 2.37.

a

b
b b

c d

6 Ω

12 Ω

5 Ω4 Ω

10 Ω 1 Ω 1 Ω

Rab
3 Ω

Figure 2.37 For Example 2.10.

Solution:

The 3-� and 6-� resistors are in parallel because they are connected to
the same two nodes c and b. Their combined resistance is

3 � ‖ 6 � = 3 × 6

3 + 6
= 2 � (2.10.1)

Similarly, the 12-� and 4-� resistors are in parallel since they are con-
nected to the same two nodes d and b. Hence

12 � ‖ 4 � = 12 × 4

12 + 4
= 3 � (2.10.2)

Also the 1-� and 5-� resistors are in series; hence, their equivalent
resistance is

1 � + 5 � = 6 � (2.10.3)

With these three combinations, we can replace the circuit in Fig. 2.37 with
that in Fig. 2.38(a). In Fig. 2.38(a), 3-� in parallel with 6-� gives 2-�, as
calculated in Eq. (2.10.1). This 2-� equivalent resistance is now in series
with the 1-� resistance to give a combined resistance of 1�+2� = 3�.
Thus, we replace the circuit in Fig. 2.38(a) with that in Fig. 2.38(b). In
Fig. 2.38(b), we combine the 2-� and 3-� resistors in parallel to get

(a)

bb

d

b

c

3 Ω 6 Ω2 Ω

10 Ω 1 Ω
a

b

(b)

b b

c

3 Ω2 Ω

10 Ω
a

b

Figure 2.38 Equivalent circuits for
Example 2.10.

2 � ‖ 3 � = 2 × 3

2 + 3
= 1.2 �

This 1.2-� resistor is in series with the 10-� resistor, so that

Rab = 10 + 1.2 = 11.2 �

P R A C T I C E P R O B L E M 2 . 1 0

Find Rab for the circuit in Fig. 2.39.

1 Ω
9 Ω

18 Ω

20 Ω

20 Ω

2 Ω

5 Ω8 Ω
a

b

Rab

Figure 2.39 For Practice Prob. 2.10.

Answer: 11 �.
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E X A M P L E 2 . 1 1

Find the equivalent conductance Geq for the circuit in Fig. 2.40(a).

12 S8 S6 S

(a)

5 S

Geq

20 S6 S

(b)

5 S

Geq

(c)

Req

Ω1
5

Ω1
6 Ω1

8 Ω1
12

Figure 2.40 For Example 2.11: (a) original
circuit, (b) its equivalent circuit, (c) same
circuit as in (a) but resistors are expressed in
ohms.

Solution:

The 8-S and 12-S resistors are in parallel, so their conductance is

8 S + 12 S = 20 S

This 20-S resistor is now in series with 5 S as shown in Fig. 2.40(b) so
that the combined conductance is

20 × 5

20 + 5
= 4 S

This is in parallel with the 6-S resistor. Hence

Geq = 6 + 4 = 10 S

We should note that the circuit in Fig. 2.40(a) is the same as that in
Fig. 2.40(c). While the resistors in Fig. 2.40(a) are expressed in siemens,
they are expressed in ohms in Fig. 2.40(c). To show that the circuits are
the same, we find Req for the circuit in Fig. 2.40(c).

Req = 1

6

∥∥∥∥
(

1

5
+ 1

8

∥∥∥∥ 1

12

)
= 1

6

∥∥∥∥
(

1

5
+ 1

20

)
= 1

6

∥∥∥∥ 1

4

=
1
6 × 1

4
1
6 + 1

4

= 1

10
�

Geq = 1

Req
= 10 S

This is the same as we obtained previously.

P R A C T I C E P R O B L E M 2 . 1 1

Calculate Geq in the circuit of Fig. 2.41.

4 S

6 S

8 S

2 S
12 Ω

Geq

Figure 2.41 For Practice Prob. 2.11.

Answer: 4 S.

E X A M P L E 2 . 1 2

Find io and vo in the circuit shown in Fig. 2.42(a). Calculate the power
dissipated in the 3-� resistor.

Solution:

The 6-� and 3-� resistors are in parallel, so their combined resistance is

6 � ‖ 3 � = 6 × 3

6 + 3
= 2 �
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Thus our circuit reduces to that shown in Fig. 2.42(b). Notice that vo is
not affected by the combination of the resistors because the resistors are
in parallel and therefore have the same voltage vo. From Fig. 2.42(b), we
can obtain vo in two ways. One way is to apply Ohm’s law to get

i = 12

4 + 2
= 2 A

and hence, vo = 2i = 2 × 2 = 4 V. Another way is to apply voltage
division, since the 12 V in Fig. 2.42(b) is divided between the 4-� and
2-� resistors. Hence,

vo = 2

2 + 4
(12 V) = 4 V

a

b

(a)

12 V

4 Ωi io

6 Ω 3 Ωvo

+

−

a

b

(b)

12 V

4 Ωi

+
− 2 Ωvo

+

−

+
−

Figure 2.42 For Example 2.12: (a) original
circuit, (b) its equivalent circuit.

Similarly, io can be obtained in two ways. One approach is to apply
Ohm’s law to the 3-� resistor in Fig. 2.42(a) now that we know vo; thus,

vo = 3io = 4 	⇒ io = 4

3
A

Another approach is to apply current division to the circuit in Fig. 2.42(a)
now that we know i, by writing

io = 6

6 + 3
i = 2

3
(2 A) = 4

3
A

The power dissipated in the 3-� resistor is

po = voio = 4

(
4

3

)
= 5.333 W

P R A C T I C E P R O B L E M 2 . 1 2

Find v1 and v2 in the circuit shown in Fig. 2.43. Also calculate i1 and i2
and the power dissipated in the 12-� and 40-� resistors.

15 V

i1

+
− 40 Ωv2

+

−
10 Ω

12 Ω

v1

6 Ω

i2

+ −

Figure 2.43 For Practice Prob. 2.12.

Answer: v1 = 5 V, i1 = 416.7 mA, p1 = 2.083 W, v2 = 10 V,
i2 = 250 mA, p2 = 2.5 W.

E X A M P L E 2 . 1 3

For the circuit shown in Fig. 2.44(a), determine: (a) the voltage vo, (b)
the power supplied by the current source, (c) the power absorbed by each
resistor.

Solution:

(a) The 6-k� and 12-k� resistors are in series so that their combined
value is 6 + 12 = 18 k�. Thus the circuit in Fig. 2.44(a) reduces to that
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shown in Fig. 2.44(b). We now apply the current division technique to
find i1 and i2.

i1 = 18,000

9000 + 18,000
(30 mA) = 20 mA

i2 = 9000

9000 + 18,000
(30 A) = 10 mA

Notice that the voltage across the 9-k� and 18-k� resistors is the same,
and vo = 9,000i1 = 18,000i2 = 180 V, as expected.

(a)

30 mA 9 kΩvo

+

−
12 kΩ

6 kΩ

(b)

30 mA 9 kΩvo

+

−
18 kΩ

i1

io i2

Figure 2.44 For Example 2.13:
(a) original circuit,
(b) its equivalent circuit.

(b) Power supplied by the source is

po = voio = 180(30) mW = 5.4 W

(c) Power absorbed by the 12-k� resistor is

p = iv = i2(i2R) = i2
2R = (10 × 10−3)2(12,000) = 1.2 W

Power absorbed by the 6-k� resistor is

p = i2
2R = (10 × 10−3)2(6000) = 0.6 W

Power absorbed by the 9-k� resistor is

p = v2
o

R
= (180)2

9000
= 3.6 W

or

p = voi1 = 180(20) mW = 3.6 W

Notice that the power supplied (5.4 W) equals the power absorbed (1.2+
0.6 + 3.6 = 5.4 W). This is one way of checking results.

P R A C T I C E P R O B L E M 2 . 1 3

For the circuit shown in Fig. 2.45, find: (a) v1 and v2, (b) the power dis-
sipated in the 3-k� and 20-k� resistors, and (c) the power supplied by
the current source.

10 mA3 kΩ 5 kΩ 20 kΩ

1 kΩ

v1

+

−
v2

+

−

Figure 2.45 For Practice Prob. 2.13.

Answer: (a) 15 V, 20 V, (b) 75 mW, 20 mW, (c) 200 mW.



50 PART 1 DC Circuits

†2.7 WYE-DELTA TRANSFORMATIONS
Situations often arise in circuit analysis when the resistors are neither in
parallel nor in series. For example, consider the bridge circuit in Fig.
2.46. How do we combine resistors R1 through R6 when the resistors
are neither in series nor in parallel? Many circuits of the type shown in
Fig. 2.46 can be simplified by using three-terminal equivalent networks.
These are the wye (Y) or tee (T) network shown in Fig. 2.47 and the
delta (") or pi (#) network shown in Fig. 2.48. These networks occur by
themselves or as part of a larger network. They are used in three-phase
networks, electrical filters, and matching networks. Our main interest
here is in how to identify them when they occur as part of a network and
how to apply wye-delta transformation in the analysis of that network.

vs
+
−

R1

R4

R2

R5

R3

R6

Figure 2.46 The bridge network.

1 3

2 4

R3

R2R1

(a)

1 3

2 4

R3

R2R1

(b)

Figure 2.47 Two forms of the same network: (a) Y, (b) T.

1 3

2 4

Rc

(a)

1 3

2 4

(b)

RaRb

Rc

RaRb

Figure 2.48 Two forms of the
same network: (a) ", (b) #.

Delta to Wye Conversion

Suppose it is more convenient to work with a wye network in a place
where the circuit contains a delta configuration. We superimpose a wye
network on the existing delta network and find the equivalent resistances
in the wye network. To obtain the equivalent resistances in the wye
network, we compare the two networks and make sure that the resistance
between each pair of nodes in the " (or #) network is the same as the
resistance between the same pair of nodes in the Y (or T) network. For
terminals 1 and 2 in Figs. 2.47 and 2.48, for example,

R12(Y) = R1 + R3

R12(") = Rb ‖ (Ra + Rc)
(2.46)

Setting R12(Y)= R12(") gives

R12 = R1 + R3 = Rb(Ra + Rc)

Ra + Rb + Rc

(2.47a)

Similarly,

R13 = R1 + R2 = Rc(Ra + Rb)

Ra + Rb + Rc

(2.47b)

R34 = R2 + R3 = Ra(Rb + Rc)

Ra + Rb + Rc

(2.47c)

Subtracting Eq. (2.47c) from Eq. (2.47a), we get

R1 − R2 = Rc(Rb − Ra)

Ra + Rb + Rc

(2.48)
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Adding Eqs. (2.47b) and (2.48) gives

R1 = RbRc

Ra + Rb + Rc

(2.49)

and subtracting Eq. (2.48) from Eq. (2.47b) yields

R2 = RcRa

Ra + Rb + Rc

(2.50)

Subtracting Eq. (2.49) from Eq. (2.47a), we obtain

R3 = RaRb

Ra + Rb + Rc

(2.51)

We do not need to memorize Eqs. (2.49) to (2.51). To transform a "

network to Y, we create an extra node n as shown in Fig. 2.49 and follow
this conversion rule:

Each resistor in the Y network is the product of the resistors in the two adjacent "
branches, divided by the sum of the three " resistors.

R3

RaRb

R1 R2

Rc

b

n

a

c

Figure 2.49 Superposition of Y and "

networks as an aid in transforming one to
the other.

Wye to Delta Conversion

To obtain the conversion formulas for transforming a wye network to an
equivalent delta network, we note from Eqs. (2.49) to (2.51) that

R1R2 + R2R3 + R3R1 = RaRbRc(Ra + Rb + Rc)

(Ra + Rb + Rc)2

= RaRbRc

Ra + Rb + Rc

(2.52)

Dividing Eq. (2.52) by each of Eqs. (2.49) to (2.51) leads to the following
equations:

Ra = R1R2 + R2R3 + R3R1

R1
(2.53)

Rb = R1R2 + R2R3 + R3R1

R2
(2.54)

Rc = R1R2 + R2R3 + R3R1

R3
(2.55)

From Eqs. (2.53) to (2.55) and Fig. 2.49, the conversion rule for Y to "

is as follows:
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Each resistor in the " network is the sum of all possible products of Y resistors
taken two at a time, divided by the opposite Y resistor.

The Y and " networks are said to be balanced when

R1 = R2 = R3 = RY , Ra = Rb = Rc = R" (2.56)

Under these conditions, conversion formulas become

RY = R"

3
or R" = 3RY (2.57)

One may wonder why RY is less than R". Well, we notice that the Y-
connection is like a “series” connection while the "-connection is like a
“parallel” connection.

Note that in making the transformation, we do not take anything out
of the circuit or put in anything new. We are merely substituting different
but mathematically equivalent three-terminal network patterns to create
a circuit in which resistors are either in series or in parallel, allowing us
to calculate Req if necessary.

E X A M P L E 2 . 1 4

Convert the " network in Fig. 2.50(a) to an equivalent Y network.

c

ba

10 Ω 15 Ω

(a)

Rb Ra

Rc

25 Ω

c

ba

5 Ω

3 Ω

7.5 Ω
R2R1

R3

(b)

Figure 2.50 For Example 2.14: (a) original " network, (b) Y equivalent network.

Solution:

Using Eqs. (2.49) to (2.51), we obtain
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R1 = RbRc

Ra + Rb + Rc

= 25 × 10

25 + 10 + 15
= 250

50
= 5 �

R2 = RcRa

Ra + Rb + Rc

= 25 × 15

50
= 7.5 �

R3 = RaRb

Ra + Rb + Rc

= 15 × 10

50
= 3 �

The equivalent Y network is shown in Fig. 2.50(b).

P R A C T I C E P R O B L E M 2 . 1 4

Transform the wye network in Fig. 2.51 to a delta network.

20 Ω

R2

ba

c

10 Ω

R1

R3 40 Ω

Figure 2.51 For Practice Prob. 2.14.

Answer: Ra = 140 �,Rb = 70 �,Rc = 35 �.

E X A M P L E 2 . 1 5

Obtain the equivalent resistance Rab for the circuit in Fig. 2.52 and use it
to find current i.

a a
i

bb

c n120 V
5 Ω

30 Ω

12.5 Ω

15 Ω

10 Ω

20 Ω

+
−

Figure 2.52 For Example 2.15.

Solution:

In this circuit, there are two Y networks and one"network. Transforming
just one of these will simplify the circuit. If we convert the Y network
comprising the 5-�, 10-�, and 20-� resistors, we may select

R1 = 10 �, R2 = 20 �, R3 = 5 �

Thus from Eqs. (2.53) to (2.55) we have

Ra = R1R2 + R2R3 + R3R1

R1
= 10 × 20 + 20 × 5 + 5 × 10

10

= 350

10
= 35 �

Rb = R1R2 + R2R3 + R3R1

R2
= 350

20
= 17.5 �

Rc = R1R2 + R2R3 + R3R1

R3
= 350

5
= 70 �

With the Y converted to ", the equivalent circuit (with the voltage
source removed for now) is shown in Fig. 2.53(a). Combining the three
pairs of resistors in parallel, we obtain
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70 ‖ 30 = 70 × 30

70 + 30
= 21 �

12.5 ‖ 17.5 = 12.5 × 17.5

12.5 + 17.5
= 7.2917 �

15 ‖ 35 = 15 × 35

15 + 35
= 10.5 �

so that the equivalent circuit is shown in Fig. 2.53(b). Hence, we find

Rab = (7.292 + 10.5) ‖ 21 = 17.792 × 21

17.792 + 21
= 9.632 �

Then

i = vs

Rab

= 120

9.632
= 12.458 A

a

b

30 Ω70 Ω

17.5 Ω

35 Ω

12.5 Ω

15 Ω

(a)

a

b

21 Ω

(b)

7.292 Ω

10.5 Ω

Figure 2.53 Equivalent circuits to Fig. 2.52, with the voltage removed.

P R A C T I C E P R O B L E M 2 . 1 5

For the bridge network in Fig. 2.54, find Rab and i.

24 Ω

100 V

i

30 Ω

10 Ω

50 Ω

13 Ω

20 Ω
+
−

b

a

Figure 2.54 For Practice Prob. 2.15.

Answer: 40 �, 2.5 A.

†2.8 APPLICATIONS
Resistors are often used to model devices that convert electrical energy
into heat or other forms of energy. Such devices include conducting
wire, lightbulbs, electric heaters, stoves, ovens, and loudspeakers. In this
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section, we will consider two real-life problems that apply the concepts
developed in this chapter: electrical lighting systems and design of dc
meters.

So far, we have assumed that connecting wires
are perfect conductors (i.e., conductors of zero
resistance). In real physical systems, however,
the resistance of the connecting wire may be ap-
preciably large, and the modeling of the system
must include that resistance.

2 . 8 . 1 L i g h t i n g S y s t ems
Lighting systems, such as in a house or on a Christmas tree, often consist
of N lamps connected either in parallel or in series, as shown in Fig.
2.55. Each lamp is modeled as a resistor. Assuming that all the lamps are
identical and Vo is the power-line voltage, the voltage across each lamp
is Vo for the parallel connection and Vo/N for the series connection. The
series connection is easy to manufacture but is seldom used in practice,
for at least two reasons. First, it is less reliable; when a lamp fails, all the
lamps go out. Second, it is harder to maintain; when a lamp is bad, one
must test all the lamps one by one to detect the faulty one.

Vo

+

−
Power
plug

1 2 3 N

Lamp(a)

Vo

+

−

1
2

3

N

(b)

Figure 2.55 (a) Parallel connection of lightbulbs, (b) series connection of lightbulbs.

E X A M P L E 2 . 1 6

Three lightbulbs are connected to a 9-V battery as shown in Fig. 2.56(a).
Calculate: (a) the total current supplied by the battery, (b) the current
through each bulb, (c) the resistance of each bulb.

(a)

9 V
10 W

15 W

20 W

(b)

9 V

+

−

+

−

+

−

I1

I2

V3

V2

V1 R1

I

R3

R2

Figure 2.56 (a) Lighting system with three bulbs, (b) resistive circuit equivalent
model.
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Solution:

(a) The total power supplied by the battery is equal to the total power
absorbed by the bulbs, that is,

p = 15 + 10 + 20 = 45 W

Since p = V I , then the total current supplied by the battery is

I = p

V
= 45

9
= 5 A

(b) The bulbs can be modeled as resistors as shown in Fig. 2.56(b). Since
R1 (20-W bulb) is in parallel with the battery as well as the series com-
bination of R2 and R3,

V1 = V2 + V3 = 9 V

The current through R1 is

I1 = p1

V1
= 20

9
= 2.222 A

By KCL, the current through the series combination of R2 and R3

is

I2 = I − I1 = 5 − 2.222 = 2.778 A

(c) Since p = I 2R,

R1 = p1

I 2
1

= 20

2.2222
= 4.05 �

R2 = p2

I 2
2

= 15

2.7772
= 1.945 �

R3 = p3

I 2
3

= 10

2.7772
= 1.297 �

P R A C T I C E P R O B L E M 2 . 1 6

Refer to Fig. 2.55 and assume there are 10 lightbulbs, each with a power
rating of 40 W. If the voltage at the plug is 110 V for the parallel and
series connections, calculate the current through each bulb for both cases.

Answer: 0.364 A (parallel), 3.64 A (series).

+
+
−

−

Vin

Vout

a

b

c

Max

Min

Figure 2.57 The potentiometer
controlling potential levels.

2 . 8 . 2 Des i g n o f DC Mete r s
By their nature, resistors are used to control the flow of current. We take
advantage of this property in several applications, such as in a poten-
tiometer (Fig. 2.57). The word potentiometer, derived from the words
potential and meter, implies that potential can be metered out. The po-
tentiometer (or pot for short) is a three-terminal device that operates on
the principle of voltage division. It is essentially an adjustable voltage
divider. As a voltage regulator, it is used as a volume or level control on
radios, TVs, and other devices. In Fig. 2.57,

Vout = Vbc = Rbc

Rac

Vin (2.58)

where Rac = Rab +Rbc. Thus, Vout decreases or increases as the sliding
contact of the pot moves toward c or a, respectively.
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Another application where resistors are used to control current flow
is in the analog dc meters—the ammeter, voltmeter, and ohmmeter, which
measure current, voltage, and resistance, respectively. Each of these me-
ters employs the d’Arsonval meter movement, shown in Fig. 2.58. The
movement consists essentially of a movable iron-core coil mounted on
a pivot between the poles of a permanent magnet. When current flows
through the coil, it creates a torque which causes the pointer to deflect.
The amount of current through the coil determines the deflection of the
pointer, which is registered on a scale attached to the meter movement.
For example, if the meter movement is rated 1 mA, 50 �, it would take
1 mA to cause a full-scale deflection of the meter movement. By introduc-
ing additional circuitry to the d’Arsonval meter movement, an ammeter,
voltmeter, or ohmmeter can be constructed.

An instrument capable of measuring voltage, cur-
rent, and resistance is called a multimeter or a
volt-ohm meter (VOM).

A load is a component that is receiving energy (an
energy sink), as opposed to a generator supplying
energy (an energy source). More about loading
will be discussed in Section 4.9.1.

Consider Fig. 2.59, where an analog voltmeter and ammeter are
connected to an element. The voltmeter measures the voltage across a
load and is therefore connected in parallel with the element. As shown
in Fig. 2.60(a), the voltmeter consists of a d’Arsonval movement in par-
allel with a resistor whose resistance Rm is deliberately made very large
(theoretically, infinite), to minimize the current drawn from the circuit.
To extend the range of voltage that the meter can measure, series multi-
plier resistors are often connected with the voltmeters, as shown in Fig.
2.60(b). The multiple-range voltmeter in Fig. 2.60(b) can measure volt-
age from 0 to 1 V, 0 to 10 V, or 0 to 100 V, depending on whether the
switch is connected to R1, R2, or R3, respectively.

Let us calculate the multiplier resistor Rn for the single-range volt-
meter in Fig. 2.60(a), or Rn = R1, R2, or R3 for the multiple-range
voltmeter in Fig. 2.60(b). We need to determine the value of Rn to be
connected in series with the internal resistance Rm of the voltmeter. In
any design, we consider the worst-case condition. In this case, the worst
case occurs when the full-scale current Ifs = Im flows through the meter.
This should also correspond to the maximum voltage reading or the full-
scale voltage Vfs. Since the multiplier resistance Rn is in series with the

scale

pointer

spring

permanent magnet

rotating coil

stationary iron core

spring

N

S

Figure 2.58 A d’Arsonval meter movement.

V

A

V

I

+

−
Voltmeter

Ammeter

Element

Figure 2.59 Connection of a
voltmeter and an ammeter to an
element.
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Probes V

+

−

R1

R2

R3

1 V

10 V

100 V

Switch

Im

(b)

Rn

Im

Multiplier

Probes V

+

−

(a)

Rm

Meter

Rm

Meter

Figure 2.60 Voltmeters: (a) single-range type, (b) multiple-range type.

internal resistance Rm,

Vfs = Ifs(Rn + Rm) (2.59)

From this, we obtain

Rn = Vfs

Ifs
− Rm (2.60)

Im

I

Probes

(a)

RnIn

(b)

R1

R2

R3

10 mA

100 mA

1 A

Switch

Im

I

Probes

Rm

Meter

Rm

Meter

Figure 2.61 Ammeters: (a) single-range type,
(b) multiple-range type.

Similarly, the ammeter measures the current through the load and
is connected in series with it. As shown in Fig. 2.61(a), the ammeter con-
sists of a d’Arsonval movement in parallel with a resistor whose resistance
Rm is deliberately made very small (theoretically, zero) to minimize the
voltage drop across it. To allow multiple range, shunt resistors are often
connected in parallel with Rm as shown in Fig. 2.61(b). The shunt resis-
tors allow the meter to measure in the range 0–10 mA, 0–100 mA, or
0–1 A, depending on whether the switch is connected to R1, R2, or
R3, respectively.

Now our objective is to obtain the multiplier shuntRn for the single-
range ammeter in Fig. 2.61(a), or Rn = R1, R2, or R3 for the multiple-
range ammeter in Fig. 2.61(b). We notice that Rm and Rn are in parallel
and that at full-scale reading I = Ifs = Im + In, where In is the current
through the shunt resistor Rn. Applying the current division principle
yields

Im = Rn

Rn + Rm

Ifs
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or

Rn = Im

Ifs − Im
Rm (2.61)

The resistance Rx of a linear resistor can be measured in two ways.
An indirect way is to measure the current I that flows through it by
connecting an ammeter in series with it and the voltage V across it by
connecting a voltmeter in parallel with it, as shown in Fig. 2.62(a). Then

Rx = V

I
(2.62)

The direct method of measuring resistance is to use an ohmmeter. An
ohmmeter consists basically of a d’Arsonval movement, a variable resistor
or potentiometer, and a battery, as shown in Fig. 2.62(b). Applying KVL
to the circuit in Fig. 2.62(b) gives

E = (R + Rm + Rx)Im

or

Rx = E

Im
− (R + Rm) (2.63)

The resistor R is selected such that the meter gives a full-scale deflection,
that is, Im = Ifs when Rx = 0. This implies that

E = (R + Rm)Ifs (2.64)

Substituting Eq. (2.64) into Eq. (2.63) leads to

Rx =
(
Ifs

Im
− 1

)
(R + Rm) (2.65)

Im

R

E Rx

Ohmmeter

(b)

(a)

V

A

+

−
VRx

I

Rm

Figure 2.62 Two ways of measuring
resistance: (a) using an ammeter and a
voltmeter, (b) using an ohmmeter.

As mentioned, the types of meters we have discussed are known as
analog meters and are based on the d’Arsonval meter movement. Another
type of meter, called a digital meter, is based on active circuit elements
such as op amps. For example, a digital multimeter displays measure-
ments of dc or ac voltage, current, and resistance as discrete numbers,
instead of using a pointer deflection on a continuous scale as in an ana-
log multimeter. Digital meters are what you would most likely use in a
modern lab. However, the design of digital meters is beyond the scope
of this book.

E X A M P L E 2 . 1 7

Following the voltmeter setup of Fig. 2.60, design a voltmeter for the fol-
lowing multiple ranges:
(a) 0–1 V (b) 0–5 V (c) 0–50 V (d) 0–100 V
Assume that the internal resistance Rm = 2 k� and the full-scale current
Ifs = 100 µA.

Solution:

We apply Eq. (2.60) and assume that R1, R2, R3, and R4 correspond with
ranges 0–1 V, 0–5 V, 0–50 V, and 0–100 V, respectively.
(a) For range 0–1 V,

R1 = 1

100 × 10−6
− 2000 = 10,000 − 2000 = 8 k�
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(b) For range 0–5 V,

R2 = 5

100 × 10−6
− 2000 = 50,000 − 2000 = 48 k�

(c) For range 0–50 V,

R3 = 50

100 × 10−6
− 2000 = 500,000 − 2000 = 498 k�

(d) For range 0–100 V,

R4 = 100 V

100 × 10−6
− 2000 = 1,000,000 − 2000 = 998 k�

Note that the ratio of the total resistance (Rn+Rm) to the full-scale voltage
Vfs is constant and equal to 1/Ifs for the four ranges. This ratio (given in
ohms per volt, or �/V) is known as the sensitivity of the voltmeter. The
larger the sensitivity, the better the voltmeter.

P R A C T I C E P R O B L E M 2 . 1 7

Following the ammeter setup of Fig. 2.61, design an ammeter for the fol-
lowing multiple ranges:
(a) 0–1 A (b) 0–100 mA (c) 0–10 mA
Take the full-scale meter current as Im = 1 mA and the internal resistance
of the ammeter as Rm = 50 �.

Answer: Shunt resistors: 0.05 �, 0.505 �, 5.556 �.

2.9 SUMMARY
1. A resistor is a passive element in which the voltage v across it is

directly proportional to the current i through it. That is, a resistor is
a device that obeys Ohm’s law,

v = iR

where R is the resistance of the resistor.

2. A short circuit is a resistor (a perfectly conducting wire) with zero
resistance (R = 0). An open circuit is a resistor with infinite resis-
tance (R = ∞).

3. The conductance G of a resistor is the reciprocal of its resistance:

G = 1

R

4. A branch is a single two-terminal element in an electric circuit. A
node is the point of connection between two or more branches. A
loop is a closed path in a circuit. The number of branches b, the
number of nodes n, and the number of independent loops l in a
network are related as

b = l + n − 1
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5. Kirchhoff’s current law (KCL) states that the currents at any node
algebraically sum to zero. In other words, the sum of the currents
entering a node equals the sum of currents leaving the node.

6. Kirchhoff’s voltage law (KVL) states that the voltages around a
closed path algebraically sum to zero. In other words, the sum of
voltage rises equals the sum of voltage drops.

7. Two elements are in series when they are connected sequentially,
end to end. When elements are in series, the same current flows
through them (i1 = i2). They are in parallel if they are connected to
the same two nodes. Elements in parallel always have the same
voltage across them (v1 = v2).

8. When two resistors R1 (= 1/G1) and R2 (= 1/G2) are in series,
their equivalent resistance Req and equivalent conductance Geq are

Req = R1 + R2, Geq = G1G2

G1 + G2

9. When two resistors R1 (= 1/G1) and R2 (= 1/G2) are in parallel,
their equivalent resistance Req and equivalent conductance Geq are

Req = R1R2

R1 + R2
, Geq = G1 + G2

10. The voltage division principle for two resistors in series is

v1 = R1

R1 + R2
v, v2 = R2

R1 + R2
v

11. The current division principle for two resistors in parallel is

i1 = R2

R1 + R2
i, i2 = R1

R1 + R2
i

12. The formulas for a delta-to-wye transformation are

R1 = RbRc

Ra + Rb + Rc

, R2 = RcRa

Ra + Rb + Rc

R3 = RaRb

Ra + Rb + Rc

13. The formulas for a wye-to-delta transformation are

Ra = R1R2 + R2R3 + R3R1

R1
, Rb = R1R2 + R2R3 + R3R1

R2

Rc = R1R2 + R2R3 + R3R1

R3

14. The basic laws covered in this chapter can be applied to the prob-
lems of electrical lighting and design of dc meters.

R E V I EW QU E S T I ON S

2.1 The reciprocal of resistance is:
(a) voltage (b) current
(c) conductance (d) coulombs

2.2 An electric heater draws 10 A from a 120-V line.
The resistance of the heater is:
(a) 1200 � (b) 120 �

(c) 12 � (d) 1.2 �
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2.3 The voltage drop across a 1.5-kW toaster that draws
12 A of current is:
(a) 18 kV (b) 125 V
(c) 120 V (d) 10.42 V

2.4 The maximum current that a 2W, 80 k� resistor can
safely conduct is:
(a) 160 kA (b) 40 kA
(c) 5 mA (d) 25 µA

2.5 A network has 12 branches and 8 independent loops.
How many nodes are there in the network?
(a) 19 (b) 17 (c) 5 (d) 4

2.6 The current I in the circuit in Fig. 2.63 is:
(a) −0.8 A (b) −0.2 A
(c) 0.2 A (d) 0.8 A

3 V 5 V+
−

+
−

4 Ω I

6 Ω

Figure 2.63 For Review Question 2.6.

2.7 The current Io in Fig. 2.64 is:
(a) −4 A (b) −2 A (c) 4 A (d) 16 A

10 A

4 A2 A

Io

Figure 2.64 For Review Question 2.7.

2.8 In the circuit in Fig. 2.65, V is:
(a) 30 V (b) 14 V (c) 10 V (d) 6 V

+
−

+
−

+ −

+ −

10 V

12 V 8 V

V

Figure 2.65 For Review Question 2.8.

2.9 Which of the circuits in Fig. 2.66 will give you
Vab = 7 V?

3 V

a

b

5 V

1 V

(a)

+
−

+ −

+ −

3 V

a

b

5 V

1 V

(b)

+
−

+−

+ −

3 V

a

5 V

1 V

(c)

+
−

+ −

+− b

3 V

a

5 V

1 V

(d)

+
−

+−

+− b

Figure 2.66 For Review Question 2.9.

2.10 The equivalent resistance of the circuit in Fig. 2.67
is:
(a) 4 k� (b) 5 k� (c) 8 k� (d) 14 k�

2 kΩ 3 kΩ

Req
6 kΩ 3 kΩ

Figure 2.67 For Review Question 2.10.

Answers: 2.1c, 2.2c, 2.3b, 2.4c, 2.5c, 2.6b, 2.7a, 2.8d, 2.9d, 2.10a.
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P RO B L E M S

Section 2.2 Ohm’s Law

2.1 The voltage across a 5-k� resistor is 16 V. Find the
current through the resistor.

2.2 Find the hot resistance of a lightbulb rated 60 W,
120 V.

2.3 When the voltage across a resistor is 120 V, the
current through it is 2.5 mA. Calculate its
conductance.

2.4 (a) Calculate current i in Fig. 2.68 when the switch
is in position 1.

(b) Find the current when the switch is in position 2.

+
−

150 Ω100 Ω
3 V

1 2

i

Figure 2.68 For Prob. 2.4.

Section 2.3 Nodes, Branches, and Loops

2.5 For the network graph in Fig. 2.69, find the number
of nodes, branches, and loops.

Figure 2.69 For Prob. 2.5.

2.6 In the network graph shown in Fig. 2.70, determine
the number of branches and nodes.

Figure 2.70 For Prob. 2.6.

2.7 Determine the number of branches and nodes in the
circuit in Fig. 2.71.

+
−

6 Ω3 Ω

2 Ω
5 Ω

10 V5i
4 Ω i

Figure 2.71 For Prob. 2.7.

Section 2.4 Kirchhoff’s Laws

2.8 Use KCL to obtain currents i1, i2, and i3 in the
circuit shown in Fig. 2.72.

8 mA

9 mA

12 mA

i1

i3i2

Figure 2.72 For Prob. 2.8.

2.9 Find i1, i2, and i3 in the circuit in Fig. 2.73.

i2

i3

10 A i1 3 A

2 A

1 A

Figure 2.73 For Prob. 2.9.
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2.10 Determine i1 and i2 in the circuit in Fig. 2.74.

3 A

4 A –2 A

i2

i1

Figure 2.74 For Prob. 2.10.

2.11 Determine v1 through v4 in the circuit in Fig. 2.75.

12 V

+

−

10 V

−

+

+ −8 V

+

−v1

+

−
v3

+

−
v2

−

+
v4

− +6 V

Figure 2.75 For Prob. 2.11.

2.12 In the circuit in Fig. 2.76, obtain v1, v2, and v3.

+

−
20 V

+

−
v1

+

−
v3

25 V 10 V

15 V

v2

+ −

+− + − + −

Figure 2.76 For Prob. 2.12.

2.13 Find v1 and v2 in the circuit in Fig. 2.77.

6 V v1+
−

+

−

v1

v2

+ − + −

+ −

+ −

12 V 10 V

Figure 2.77 For Prob. 2.13.

2.14 Obtain v1 through v3 in the circuit of Fig. 2.78.

24 V

12 V

10 Vv3
v2+

−

+−

+
−

+

−
+

−

v1+ −

Figure 2.78 For Prob. 2.14.

2.15 Find I and Vab in the circuit of Fig. 2.79.

5 Ω3 Ω

+
−

+
−

+

−
Vab30 V 8 V

b

a

+−

10 V

I

Figure 2.79 For Prob. 2.15.

2.16 From the circuit in Fig. 2.80, find I , the power
dissipated by the resistor, and the power supplied by
each source.

−8 V

10 V

12 V 3 Ω+
−

+ −

+ −
I

Figure 2.80 For Prob. 2.16.
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2.17 Determine io in the circuit of Fig. 2.81.

36 V +
−

4 Ω

+
− 5io

io

Figure 2.81 For Prob. 2.17.

2.18 Calculate the power dissipated in the 5-� resistor in
the circuit of Fig. 2.82.

–
+45 V

1 Ω

5 Ω

3Vo

+ −Vo
+
−

Figure 2.82 For Prob. 2.18.

2.19 Find Vo in the circuit in Fig. 2.83 and the power
dissipated by the controlled source.

10 A6 Ω 2Vo

+ −

4 Ω

Vo

Figure 2.83 For Prob. 2.19.

2.20 For the circuit in Fig. 2.84, find Vo/Vs in terms of
α, R1, R2, R3, and R4. If R1 = R2 = R3 = R4,
what value of α will produce |Vo/Vs | = 10?

Vo+
−

+

−
R4R3

R1

R2 aIoVs

Io

Figure 2.84 For Prob. 2.20.

2.21 For the network in Fig. 2.85, find the current,
voltage, and power associated with the 20-k�
resistor.

0.01VoVo

+

−
20 kΩ5 kΩ10 kΩ5 mA

Figure 2.85 For Prob. 2.21.

Sections 2.5 and 2.6 Series and Parallel
Resistors

2.22 For the circuit in Fig. 2.86, find i1 and i2.

4 kΩ6 kΩ20 mA

i1 i2

Figure 2.86 For Prob. 2.22.

2.23 Find v1 and v2 in the circuit in Fig. 2.87.

24 V

3 kΩ

9 kΩ

v1

v2+
−

+ −
+

−

Figure 2.87 For Prob. 2.23.

2.24 Find v1, v2, and v3 in the circuit in Fig. 2.88.

40 V

14 Ω

15 Ω

v1

v2+
−

+ −
+

−
10 Ωv3

+

−

Figure 2.88 For Prob. 2.24.

2.25 Calculate v1, i1, v2, and i2 in the circuit of Fig. 2.89.

3 Ω

4 Ω 6 Ω

i1 i2v1

v2+
−

+ −

+

−
12 V

Figure 2.89 For Prob. 2.25.
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2.26 Find i, v, and the power dissipated in the 6-�
resistor in Fig. 2.90.

9 A 4 Ω

8 Ω

6 Ω

i
+

−
v

Figure 2.90 For Prob. 2.26.

2.27 In the circuit in Fig. 2.91, find v, i, and the power
absorbed by the 4-� resistor.

20 V 6 Ω10 Ω

5 Ω

+
−

4 Ω

+

−
v

i

Figure 2.91 For Prob. 2.27.

2.28 Find i1 through i4 in the circuit in Fig. 2.92.

20 A

10 Ω

40 Ω

i4

i3

20 Ω

30 Ω

i2

i1

Figure 2.92 For Prob. 2.28.

2.29 Obtain v and i in the circuit in Fig. 2.93.

9 A 2 S1 S

4 S 6 S

3 S
+

−
v

i

Figure 2.93 For Prob. 2.29.

2.30 Determine i1, i2, v1, and v2 in the ladder network in
Fig. 2.94. Calculate the power dissipated in the 2-�
resistor.

28 V 13 Ω15 Ω

6 Ω

+
−

8 Ω 2 Ω4 Ω

−
10 Ω12 Ω

+
v1

−

+
v2

i1 i2

Figure 2.94 For Prob. 2.30.

2.31 Calculate Vo and Io in the circuit of Fig. 2.95.

50 V

30 Ω70 Ω

+
−

5 Ω20 Ω
+

−
Vo

Io

Figure 2.95 For Prob. 2.31.

2.32 Find Vo and Io in the circuit of Fig. 2.96.

4 V 6 Ω3 Ω

1 Ω

+

−

Vo

8 Ω

2 Ω

+
−

Io

Figure 2.96 For Prob. 2.32.

2.33 In the circuit of Fig. 2.97, find R if Vo = 4V.

20 V 6 Ω

16 Ω

+
−

+

−
VoR

Figure 2.97 For Prob. 2.33.
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2.34 Find I and Vs in the circuit of Fig. 2.98 if the current
through the 3-� resistor is 2 A.

4 Ω

2 A
10 Ω

+
−

2 Ω

3 Ω6 Ω

Vs

I

Figure 2.98 For Prob. 2.34.

2.35 Find the equivalent resistance at terminals a-b for
each of the networks in Fig. 2.99.

R

(a) (b) (c)

a

b       

3R R

R

R

(d) (e)

a

b       

R

R

R

R

a

b       

R

R

R

R
a b

R 2R 3R

a

b       

Figure 2.99 For Prob. 2.35.

2.36 For the ladder network in Fig. 2.100, find I and Req.

10 V 6 Ω

2 Ω

+
−

3 Ω 1 Ω

2 Ω4 Ω

I

Req

Figure 2.100 For Prob. 2.36.

2.37 If Req = 50 � in the circuit in Fig. 2.101, find R.

Req

30 Ω
10 Ω

60 Ω

R

12 Ω 12 Ω 12 Ω

Figure 2.101 For Prob. 2.37.

2.38 Reduce each of the circuits in Fig. 2.102 to a single
resistor at terminals a-b.

8 Ω

5 Ω

20 Ω

30 Ω

a b

(a)

5 Ω

4 Ω

8 Ω

5 Ω

10 Ω

4 Ω

2 Ω

3 Ω

a b

(b)

Figure 2.102 For Prob. 2.38.

2.39 Calculate the equivalent resistance Rab at terminals
a-b for each of the circuits in Fig. 2.103.

40 Ω10 Ω

5 Ω

20 Ω

(a)

a

b

30 Ω
80 Ω

60 Ω

(b)

a

b

10 Ω

20 Ω

Figure 2.103 For Prob. 2.39.
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2.40 Obtain the equivalent resistance at the terminals a-b
for each of the circuits in Fig. 2.104.

11 Ω10 Ω
20 Ω

6 Ω5 Ω

4 Ω

9 Ω8 Ω

4 Ω
5 Ω15 Ω

(b)

a

b

(a)

a

b

10 Ω

20 Ω

60 Ω 30 Ω

Figure 2.104 For Prob. 2.40.

2.41 Find Req at terminals a-b for each of the circuits in
Fig. 2.105.

(a)

a

b

40 Ω

70 Ω

30 Ω

60 Ω

20 Ω

(b)

a

b

6 Ω

40 Ω

60 Ω

30 Ω

20 Ω

50 Ω

80 Ω

10 Ω

70 Ω

4 Ω

8 Ω

Figure 2.105 For Prob. 2.41.

2.42 Find the equivalent resistance Rab in the circuit of
Fig. 2.106.

ad e

f

b

c

6 Ω

3 Ω

5 Ω

20 Ω

10 Ω 8 Ω

Figure 2.106 For Prob. 2.42.

Section 2.7 Wye-Delta Transformations

2.43 Convert the circuits in Fig. 2.107 from Y to ".

10 Ω 10 Ω

10 Ω

ba

c

(a)

20 Ω30 Ω

50 Ω

a

(b)

b

c

Figure 2.107 For Prob. 2.43.

2.44 Transform the circuits in Fig. 2.108 from " to Y.

12 Ω

12 Ω 12 Ω

(a)

a b

c

60 Ω

30 Ω 10 Ω

(b)

a b

c

Figure 2.108 For Prob. 2.44.
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2.45 What value of R in the circuit of Fig. 2.109 would
cause the current source to deliver 800 mW to the
resistors?

30 mA

R R

R

R

R

Figure 2.109 For Prob. 2.45.

2.46 Obtain the equivalent resistance at the terminals a-b
for each of the circuits in Fig. 2.110.

(a)

b

a

30 Ω

10 Ω
10 Ω

20 Ω

20 Ω10 Ω

20 Ω10 Ω

30 Ω

25 Ω

(b)

b

a

15 Ω5 Ω

Figure 2.110 For Prob. 2.46.

2.47∗ Find the equivalent resistance Rab in each of the
circuits of Fig. 2.111. Each resistor is 100 �.

(a)

b

a

(b)

b

a

Figure 2.111 For Prob. 2.47.

2.48∗ Obtain the equivalent resistance Rab in each of the
circuits of Fig. 2.112. In (b), all resistors have a
value of 30 �.

(b)

40 Ω

50 Ω

10 Ω

60 Ω

30 Ω

20 Ω

(a)

b

a

80 Ω

30 Ω
a

b

Figure 2.112 For Prob. 2.48.

2.49 Calculate Io in the circuit of Fig. 2.113.

20 Ω

40 Ω

60 Ω

50 Ω10 Ω

20 Ω

24 V +
−

Io

Figure 2.113 For Prob. 2.49.

∗An asterisk indicates a challenging problem.
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2.50 Determine V in the circuit of Fig. 2.114.

100 V

30 Ω

15 Ω 10 Ω16 Ω

35 Ω 12 Ω 20 Ω+
− V

+

−

Figure 2.114 For Prob. 2.50.

2.51∗ Find Req and I in the circuit of Fig. 2.115.

2 Ω4 Ω

12 Ω
6 Ω 1 Ω

8 Ω 2 Ω

3 Ω10 Ω
5 Ω

4 Ω
20 V +

−

Req

I

Figure 2.115 For Prob. 2.51.

Section 2.8 Applications

2.52 The lightbulb in Fig. 2.116 is rated 120 V, 0.75 A.
Calculate Vs to make the lightbulb operate at the
rated conditions.

+
−

40 Ω

Vs 80 ΩBulb

Figure 2.116 For Prob. 2.52.

2.53 Three lightbulbs are connected in series to a 100-V
battery as shown in Fig. 2.117. Find the current I
through the bulbs.

30 W 40 W 50 W

100 V +
−

I

Figure 2.117 For Prob. 2.53.

2.54 If the three bulbs of Prob. 2.53 are connected in
parallel to the 100-V battery, calculate the current
through each bulb.

2.55 As a design engineer, you are asked to design a
lighting system consisting of a 70-W power supply
and two lightbulbs as shown in Fig. 2.118. You must
select the two bulbs from the following three
available bulbs.

R1 = 80 �, cost = $0.60 (standard size)
R2 = 90 �, cost = $0.90 (standard size)
R3 = 100 �, cost = $0.75 (nonstandard size)

The system should be designed for minimum cost
such that I = 1.2 A ± 5 percent.

I

Rx Ry

70 W
Power
Supply

+

−

Figure 2.118 For Prob. 2.55.

2.56 If an ammeter with an internal resistance of 100 �
and a current capacity of 2 mA is to measure 5 A,
determine the value of the resistance needed.
Calculate the power dissipated in the shunt resistor.

2.57 The potentiometer (adjustable resistor) Rx in Fig.
2.119 is to be designed to adjust current ix from 1 A
to 10 A. Calculate the values of R and Rx to achieve
this.

+
−

ix R

Rx

ix
110 V

Figure 2.119 For Prob. 2.57.

2.58 A d’Arsonval meter with an internal resistance of 1
k� requires 10 mA to produce full-scale deflection.
Calculate the value of a series resistance needed to
measure 50 V of full scale.
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2.59 A 20-k�/V voltmeter reads 10 V full scale.
(a) What series resistance is required to make the

meter read 50 V full scale?
(b) What power will the series resistor dissipate

when the meter reads full scale?
2.60 (a) Obtain the voltage vo in the circuit of Fig.

2.120(a).
(b) Determine the voltage v′

o measured when a
voltmeter with 6-k� internal resistance is
connected as shown in Fig. 2.120(b).

(c) The finite resistance of the meter introduces an
error into the measurement. Calculate the
percent error as

∣∣∣∣vo − v′
o

vo

∣∣∣∣× 100%

(d) Find the percent error if the internal resistance
were 36 k�.

+

−
2 mA

1 kΩ

5 kΩ 4 kΩ vo

(a)

(b)

2 mA
+

−

1 kΩ

5 kΩ 4 kΩ Voltmetervo

Figure 2.120 For Prob. 2.60.

2.61 (a) Find the current i in the circuit of Fig. 2.121(a).
(b) An ammeter with an internal resistance of 1 � is

inserted in the network to measure i ′ as shown in
Fig. 2.121(b). What is i ′?

(c) Calculate the percent error introduced by the
meter as

∣∣∣∣ i − i ′

i

∣∣∣∣× 100%

+
−

i

4 V

16 Ω

40 Ω 60 Ω

(a)

+
−

i'

4 V

16 Ω

40 Ω 60 Ω

(b)

Ammeter

Figure 2.121 For Prob. 2.61.

2.62 A voltmeter is used to measure Vo in the circuit in
Fig. 2.122. The voltmeter model consists of an ideal
voltmeter in parallel with a 100-k� resistor. Let
Vs = 40 V, Rs = 10 k�, and R1 = 20 k�. Calculate
Vo with and without the voltmeter when
(a) R2 = 1 k� (b) R2 = 10 k�
(c) R2 = 100 k�

+

−

+
−

V100 kΩVo

Vs

Rs

R1

R2

Figure 2.122 For Prob. 2.62.

2.63 An ammeter model consists of an ideal ammeter in
series with a 20-� resistor. It is connected with a
current source and an unknown resistor Rx as shown
in Fig. 2.123. The ammeter reading is noted. When
a potentiometer R is added and adjusted until the
ammeter reading drops to one half its previous
reading, then R = 65 �. What is the value of Rx?

I

A

R

Rx

20 Ω
Ammeter
model

Figure 2.123 For Prob. 2.63.

2.64 The circuit in Fig. 2.124 is to control the speed of a
motor such that the motor draws currents 5 A, 3 A,
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and 1 A when the switch is at high, medium, and
low positions, respectively. The motor can be
modeled as a load resistance of 20 m�. Determine
the series dropping resistances R1, R2, and R3.

6 V

High

Medium

Low

10-A, 0.01-Ω fuse
R1

R2

R3

Motor

Figure 2.124 For Prob. 2.64.

2.65 An ohmmeter is constructed with a 2-V battery and
0.1-mA (full-scale) meter with 100-� internal
resistance.
(a) Calculate the resistance of the (variable) resistor

required to be in series with the meter and the
battery.

(b) Determine the unknown resistance across the
terminals of the ohmmeter that will cause the
meter to deflect half scale.

COM P R E H EN S I V E P RO B L E M S

2.66 An electric heater connected to a 120-V source
consists of two identical 0.4-� elements made of
Nichrome wire. The elements provide low heat
when connected in series and high heat when
connected in parallel. Find the power at low and
high heat settings.

2.67 Suppose your circuit laboratory has the following
standard commercially available resistors in large
quantities:

1.8 � 20 � 300 � 24 k� 56 k�

Using series and parallel combinations and a
minimum number of available resistors, how would
you obtain the following resistances for an
electronic circuit design?
(a) 5 � (b) 311.8 �

(c) 40 k� (d) 52.32 k�

2.68 In the circuit in Fig. 2.125, the wiper divides the
potentiometer resistance between αR and (1 − α)R,
0 ≤ α ≤ 1. Find vo/vs .

vo

+

−

+
− R

R

aR

vs

Figure 2.125 For Prob. 2.68.

2.69 An electric pencil sharpener rated 240 mW, 6 V is
connected to a 9-V battery as shown in Fig. 2.126.
Calculate the value of the series-dropping resistor
Rx needed to power the sharpener.

9 V

Switch Rx

Figure 2.126 For Prob. 2.69.

2.70 A loudspeaker is connected to an amplifier as shown
in Fig. 2.127. If a 10-� loudspeaker draws the
maximum power of 12 W from the amplifier,
determine the maximum power a 4-� loudspeaker
will draw.

Amplifier

Loudspeaker

Figure 2.127 For Prob. 2.70.

2.71 In a certain application, the circuit in Fig. 2.128
must be designed to meet these two criteria:
(a) Vo/Vs = 0.05 (b) Req = 40 k�
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If the load resistor 5 k� is fixed, find R1 and R2 to
meet the criteria.

Vs
+
−

+

−
5 kΩVoR2

R1

Req

Figure 2.128 For Prob. 2.71.

2.72 The pin diagram of a resistance array is shown in
Fig. 2.129. Find the equivalent resistance between
the following:
(a) 1 and 2 (b) 1 and 3 (c) 1 and 4

20 Ω 20 Ω

40 Ω
10 Ω

10 Ω

1 2

34

80 Ω

Figure 2.129 For Prob. 2.72.

2.73 Two delicate devices are rated as shown in Fig.
2.130. Find the values of the resistors R1 and R2

needed to power the devices using a 24-V battery.

Device 1

Device 2
24 V

R1

R2

60-mA, 2-Ω fuse

9 V, 45 mW

24 V, 480 mW

Figure 2.130 For Prob. 2.73.
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C H A P T E R

METHODS OF ANALYSIS

3

Scientists study the world as it is, engineers create the world that never
has been.

—Theodore von Karman

Enhancing Your Career
Career in Electronics One area of application for electric
circuit analysis is electronics. The termelectronics was orig-
inally used to distinguish circuits of very low current levels.
This distinction no longer holds, as power semiconductor de-
vices operate at high levels of current. Today, electronics is
regarded as the science of the motion of charges in a gas, vac-
uum, or semiconductor. Modern electronics involves tran-
sistors and transistor circuits. The earlier electronic circuits
were assembled from components. Many electronic circuits
are now produced as integrated circuits, fabricated in a semi-
conductor substrate or chip.

Electronic circuits find applications in many areas,
such as automation, broadcasting, computers, and instru-
mentation. The range of devices that use electronic circuits
is enormous and is limited only by our imagination. Radio,
television, computers, and stereo systems are but a few.

An electrical engineer usually performs diverse func-
tions and is likely to use, design, or construct systems that
incorporate some form of electronic circuits. Therefore, an
understanding of the operation and analysis of electronics
is essential to the electrical engineer. Electronics has
become a specialty distinct from other disciplines within
electrical engineering. Because the field of electronics
is ever advancing, an electronics engineer must update
his/her knowledge from time to time. The best way to do
this is by being a member of a professional organization
such as the Institute of Electrical and Electronics Engineers

Troubleshooting an electronic circuit board. Source: T. J. Mal-
oney, Modern Industrial Electronics, 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1996, p. 408.

(IEEE). With a membership of over 300,000, the IEEE is
the largest professional organization in the world. Members
benefit immensely from the numerous magazines, journals,
transactions, and conference/symposium proceedings pub-
lished yearly by IEEE. You should consider becoming an
IEEE member.
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3.1 INTRODUCTION
Having understood the fundamental laws of circuit theory (Ohm’s law and
Kirchhoff’s laws), we are now prepared to apply these laws to develop
two powerful techniques for circuit analysis: nodal analysis, which is
based on a systematic application of Kirchhoff’s current law (KCL), and
mesh analysis, which is based on a systematic application of Kirchhoff’s
voltage law (KVL). The two techniques are so important that this chapter
should be regarded as the most important in the book. Students are
therefore encouraged to pay careful attention.

With the two techniques to be developed in this chapter, we can
analyze almost any circuit by obtaining a set of simultaneous equations
that are then solved to obtain the required values of current or voltage.
One method of solving simultaneous equations involves Cramer’s rule,
which allows us to calculate circuit variables as a quotient of determinants.
The examples in the chapter will illustrate this method; Appendix A also
briefly summarizes the essentials the reader needs to know for applying
Cramer’s rule.

Also in this chapter, we introduce the use ofPSpice for Windows, a
circuit simulation computer software program that we will use throughout
the text. Finally, we apply the techniques learned in this chapter to analyze
transistor circuits.

3.2 NODAL ANALYSIS
Nodal analysis provides a general procedure for analyzing circuits using
node voltages as the circuit variables. Choosing node voltages instead
of element voltages as circuit variables is convenient and reduces the
number of equations one must solve simultaneously.

To simplify matters, we shall assume in this section that circuits do
not contain voltage sources. Circuits that contain voltage sources will be
analyzed in the next section.

Nodal analysis is also known as the node-voltage
method.

In nodal analysis, we are interested in finding the node voltages.
Given a circuit withn nodes without voltage sources, the nodal analysis
of the circuit involves taking the following three steps.

S t e p s t o D e t e rm i n e N o d e V o l t a g e s :
1. Select a node as the reference node. Assign voltages
v1, v2, . . . , vn−1 to the remainingn− 1 nodes. The voltages are
referenced with respect to the reference node.

2. Apply KCL to each of then− 1 nonreference nodes. Use Ohm’s
law to express the branch currents in terms of node voltages.

3. Solve the resulting simultaneous equations to obtain the unknown
node voltages.

We shall now explain and apply these three steps.
The first step in nodal analysis is selecting a node as thereference

or datum node. The reference node is commonly called theground since
it is assumed to have zero potential. A reference node is indicated by
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any of the three symbols in Fig. 3.1. The type of ground in Fig. 3.1(b) is
called achassis ground and is used in devices where the case, enclosure,
or chassis acts as a reference point for all circuits. When the potential of
the earth is used as reference, we use theearth ground in Fig. 3.1(a) or
(c). We shall always use the symbol in Fig. 3.1(b).

The number of nonreference nodes is equal to
the number of independent equations that we
will derive.

Once we have selected a reference node, we assign voltage desig-
nations to nonreference nodes. Consider, for example, the circuit in Fig.
3.2(a). Node 0 is the reference node(v = 0), while nodes 1 and 2 are
assigned voltagesv1 andv2, respectively. Keep in mind that the node
voltages are defined with respect to the reference node. As illustrated in
Fig. 3.2(a), each node voltage is the voltage rise from the reference node
to the corresponding nonreference node or simply the voltage of that node
with respect to the reference node.

(a) (b) (c)

Figure 3.1 Common symbols for
indicating a reference node.

As the second step, we apply KCL to each nonreference node in the
circuit. To avoid putting too much information on the same circuit, the
circuit in Fig. 3.2(a) is redrawn in Fig. 3.2(b), where we now add i1, i2,
and i3 as the currents through resistors R1, R2, and R3, respectively. At
node 1, applying KCL gives

I1 = I2 + i1 + i2 (3.1)

At node 2,

I2 + i2 = i3 (3.2)

We now apply Ohm’s law to express the unknown currents i1, i2, and i3
in terms of node voltages. The key idea to bear in mind is that, since
resistance is a passive element, by the passive sign convention, current
must always flow from a higher potential to a lower potential.

Current flows from a higher potential to a lower potential in a resistor.

(a)

(b)

1 2

v1

i1

i2 i2

i3

v2

I2

0

R3v2

+

−

R3

R1v1

+

−

R1I1

I2

R2

R2

I1

Figure 3.2 Typical circuit for nodal
analysis.

We can express this principle as

i = vhigher − vlower

R
(3.3)

Note that this principle is in agreement with the way we defined resistance
in Chapter 2 (see Fig. 2.1). With this in mind, we obtain from Fig. 3.2(b),

i1 = v1 − 0

R1
or i1 = G1v1

i2 = v1 − v2

R2
or i2 = G2(v1 − v2)

i3 = v2 − 0

R3
or i3 = G3v2

(3.4)

Substituting Eq. (3.4) in Eqs. (3.1) and (3.2) results, respectively, in

I1 = I2 + v1

R1
+ v1 − v2

R2
(3.5)

I2 + v1 − v2

R2
= v2

R3
(3.6)
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In terms of the conductances, Eqs. (3.5) and (3.6) become

I1 = I2 +G1v1 +G2(v1 − v2) (3.7)

I2 +G2(v1 − v2) = G3v2 (3.8)

The third step in nodal analysis is to solve for the node voltages. If
we apply KCL to n−1 nonreference nodes, we obtain n−1 simultaneous
equations such as Eqs. (3.5) and (3.6) or (3.7) and (3.8). For the circuit
of Fig. 3.2, we solve Eqs. (3.5) and (3.6) or (3.7) and (3.8) to obtain the
node voltages v1 and v2 using any standard method, such as the substitu-
tion method, the elimination method, Cramer’s rule, or matrix inversion.
To use either of the last two methods, one must cast the simultaneous
equations in matrix form. For example, Eqs. (3.7) and (3.8) can be cast
in matrix form as[

G1 +G2

−G2

−G2

G2 +G3

] [
v1

v2

]
=
[
I1 − I2

I2

]
(3.9)

which can be solved to get v1 and v2. Equation 3.9 will be generalized
in Section 3.6. The simultaneous equations may also be solved using
calculators such as HP48 or with software packages such as Matlab,
Mathcad, Maple, and Quattro Pro.

Appendix A discusses how to use Cramer’s rule.

E X A M P L E 3 . 1

Calculate the node voltages in the circuit shown in Fig. 3.3(a).

Solution:

Consider Fig. 3.3(b), where the circuit in Fig. 3.3(a) has been prepared for
nodal analysis. Notice how the currents are selected for the application
of KCL. Except for the branches with current sources, the labeling of the
currents is arbitrary but consistent. (By consistent, we mean that if, for
example, we assume that i2 enters the 4� resistor from the left-hand side,
i2 must leave the resistor from the right-hand side.) The reference node
is selected, and the node voltages v1 and v2 are now to be determined.

At node 1, applying KCL and Ohm’s law gives

i1 = i2 + i3 �⇒ 5 = v1 − v2

4
+ v1 − 0

2
Multiplying each term in the last equation by 4, we obtain

20 = v1 − v2 + 2v1

or

3v1 − v2 = 20 (3.1.1)

2
1

5 A

10 A2 Ω 6 Ω

4 Ω

(a)

5 A

10 A2 Ω 6 Ω

4 Ω

(b)

i1 = 5 i1 = 5

i4 = 10i2

i3
i2 i5

v2v1

Figure 3.3 For Example 3.1: (a) original
circuit, (b) circuit for analysis.

At node 2, we do the same thing and get

i2 + i4 = i1 + i5 �⇒ v1 − v2

4
+ 10 = 5 + v2 − 0

6
Multiplying each term by 12 results in

3v1 − 3v2 + 120 = 60 + 2v2

or

−3v1 + 5v2 = 60 (3.1.2)
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Now we have two simultaneous Eqs. (3.1.1) and (3.1.2). We can solve
the equations using any method and obtain the values of v1 and v2.

METHOD 1 Using the elimination technique, we add Eqs. (3.1.1) and
(3.1.2).

4v2 = 80 �⇒ v2 = 20 V

Substituting v2 = 20 in Eq. (3.1.1) gives

3v1 − 20 = 20 �⇒ v1 = 40

3
= 13.33 V

METHOD 2 To use Cramer’s rule, we need to put Eqs. (3.1.1) and
(3.1.2) in matrix form as[

3
−3

−1
5

] [
v1

v2

]
=
[

20
60

]
(3.1.3)

The determinant of the matrix is

� =
∣∣∣∣ 3
−3

−1
5

∣∣∣∣ = 15 − 3 = 12

We now obtain v1 and v2 as

v1 = �1

�
=

∣∣∣∣20
60

−1
5

∣∣∣∣
�

= 100 + 60

12
= 13.33 V

v2 = �2

�
=

∣∣∣∣ 3
−3

20
60

∣∣∣∣
�

= 180 + 60

12
= 20 V

giving us the same result as did the elimination method.

If we need the currents, we can easily calculate them from the values
of the nodal voltages.

i1 = 5 A, i2 = v1 − v2

4
= −1.6667 A, i3 = v1

2
= 6.666

i4 = 10 A, i5 = v2

6
= 3.333 A

The fact that i2 is negative shows that the current flows in the direction
opposite to the one assumed.

P R A C T I C E P R O B L E M 3 . 1

Obtain the node voltages in the circuit in Fig. 3.4.

1 A 4 A

6 Ω

2 Ω 7 Ω

1 2

Figure 3.4 For Practice Prob. 3.1.

Answer: v1 = −2 V, v2 = −14 V.



80 PART 1 DC Circuits

E X A M P L E 3 . 2

Determine the voltages at the nodes in Fig. 3.5(a).

Solution:

The circuit in this example has three nonreference nodes, unlike the pre-
vious example which has two nonreference nodes. We assign voltages to
the three nodes as shown in Fig. 3.5(b) and label the currents.

4 Ω

4 Ω

2 Ω 8 Ωix

1 3
2

0

3 A 2ix

(a)

ix ix i3

4 Ω

4 Ω

2 Ω 8 Ω
i1

v1
v2

i2 i2
i1

v3

3 A

3 A

2ix

(b)

Figure 3.5 For Example 3.2: (a) original circuit, (b) circuit for analysis.

At node 1,

3 = i1 + ix �⇒ 3 = v1 − v3

4
+ v1 − v2

2
Multiplying by 4 and rearranging terms, we get

3v1 − 2v2 − v3 = 12 (3.2.1)

At node 2,

ix = i2 + i3 �⇒ v1 − v2

2
= v2 − v3

8
+ v2 − 0

4

Multiplying by 8 and rearranging terms, we get

−4v1 + 7v2 − v3 = 0 (3.2.2)

At node 3,

i1 + i2 = 2ix �⇒ v1 − v3

4
+ v2 − v3

8
= 2(v1 − v2)

2

Multiplying by 8, rearranging terms, and dividing by 3, we get

2v1 − 3v2 + v3 = 0 (3.2.3)

We have three simultaneous equations to solve to get the node voltages
v1, v2, and v3. We shall solve the equations in two ways.

METHOD 1 Using the elimination technique, we add Eqs. (3.2.1) and
(3.2.3).

5v1 − 5v2 = 12
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or

v1 − v2 = 12

5
= 2.4 (3.2.4)

Adding Eqs. (3.2.2) and (3.2.3) gives

−2v1 + 4v2 = 0 �⇒ v1 = 2v2 (3.2.5)

Substituting Eq. (3.2.5) into Eq. (3.2.4) yields

2v2 − v2 = 2.4 �⇒ v2 = 2.4, v1 = 2v2 = 4.8 V

From Eq. (3.2.3), we get

v3 = 3v2 − 2v1 = 3v2 − 4v2 = −v2 = −2.4 V

Thus,

v1 = 4.8 V, v2 = 2.4 V, v3 = −2.4 V

METHOD 2 To use Cramer’s rule, we put Eqs. (3.2.1) to (3.2.3) in
matrix form. 

 3
−4

2

−2
7

−3

−1
−1

1




v1

v2

v3


 =


12

0
0




From this, we obtain

v1 = �1

�
, v2 = �2

�
, v3 = �3

�

where�,�1,�2, and�3 are the determinants to be calculated as follows.
As explained in Appendix A, to calculate the determinant of a 3 by 3
matrix, we repeat the first two rows and cross multiply.

−
−
− +

+
+

= 21 − 12 + 4 + 14 − 9 − 8 = 10

3

3

7

7−4
−2

−2
−4

== −4
−2

−1
−1
−1

−1
−1

−1

−3
−3

1
1

2
2

3
7�

Similarly, we obtain

= 84 + 0 + 0 − 0 − 36 − 0 = 48

−
−
− +

+
+

7

7
−2

−2

=
0
0

0

12

12
−3�1

−1
−1

1
−1
−1
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= 0 + 0 − 24 − 0 − 0 + 48 = 24

−
−
− +

+
+

3

3
−4

−4
−1
−1

1
−1
−1

=
0
0

0

12

12
2�2

= 0 + 144 + 0 − 168 − 0 − 0 = −24

−
−
− +

+
+

3

3

7

7−4
−2

−2
−4

=
0
0

0

12

12
−32�3

Thus, we find

v1 = �1

�
= 48

10
= 4.8 V, v2 = �2

�
= 24

10
= 2.4 V

v3 = �3

�
= −24

10
= −2.4 V

as we obtained with Method 1.

P R A C T I C E P R O B L E M 3 . 2

Find the voltages at the three nonreference nodes in the circuit of Fig. 3.6.

10 A

2 Ω

3 Ω

4 Ω 6 Ω

ix

4ix

1 3
2

Figure 3.6 For Practice Prob. 3.2.

Answer: v1 = 80 V, v2 = −64 V, v3 = 156 V.

3.3 NODAL ANALYSIS WITH VOLTAGE SOURCES
We now consider how voltage sources affect nodal analysis. We use the
circuit in Fig. 3.7 for illustration. Consider the following two possibilities.

CA S E 1 If a voltage source is connected between the reference node
and a nonreference node, we simply set the voltage at the nonreference
node equal to the voltage of the voltage source. In Fig. 3.7, for example,

v1 = 10 V (3.10)

Thus our analysis is somewhat simplified by this knowledge of the voltage
at this node.
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10 V

5 V

4 Ω

8 Ω 6 Ω

2 Ω
v1 v3

v2

i3

i1

i2

i4

Supernode

+
−

+ −

Figure 3.7 A circuit with a supernode.

CA S E 2 If the voltage source (dependent or independent) is connected
between two nonreference nodes, the two nonreference nodes form a gen-
eralized node or supernode; we apply both KCL and KVL to determine
the node voltages.

A supernode may be regarded as a closed surface
enclosing the voltage source and its two nodes.

A supernode is formed by enclosing a (dependent or independent) voltage
source connected between two nonreference nodes and any

elements connected in parallel with it.

In Fig. 3.7, nodes 2 and 3 form a supernode. (We could have more than
two nodes forming a single supernode. For example, see the circuit in
Fig. 3.14.) We analyze a circuit with supernodes using the same three
steps mentioned in the previous section except that the supernodes are
treated differently. Why? Because an essential component of nodal
analysis is applying KCL, which requires knowing the current through
each element. There is no way of knowing the current through a voltage
source in advance. However, KCL must be satisfied at a supernode like
any other node. Hence, at the supernode in Fig. 3.7,

i1 + i4 = i2 + i3 (3.11a)

or

v1 − v2

2
+ v1 − v3

4
= v2 − 0

8
+ v3 − 0

6
(3.11b)

To apply Kirchhoff’s voltage law to the supernode in Fig. 3.7, we redraw
the circuit as shown in Fig. 3.8. Going around the loop in the clockwise
direction gives

−v2 + 5 + v3 = 0 �⇒ v2 − v3 = 5 (3.12)

From Eqs. (3.10), (3.11b), and (3.12), we obtain the node voltages.

+ −

v2 v3

5 V

+ +

− −

Figure 3.8 Applying KVL to a supernode.
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Note the following properties of a supernode:

1. The voltage source inside the supernode provides a constraint
equation needed to solve for the node voltages.

2. A supernode has no voltage of its own.

3. A supernode requires the application of both KCL and KVL.

E X A M P L E 3 . 3

For the circuit shown in Fig. 3.9, find the node voltages.

+−

2 A

2 V

7 A4 Ω

10 Ω

2 Ω

v1 v2

Figure 3.9 For Example 3.3.

Solution:

The supernode contains the 2-V source, nodes 1 and 2, and the 10-� re-
sistor. Applying KCL to the supernode as shown in Fig. 3.10(a) gives

2 = i1 + i2 + 7

Expressing i1 and i2 in terms of the node voltages

2 = v1 − 0

2
+ v2 − 0

4
+ 7 �⇒ 8 = 2v1 + v2 + 28

or

v2 = −20 − 2v1 (3.3.1)

To get the relationship between v1 and v2, we apply KVL to the circuit
in Fig. 3.10(b). Going around the loop, we obtain

−v1 − 2 + v2 = 0 �⇒ v2 = v1 + 2 (3.3.2)

From Eqs. (3.3.1) and (3.3.2), we write

v2 = v1 + 2 = −20 − 2v1

or

3v1 = −22 �⇒ v1 = −7.333 V

and v2 = v1 + 2 = −5.333 V. Note that the 10-� resistor does not make
any difference because it is connected across the supernode.

2 A

2 A

7 A

7 A

2 Ω 4 Ω

v2v1

i1 i2

1 2

(a)

+−

(b)

2 V
1 2

++

− −

v1 v2

Figure 3.10 Applying: (a) KCL to the supernode, (b) KVL to the loop.
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P R A C T I C E P R O B L E M 3 . 3

Find v and i in the circuit in Fig. 3.11.

7 V

3 V
4 Ω

3 Ω 2 Ω 6 Ω+
−

+−

i

v
+

−

Figure 3.11 For Practice Prob. 3.3.

Answer: −0.2 V, 1.4 A.

E X A M P L E 3 . 4

Find the node voltages in the circuit of Fig. 3.12.

20 V

2 Ω 4 Ω

6 Ω

3 Ω

1 Ω

vx
3vx

+ − + −

10 A

1 4
32

+ −

Figure 3.12 For Example 3.4.

Solution:

Nodes 1 and 2 form a supernode; so do nodes 3 and 4. We apply KCL to
the two supernodes as in Fig. 3.13(a). At supernode 1-2,

i3 + 10 = i1 + i2

Expressing this in terms of the node voltages,

v3 − v2

6
+ 10 = v1 − v4

3
+ v1

2
or

5v1 + v2 − v3 − 2v4 = 60 (3.4.1)

At supernode 3-4,

i1 = i3 + i4 + i5 �⇒ v1 − v4

3
= v3 − v2

6
+ v4

1
+ v3

4
or

4v1 + 2v2 − 5v3 − 16v4 = 0 (3.4.2)



86 PART 1 DC Circuits

10 A

3 Ω

6 Ω

2 Ω 4 Ω 1 Ω

(a)

i1

i2
i3 i4i5

v1
v2 v3 v4

vx+ −

(b)

+ − + −

+ −

20 V

3 Ω

6 Ω

i3

v1 v2 v3 v4

vx

Loop 1 Loop 2

Loop 3
3vx

+ + ++

− − − −

i1

i3

Figure 3.13 Applying: (a) KCL to the two supernodes, (b) KVL to the loops.

We now apply KVL to the branches involving the voltage sources
as shown in Fig. 3.13(b). For loop 1,

−v1 + 20 + v2 = 0 �⇒ v1 − v2 = 20 (3.4.3)

For loop 2,

−v3 + 3vx + v4 = 0

But vx = v1 − v4 so that

3v1 − v3 − 2v4 = 0 (3.4.4)

For loop 3,

vx − 3vx + 6i3 − 20 = 0

But 6i3 = v3 − v2 and vx = v1 − v4. Hence

−2v1 − v2 + v3 + 2v4 = 20 (3.4.5)

We need four node voltages, v1, v2, v3, and v4, and it requires
only four out of the five Eqs. (3.4.1) to (3.4.5) to find them. Although
the fifth equation is redundant, it can be used to check results. We can
eliminate one node voltage so that we solve three simultaneous equations
instead of four. From Eq. (3.4.3), v2 = v1 − 20. Substituting this into
Eqs. (3.4.1) and (3.4.2), respectively, gives

6v1 − v3 − 2v4 = 80 (3.4.6)

and

6v1 − 5v3 − 16v4 = 40 (3.4.7)

Equations (3.4.4), (3.4.6), and (3.4.7) can be cast in matrix form as
3

6
6

−1
−1
−5

−2
−2

−16




v1

v3

v4


 =


 0

80
40
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Using Cramer’s rule,

� =
∣∣∣∣∣∣
3
6
6

−1
−1
−5

−2
−2

−16

∣∣∣∣∣∣ = −18, �1 =
∣∣∣∣∣∣

0
80
40

−1
−1
−5

−2
−2

−16

∣∣∣∣∣∣ = −480

�3 =
∣∣∣∣∣∣
3
6
6

0
80
40

−2
−2

−16

∣∣∣∣∣∣ = −3120, �4 =
∣∣∣∣∣∣
3
6
6

−1
−1
−5

0
80
40

∣∣∣∣∣∣ = 840

Thus, we arrive at the node voltages as

v1 = �1

�
= −480

−18
= 26.667 V, v3 = �3

�
= −3120

−18
= 173.333 V

v4 = �4

�
= 840

−18
= −46.667 V

and v2 = v1 −20 = 6.667 V. We have not used Eq. (3.4.5); it can be used
to cross check results.

P R A C T I C E P R O B L E M 3 . 4

Find v1, v2, and v3 in the circuit in Fig. 3.14 using nodal analysis.

2 Ω 4 Ω 3 Ω

6 Ω

i

v1
v2 v3+ − +−

10 V 5i

Figure 3.14 For Practice Prob. 3.4.

Answer: v1 = 3.043 V, v2 = −6.956 V, v3 = 0.6522 V.

3.4 MESH ANALYSIS
Mesh analysis provides another general procedure for analyzing circuits,
using mesh currents as the circuit variables. Using mesh currents instead
of element currents as circuit variables is convenient and reduces the
number of equations that must be solved simultaneously. Recall that a
loop is a closed path with no node passed more than once. A mesh is a
loop that does not contain any other loop within it.

Mesh analysis is also known as loop analysis or the
mesh-current method.

Nodal analysis applies KCL to find unknown voltages in a given
circuit, while mesh analysis applies KVL to find unknown currents. Mesh
analysis is not quite as general as nodal analysis because it is only ap-
plicable to a circuit that is planar. A planar circuit is one that can be
drawn in a plane with no branches crossing one another; otherwise it is
nonplanar. A circuit may have crossing branches and still be planar if it
can be redrawn such that it has no crossing branches. For example, the
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circuit in Fig. 3.15(a) has two crossing branches, but it can be redrawn
as in Fig. 3.15(b). Hence, the circuit in Fig. 3.15(a) is planar. However,
the circuit in Fig. 3.16 is nonplanar, because there is no way to redraw
it and avoid the branches crossing. Nonplanar circuits can be handled
using nodal analysis, but they will not be considered in this text.

(a)

1 A

(b)

1 A

1 Ω

1 Ω 3 Ω

2 Ω

4 Ω
5 Ω

8 Ω 7 Ω

6 Ω

2 Ω

4 Ω

7 Ω8 Ω

5 Ω 6 Ω 3 Ω

Figure 3.15 (a) A planar circuit with crossing
branches, (b) the same circuit redrawn with no
crossing branches.

5 A

1 Ω

5 Ω
4 Ω

6 Ω

10 Ω

11 Ω
12 Ω

13 Ω

9 Ω
8 Ω

3 Ω

2 Ω7 Ω

Figure 3.16 A nonplanar circuit.

To understand mesh analysis, we should first explain more about
what we mean by a mesh.

A mesh is a loop which does not contain any other loops within it.

In Fig. 3.17, for example, paths abefa and bcdeb are meshes, but path
abcdefa is not a mesh. The current through a mesh is known as mesh
current. In mesh analysis, we are interested in applying KVL to find the
mesh currents in a given circuit.

Although path abcdefa is a loop and not a mesh,
KVL still holds. This is the reason for loosely
using the terms loop analysis and mesh analysis to
mean the same thing.

+
−

+
−

I1 R1 R2

R3

i1 i2

I2

I3

V1 V2

a b c

def

Figure 3.17 A circuit with two meshes.

In this section, we will apply mesh analysis to planar circuits that
do not contain current sources. In the next sections, we will consider
circuits with current sources. In the mesh analysis of a circuit with n
meshes, we take the following three steps.
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S t e p s t o D e t e rm i n e M e s h C u r r e n t s :
1. Assign mesh currents i1, i2, . . . , in to the n meshes.

2. Apply KVL to each of the n meshes. Use Ohm’s law to express
the voltages in terms of the mesh currents.

3. Solve the resulting n simultaneous equations to get the mesh
currents.

To illustrate the steps, consider the circuit in Fig. 3.17. The first
step requires that mesh currents i1 and i2 are assigned to meshes 1 and
2. Although a mesh current may be assigned to each mesh in an arbi-
trary direction, it is conventional to assume that each mesh current flows
clockwise.

The direction of the mesh current is arbitrary—
(clockwise or counterclockwise)—and does not
affect the validity of the solution.

As the second step, we apply KVL to each mesh. Applying KVL
to mesh 1, we obtain

−V1 + R1i1 + R3(i1 − i2) = 0

or

(R1 + R3)i1 − R3i2 = V1 (3.13)

For mesh 2, applying KVL gives

R2i2 + V2 + R3(i2 − i1) = 0

or

−R3i1 + (R2 + R3)i2 = −V2 (3.14)

Note in Eq. (3.13) that the coefficient of i1 is the sum of the resistances in
the first mesh, while the coefficient of i2 is the negative of the resistance
common to meshes 1 and 2. Now observe that the same is true in Eq.
(3.14). This can serve as a shortcut way of writing the mesh equations.
We will exploit this idea in Section 3.6.

The shortcut way will not apply if one mesh cur-
rent is assumed clockwise and the other assumed
anticlockwise, although this is permissible.The third step is to solve for the mesh currents. Putting Eqs. (3.13)

and (3.14) in matrix form yields[
R1 + R3

−R3

−R3

R2 + R3

] [
i1
i2

]
=
[
V1

−V2

]
(3.15)

which can be solved to obtain the mesh currents i1 and i2. We are at liberty
to use any technique for solving the simultaneous equations. According
to Eq. (2.12), if a circuit has n nodes, b branches, and l independent
loops or meshes, then l = b−n+ 1. Hence, l independent simultaneous
equations are required to solve the circuit using mesh analysis.

Notice that the branch currents are different from the mesh currents
unless the mesh is isolated. To distinguish between the two types of
currents, we use i for a mesh current and I for a branch current. The
current elements I1, I2, and I3 are algebraic sums of the mesh currents.
It is evident from Fig. 3.17 that

I1 = i1, I2 = i2, I3 = i1 − i2 (3.16)
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E X A M P L E 3 . 5

For the circuit in Fig. 3.18, find the branch currents I1, I2, and I3 using
mesh analysis.

+
−

+
−

15 V

10 V

5 Ω 6 Ω

10 Ω

4 Ω

I1

i1

I2

i2

I3

Figure 3.18 For Example 3.5.

Solution:

We first obtain the mesh currents using KVL. For mesh 1,

−15 + 5i1 + 10(i1 − i2)+ 10 = 0

or

3i1 − 2i2 = 1 (3.5.1)

For mesh 2,

6i2 + 4i2 + 10(i2 − i1)− 10 = 0

or

i1 = 2i2 − 1 (3.5.2)

METHOD 1 Using the substitution method, we substitute Eq. (3.5.2)
into Eq. (3.5.1), and write

6i2 − 3 − 2i2 = 1 �⇒ i2 = 1 A

From Eq. (3.5.2), i1 = 2i2 − 1 = 2 − 1 = 1 A. Thus,

I1 = i1 = 1 A, I2 = i2 = 1 A, I3 = i1 − i2 = 0

METHOD 2 To use Cramer’s rule, we cast Eqs. (3.5.1) and (3.5.2) in
matrix form as [

3
−1

−2
2

] [
i1
i2

]
=
[

1
1

]
We obtain the determinants

� =
∣∣∣∣ 3
−1

−2
2

∣∣∣∣ = 6 − 2 = 4

�1 =
∣∣∣∣11 −2

2

∣∣∣∣ = 2 + 2 = 4, �2 =
∣∣∣∣ 3
−1

1
1

∣∣∣∣ = 3 + 1 = 4

Thus,

i1 = �1

�
= 1 A, i2 = �2

�
= 1 A

as before.

P R A C T I C E P R O B L E M 3 . 5

Calculate the mesh currents i1 and i2 in the circuit of Fig. 3.19.

  12 V   8 V

2 Ω

4 Ω 3 Ω

12 Ω

9 Ω

i1
i2

+
−

+
−

Figure 3.19 For Practice Prob. 3.5.

Answer: i1 = 2
3 A, i2 = 0 A.
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E X A M P L E 3 . 6

Use mesh analysis to find the current io in the circuit in Fig. 3.20.

+
−

+
−

24 V

12 Ω

4 Ω

10 Ω 24 Ω

i1

i1

i3

i2

i2
io

4io

A

Figure 3.20 For Example 3.6.

Solution:

We apply KVL to the three meshes in turn. For mesh 1,

−24 + 10(i1 − i2)+ 12(i1 − i3) = 0

or

11i1 − 5i2 − 6i3 = 12 (3.6.1)

For mesh 2,

24i2 + 4(i2 − i3)+ 10(i2 − i1) = 0

or

−5i1 + 19i2 − 2i3 = 0 (3.6.2)

For mesh 3,

4io + 12(i3 − i1)+ 4(i3 − i2) = 0

But at node A, io = i1 − i2, so that

4(i1 − i2)+ 12(i3 − i1)+ 4(i3 − i2) = 0

or

−i1 − i2 + 2i3 = 0 (3.6.3)

In matrix form, Eqs. (3.6.1) to (3.6.3) become
 11

−5
−1

−5
19
−1

−6
−2

2




i1i2
i3


 =


12

0
0




We obtain the determinants as

= 418 − 30 − 10 − 114 − 22 − 50 = 192

−
−
− +

+
+

19

19
−5

−5

=
−5
−1

11

−5
11

−1�

−6
−2

2
−6
−2

= 456 − 24 = 432

−
−
− +

+
+

19

19
−5

−5

=
0
0

12

0
12

−1

−6
−2

2
−6
−2

�1

= 24 + 120 = 144

−
−
− +

+
+

0

0
12

12

=
−5
−1

11

−5
11

0

−6
−2

2
−6
−2

�2
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= 60 + 228 = 288

−
−
− +

+
+

019

19 0
12

12

=
−5

−5

−5
−1 −1

11

−5
11

0�3

We calculate the mesh currents using Cramer’s rule as

i1 = �1

�
= 432

192
= 2.25 A, i2 = �2

�
= 144

192
= 0.75 A

i3 = �3

�
= 288

192
= 1.5 A

Thus, io = i1 − i2 = 1.5 A.

P R A C T I C E P R O B L E M 3 . 6

Using mesh analysis, find io in the circuit in Fig. 3.21.

+
−

–
+20 V

4 Ω 8 Ω

2 Ω

6 Ω

i1 i2

i3

10io

io

Figure 3.21 For Practice Prob. 3.6.

Answer: −5 A.

3.5 MESH ANALYSIS WITH CURRENT SOURCES
Applying mesh analysis to circuits containing current sources (dependent
or independent) may appear complicated. But it is actually much easier
than what we encountered in the previous section, because the presence
of the current sources reduces the number of equations. Consider the
following two possible cases.

+
− 5 A10 V

4 Ω 3 Ω

6 Ωi1 i2

Figure 3.22 A circuit with a current source.

CA S E 1 When a current source exists only in one mesh: Consider the
circuit in Fig. 3.22, for example. We set i2 = −5 A and write a mesh
equation for the other mesh in the usual way, that is,

−10 + 4i1 + 6(i1 − i2) = 0 �⇒ i1 = −2 A (3.17)

CA S E 2 When a current source exists between two meshes: Consider
the circuit in Fig. 3.23(a), for example. We create a supermesh by ex-
cluding the current source and any elements connected in series with it,
as shown in Fig. 3.23(b). Thus,

A supermesh results when two meshes have a (dependent or independent)
current source in common.
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(b)

20 V 4 Ω

6 Ω 10 Ω

i1 i2+
−

+
−

6 A

20 V

6 Ω 10 Ω

2 Ω

4 Ω

i1

i1

i2

i2

0

(a)

Exclude these
elements

Figure 3.23 (a) Two meshes having a current source in common, (b) a supermesh, created by excluding the current source.

As shown in Fig. 3.23(b), we create a supermesh as the periphery of
the two meshes and treat it differently. (If a circuit has two or more
supermeshes that intersect, they should be combined to form a larger
supermesh.) Why treat the supermesh differently? Because mesh analy-
sis applies KVL—which requires that we know the voltage across each
branch—and we do not know the voltage across a current source in ad-
vance. However, a supermesh must satisfy KVL like any other mesh.
Therefore, applying KVL to the supermesh in Fig. 3.23(b) gives

−20 + 6i1 + 10i2 + 4i2 = 0

or

6i1 + 14i2 = 20 (3.18)

We apply KCL to a node in the branch where the two meshes intersect.
Applying KCL to node 0 in Fig. 3.23(a) gives

i2 = i1 + 6 (3.19)

Solving Eqs. (3.18) and (3.19), we get

i1 = −3.2 A, i2 = 2.8 A (3.20)

Note the following properties of a supermesh:

1. The current source in the supermesh is not completely ignored;
it provides the constraint equation necessary to solve for the
mesh currents.

2. A supermesh has no current of its own.

3. A supermesh requires the application of both KVL and KCL.

E X A M P L E 3 . 7

For the circuit in Fig. 3.24, find i1 to i4 using mesh analysis.

Solution:

Note that meshes 1 and 2 form a supermesh since they have an independent
current source in common. Also, meshes 2 and 3 form another supermesh
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+
− 10 V6 Ω 8 Ω

2 Ω4 Ω

i1

i2 i3 i4

2 Ω

5 A

i1

i2

i2 i3

io

P

Q

3io

Figure 3.24 For Example 3.7.

because they have a dependent current source in common. The two
supermeshes intersect and form a larger supermesh as shown. Applying
KVL to the larger supermesh,

2i1 + 4i3 + 8(i3 − i4)+ 6i2 = 0

or

i1 + 3i2 + 6i3 − 4i4 = 0 (3.7.1)

For the independent current source, we apply KCL to node P :

i2 = i1 + 5 (3.7.2)

For the dependent current source, we apply KCL to node Q:

i2 = i3 + 3io
But io = −i4, hence,

i2 = i3 − 3i4 (3.7.3)

Applying KVL in mesh 4,

2i4 + 8(i4 − i3)+ 10 = 0

or

5i4 − 4i3 = −5 (3.7.4)

From Eqs. (3.7.1) to (3.7.4),

i1 = −7.5 A, i2 = −2.5 A, i3 = 3.93 A, i4 = 2.143 A

P R A C T I C E P R O B L E M 3 . 7

Use mesh analysis to determine i1, i2, and i3 in Fig. 3.25.

+
− 3 A

6 V

1 Ω

2 Ω 2 Ω

8 Ω

4 Ωi1

i3

i2

Figure 3.25 For Practice Prob. 3.7.

Answer: i1 = 3.474 A, i2 = 0.4737 A, i3 = 1.1052 A.
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†3.6 NODAL AND MESH ANALYSES BY INSPECTION
This section presents a generalized procedure for nodal or mesh analysis.
It is a shortcut approach based on mere inspection of a circuit.

When all sources in a circuit are independent current sources, we
do not need to apply KCL to each node to obtain the node-voltage equa-
tions as we did in Section 3.2. We can obtain the equations by mere
inspection of the circuit. As an example, let us reexamine the circuit in
Fig. 3.2, shown again in Fig. 3.26(a) for convenience. The circuit has
two nonreference nodes and the node equations were derived in Section
3.2 as [

G1 +G2

−G2

−G2

G2 +G3

] [
v1

v2

]
=
[
I1 − I2

I2

]
(3.21)

Observe that each of the diagonal terms is the sum of the conductances
connected directly to node 1 or 2, while the off-diagonal terms are the
negatives of the conductances connected between the nodes. Also, each
term on the right-hand side of Eq. (3.21) is the algebraic sum of the
currents entering the node.

I1

v1

G1 G3

G2

I2

v2

(a)

(b)

i1 i3V1 V2
+
−

+
−

R1 R2

R3

Figure 3.26 (a) The circuit in Fig. 3.2,
(b) the circuit in Fig. 3.17.

In general, if a circuit with independent current sources has N
nonreference nodes, the node-voltage equations can be written in terms
of the conductances as


G11

G21
...

GN1

G12

G22
...

GN2

. . .

. . .
...

. . .

G1N

G2N
...

GNN





v1

v2
...

vN


 =



i1
i2
...

iN


 (3.22)

or simply

Gv = i (3.23)

where

Gkk = Sum of the conductances connected to node k

Gkj = Gjk = Negative of the sum of the conductances directly
connecting nodes k and j, k �= j

vk = Unknown voltage at node k

ik = Sum of all independent current sources directly
connected to node k, with currents entering the node
treated as positive

G is called the conductance matrix, v is the output vector; and i is the
input vector. Equation (3.22) can be solved to obtain the unknown node
voltages. Keep in mind that this is valid for circuits with only independent
current sources and linear resistors.

Similarly, we can obtain mesh-current equations by inspection when
a linear resistive circuit has only independent voltage sources. Consider
the circuit in Fig. 3.17, shown again in Fig. 3.26(b) for convenience. The
circuit has two nonreference nodes and the node equations were derived
in Section 3.4 as [

R1 + R3

−R3

−R3

R2 + R3

] [
i1
i2

]
=
[
v1

−v2

]
(3.24)



96 PART 1 DC Circuits

We notice that each of the diagonal terms is the sum of the resistances in
the related mesh, while each of the off-diagonal terms is the negative of
the resistance common to meshes 1 and 2. Each term on the right-hand
side of Eq. (3.24) is the algebraic sum taken clockwise of all independent
voltage sources in the related mesh.

In general, if the circuit has N meshes, the mesh-current equations
can be expressed in terms of the resistances as



R11

R21
...

RN1

R12

R22
...

RN2

. . .

. . .
...

. . .

R1N

R2N
...

RNN





i1
i2
...

iN


 =



v1

v2
...

vN


 (3.25)

or simply

Ri = v (3.26)

where

Rkk = Sum of the resistances in mesh k

Rkj = Rjk = Negative of the sum of the resistances in common with
meshes k and j, k �= j

ik = Unknown mesh current for mesh k in the clockwise
direction

vk = Sum taken clockwise of all independent voltage sources
in mesh k, with voltage rise treated as positive

R is called the resistance matrix, i is the output vector; and v is the input
vector. We can solve Eq. (3.25) to obtain the unknown mesh currents.

E X A M P L E 3 . 8

Write the node-voltage matrix equations for the circuit in Fig. 3.27 by
inspection.

3 A 1 A 4 A

2 A

10 Ω

5 Ω

1 Ω

8 Ω 8 Ωv1 v2 v3 v4

4 Ω 2 Ω

Figure 3.27 For Example 3.8.
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Solution:

The circuit in Fig. 3.27 has four nonreference nodes, so we need four
node equations. This implies that the size of the conductance matrix G,
is 4 by 4. The diagonal terms of G, in siemens, are

G11 = 1

5
+ 1

10
= 0.3, G22 = 1

5
+ 1

8
+ 1

1
= 1.325

G33 = 1

8
+ 1

8
+ 1

4
= 0.5, G44 = 1

8
+ 1

2
+ 1

1
= 1.625

The off-diagonal terms are

G12 = −1

5
= −0.2, G13 = G14 = 0

G21 = −0.2, G23 = −1

8
= −0.125, G24 = −1

1
= −1

G31 = 0, G32 = −0.125, G34 = −1

8
= −0.125

G41 = 0, G42 = −1, G43 = −0.125

The input current vector i has the following terms, in amperes:

i1 = 3, i2 = −1 − 2 = −3, i3 = 0, i4 = 2 + 4 = 6

Thus the node-voltage equations are


0.3
−0.2

0
0

−0.2
1.325

−0.125
−1

0
−0.125

0.5
−0.125

0
−1
−0.125

1.625





v1

v2

v3

v4


 =




3
−3

0
6




which can be solved to obtain the node voltages v1, v2, v3, and v4.

P R A C T I C E P R O B L E M 3 . 8

By inspection, obtain the node-voltage equations for the circuit in Fig.
3.28.

1 A

2 A

3 A

10 Ω

1 Ω

5 Ω

4 Ω

2 Ωv1 v2

v3 v4

Figure 3.28 For Practice Prob. 3.8.

Answer: 


1.3
−0.2
−1

0

−0.2
0.2
0
0

−1
0
1.25

−0.25

0
0

−0.25
0.75





v1

v2

v3

v4


 =




0
3

−1
3




E X A M P L E 3 . 9

By inspection, write the mesh-current equations for the circuit in Fig. 3.29.
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+
−

+ −

+
−

+
−10 V

4 V

2 Ω

2 Ω

5 Ω

2 Ω

4 Ω

3 Ω

3 Ω

1 Ω 1 Ω

4 Ω

i1

i2

i3

i4 i5 6 V
12 V

Figure 3.29 For Example 3.9.

Solution:

We have five meshes, so the resistance matrix is 5 by 5. The diagonal
terms, in ohms, are:

R11 = 5 + 2 + 2 = 9, R22 = 2 + 4 + 1 + 1 + 2 = 10

R33 = 2 + 3 + 4 = 9, R44 = 1 + 3 + 4 = 8, R55 = 1 + 3 = 4

The off-diagonal terms are:

R12 = −2, R13 = −2, R14 = 0 = R15

R21 = −2, R23 = −4, R24 = −1, R25 = −1

R31 = −2, R32 = −4, R34 = 0 = R35

R41 = 0, R42 = −1, R43 = 0, R45 = −3

R51 = 0, R52 = −1, R53 = 0, R54 = −3

The input voltage vector v has the following terms in volts:

v1 = 4, v2 = 10 − 4 = 6

v3 = −12 + 6 = −6, v4 = 0, v5 = −6

Thus the mesh-current equations are:


9
−2
−2

0
0

−2
10
−4
−1
−1

−2
−4

9
0
0

0
−1

0
8

−3

0
−1

0
−3

4






i1
i2
i3
i4
i5


 =




4
6

−6
0

−6




From this, we can obtain mesh currents i1, i2, i3, i4, and i5.

P R A C T I C E P R O B L E M 3 . 9

By inspection, obtain the mesh-current equations for the circuit in Fig.
3.30.
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+
−

+
−

24 V

12 V

10 V

50 Ω

40 Ω

i1

i2 i3

i4 i5

10 Ω

30 Ω

20 Ω

60 Ω80 Ω

+
−

Figure 3.30 For Practice Prob. 3.9.

Answer:


170
−40

0
−80

0

−40
80

−30
−10

0

0
−30

50
0

−20

−80
−10

0
90

0

0
0

−20
0

80






i1
i2
i3
i4
i5


 =




24
0

−12
10

−10




3.7 NODAL VERSUS MESH ANALYSIS
Both nodal and mesh analyses provide a systematic way of analyzing a
complex network. Someone may ask: Given a network to be analyzed,
how do we know which method is better or more efficient? The choice
of the better method is dictated by two factors.

The first factor is the nature the particular network. Networks that
contain many series-connected elements, voltage sources, or supermeshes
are more suitable for mesh analysis, whereas networks with parallel-
connected elements, current sources, or supernodes are more suitable for
nodal analysis. Also, a circuit with fewer nodes than meshes is better
analyzed using nodal analysis, while a circuit with fewer meshes than
nodes is better analyzed using mesh analysis. The key is to select the
method that results in the smaller number of equations.

The second factor is the information required. If node voltages are
required, it may be expedient to apply nodal analysis. If branch or mesh
currents are required, it may be better to use mesh analysis.

It is helpful to be familiar with both methods of analysis, for at least
two reasons. First, one method can be used to check the results from the
other method, if possible. Second, since each method has its limitations,
only one method may be suitable for a particular problem. For example,
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mesh analysis is the only method to use in analyzing transistor circuits,
as we shall see in Section 3.9. But mesh analysis cannot easily be used to
solve an op amp circuit, as we shall see in Chapter 5, because there is no
direct way to obtain the voltage across the op amp itself. For nonplanar
networks, nodal analysis is the only option, because mesh analysis only
applies to planar networks. Also, nodal analysis is more amenable to
solution by computer, as it is easy to program. This allows one to analyze
complicated circuits that defy hand calculation. A computer software
package based on nodal analysis is introduced next.

3.8 CIRCUIT ANALYSIS WITH PSPICE
PSpice is a computer software circuit analysis program that we will grad-
ually learn to use throught the course of this text. This section illustrates
how to use PSpice for Windows to analyze the dc circuits we have studied
so far.

Appendix D provides a tutorial on using PSpice
for Windows.

The reader is expected to review Sections D.1 through D.3 of Ap-
pendix D before proceeding in this section. It should be noted that PSpice
is only helpful in determining branch voltages and currents when the nu-
merical values of all the circuit components are known.

E X A M P L E 3 . 1 0

Use PSpice to find the node voltages in the circuit of Fig. 3.31.

+
− 3 A120 V

20 Ω

30 Ω 40 Ω

10 Ω1 2 3

0

Figure 3.31 For Example 3.10.

Solution:

The first step is to draw the given circuit using Schematics. If one follows
the instructions given in Appendix sections D.2 and D.3, the schematic in
Fig. 3.32 is produced. Since this is a dc analysis, we use voltage source
VDC and current source IDC. The pseudocomponent VIEWPOINTS are
added to display the required node voltages. Once the circuit is drawn and
saved as exam310.sch, we run PSpice by selecting Analysis/Simulate.
The circuit is simulated and the results are displayed on VIEWPOINTS
and also saved in output file exam310.out. The output file includes the
following:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 120.0000 (2) 81.2900 (3) 89.0320

indicating that V1 = 120 V, V2 = 81.29 V, V3 = 89.032 V.

+

−

R1 R3

20 10

120 V V1 R2 R430 40 I1 3 A

IDC

0

1 2 3
120.0000 81.2900 89.0320

Figure 3.32 For Example 3.10; the schematic of the circuit in Fig. 3.31.
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P R A C T I C E P R O B L E M 3 . 1 0

For the circuit in Fig. 3.33, use PSpice to find the node voltages.

+
−

2 A

200 V30 Ω 60 Ω 50 Ω

100 Ω

25 Ω

1 2 3

0

Figure 3.33 For Practice Prob. 3.10.

Answer: V1 = −40 V, V2 = 57.14 V, V3 = 200 V.

E X A M P L E 3 . 1 1

In the circuit in Fig. 3.34, determine the currents i1, i2, and i3.

Solution:

The schematic is shown in Fig. 3.35. (The schematic in Fig. 3.35 includes
the output results, implying that it is the schematic displayed on the screen
after the simulation.) Notice that the voltage-controlled voltage source
E1 in Fig. 3.35 is connected so that its input is the voltage across the 4-�
resistor; its gain is set equal to 3. In order to display the required currents,
we insert pseudocomponent IPROBES in the appropriate branches. The
schematic is saved as exam311.sch and simulated by selecting Analy-
sis/Simulate. The results are displayed on IPROBES as shown in Fig.
3.35 and saved in output file exam311.out. From the output file or the
IPROBES, we obtain i1 = i2 = 1.333 A and i3 = 2.667 A.

+
−

+−

24 V

1 Ω

i1 i2 i3
+

−

4 Ω 2 Ω

2 Ω 8 Ω 4 Ω

3vo

vo

Figure 3.34 For Example 3.11.
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+

−
24 V V1

R1

4

R2 2 R3 8 R4 4

1.333E+00 1.333E+00 2.667E+00

0

R6

1

R5

2

E E1

+−
− +

Figure 3.35 The schematic of the circuit in Fig. 3.34.

P R A C T I C E P R O B L E M 3 . 1 1

Use PSpice to determine currents i1, i2, and i3 in the circuit of Fig. 3.36.

+
−

2 A

10 V

2 Ω

i1

i1

i2

4 Ω

1 Ω 2 Ω

i3

Figure 3.36 For Practice Prob. 3.11.

Answer: i1 = −0.4286 A, i2 = 2.286 A, i3 = 2 A.

†3.9 APPLICATIONS: DC TRANSISTOR CIRCUITS
Most of us deal with electronic products on a routine basis and have
some experience with personal computers. A basic component for the
integrated circuits found in these electronics and computers is the ac-
tive, three-terminal device known as the transistor. Understanding the
transistor is essential before an engineer can start an electronic circuit
design.

Figure 3.37 depicts various kinds of transistors commercially avail-
able. There are two basic types of transistors: bipolar junction transis-
tors (BJTs) and field-effect transistors (FETs). Here, we consider only
the BJTs, which were the first of the two and are still used today. Our
objective is to present enough detail about the BJT to enable us to apply
the techniques developed in this chapter to analyze dc transistor circuits.

There are two types of BJTs: npn and pnp, with their circuit symbols
as shown in Fig. 3.38. Each type has three terminals, designated as emit-
ter (E), base (B), and collector (C). For the npn transistor, the currents and
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Figure 3.37 Various types of transistors.
(Courtesy of Tech America.)

n

n

pBase

Collector

Emitter E

B

C

(a)

p

p

nBase

Collector

Emitter E

B

C

(b)

Figure 3.38 Two types of BJTs and
their circuit symbols: (a) npn, (b) pnp.

B

C

E

+
+

+

−

−−

VCB

VCE

VBE

B

C

E

IB

IC

IE

(a)

(b)

Figure 3.39 The terminal
variables of an npn transistor:
(a) currents, (b) voltages.

voltages of the transistor are specified as in Fig. 3.39. Applying KCL to
Fig. 3.39(a) gives

IE = IB + IC (3.27)

where IE, IC , and IB are emitter, collector, and base currents, respectively.
Similarly, applying KVL to Fig. 3.39(b) gives

VCE + VEB + VBC = 0 (3.28)

where VCE, VEB , and VBC are collector-emitter, emitter-base, and base-
collector voltages. The BJT can operate in one of three modes: active,
cutoff, and saturation. When transistors operate in the active mode, typ-
ically VBE � 0.7 V,

IC = αIE (3.29)

where α is called the common-base current gain. In Eq. (3.29), α denotes
the fraction of electrons injected by the emitter that are collected by the
collector. Also,

IC = βIB (3.30)

where β is known as the common-emitter current gain. The α and β are
characteristic properties of a given transistor and assume constant values
for that transistor. Typically, α takes values in the range of 0.98 to 0.999,
while β takes values in the range 50 to 1000. From Eqs. (3.27) to (3.30),
it is evident that

IE = (1 + β)IB (3.31)

and

β = α

1 − α
(3.32)
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These equations show that, in the active mode, the BJT can be modeled as
a dependent current-controlled current source. Thus, in circuit analysis,
the dc equivalent model in Fig. 3.40(b) may be used to replace the npn
transistor in Fig. 3.40(a). Since β in Eq. (3.32) is large, a small base
current controls large currents in the output circuit. Consequently, the
bipolar transistor can serve as an amplifier, producing both current gain
and voltage gain. Such amplifiers can be used to furnish a considerable
amount of power to transducers such as loudspeakers or control motors.

B C

E

IB IC

VBE

VCE

+

−

+

−

B

C

E

IB

(a) (b)

VBE

VCE

+

+

−
−

bIB

Figure 3.40 (a) An npn transistor, (b) its dc equivalent
model.

In fact, transistor circuits provide motivation to
study dependent sources.

It should be observed in the following examples that one cannot
directly analyze transistor circuits using nodal analysis because of the
potential difference between the terminals of the transistor. Only when
the transistor is replaced by its equivalent model can we apply nodal
analysis.

E X A M P L E 3 . 1 2

Find IB, IC, and vo in the transistor circuit of Fig. 3.41. Assume that the
transistor operates in the active mode and that β = 50.

Solution:

For the input loop, KVL gives

−4 + IB(20 × 103)+ VBE = 0

IC

+

−

+

+

−
−

+

−
4 V

6 V

20 kΩ IB

VBE

vo

Output
loopInput

loop

100 Ω

Figure 3.41 For Example 3.12.
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Since VBE = 0.7 V in the active mode,

IB = 4 − 0.7

20 × 103
= 165 µA

But

IC = βIB = 50 × 165 µA = 8.25 mA

For the output loop, KVL gives

−vo − 100IC + 6 = 0

or

vo = 6 − 100IC = 6 − 0.825 = 5.175 V

Note that vo = VCE in this case.

P R A C T I C E P R O B L E M 3 . 1 2

For the transistor circuit in Fig. 3.42, let β = 100 and VBE = 0.7 V. De-
termine vo and VCE .

+

−

+

+

+

−

−

−
+

−
5 V

12 V
10 kΩ

500 Ω

VBE

VCE

200 Ω vo

Figure 3.42 For Practice Prob. 3.12.

Answer: 2.876 V, 1.984 V.

E X A M P L E 3 . 1 3

For the BJT circuit in Fig. 3.43, β = 150 and VBE = 0.7 V. Find vo.

Solution:

We can solve this problem in two ways. One way is by direct analysis of
the circuit in Fig. 3.43. Another way is by replacing the transistor with
its equivalent circuit.

2 V

100 kΩ

+

−

+

−
16 V

200 kΩ

1 kΩ

+

−

vo

Figure 3.43 For Example 3.13.

METHOD 1 We can solve the problem as we solved the problem in
the previous example. We apply KVL to the input and output loops as
shown in Fig. 3.44(a). For loop 1,

2 = 100 × 103I1 + 200 × 103I2 (3.13.1)

For loop 2,

VBE = 0.7 = 200 × 103I2 �⇒ I2 = 3.5 µA (3.13.2)

For loop 3,

−vo − 1000IC + 16 = 0
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or

vo = 16 − 1000IC (3.13.3)

From Eqs. (3.13.1) and (3.13.2),

I1 = 2 − 0.7

100 × 103
= 13 µA, IB = I1 − I2 = 9.5 µA

IC = βIB = 150 × 9.5 µA = 1.425 mA

Substituting for IC in Eq. (3.13.3),

vo = 16 − 1.425 = 14.575 V

+

−

Vo

+

−

+

−

I1 IB

IC

I2

1 kΩ

100 kΩ

200 kΩ2 V

16 V

16 V2 V

Loop 1 Loop 2

Loop 3

(a)

(b)

+

−

+

−
0.7 V

100 kΩ

200 kΩ

1 kΩ

150IB

IBI1

I2

B C

E

+

−

Vo

Figure 3.44 Solution of the problem in Example 3.13: (a) method 1,
(b) method 2.

METHOD 2 We can modify the circuit in Fig. 3.43 by replacing the
transistor by its equivalent model in Fig. 3.40(b). The result is the circuit
shown in Fig. 3.44(b). Notice that the locations of the base (B), emitter
(E), and collector (C) remain the same in both the original circuit in Fig.
3.43 and its equivalent circuit in Fig. 3.44(b). From the output loop,

vo = 16 − 1000(150IB)

But

IB = I1 − I2 = 2 − 0.7

100 × 103
− 0.7

200 × 103
= (13 − 3.5) µA = 9.5 µA

and so

vo = 16 − 1000(150 × 9.5 × 10−6) = 14.575 V
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P R A C T I C E P R O B L E M 3 . 1 3

The transistor circuit in Fig. 3.45 has β = 80 and VBE = 0.7 V. Find vo
and io.

1 V

10 V
30 kΩ

20 kΩ

20 kΩ

+

−

io

VBE

+

−

vo

+

−

+

−

Figure 3.45 For Practice Prob. 3.13.

Answer: −3 V, −150 µA.

3.10 SUMMARY
1. Nodal analysis is the application of Kirchhoff’s current law at the

nonreference nodes. (It is applicable to both planar and nonplanar
circuits.) We express the result in terms of the node voltages.
Solving the simultaneous equations yields the node voltages.

2. A supernode consists of two nonreference nodes connected by a
(dependent or independent) voltage source.

3. Mesh analysis is the application of Kirchhoff’s voltage law around
meshes in a planar circuit. We express the result in terms of mesh
currents. Solving the simultaneous equations yields the mesh
currents.

4. A supermesh consists of two meshes that have a (dependent or
independent) current source in common.

5. Nodal analysis is normally used when a circuit has fewer node
equations than mesh equations. Mesh analysis is normally used
when a circuit has fewer mesh equations than node equations.

6. Circuit analysis can be carried out using PSpice.

7. DC transistor circuits can be analyzed using the techniques cover-
ed in this chapter.

R E V I EW QU E S T I ON S

3.1 At node 1 in the circuit in Fig. 3.46, applying KCL
gives:

(a) 2 + 12 − v1

3
= v1

6
+ v1 − v2

4

(b) 2 + v1 − 12

3
= v1

6
+ v2 − v1

4

(c) 2 + 12 − v1

3
= 0 − v1

6
+ v1 − v2

4

(d) 2 + v1 − 12

3
= 0 − v1

6
+ v2 − v1

4
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2 A

v1

1 2
v2

12 V +
−

3 Ω 4 Ω

6 Ω 6 Ω

8 Ω

Figure 3.46 For Review Questions 3.1 and 3.2.

3.2 In the circuit in Fig. 3.46, applying KCL at node 2
gives:

(a)
v2 − v1

4
+ v2

8
= v2

6

(b)
v1 − v2

4
+ v2

8
= v2

6

(c)
v1 − v2

4
+ 12 − v2

8
= v2

6

(d)
v2 − v1

4
+ v2 − 12

8
= v2

6
3.3 For the circuit in Fig. 3.47, v1 and v2 are related as:

(a) v1 = 6i + 8 + v2 (b) v1 = 6i − 8 + v2

(c) v1 = −6i + 8 + v2 (d) v1 = −6i − 8 + v2

12 V +
− 4 Ω

6 Ω 8 V v2v1

i

+−

Figure 3.47 For Review Questions 3.3 and 3.4.

3.4 In the circuit in Fig. 3.47, the voltage v2 is:
(a) −8 V (b) −1.6 V
(c) 1.6 V (d) 8 V

3.5 The current i in the circuit in Fig. 3.48 is:
(a) −2.667 A (b) −0.667 A
(c) 0.667 A (d) 2.667 A

10 V +
− 6 V+

−

4 Ω

i

2 Ω

Figure 3.48 For Review Questions 3.5 and 3.6.

3.6 The loop equation for the circuit in Fig. 3.48 is:
(a) −10 + 4i + 6 + 2i = 0
(b) 10 + 4i + 6 + 2i = 0
(c) 10 + 4i − 6 + 2i = 0
(d) −10 + 4i − 6 + 2i = 0

3.7 In the circuit in Fig. 3.49, current i1 is:
(a) 4 A (b) 3 A (c) 2 A (d) 1 A

i1 i22 A20 V +
−

2 Ω 1 Ω

3 Ω 4 Ω

v
+

−

Figure 3.49 For Review Questions 3.7 and 3.8.

3.8 The voltage v across the current source in the circuit
of Fig. 3.49 is:
(a) 20 V (b) 15 V (c) 10 V (d) 5 V

3.9 The PSpice part name for a current-controlled
voltage source is:
(a) EX (b) FX (c) HX (d) GX

3.10 Which of the following statements are not true of the
pseudocomponent IPROBE:
(a) It must be connected in series.
(b) It plots the branch current.
(c) It displays the current through the branch in

which it is connected.
(d) It can be used to display voltage by connecting it

in parallel.
(e) It is used only for dc analysis.
(f) It does not correspond to a particular circuit

element.

Answers: 3.1a, 3.2c, 3.3b, 3.4d, 3.5c, 3.6a, 3.7d, 3.8b, 3.9c, 3.10b,d.
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P RO B L E M S

Sections 3.2 and 3.3 Nodal Analysis

3.1 Determine v1, v2, and the power dissipated in all the
resistors in the circuit of Fig. 3.50.

10 A6 A 8 Ω

4 Ωv1 v2

2 Ω

Figure 3.50 For Prob. 3.1.

3.2 For the circuit in Fig. 3.51, obtain v1 and v2.

3 A

6 A

5 Ω10 Ω

2 Ω

v1 v2

4 Ω

Figure 3.51 For Prob. 3.2.

3.3 Find the currents i1 through i4 and the voltage vo in
the circuit in Fig. 3.52.

10 A 2 A 60 Ω30 Ω20 Ω10 Ω

i1 i2 i3 i4

vo

Figure 3.52 For Prob. 3.3.

3.4 Given the circuit in Fig. 3.53, calculate the currents
i1 through i4.

4 A 5 A

2 A

5 Ω10 Ω10 Ω5 Ω

i1 i2 i3 i4

Figure 3.53 For Prob. 3.4.

3.5 Obtain vo in the circuit of Fig. 3.54.

30 V +
−

2 kΩ

20 V +
−

5 kΩ
4 kΩ vo

+

−

Figure 3.54 For Prob. 3.5.

3.6 Use nodal analysis to obtain vo in the circuit in Fig.
3.55.

6 Ω 2 Ω12 V

10 V

+
−

+ −
4 Ω

i3i2

vo

i1

Figure 3.55 For Prob. 3.6.

3.7 Using nodal analysis, find vo in the circuit of Fig.
3.56.

3 V

4vo

+
−

2 Ωvo

+

− 1 Ω

3 Ω 5 Ω

+
−

Figure 3.56 For Prob. 3.7.

3.8 Calculate vo in the circuit in Fig. 3.57.

12 V 2vo
+
− 8 Ω

6 Ω

+
−

3 Ω

vo+ −

Figure 3.57 For Prob. 3.8.

3.9 Find io in the circuit in Fig. 3.58.
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2 Ω 4 Ω8 Ω

1 Ω

4 A 2 io

io

Figure 3.58 For Prob. 3.9.

3.10 Solve for i1 and i2 in the circuit in Fig. 3.22 (Section
3.5) using nodal analysis.

3.11 Use nodal analysis to find currents i1 and i2 in the
circuit of Fig. 3.59.

24 V +
− 40 Ω 20 Ω5 A

10 Ω 20 Ω 30 Ω

i2i1

Figure 3.59 For Prob. 3.11.

3.12 Calculate v1 and v2 in the circuit in Fig. 3.60 using
nodal analysis.

8 Ω 4 Ω 3 A

2 Ω 2 V
v2v1

+ −

Figure 3.60 For Prob. 3.12.

3.13 Using nodal analysis, find vo in the circuit of Fig.
3.61.

2 Ω

5 A

8 Ω

+
−

+
−4 Ω 20 Vvo

+

−

1 Ω

40 V

Figure 3.61 For Prob. 3.13.

3.14 Apply nodal analysis to find io and the power
dissipated in each resistor in the circuit of Fig. 3.62.

5 S6 S

2 A

io

4 A

3 S10 V

+ −

Figure 3.62 For Prob. 3.14.

3.15 Determine voltages v1 through v3 in the circuit of
Fig. 3.63 using nodal analysis.

1 S 13 V

2 S

v1 v2

2vo

v3

8 S

2 A 4 Svo

+

−
+
−

+ −

Figure 3.63 For Prob. 3.15.

3.16 Using nodal analysis, find current io in the circuit of
Fig. 3.64.

60 V

io

3io

10 Ω
8 Ω

2 Ω

+
−

4 Ω

Figure 3.64 For Prob. 3.16.

3.17 Determine the node voltages in the circuit in Fig.
3.65 using nodal analysis.

5 A

2
31

2 Ω2 Ω

10 V

+−

8 Ω4 Ω

Figure 3.65 For Prob. 3.17.
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3.18 For the circuit in Fig. 3.66, find v1 and v2 using
nodal analysis.

3 mA

v2v1

2 kΩ

4 kΩ

1 kΩ vo

3vo

+

−

+−

Figure 3.66 For Prob. 3.18.

3.19 Determine v1 and v2 in the circuit in Fig. 3.67.

3 A
v2

5vo

v1

8 Ω

1 Ω
4 Ω12 V

2 Ω

vo

+
−

–
+

+ −

Figure 3.67 For Prob. 3.19.

3.20 Obtain v1 and v2 in the circuit of Fig. 3.68.

2 A5 A 10 Ω

v1 v2

5 Ω

8 V

+−

Figure 3.68 For Prob. 3.20.

3.21 Find vo and io in the circuit in Fig. 3.69.

20 V 2 Ω

2 Ω1 Ω

+
−

40 V +
−

10 V +
−

4 Ω vo

+

−

io

Figure 3.69 For Prob. 3.21.

3.22∗ Use nodal analysis to determine voltages v1, v2, and
v3 in the circuit in Fig. 3.70.

2 S2 A 4 S 2 S 4 A

io

1 S

4 S

1 Sv1

3io

v2 v3

Figure 3.70 For Prob. 3.22.

3.23 Using nodal analysis, find vo and io in the circuit of
Fig. 3.71.

+
−100 V 80 Ω vo

+

−

10 Ω 20 Ω

40 Ω 120 V

+
− 2io4vo

+−

io

Figure 3.71 For Prob. 3.23.

3.24 Find the node voltages for the circuit in Fig. 3.72.

4 Ω1 A 1 Ω 4 Ω 10 V

io

1 Ω

2 Ωv1

2vo4io
v2 v3

+
−

vo

+−

+ −

Figure 3.72 For Prob. 3.24.

∗An asterisk indicates a challenging problem.
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3.25∗ Obtain the node voltages v1, v2, and v3 in the circuit
of Fig. 3.73.

10 kΩ4 mA

5 kΩ

v1

20 V10 V v2 v3

12 V+
−

+− + −

Figure 3.73 For Prob. 3.25.

Sections 3.4 and 3.5 Mesh Analysis

3.26 Which of the circuits in Fig. 3.74 is planar? For the
planar circuit, redraw the circuits with no crossing
branches.

2 Ω

6 Ω

5 Ω

2 A

(a)

4 Ω
3 Ω

1 Ω

(b)

12 V +
− 2 Ω

3 Ω

5 Ω
4 Ω

1 Ω

Figure 3.74 For Prob. 3.26.

3.27 Determine which of the circuits in Fig. 3.75 is
planar and redraw it with no crossing branches.

10 V +
−

3 Ω

5 Ω

2 Ω

7 Ω

4 Ω

(a)

1 Ω

6 Ω

7 Ω

6 Ω1 Ω 3 Ω

4 A

(b)

8 Ω

2 Ω

5 Ω 4 Ω

Figure 3.75 For Prob. 3.27.

3.28 Rework Prob. 3.5 using mesh analysis.

3.29 Rework Prob. 3.6 using mesh analysis.

3.30 Solve Prob. 3.7 using mesh analysis.

3.31 Solve Prob. 3.8 using mesh analysis.

3.32 For the bridge network in Fig. 3.76, find io using
mesh analysis.

30 V +
−

2 kΩ

2 kΩ

6 kΩ 6 kΩ

4 kΩ4 kΩ

io

Figure 3.76 For Prob. 3.32.

3.33 Apply mesh analysis to find i in Fig. 3.77.
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+
−

+ −

10 Ω

2 Ω

5 Ω
1 Ω

8 V

6 V
i1

i2 i3

i

4 Ω

Figure 3.77 For Prob. 3.33.

3.34 Use mesh analysis to find vab and io in the circuit in
Fig. 3.78.

+
−

20 Ω

20 Ω
30 Ω

30 Ω

20 Ω

80 V

+
−80 V

30 Ω vab

+

−

io

Figure 3.78 For Prob. 3.34.

3.35 Use mesh analysis to obtain io in the circuit of Fig.
3.79.

3 A

12 V+
−

4 Ωio 1 Ω

6 V

2 Ω

5 Ω

+ −

Figure 3.79 For Prob. 3.35.

3.36 Find current i in the circuit in Fig. 3.80.

4 A

30 V

i
+
− 3 Ω 1 Ω

2 Ω 6 Ω

4 Ω 8 Ω

Figure 3.80 For Prob. 3.36.

3.37 Find vo and io in the circuit of Fig. 3.81.

16 V2io

3 Ω

1 Ω 2 Ω

2 Ω +
−

io

vo

Figure 3.81 For Prob. 3.37.

3.38 Use mesh analysis to find the current io in the circuit
in Fig. 3.82.

3io

10 Ω
4 Ω

60 V +
−

io

8 Ω

2 Ω

Figure 3.82 For Prob. 3.38.

3.39 Apply mesh analysis to find vo in the circuit in Fig.
3.83.

20 V

5 A

2 Ω 8 Ω

1 Ω

40 V

vo

+
−

+
−4 Ω

Figure 3.83 For Prob. 3.39.

3.40 Use mesh analysis to find i1, i2, and i3 in the circuit
of Fig. 3.84.
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12 V +−

8 Ω

4 Ω +
−

2 Ωvo

2vo

i2

i3

i1

3 A

+

−

Figure 3.84 For Prob. 3.40.

3.41 Rework Prob. 3.11 using mesh analysis.

3.42∗ In the circuit of Fig. 3.85, solve for i1, i2, and i3.

4 A 2 Ω

1 A
i3

i1

i2

6 Ω

12 Ω 4 Ω

8 V

+ −

10 V

+ −

Figure 3.85 For Prob. 3.42.

3.43 Determine v1 and v2 in the circuit of Fig. 3.86.

12 V

2 Ω 2 Ω

2 Ω+
−

2 Ω

v1

2 Ωv2

+

−

+ −

Figure 3.86 For Prob. 3.43.

3.44 Find i1, i2, and i3 in the circuit in Fig. 3.87.

10 Ω

10 Ω

120 V 30 Ω30 Ω

30 Ω

i3

i2

i1

+
−

Figure 3.87 For Prob. 3.44.

3.45 Rework Prob. 3.23 using mesh analysis.

3.46 Calculate the power dissipated in each resistor in the
circuit in Fig. 3.88.

10 V

0.5io

4 Ω 8 Ω

1 Ω 2 Ω+
−

io

Figure 3.88 For Prob. 3.46.

3.47 Calculate the current gain io/is in the circuit of Fig.
3.89.

5vo

20 Ω 10 Ω

40 Ω

io

is 30 Ωvo

+

−
–
+

Figure 3.89 For Prob. 3.47.

3.48 Find the mesh currents i1, i2, and i3 in the network
of Fig. 3.90.

4 kΩ 8 kΩ 2 kΩ

100 V 4 mA 2i1 40 V+
−

+
−i1 i2 i3

Figure 3.90 For Prob. 3.48.

3.49 Find vx and ix in the circuit shown in Fig. 3.91.

ix

2 Ωvx 4ix

+

−

5 Ω

50 V

3 A

+
−

+
−

vx
4

10 Ω

Figure 3.91 For Prob. 3.49.
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3.50 Find vo and io in the circuit of Fig. 3.92.

+
−

+
−

io + −

2 A

100 V 40 Ω

10 Ω

50 Ω 10 Ω

vo

0.2vo

4io

Figure 3.92 For Prob. 3.50.

Section 3.6 Nodal and Mesh Analyses by
Inspection

3.51 Obtain the node-voltage equations for the circuit in
Fig. 3.93 by inspection. Determine the node
voltages v1 and v2.

3 A 5 A4 Ω 2 Ω

v1 v21 Ω

6 A

Figure 3.93 For Prob. 3.51.

3.52 By inspection, write the node-voltage equations for
the circuit in Fig. 3.94 and obtain the node voltages.

4 A 3 S 2 A 1 A

v1 1 S 2 S

5 S

v2
v3

Figure 3.94 For Prob. 3.52.

3.53 For the circuit shown in Fig. 3.95, write the
node-voltage equations by inspection.

2 kΩ 2 kΩ 10 mA20 mA

v1 4 kΩ 4 kΩ

1 kΩ

5 mA

v2 v3

Figure 3.95 For Prob. 3.53.

3.54 Write the node-voltage equations of the circuit in
Fig. 3.96 by inspection.

I1

v1 v3

G4 G5

G2 G3

G1

v2

I2

Figure 3.96 For Prob. 3.54.

3.55 Obtain the mesh-current equations for the circuit in
Fig. 3.97 by inspection. Calculate the power
absorbed by the 8-� resistor.

+
−

+
−

+−

12 A 20 V2 Ω 2 Ωi1 i2 i3

8 V

4 Ω 8 Ω 5 Ω

Figure 3.97 For Prob. 3.55.

3.56 By inspection, write the mesh-current equations for
the circuit in Fig. 3.98.
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+
−

+−+−

10 V

4 Ω

5 Ω 2 Ω 4 Ωi1 i2 i3

8 V 4 V
i4

1 Ω

Figure 3.98 For Prob. 3.56.

3.57 Write the mesh-current equations for the circuit in
Fig. 3.99.

+
−

+ − +−

+
−

6 V 4 V

1 Ω 1 Ω

3 Ω

1 Ω

i1 i2

i4i3

2 V 3 V

2 Ω

4 Ω

5 Ω

Figure 3.99 For Prob. 3.57.

3.58 By inspection, obtain the mesh-current equations for
the circuit in Fig. 3.100.

+
−

+ −

+
−

i1

i3

V1

V3

V2
V4

i2

i4

R1 R2 R3

R4

R5

R6

R7

R8

+
−

Figure 3.100 For Prob. 3.58.

Section 3.8 Circuit Analysis with PSpice

3.59 Use PSpice to solve Prob. 3.44.

3.60 Use PSpice to solve Prob. 3.22.

3.61 Rework Prob. 3.51 using PSpice.

3.62 Find the nodal voltages v1 through v4 in the circuit
in Fig. 3.101 using PSpice.

+
−

+ −

8 A

20 V

1 Ω

v1

2 Ω
4 Ω

10 Ω 12 Ωv2
v3

io

6io

v4

Figure 3.101 For Prob. 3.62.

3.63 Use PSpice to solve the problem in Example 3.4.

3.64 If the Schematics Netlist for a network is as follows,
draw the network.

R_R1 1 2 2K
R_R2 2 0 4K
R_R3 3 0 8K
R_R4 3 4 6K
R_R5 1 3 3K
V_VS 4 0 DC 100
I_IS 0 1 DC 4
F_F1 1 3 VF_F1 2
VF_F1 5 0 0V
E_E1 3 2 1 3 3

3.65 The following program is the Schematics Netlist of
a particular circuit. Draw the circuit and determine
the voltage at node 2.

R_R1 1 2 20
R_R2 2 0 50
R_R3 2 3 70
R_R4 3 0 30
V_VS 1 0 20V
I_IS 2 0 DC 2A

Section 3.9 Applications

3.66 Calculate vo and io in the circuit of Fig. 3.102.

+
−

+
−3 mV vo

+

−

4 kΩ

50io

io

vo
100 20 kΩ

Figure 3.102 For Prob. 3.66.

3.67 For the simplified transistor circuit of Fig. 3.103,
calculate the voltage vo.
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+
−

+

−

i

2 kΩ

5 kΩ

1 kΩ

30 mV vo

400i

Figure 3.103 For Prob. 3.67.

3.68 For the circuit in Fig. 3.104, find the gain vo/vs .

+
−

–
+

+

−

+

−
500 Ω 400 Ω

2 kΩ 200 Ω

vs vov1 60v1

Figure 3.104 For Prob. 3.68.

3.69∗ Determine the gain vo/vs of the transistor amplifier
circuit in Fig. 3.105.

2 kΩ

100 Ω

200 Ω

vs 40io

io

vo 10 kΩ
vo

1000
+
−

+
−

+

−

Figure 3.105 For Prob. 3.69.

3.70 For the simple transistor circuit of Fig. 3.106, let
β = 75, VBE = 0.7 V. What value of vi is required
to give a collector-emitter voltage of 2 V?

+

−
5 V

2 kΩ

vi

40 kΩ

Figure 3.106 For Prob. 3.70.

3.71 Calculate vs for the transistor in Fig. 3.107 given
that vo = 4 V, β = 150, VBE = 0.7 V.

+

−
18 V

1 kΩ

vs

10 kΩ

+

−
500 Ω vo

Figure 3.107 For Prob. 3.71.

3.72 For the transistor circuit of Fig. 3.108, find IB , VCE ,
and vo. Take β = 200, VBE = 0.7 V.

+

−
9 V

5 kΩ

3 V

6 kΩ

+

−
400 Ω vo

VCE

+

−

IB

2 kΩ

Figure 3.108 For Prob. 3.72.

3.73 Find IB and VC for the circuit in Fig. 3.109. Let
β = 100, VBE = 0.7 V.

+

−IB

12 V

4 kΩ

VC

10 kΩ

5 kΩ

Figure 3.109 For Prob. 3.73.

COM P R E H EN S I V E P RO B L E M S

3.74∗ Rework Example 3.11 with hand calculation.
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C H A P T E R

CIRCUIT THEOREMS

4

Our schools had better get on with what is their overwhelmingly most
important task: teaching their charges to express themselves clearly and
with precision in both speech and writing; in other words, leading them
toward mastery of their own language. Failing that, all their instruction
in mathematics and science is a waste of time.

—Joseph Weizenbaum, M.I.T.

Enhancing Your Career
Enhancing Your Communication Skill Taking a course
in circuit analysis is one step in preparing yourself for a
career in electrical engineering. Enhancing your commu-
nication skill while in school should also be part of that
preparation, as a large part of your time will be spent com-
municating.

People in industry have complained again and again
that graduating engineers are ill-prepared in written and
oral communication. An engineer who communicates ef-
fectively becomes a valuable asset.

You can probably speak or write easily and quickly.
But how effectively do you communicate? The art of ef-
fective communication is of the utmost importance to your
success as an engineer.

For engineers in industry, communication is key to
promotability. Consider the result of a survey of U.S. cor-
porations that asked what factors influence managerial pro-
motion. The survey includes a listing of 22 personal qualities
and their importance in advancement. You may be surprised
to note that “technical skill based on experience” placed
fourth from the bottom. Attributes such as self-confidence,
ambition, flexibility, maturity, ability to make sound deci-
sions, getting things done with and through people, and ca-
pacity for hard work all ranked higher. At the top of the list
was “ability to communicate.” The higher your professional
career progresses, the more you will need to communicate.
Therefore, you should regard effective communication as an
important tool in your engineering tool chest.

Learning to communicate effectively is a lifelong
task you should always work toward. The best time to begin
is while still in school. Continually look for opportunities
to develop and strengthen your reading, writing, listening,

Ability to work hard

Working and
getting along

with people

Maturity

Appearance

Problem-solvingskills

Self-determination

Collegeeducation

Effectivecommunication

Ability to communicate effectively is regarded by many as the most
important step to an executive promotion.
(Adapted from J. Sherlock, A Guide to Technical Communication.
Boston, MA: Allyn and Bacon, 1985, p. 7.)

and speaking skills. You can do this through classroom
presentations, team projects, active participation in student
organizations, and enrollment in communication courses.
The risks are less now than later in the workplace.
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4.1 INTRODUCTION
A major advantage of analyzing circuits using Kirchhoff’s laws as we did
in Chapter 3 is that we can analyze a circuit without tampering with its
original configuration. A major disadvantage of this approach is that, for
a large, complex circuit, tedious computation is involved.

The growth in areas of application of electric circuits has led to an
evolution from simple to complex circuits. To handle the complexity,
engineers over the years have developed some theorems to simplify cir-
cuit analysis. Such theorems include Thevenin’s and Norton’s theorems.
Since these theorems are applicable to linear circuits, we first discuss the
concept of circuit linearity. In addition to circuit theorems, we discuss the
concepts of superposition, source transformation, and maximum power
transfer in this chapter. The concepts we develop are applied in the last
section to source modeling and resistance measurement.

4.2 LINEARITY PROPERTY
Linearity is the property of an element describing a linear relationship
between cause and effect. Although the property applies to many circuit
elements, we shall limit its applicability to resistors in this chapter. The
property is a combination of both the homogeneity (scaling) property and
the additivity property.

The homogeneity property requires that if the input (also called the
excitation) is multiplied by a constant, then the output (also called the
response) is multiplied by the same constant. For a resistor, for example,
Ohm’s law relates the input i to the output v,

v = iR (4.1)

If the current is increased by a constant k, then the voltage increases
correspondingly by k, that is,

kiR = kv (4.2)

The additivity property requires that the response to a sum of inputs
is the sum of the responses to each input applied separately. Using the
voltage-current relationship of a resistor, if

v1 = i1R (4.3a)

and

v2 = i2R (4.3b)

then applying (i1 + i2) gives

v = (i1 + i2)R = i1R + i2R = v1 + v2 (4.4)

We say that a resistor is a linear element because the voltage-current
relationship satisfies both the homogeneity and the additivity properties.

In general, a circuit is linear if it is both additive and homogeneous.
A linear circuit consists of only linear elements, linear dependent sources,
and independent sources.
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A linear circuit is one whose output is linearly related
(or directly proportional) to its input.

Throughout this book we consider only linear circuits. Note that since
p = i2R = v2/R (making it a quadratic function rather than a linear
one), the relationship between power and voltage (or current) is nonlinear.
Therefore, the theorems covered in this chapter are not applicable to
power.

To understand the linearity principle, consider the linear circuit
shown in Fig. 4.1. The linear circuit has no independent sources inside
it. It is excited by a voltage source vs , which serves as the input. The
circuit is terminated by a load R. We may take the current i through R as
the output. Suppose vs = 10 V gives i = 2 A. According to the linearity
principle, vs = 1 V will give i = 0.2 A. By the same token, i = 1 mA
must be due to vs = 5 mV.

vs R

i

+
− Linear circuit

Figure 4.1 A linear circuit with input vs and
output i.

E X A M P L E 4 . 1

For the circuit in Fig. 4.2, find io when vs = 12 V and vs = 24 V.

+
−vs

vx

3vx

i1 i2

2 Ω 8 Ω

4 Ω
6 Ω

4 Ω

–
+

+ − io

Figure 4.2 For Example 4.1.

Solution:

Applying KVL to the two loops, we obtain

12i1 − 4i2 + vs = 0 (4.1.1)

− 4i1 + 16i2 − 3vx − vs = 0 (4.1.2)

But vx = 2i1. Equation (4.1.2) becomes

−10i1 + 16i2 − vs = 0 (4.1.3)

Adding Eqs. (4.1.1) and (4.1.3) yields

2i1 + 12i2 = 0 �⇒ i1 = −6i2
Substituting this in Eq. (4.1.1), we get

−76i2 + vs = 0 �⇒ i2 = vs

76
When vs = 12 V,

io = i2 = 12

76
A

When vs = 24 V,

io = i2 = 24

76
A

showing that when the source value is doubled, io doubles.

P R A C T I C E P R O B L E M 4 . 1

For the circuit in Fig. 4.3, find vo when is = 15 and is = 30 A.

is

6 Ω

4 Ω2 Ω
+

−
vo

Figure 4.3 For Practice Prob. 4.1.

Answer: 10 V, 20 V.
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E X A M P L E 4 . 2

Assume Io = 1 A and use linearity to find the actual value of Io in the
circuit in Fig. 4.4.

Io

I4 I2

I3

V2
6 Ω 2 Ω2

5 Ω7 Ω

I1

V1
3 Ω1

4 ΩIs = 15 A

Figure 4.4 For Example 4.2.

Solution:

If Io = 1 A, then V1 = (3 + 5)Io = 8 V and I1 = V1/4 = 2 A. Applying
KCL at node 1 gives

I2 = I1 + Io = 3 A

V2 = V1 + 2I2 = 8 + 6 = 14 V, I3 = V2

7
= 2 A

Applying KCL at node 2 gives

I4 = I3 + I2 = 5 A

Therefore, Is = 5 A. This shows that assuming Io = 1 gives Is = 5 A;
the actual source current of 15 A will give Io = 3 A as the actual value.

P R A C T I C E P R O B L E M 4 . 2

Assume that Vo = 1 V and use linearity to calculate the actual value of
Vo in the circuit of Fig. 4.5.

10 V

12 Ω

8 Ω5 Ω+
−

+

−
Vo

Figure 4.5 For Practice Prob. 4.2

Answer: 4 V.

4.3 SUPERPOSITION
If a circuit has two or more independent sources, one way to determine
the value of a specific variable (voltage or current) is to use nodal or mesh
analysis as in Chapter 3. Another way is to determine the contribution of
each independent source to the variable and then add them up. The latter
approach is known as the superposition.
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The idea of superposition rests on the linearity property. Superposition is not limited to circuit analysis but
is applicable in many fields where cause and effect
bear a linear relationship to one another.The superposition principle states that the voltage across (or current through) an

element in a linear circuit is the algebraic sum of the voltages across (or currents
through) that element due to each independent source acting alone.

The principle of superposition helps us to analyze a linear circuit with
more than one independent source by calculating the contribution of each
independent source separately. However, to apply the superposition prin-
ciple, we must keep two things in mind:

1. We consider one independent source at a time while all other
independent sources are turned off. This implies that we
replace every voltage source by 0 V (or a short circuit), and
every current source by 0 A (or an open circuit). This way we
obtain a simpler and more manageable circuit.

Other terms such as killed, made inactive, dead-
ened, or set equal to zero are often used to con-
vey the same idea.

2. Dependent sources are left intact because they are controlled
by circuit variables.

With these in mind, we apply the superposition principle in three steps:

S t e p s t o A p p l y S u p e r p o s i t i o n P r i n c i p l e :
1. Turn off all independent sources except one source. Find the

output (voltage or current) due to that active source using nodal or
mesh analysis.

2. Repeat step 1 for each of the other independent sources.

3. Find the total contribution by adding algebraically all the
contributions due to the independent sources.

Analyzing a circuit using superposition has one major disadvan-
tage: it may very likely involve more work. If the circuit has three
independent sources, we may have to analyze three simpler circuits each
providing the contribution due to the respective individual source. How-
ever, superposition does help reduce a complex circuit to simpler circuits
through replacement of voltage sources by short circuits and of current
sources by open circuits.

Keep in mind that superposition is based on linearity. For this
reason, it is not applicable to the effect on power due to each source,
because the power absorbed by a resistor depends on the square of the
voltage or current. If the power value is needed, the current through (or
voltage across) the element must be calculated first using superposition.

For example, when current i1 flows through re-
sistor R, the power is p1 = Ri21, and when current
i2 flows through R, the power is p2 = Ri22. If cur-
rent i1 + i2 flows through R, the power absorb-
ed is p3 = R(i1 + i2)2 = Ri21 + Ri22 + 2Ri1i2 �=
p1 + p2. Thus, the power relation is nonlinear.

E X A M P L E 4 . 3

Use the superposition theorem to find v in the circuit in Fig. 4.6.

6 V v 3 A

8 Ω

4 Ω+
−

+

−

Figure 4.6 For Example 4.3.

Solution:

Since there are two sources, let

v = v1 + v2

where v1 and v2 are the contributions due to the 6-V voltage source and
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the 3-A current source, respectively. To obtain v1, we set the current
source to zero, as shown in Fig. 4.7(a). Applying KVL to the loop in Fig.
4.7(a) gives

12i1 − 6 = 0 �⇒ i1 = 0.5 A

Thus,

v1 = 4i1 = 2 V

We may also use voltage division to get v1 by writing

v1 = 4

4 + 8
(6) = 2 V

To get v2, we set the voltage source to zero, as in Fig. 4.7(b). Using
current division,

i3 = 8

4 + 8
(3) = 2 A

Hence,

v2 = 4i3 = 8 V

And we find

v = v1 + v2 = 2 + 8 = 10 V

+
−6 V i1

8 Ω

v14 Ω

(a)

+

−

3 A

8 Ω

v2

i2

i3

4 Ω

(b)

+

−

Figure 4.7 For Example 4.3:
(a) calculating v1, (b) calculating v2.

P R A C T I C E P R O B L E M 4 . 3

Using the superposition theorem, find vo in the circuit in Fig. 4.8.3 Ω 5 Ω

2 Ω 8 A 20 V+
−

+

−
vo

Figure 4.8 For Practice Prob. 4.3.

Answer: 12 V.

E X A M P L E 4 . 4

Find io in the circuit in Fig. 4.9 using superposition.

4 A

20 V

3 Ω

5 Ω

1 Ω

2 Ω

4 Ω

+ −

5io

io

+ −

Figure 4.9 For Example 4.4.

Solution:

The circuit in Fig. 4.9 involves a dependent source, which must be left
intact. We let

io = i ′o + i ′′o (4.4.1)

where i ′o and i ′′o are due to the 4-A current source and 20-V voltage source
respectively. To obtain i ′o, we turn off the 20-V source so that we have
the circuit in Fig. 4.10(a). We apply mesh analysis in order to obtain i ′o.
For loop 1,

i1 = 4 A (4.4.2)
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4 A

3 Ω

5 Ω

1 Ω

2 Ω

4 Ω

+ −

i1 i3i ′o

5i ′o

0

(a)

3 Ω

5 Ω

1 Ω

2 Ω

4 Ω

+ −
i ′′o

5i ′′o

(b)

20 V

+ −

i1

i2

i3
i5

i4

Figure 4.10 For Example 4.4: Applying superposition to (a) obtain i′0, (b) obtain i′′0 .

For loop 2,

−3i1 + 6i2 − 1i3 − 5i ′o = 0 (4.4.3)

For loop 3,

−5i1 − 1i2 + 10i3 + 5i ′o = 0 (4.4.4)

But at node 0,

i3 = i1 − i ′o = 4 − i ′o (4.4.5)

Substituting Eqs. (4.4.2) and (4.4.5) into Eqs. (4.4.3) and (4.4.4) gives
two simultaneous equations

3i2 − 2i ′o = 8 (4.4.6)

i2 + 5i ′o = 20 (4.4.7)

which can be solved to get

i ′o = 52

17
A (4.4.8)

To obtain i ′′o , we turn off the 4-A current source so that the circuit
becomes that shown in Fig. 4.10(b). For loop 4, KVL gives

6i4 − i5 − 5i ′′o = 0 (4.4.9)

and for loop 5,

−i4 + 10i5 − 20 + 5i ′′o = 0 (4.4.10)

But i5 = −i ′′o . Substituting this in Eqs. (4.4.9) and (4.4.10) gives

6i4 − 4i ′′o = 0 (4.4.11)

i4 + 5i ′′o = −20 (4.4.12)

which we solve to get
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i ′′o = −60

17
A (4.4.13)

Now substituting Eqs. (4.4.8) and (4.4.13) into Eq. (4.4.1) gives

io = − 8

17
= −0.4706 A

P R A C T I C E P R O B L E M 4 . 4

Use superposition to find vx in the circuit in Fig. 4.11.vx20 Ω

0.1vx4 Ω10 V 2 A+
−

Figure 4.11 For Practice Prob. 4.4.

Answer: vx = 12.5 V.

E X A M P L E 4 . 5

For the circuit in Fig. 4.12, use the superposition theorem to find i.
+ −

+
−

24 V 8 Ω

4 Ω

3 Ω 3 A12 V

4 Ω

i

Figure 4.12 For Example 4.5.

Solution:

In this case, we have three sources. Let

i = i1 + i2 + i3

where i1, i2, and i3 are due to the 12-V, 24-V, and 3-A sources respectively.
To get i1, consider the circuit in Fig. 4.13(a). Combining 4� (on the right-
hand side) in series with 8 � gives 12 �. The 12 � in parallel with 4 �

gives 12 × 4/16 = 3 �. Thus,

i1 = 12

6
= 2 A

To get i2, consider the circuit in Fig. 4.13(b). Applying mesh analysis,

16ia − 4ib + 24 = 0 �⇒ 4ia − ib = −6 (4.5.1)

7ib − 4ia = 0 �⇒ ia = 7

4
ib (4.5.2)

Substituting Eq. (4.5.2) into Eq. (4.5.1) gives

i2 = ib = −1

To get i3, consider the circuit in Fig. 4.13(c). Using nodal analysis,

3 = v2

8
+ v2 − v1

4
�⇒ 24 = 3v2 − 2v1 (4.5.3)

v2 − v1

4
= v1

4
+ v1

3
�⇒ v2 = 10

3
v1 (4.5.4)

Substituting Eq. (4.5.4) into Eq. (4.5.3) leads to v1 = 3 and
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8 Ω

4 Ω 4 Ω

3 Ω12 V +
−

3 Ω

3 Ω12 V +
−

(a)

8 Ω24 V

4 Ω 4 Ω

3 Ω

(b)

+ −

ib

ia

8 Ω

4 Ω 4 Ω

3 Ω 3 A

v1
v2

(c)

i2

i2 i2

i1

Figure 4.13 For Example 4.5.

i3 = v1

3
= 1 A

Thus,

i = i1 + i2 + i3 = 2 − 1 + 1 = 2 A

P R A C T I C E P R O B L E M 4 . 5

Find i in the circuit in Fig. 4.14 using the superposition principle.

16 V

8 Ω
2 Ω

4 A

6 Ω

+
− 12 V+

−

i

Figure 4.14 For Practice Prob. 4.5.

Answer: 0.75 A.

4.4 SOURCE TRANSFORMATION
We have noticed that series-parallel combination and wye-delta transfor-
mation help simplify circuits. Source transformation is another tool for
simplifying circuits. Basic to these tools is the concept of equivalence.
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We recall that an equivalent circuit is one whose v-i characteristics are
identical with the original circuit.

In Section 3.6, we saw that node-voltage (or mesh-current) equa-
tions can be obtained by mere inspection of a circuit when the sources are
all independent current (or all independent voltage) sources. It is there-
fore expedient in circuit analysis to be able to substitute a voltage source
in series with a resistor for a current source in parallel with a resistor, or
vice versa, as shown in Fig. 4.15. Either substitution is known as a source
transformation.

+
−vs

R
a

b

is R

a

b

Figure 4.15 Transformation of independent sources.

A source transformation is the process of replacing a voltage source vs
in series with a resistor R by a current source is in parallel

with a resistor R, or vice versa.

The two circuits in Fig. 4.15 are equivalent—provided they have the same
voltage-current relation at terminals a-b. It is easy to show that they are
indeed equivalent. If the sources are turned off, the equivalent resistance
at terminals a-b in both circuits is R. Also, when terminals a-b are short-
circuited, the short-circuit current flowing from a to b is isc = vs/R in
the circuit on the left-hand side and isc = is for the circuit on the right-
hand side. Thus, vs/R = is in order for the two circuits to be equivalent.
Hence, source transformation requires that

vs = isR or is = vs

R
(4.5)

Source transformation also applies to dependent sources, provided
we carefully handle the dependent variable. As shown in Fig. 4.16, a
dependent voltage source in series with a resistor can be transformed to
a dependent current source in parallel with the resistor or vice versa.

vs

R
a

b

is R

a

b

+
−

Figure 4.16 Transformation of dependent sources.

Like the wye-delta transformation we studied in Chapter 2, a source
transformation does not affect the remaining part of the circuit. When
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applicable, source transformation is a powerful tool that allows circuit
manipulations to ease circuit analysis. However, we should keep the
following points in mind when dealing with source transformation.

1. Note from Fig. 4.15 (or Fig. 4.16) that the arrow of the current
source is directed toward the positive terminal of the voltage
source.

2. Note from Eq. (4.5) that source transformation is not possible
when R = 0, which is the case with an ideal voltage source.
However, for a practical, nonideal voltage source, R �= 0.
Similarly, an ideal current source with R = ∞ cannot be
replaced by a finite voltage source. More will be said on ideal
and nonideal sources in Section 4.10.1.

E X A M P L E 4 . 6

Use source transformation to find vo in the circuit in Fig. 4.17. 2 Ω 3 Ω

12 V8 Ω4 Ω 3 A +
−

+

−
vo

Figure 4.17 For Example 4.6.

Solution:

We first transform the current and voltage sources to obtain the circuit in
Fig. 4.18(a). Combining the 4-� and 2-� resistors in series and trans-
forming the 12-V voltage source gives us Fig. 4.18(b). We now combine
the 3-� and 6-� resistors in parallel to get 2-�. We also combine the
2-A and 4-A current sources to get a 2-A source. Thus, by repeatedly
applying source transformations, we obtain the circuit in Fig. 4.18(c).

4 Ω 2 Ω

4 A8 Ω 3 Ω12 V +
−

(a)

+

−
vo

4 A8 Ω6 Ω 3 Ω2 A

(b)

2 A8 Ω 2 Ω

(c)

i
+

−
vo

+

−
vo

Figure 4.18 For Example 4.6.

We use current division in Fig. 4.18(c) to get

i = 2

2 + 8
(2) = 0.4

and

vo = 8i = 8(0.4) = 3.2 V
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Alternatively, since the 8-� and 2-� resistors in Fig. 4.18(c) are in
parallel, they have the same voltage vo across them. Hence,

vo = (8 ‖ 2)(2 A) = 8 × 2

10
(2) = 3.2 V

P R A C T I C E P R O B L E M 4 . 6

Find io in the circuit of Fig. 4.19 using source transformation.

4 Ω5 A

5 V

7 Ω 3 A3 Ω

1 Ω

6 Ω

− +
io

Figure 4.19 For Practice Prob. 4.6.

Answer: 1.78 A.

E X A M P L E 4 . 7

Find vx in Fig. 4.20 using source transformation.4 Ω

2 Ω
0.25vx

2 Ω6 V 18 V+
−

+
−vx

+

−

Figure 4.20 For Example 4.7.

Solution:

The circuit in Fig. 4.20 involves a voltage-controlled dependent current
source. We transform this dependent current source as well as the 6-V
independent voltage source as shown in Fig. 4.21(a). The 18-V volt-
age source is not transformed because it is not connected in series with
any resistor. The two 2-� resistors in parallel combine to give a 1-�
resistor, which is in parallel with the 3-A current source. The current is
transformed to a voltage source as shown in Fig. 4.21(b). Notice that the
terminals for vx are intact. Applying KVL around the loop in Fig. 4.21(b)
gives

−3 + 5i + vx + 18 = 0 (4.7.1)

18 V3 A

4 Ω

2 Ω2 Ω

+ −

+
−

(a)

18 V3 V

4 Ω1 Ω

vx

vx

+

−

+ −

+
−

+
−

(b)

i

+

−
vx

Figure 4.21 For Example 4.7: Applying source transformation to the circuit in Fig. 4.20.



CHAPTER 4 Circuit Theorems 131

Applying KVL to the loop containing only the 3-V voltage source, the
1-� resistor, and vx yields

−3 + 1i + vx = 0 �⇒ vx = 3 − i (4.7.2)

Substituting this into Eq. (4.7.1), we obtain

15 + 5i + 3 − i = 0 �⇒ i = −4.5 A

Alternatively, we may apply KVL to the loop containing vx , the 4-�
resistor, the voltage-controlled dependent voltage source, and the 18-V
voltage source in Fig. 4.21(b). We obtain

−vx + 4i + vx + 18 = 0 �⇒ i = −4.5 A

Thus, vx = 3 − i = 7.5 V.

P R A C T I C E P R O B L E M 4 . 7

Use source transformation to find ix in the circuit shown in Fig. 4.22.

2ix

5 Ω

4 A 10 Ω
–
+

ix

Figure 4.22 For Practice Prob. 4.7.

Answer: 1.176 A.

4.5 THEVENIN’S THEOREM
It often occurs in practice that a particular element in a circuit is variable
(usually called the load) while other elements are fixed. As a typical
example, a household outlet terminal may be connected to different ap-
pliances constituting a variable load. Each time the variable element is
changed, the entire circuit has to be analyzed all over again. To avoid this
problem, Thevenin’s theorem provides a technique by which the fixed
part of the circuit is replaced by an equivalent circuit.

According to Thevenin’s theorem, the linear circuit in Fig. 4.23(a)
can be replaced by that in Fig. 4.23(b). (The load in Fig. 4.23 may be a
single resistor or another circuit.) The circuit to the left of the terminals
a-b in Fig. 4.23(b) is known as the Thevenin equivalent circuit; it was
developed in 1883 by M. Leon Thevenin (1857–1926), a French telegraph
engineer.

Linear 
two-terminal
circuit

Load

I a

b

V

+

−

(a)

Load

I a

b

V

+

−

(b)

+
−VTh

RTh

Figure 4.23 Replacing a linear two-terminal
circuit by its Thevenin equivalent: (a) original
circuit, (b) the Thevenin equivalent circuit.

Thevenin’s theorem states that a linear two-terminal circuit can be replaced
by an equivalent circuit consisting of a voltage source VTh in series with
a resistor RTh, where VTh is the open-circuit voltage at the terminals
and RTh is the input or equivalent resistance at the terminals when

the independent sources are turned off.

The proof of the theorem will be given later, in Section 4.7. Our
major concern right now is how to find the Thevenin equivalent voltage
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VTh and resistance RTh. To do so, suppose the two circuits in Fig. 4.23
are equivalent. Two circuits are said to be equivalent if they have the
same voltage-current relation at their terminals. Let us find out what will
make the two circuits in Fig. 4.23 equivalent. If the terminals a-b are
made open-circuited (by removing the load), no current flows, so that
the open-circuit voltage across the terminals a-b in Fig. 4.23(a) must be
equal to the voltage source VTh in Fig. 4.23(b), since the two circuits are
equivalent. Thus VTh is the open-circuit voltage across the terminals as
shown in Fig. 4.24(a); that is,

VTh = voc (4.6)

Linear 
two-terminal
circuit

a

b

voc

+

−

(a)

VTh = voc

Linear circuit with
all independent
sources set equal
to zero

a

b

R in

(b)

RTh = R in

Figure 4.24 Finding VTh and RTh.

Again, with the load disconnected and terminalsa-b open-circuited,
we turn off all independent sources. The input resistance (or equivalent
resistance) of the dead circuit at the terminals a-b in Fig. 4.23(a) must
be equal to RTh in Fig. 4.23(b) because the two circuits are equivalent.
Thus, RTh is the input resistance at the terminals when the independent
sources are turned off, as shown in Fig. 4.24(b); that is,

RTh = Rin (4.7)

To apply this idea in finding the Thevenin resistance RTh, we need
to consider two cases.

CA S E 1 If the network has no dependent sources, we turn off all in-
dependent sources. RTh is the input resistance of the network looking
between terminals a and b, as shown in Fig. 4.24(b).

CA S E 2 If the network has dependent sources, we turn off all inde-
pendent sources. As with superposition, dependent sources are not to be
turned off because they are controlled by circuit variables. We apply a
voltage source vo at terminals a and b and determine the resulting cur-
rent io. Then RTh = vo/io, as shown in Fig. 4.25(a). Alternatively, we
may insert a current source io at terminals a-b as shown in Fig. 4.25(b)
and find the terminal voltage vo. Again RTh = vo/io. Either of the two
approaches will give the same result. In either approach we may assume
any value of vo and io. For example, we may use vo = 1 V or io = 1 A,
or even use unspecified values of vo or io.

vo

Circuit with
all independent
sources set equal
to zero

a

b

(a)

RTh = 

+
−

vo

io

io

iovo

Circuit with
all independent
sources set equal
to zero

a

b

(b)

RTh = 
vo

io

+

−

Figure 4.25 Finding RTh when circuit
has dependent sources.

Later wewill see that an alternative way of finding
RTh is RTh = voc/isc. It often occurs that RTh takes a negative value. In this case, the

negative resistance (v = −iR) implies that the circuit is supplying power.
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This is possible in a circuit with dependent sources; Example 4.10 will
illustrate this.

Thevenin’s theorem is very important in circuit analysis. It helps
simplify a circuit. A large circuit may be replaced by a single independent
voltage source and a single resistor. This replacement technique is a
powerful tool in circuit design.

As mentioned earlier, a linear circuit with a variable load can be re-
placed by the Thevenin equivalent, exclusive of the load. The equivalent
network behaves the same way externally as the original circuit. Con-
sider a linear circuit terminated by a load RL, as shown in Fig. 4.26(a).
The current IL through the load and the voltage VL across the load are
easily determined once the Thevenin equivalent of the circuit at the load’s
terminals is obtained, as shown in Fig. 4.26(b). From Fig. 4.26(b), we
obtain

IL = VTh

RTh + RL

(4.8a)

VL = RLIL = RL

RTh + RL

VTh (4.8b)

Note from Fig. 4.26(b) that the Thevenin equivalent is a simple voltage
divider, yielding VL by mere inspection.

Linear 
circuit

a

b

(a)

RL

IL

a

b
(b)

RL

IL

+
−VTh

RTh

Figure 4.26 A circuit with a load:
(a) original circuit, (b) Thevenin
equivalent.

E X A M P L E 4 . 8

Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.27, to
the left of the terminals a-b. Then find the current through RL = 6, 16,
and 36 �.

RL32 V 2 A

4 Ω 1 Ω

12 Ω+
−

a

b

Figure 4.27 For Example 4.8.

Solution:

We find RTh by turning off the 32-V voltage source (replacing it with
a short circuit) and the 2-A current source (replacing it with an open
circuit). The circuit becomes what is shown in Fig. 4.28(a). Thus,

RTh = 4 ‖ 12 + 1 = 4 × 12

16
+ 1 = 4 �

32 V 2 A

4 Ω 1 Ω

12 Ω+
− VTh

VTh

+

−

(b)

4 Ω 1 Ω

12 Ω

(a)

RTh i1 i2

Figure 4.28 For Example 4.8: (a) finding RTh, (b) finding VTh.

To find VTh, consider the circuit in Fig. 4.28(b). Applying mesh
analysis to the two loops, we obtain

−32 + 4i1 + 12(i1 − i2) = 0, i2 = −2 A
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Solving for i1, we get i1 = 0.5 A. Thus,

VTh = 12(i1 − i2) = 12(0.5 + 2.0) = 30 V

Alternatively, it is even easier to use nodal analysis. We ignore the 1-�
resistor since no current flows through it. At the top node, KCL gives

32 − VTh

4
+ 2 = VTh

12
or

96 − 3VTh + 24 = VTh �⇒ VTh = 30 V

as obtained before. We could also use source transformation to find VTh.
The Thevenin equivalent circuit is shown in Fig. 4.29. The current

through RL is

IL = VTh

RTh + RL

= 30

4 + RL

When RL = 6,

IL = 30

10
= 3 A

When RL = 16,

IL = 30

20
= 1.5 A

When RL = 36,

IL = 30

40
= 0.75 A

RL30 V

4 Ω

+
−

a

b

iL

Figure 4.29 The Thevenin
equivalent circuit for Example 4.8.

P R A C T I C E P R O B L E M 4 . 8

Using Thevenin’s theorem, find the equivalent circuit to the left of the
terminals in the circuit in Fig. 4.30. Then find i.

12 V 2 A

6 Ω 6 Ω

4 Ω 1 Ω+
−

a

b

i

Figure 4.30 For Practice Prob. 4.8.

Answer: VTh = 6 V, RTh = 3 �, i = 1.5 A.

E X A M P L E 4 . 9

Find the Thevenin equivalent of the circuit in Fig. 4.31.
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Solution:

This circuit contains a dependent source, unlike the circuit in the previ-
ous example. To find RTh, we set the independent source equal to zero
but leave the dependent source alone. Because of the presence of the
dependent source, however, we excite the network with a voltage source
vo connected to the terminals as indicated in Fig. 4.32(a). We may set
vo = 1 V to ease calculation, since the circuit is linear. Our goal is to find
the current io through the terminals, and then obtain RTh = 1/io. (Al-
ternatively, we may insert a 1-A current source, find the corresponding
voltage vo, and obtain RTh = vo/1.)

5 A

2 Ω

2vx

2 Ω

6 Ω4 Ω

a

b

− +

+

−
vx

Figure 4.31 For Example 4.9.

2 Ω

2vx

2 Ω

6 Ω4 Ω

a

b

− +

+
− vo = 1 V

io

(a)

i1

i2

(b)

5 A

2 Ω

2vx

2 Ω

6 Ω4 Ω

a

b

− +

voc

+

−

i3

i1 i2i3

+

−
vx

+

−
vx

Figure 4.32 Finding RTh and VTh for Example 4.9.

Applying mesh analysis to loop 1 in the circuit in Fig. 4.32(a) results
in

−2vx + 2(i1 − i2) = 0 or vx = i1 − i2

But −4i2 = vx = i1 − i2; hence,

i1 = −3i2 (4.9.1)

For loops 2 and 3, applying KVL produces

4i2 + 2(i2 − i1) + 6(i2 − i3) = 0 (4.9.2)

6(i3 − i2) + 2i3 + 1 = 0 (4.9.3)

Solving these equations gives

i3 = −1

6
A

But io = −i3 = 1/6 A. Hence,

RTh = 1 V

io
= 6 �

To getVTh, we find voc in the circuit of Fig. 4.32(b). Applying mesh
analysis, we get
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i1 = 5 (4.9.4)

− 2vx + 2(i3 − i2) = 0 �⇒ vx = i3 − i2 (4.9.5)

4(i2 − i1) + 2(i2 − i3) + 6i2 = 0

or

12i2 − 4i1 − 2i3 = 0 (4.9.6)

But 4(i1 − i2) = vx. Solving these equations leads to i2 = 10/3. Hence,

VTh = voc = 6i2 = 20 V

The Thevenin equivalent is as shown in Fig. 4.33.

20 V

6 Ω
a

b

+
−

Figure 4.33 The Thevenin
equivalent of the circuit in
Fig. 4.31.

P R A C T I C E P R O B L E M 4 . 9

Find the Thevenin equivalent circuit of the circuit in Fig. 4.34 to the left
of the terminals.

6 V

3 Ω5 Ω

4 Ω

a

b

1.5Ix
+
−

Ix

Figure 4.34 For Practice Prob. 4.9.

Answer: VTh = 5.33 V, RTh = 0.44 �.

E X A M P L E 4 . 1 0

Determine the Thevenin equivalent of the circuit in Fig. 4.35(a).

2ix 4 Ω 2 Ω

a

b

ix

vo

(a)

2ix io4 Ω 2 Ω

a

b

ix

(b)

Figure 4.35 For Example 4.10.

Solution:

Since the circuit in Fig. 4.35(a) has no independent sources, VTh = 0 V.
To findRTh, it is best to apply a current source io at the terminals as shown
in Fig. 4.35(b). Applying nodal analysis gives

io + ix = 2ix + vo

4
(4.10.1)

But

ix = 0 − vo

2
= −vo

2
(4.10.2)

Substituting Eq. (4.10.2) into Eq. (4.10.1) yields

io = ix + vo

4
= −vo

2
+ vo

4
= −vo

4
or vo = −4io

Thus,

RTh = vo

io
= −4 �

The negative value of the resistance tells us that, according to the passive
sign convention, the circuit in Fig. 4.35(a) is supplying power. Of course,
the resistors in Fig. 4.35(a) cannot supply power (they absorb power); it
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is the dependent source that supplies the power. This is an example of
how a dependent source and resistors could be used to simulate negative
resistance.

P R A C T I C E P R O B L E M 4 . 1 0

Obtain the Thevenin equivalent of the circuit in Fig. 4.36.

5 Ω 15 Ω

a

b

10 Ω
4vx

+ −
+

−
vx

Figure 4.36 For Practice Prob. 4.10.

Answer: VTh = 0 V, RTh = −7.5 �.

4.6 NORTON’S THEOREM
In 1926, about 43 years after Thevenin published his theorem, E. L.
Norton, an American engineer at Bell Telephone Laboratories, proposed
a similar theorem.

Norton’s theorem states that a linear two-terminal circuit can be replaced
by an equivalent circuit consisting of a current source IN in parallel with
a resistor RN, where IN is the short-circuit current through the terminals
and RN is the input or equivalent resistance at the terminals when the

independent sources are turned off.

Thus, the circuit in Fig. 4.37(a) can be replaced by the one in Fig. 4.37(b).

Linear 
two-terminal
circuit

a

b

(a)

(b)

RN

a

b

IN

Figure 4.37 (a) Original circuit,
(b) Norton equivalent circuit.

The proof of Norton’s theorem will be given in the next section. For
now, we are mainly concerned with how to get RN and IN . We find RN

in the same way we find RTh. In fact, from what we know about source
transformation, the Thevenin and Norton resistances are equal; that is,

RN = RTh (4.9)

To find the Norton current IN , we determine the short-circuit current
flowing from terminal a to b in both circuits in Fig. 4.37. It is evident
that the short-circuit current in Fig. 4.37(b) is IN . This must be the same
short-circuit current from terminal a to b in Fig. 4.37(a), since the two
circuits are equivalent. Thus,

IN = isc (4.10)

shown in Fig. 4.38. Dependent and independent sources are treated the
same way as in Thevenin’s theorem. Linear 

two-terminal
circuit

a

b

isc = IN

Figure 4.38 Finding Norton
current IN .

Observe the close relationship between Norton’s and Thevenin’s
theorems: RN = RTh as in Eq. (4.9), and

IN = VTh

RTh
(4.11)
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This is essentially source transformation. For this reason, source trans-
formation is often called Thevenin-Norton transformation.

The Thevenin and Norton equivalent circuits are
related by a source transformation.

Since VTh, IN , and RTh are related according to Eq. (4.11), to de-
termine the Thevenin or Norton equivalent circuit requires that we find:

• The open-circuit voltage voc across terminals a and b.

• The short-circuit current isc at terminals a and b.

• The equivalent or input resistance Rin at terminals a and b when
all independent sources are turned off.

We can calculate any two of the three using the method that takes the
least effort and use them to get the third using Ohm’s law. Example 4.11
will illustrate this. Also, since

VTh = voc (4.12a)

IN = isc (4.12b)

RTh = voc

isc
= RN (4.12c)

the open-circuit and short-circuit tests are sufficient to find any Thevenin
or Norton equivalent.

E X A M P L E 4 . 1 1

Find the Norton equivalent circuit of the circuit in Fig. 4.39.

2 A

8 Ω

8 Ω

5 Ω
4 Ω

12 V

a

b

+
−

Figure 4.39 For Example 4.11.

Solution:

We find RN in the same way we find RTh in the Thevenin equivalent cir-
cuit. Set the independent sources equal to zero. This leads to the circuit
in Fig. 4.40(a), from which we find RN . Thus,

RN = 5 ‖ (8 + 4 + 8) = 5 ‖ 20 = 20 × 5

25
= 4 �

To find IN , we short-circuit terminals a and b, as shown in Fig. 4.40(b).
We ignore the 5-� resistor because it has been short-circuited. Applying
mesh analysis, we obtain

i1 = 2 A, 20i2 − 4i1 − 12 = 0

From these equations, we obtain

i2 = 1 A = isc = IN

Alternatively, we may determine IN from VTh/RTh. We obtain VTh

as the open-circuit voltage across terminals a and b in Fig. 4.40(c). Using
mesh analysis, we obtain

i3 = 2 A

25i4 − 4i3 − 12 = 0 �⇒ i4 = 0.8 A

and

voc = VTh = 5i4 = 4 V
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2 A
5 Ω

4 Ω

12 V

a

b

+
−

isc = IN

(b)

2 A 5 Ω

4 Ω

12 V

a

b

+
−

(c)

8 Ω

5 Ω

a

b

4 Ω

(a)

RN

VTh = voc

+

−

i1

i3
i4

i2

8 Ω 8 Ω

8 Ω

8 Ω

8 Ω

Figure 4.40 For Example 4.11; finding: (a) RN , (b) IN = isc , (c) VTh = voc .

Hence,

IN = VTh

RTh
= 4

4
= 1 A

as obtained previously. This also serves to confirm Eq. (4.7) that RTh =
voc/isc = 4/1 = 4 �. Thus, the Norton equivalent circuit is as shown in
Fig. 4.41.

1 A 4 Ω

a

b

Figure 4.41 Norton equiva-
lent of the circuit in Fig. 4.39.

P R A C T I C E P R O B L E M 4 . 1 1

Find the Norton equivalent circuit for the circuit in Fig. 4.42.

4 A15 V 6 Ω

a

b

3 Ω

+
−

3 Ω

Figure 4.42 For Practice Prob. 4.11.

Answer: RN = 3 �, IN = 4.5 A.

E X A M P L E 4 . 1 2

Using Norton’s theorem, find RN and IN of the circuit in Fig. 4.43 at ter-
minals a-b.

Solution:

To find RN , we set the independent voltage source equal to zero and con-
nect a voltage source of vo = 1 V (or any unspecified voltage vo) to the
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terminals. We obtain the circuit in Fig. 4.44(a). We ignore the 4-� resistor
because it is short-circuited. Also due to the short circuit, the 5-� resistor,
the voltage source, and the dependent current source are all in parallel.
Hence, ix = vo/5 = 1/5 = 0.2. At node a, −io = ix + 2ix = 3ix = 0.6,
and

RN = vo

io
= 1

−0.6
= −1.67 �

5 Ω

2 Ix

10 V4 Ω

a

b

+
−

ix

Figure 4.43 For Example 4.12.

To find IN , we short-circuit terminalsa andb and find the current isc,
as indicated in Fig. 4.44(b). Note from this figure that the 4-� resistor, the
10-V voltage source, the 5-� resistor, and the dependent current source
are all in parallel. Hence,

ix = 10 − 0

5
= 2 A

At node a, KCL gives

isc = ix + 2ix = 2 + 4 = 6 A

Thus,

IN = 6 A

5 Ω

2ix

vo = 1 V

io
4 Ω

a

b

+
−

(a)

5 Ω

2ix

isc = IN4 Ω

a

b(b)

10 V+
−

ix ix

Figure 4.44 For Example 4.12: (a) finding RN , (b) finding IN .

P R A C T I C E P R O B L E M 4 . 1 2

Find the Norton equivalent circuit of the circuit in Fig. 4.45.

10 A

2vx

6 Ω 2 Ω

a

b

−+
+

−
vx

Figure 4.45 For Practice Prob. 4.12.

Answer: RN = 1 �, IN = 10 A.

†4.7 DERIVATIONS OF THEVENIN’S AND NORTON’S
THEOREMS

In this section, we will prove Thevenin’s and Norton’s theorems using
the superposition principle.
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Consider the linear circuit in Fig. 4.46(a). It is assumed that the cir-
cuit contains resistors, and dependent and independent sources. We have
access to the circuit via terminals a and b, through which current from
an external source is applied. Our objective is to ensure that the voltage-
current relation at terminals a and b is identical to that of the Thevenin
equivalent in Fig. 4.46(b). For the sake of simplicity, suppose the linear
circuit in Fig. 4.46(a) contains two independent voltage sources vs1 and
vs2 and two independent current sources is1 and is2. We may obtain any
circuit variable, such as the terminal voltage v, by applying superposition.
That is, we consider the contribution due to each independent source in-
cluding the external source i. By superposition, the terminal voltage v

is

i
Linear
circuit

a

b

(a)

i

a

b

(b)

v
+

−

v

+

−

VTh
+
−

RTh

Figure 4.46 Derivation of
Thevenin equivalent: (a) a
current-driven circuit, (b) its
Thevenin equivalent.

v = A0i + A1vs1 + A2vs2 + A3is1 + A4is2 (4.13)

where A0, A1, A2, A3, and A4 are constants. Each term on the right-hand
side of Eq. (4.13) is the contribution of the related independent source;
that is, A0i is the contribution to v due to the external current source i,
A1vs1 is the contribution due to the voltage source vs1, and so on. We
may collect terms for the internal independent sources together as B0, so
that Eq. (4.13) becomes

v = A0i + B0 (4.14)

where B0 = A1vs1 + A2vs2 + A3is1 + A4is2. We now want to evaluate
the values of constants A0 and B0. When the terminals a and b are open-
circuited, i = 0 and v = B0. Thus B0 is the open-circuit voltage voc,
which is the same as VTh, so

B0 = VTh (4.15)

When all the internal sources are turned off, B0 = 0. The circuit can then
be replaced by an equivalent resistance Req, which is the same as RTh,
and Eq. (4.14) becomes

v = A0i = RThi �⇒ A0 = RTh (4.16)

Substituting the values of A0 and B0 in Eq. (4.14) gives

v = RThi + VTh (4.17)

which expresses the voltage-current relation at terminals a and b of the
circuit in Fig. 4.46(b). Thus, the two circuits in Fig. 4.46(a) and 4.46(b)
are equivalent.

When the same linear circuit is driven by a voltage source v as
shown in Fig. 4.47(a), the current flowing into the circuit can be obtained
by superposition as

v
Linear
circuit

a

b

(a)

v

a

b

(b)

INRN
+
−

+
−

i

i

Figure 4.47 Derivation of Norton
equivalent: (a) a voltage-driven
circuit, (b) its Norton equivalent.

i = C0v + D0 (4.18)

whereC0v is the contribution to i due to the external voltage source v and
D0 contains the contributions to i due to all internal independent sources.
When the terminals a-b are short-circuited, v = 0 so that i = D0 = −isc,
where isc is the short-circuit current flowing out of terminal a, which is
the same as the Norton current IN , i.e.,

D0 = −IN (4.19)
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When all the internal independent sources are turned off, D0 = 0 and the
circuit can be replaced by an equivalent resistance Req (or an equivalent
conductance Geq = 1/Req), which is the same as RTh or RN . Thus Eq.
(4.19) becomes

i = v

RTh
− IN (4.20)

This expresses the voltage-current relation at terminals a-b of the circuit
in Fig. 4.47(b), confirming that the two circuits in Fig. 4.47(a) and 4.47(b)
are equivalent.

4.8 MAXIMUM POWER TRANSFER
In many practical situations, a circuit is designed to provide power to a
load. While for electric utilities, minimizing power losses in the process
of transmission and distribution is critical for efficiency and economic
reasons, there are other applications in areas such as communications
where it is desirable to maximize the power delivered to a load. We now
address the problem of delivering the maximum power to a load when
given a system with known internal losses. It should be noted that this
will result in significant internal losses greater than or equal to the power
delivered to the load.

The Thevenin equivalent is useful in finding the maximum power a
linear circuit can deliver to a load. We assume that we can adjust the load
resistance RL. If the entire circuit is replaced by its Thevenin equivalent
except for the load, as shown in Fig. 4.48, the power delivered to the load
is

p = i2RL =
(

VTh

RTh + RL

)2

RL (4.21)

For a given circuit, VTh and RTh are fixed. By varying the load resistance
RL, the power delivered to the load varies as sketched in Fig. 4.49. We
notice from Fig. 4.49 that the power is small for small or large values of
RL but maximum for some value of RL between 0 and ∞. We now want
to show that this maximum power occurs when RL is equal to RTh. This
is known as the maximum power theorem.

RLVTh

RTh

+
−

a

b

i

Figure 4.48 The circuit used for
maximum power transfer.

p

RLRTh0

pmax

Figure 4.49 Power delivered to the load
as a function of RL.

Maximum power is transferred to the load when the load resistance equals the
Thevenin resistance as seen from the load (RL = RTh).

To prove the maximum power transfer theorem, we differentiate
p in Eq. (4.21) with respect to RL and set the result equal to zero. We
obtain

dp

dRL

= V 2
Th

[
(RTh + RL)

2 − 2RL(RTh + RL)

(RTh + RL)4

]

= V 2
Th

[
(RTh + RL − 2RL)

(RTh + RL)3

]
= 0
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This implies that

0 = (RTh + RL − 2RL) = (RTh − RL) (4.22)

which yields

RL = RTh (4.23)

showing that the maximum power transfer takes place when the load
resistanceRL equals the Thevenin resistanceRTh. We can readily confirm
that Eq. (4.23) gives the maximum power by showing that d2p/dR2

L < 0.
The source and load are said to bematched when
RL = RTh.

The maximum power transferred is obtained by substituting Eq.
(4.23) into Eq. (4.21), for

pmax = V 2
Th

4RTh
(4.24)

Equation (4.24) applies only when RL = RTh. When RL �= RTh, we
compute the power delivered to the load using Eq. (4.21).

E X A M P L E 4 . 1 3

Find the value of RL for maximum power transfer in the circuit of Fig.
4.50. Find the maximum power.

12 V 2 A

6 Ω 3 Ω 2 Ω

12 Ω RL
+
−

a

b

Figure 4.50 For Example 4.13.

Solution:

We need to find the Thevenin resistance RTh and the Thevenin voltage
VTh across the terminals a-b. To getRTh, we use the circuit in Fig. 4.51(a)
and obtain

RTh = 2 + 3 + 6 ‖ 12 = 5 + 6 × 12

18
= 9 �

6 Ω 3 Ω 2 Ω

12 Ω
RTh

12 V 2 A

6 Ω 3 Ω 2 Ω

12 Ω+
− VTh

+

−

(a) (b)

i1 i2

Figure 4.51 For Example 4.13: (a) finding RTh, (b) finding VTh.
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To get VTh, we consider the circuit in Fig. 4.51(b). Applying mesh anal-
ysis,

−12 + 18i1 − 12i2 = 0, i2 = −2 A

Solving for i1, we get i1 = −2/3. Applying KVL around the outer loop
to get VTh across terminals a-b, we obtain

−12 + 6i1 + 3i2 + 2(0) + VTh = 0 �⇒ VTh = 22 V

For maximum power transfer,

RL = RTh = 9 �

and the maximum power is

pmax = V 2
Th

4RL

= 222

4 × 9
= 13.44 W

P R A C T I C E P R O B L E M 4 . 1 3

Determine the value of RL that will draw the maximum power from the
rest of the circuit in Fig. 4.52. Calculate the maximum power.

9 V

4 Ω2 Ω

RL

1 Ω

3vx

+
−

+
−

+ −vx

Figure 4.52 For Practice Prob. 4.13.

Answer: 4.22 �, 2.901 W.

4.9 VERIFYING CIRCUIT THEOREMS WITH PSPICE
In this section, we learn how to use PSpice to verify the theorems covered
in this chapter. Specifically, we will consider using dc sweep analysis to
find the Thevenin or Norton equivalent at any pair of nodes in a circuit
and the maximum power transfer to a load. The reader is advised to read
Section D.3 of Appendix D in preparation for this section.

To find the Thevenin equivalent of a circuit at a pair of open ter-
minals using PSpice, we use the schematic editor to draw the circuit and
insert an independent probing current source, say, Ip, at the terminals.
The probing current source must have a part name ISRC. We then per-
form a DC Sweep on Ip, as discussed in Section D.3. Typically, we may
let the current through Ip vary from 0 to 1 A in 0.1-A increments. After
simulating the circuit, we use Probe to display a plot of the voltage across
Ip versus the current through Ip. The zero intercept of the plot gives us
the Thevenin equivalent voltage, while the slope of the plot is equal to
the Thevenin resistance.

To find the Norton equivalent involves similar steps except that we
insert a probing independent voltage source (with a part name VSRC),
say, Vp, at the terminals. We perform a DC Sweep on Vp and let Vp
vary from 0 to 1 V in 0.1-V increments. A plot of the current through
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Vp versus the voltage across Vp is obtained using the Probe menu after
simulation. The zero intercept is equal to the Norton current, while the
slope of the plot is equal to the Norton conductance.

To find the maximum power transfer to a load using PSpice involves
performing a dc parametric sweep on the component value of RL in Fig.
4.48 and plotting the power delivered to the load as a function of RL.
According to Fig. 4.49, the maximum power occurs when RL = RTh.
This is best illustrated with an example, and Example 4.15 provides one.

We use VSRC and ISRC as part names for the independent voltage
and current sources.

E X A M P L E 4 . 1 4

Consider the circuit is in Fig. 4.31 (see Example 4.9). Use PSpice to find
the Thevenin and Norton equivalent circuits.

Solution:

(a) To find the Thevenin resistance RTh and Thevenin voltage VTh at the
terminals a-b in the circuit in Fig. 4.31, we first use Schematics to draw
the circuit as shown in Fig. 4.53(a). Notice that a probing current source
I2 is inserted at the terminals. Under Analysis/Setput, we select DC
Sweep. In the DC Sweep dialog box, we select Linear for the Sweep
Type and Current Source for the Sweep Var. Type. We enter I2 under the
Name box, 0 as Start Value, 1 as End Value, and 0.1 as Increment. After
simulation, we add trace V(I2:−) from the Probe menu and obtain the
plot shown in Fig. 4.53(b). From the plot, we obtain

VTh = Zero intercept = 20 V, RTh = Slope = 26 − 20

1
= 6 �

These agree with what we got analytically in Example 4.9.

R2 R4

2 2

GAIN=2

E1

R4 4 R3 6 I2I1

0

+
−

(a) (b)

26 V

24 V

22 V

20 V
0 A 0.2 A 0.4 A 0.6 A 0.8 A 1.0 A

= V(I2:-)

+
−

Figure 4.53 For Example 4.14: (a) schematic and (b) plot for finding RTh and VTh.

(b) To find the Norton equivalent, we modify the schematic in Fig. 4.53(a)
by replaying the probing current source with a probing voltage source V1.
The result is the schematic in Fig. 4.54(a). Again, in the DC Sweep dialog
box, we select Linear for the Sweep Type and Voltage Source for the Sweep
Var. Type. We enter V1 under Name box, 0 as Start Value, 1 as End Value,
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and 0.1 as Increment. When the Probe is running, we add trace I(V1) and
obtain the plot in Fig. 4.54(b). From the plot, we obtain

IN = Zero intercept = 3.335 A

GN = Slope = 3.335 − 3.165

1
= 0.17 S

R2 R1

2 2

GAIN=2

E1

R4 4 R3 6 V1I1

0

+
−

(a) (b)

3.4 A

3.3 A

3.2 A

3.1 A
0 V 0.2 V 0.4 V 0.6 V 0.8 V 1.0 V

  I(V1) V_V1

+
−

+
−

Figure 4.54 For Example 4.14: (a) schematic and (b) plot for finding GN and IN .

P R A C T I C E P R O B L E M 4 . 1 4

Rework Practice Prob. 4.9 using PSpice.

Answer: VTh = 5.33 V, RTh = 0.44 �.

E X A M P L E 4 . 1 5

Refer to the circuit in Fig. 4.55. Use PSpice to find the maximum power
transfer to RL.

RL1 V

1 kΩ

+
−

Figure 4.55 For Example 4.15.

Solution:

We need to perform a dc sweep onRL to determine when the power across
it is maximum. We first draw the circuit using Schematics as shown in
Fig. 4.56. Once the circuit is drawn, we take the following three steps to
further prepare the circuit for a dc sweep.

{RL}DC=1 V +
−

0

R1

R2

1k
V1

PARAMETERS:
RL       2k

Figure 4.56 Schematic for the circuit in
Fig. 4.55.

The first step involves defining the value ofRL as a parameter, since
we want to vary it. To do this:

1. DCLICKL the value 1k of R2 (representing RL) to open up
the Set Attribute Value dialog box.

2. Replace 1k with {RL} and click OK to accept the change.

Note that the curly brackets are necessary.
The second step is to define parameter. To achieve this:

1. Select Draw/Get New Part/Libraries · · ·/special.slb.

2. Type PARAM in the PartName box and click OK.

3. DRAG the box to any position near the circuit.

4. CLICKL to end placement mode.
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5. DCLICKL to open up the PartName: PARAM dialog box.

6. CLICKL on NAME1 = and enter RL (with no curly brackets)
in the Value box, and CLICKL Save Attr to accept change.

7. CLICKL on VALUE1 = and enter 2k in the Value box, and
CLICKL Save Attr to accept change.

8. Click OK.

The value 2k in item 7 is necessary for a bias point calculation; it
cannot be left blank.

The third step is to set up the DC Sweep to sweep the parameter.
To do this:

1. Select Analysis/Setput to bring up the DC Sweep dialog box.

2. For the Sweep Type, select Linear (or Octave for a wide range
of RL).

3. For the Sweep Var. Type, select Global Parameter.

4. Under the Name box, enter RL.

5. In the Start Value box, enter 100.

6. In the End Value box, enter 5k.

7. In the Increment box, enter 100.

8. Click OK and Close to accept the parameters.

250 uW

150 uW

200 uW

100 uW

50 uW
0 2.0 K 4.0 K 6.0 K

 -V(R2:2)*I(R2)

RL

Figure 4.57 For Example 4.15: the plot
of power across PL.

After taking these steps and saving the circuit, we are ready to sim-
ulate. Select Analysis/Simulate. If there are no errors, we select Add
Trace in the Probe menu and type−V(R2:2)∗I(R2) in the Trace Command
box. [The negative sign is needed since I(R2) is negative.] This gives the
plot of the power delivered to RL as RL varies from 100 � to 5 k�. We
can also obtain the power absorbed byRL by typing V(R2:2)∗V(R2:2)/RL
in the Trace Command box. Either way, we obtain the plot in Fig. 4.57.
It is evident from the plot that the maximum power is 250 µW. Notice
that the maximum occurs when RL = 1 k�, as expected analytically.

P R A C T I C E P R O B L E M 4 . 1 5

Find the maximum power transferred to RL if the 1-k� resistor in Fig.
4.55 is replaced by a 2-k� resistor.

Answer: 125 µW.

†4.10 APPLICATIONS
In this section we will discuss two important practical applications of
the concepts covered in this chapter: source modeling and resistance
measurement.

4 . 10 . 1 Sour ce Mode l i n g
Source modeling provides an example of the usefulness of the Thevenin
or the Norton equivalent. An active source such as a battery is often
characterized by its Thevenin or Norton equivalent circuit. An ideal
voltage source provides a constant voltage irrespective of the current
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drawn by the load, while an ideal current source supplies a constant
current regardless of the load voltage. As Fig. 4.58 shows, practical
voltage and current sources are not ideal, due to their internal resistances
or source resistances Rs and Rp. They become ideal as Rs → 0 and
Rp → ∞. To show that this is the case, consider the effect of the load
on voltage sources, as shown in Fig. 4.59(a). By the voltage division
principle, the load voltage is

vL = RL

Rs + RL

vs (4.25)

As RL increases, the load voltage approaches a source voltage vs , as
illustrated in Fig. 4.59(b). From Eq. (4.25), we should note that:

vs

Rs

+
−

(a)

is Rp

(b)

Figure 4.58 (a) Practical
voltage source, (b) practical
current source.

1. The load voltage will be constant if the internal resistance Rs

of the source is zero or, at least, Rs � RL. In other words, the
smaller Rs is compared to RL, the closer the voltage source is
to being ideal.

2. When the load is disconnected (i.e., the source is open-
circuited so that RL → ∞), voc = vs . Thus, vs may be
regarded as the unloaded source voltage. The connection of
the load causes the terminal voltage to drop in magnitude; this
is known as the loading effect.

RLvs

Rs

+
− vL

+

−

(a) (b)

vL

RL
0

vs

Practical source

Ideal source

Figure 4.59 (a) Practical voltage source connected to a load RL,
(b) load voltage decreases as RL decreases.

The same argument can be made for a practical current source when
connected to a load as shown in Fig. 4.60(a). By the current division
principle,

iL = Rp

Rp + RL

is (4.26)

Figure 4.60(b) shows the variation in the load current as the load re-
sistance increases. Again, we notice a drop in current due to the load
(loading effect), and load current is constant (ideal current source) when
the internal resistance is very large (i.e., Rp → ∞ or, at least, Rp � RL).

RL

(a)

is Rp

IL

(b)

IL

RL0

is

Practical source

Ideal source

Figure 4.60 (a) Practical current
source connected to a load RL,
(b) load current decreases as RL

increases.
Sometimes, we need to know the unloaded source voltage vs and

the internal resistanceRs of a voltage source. To find vs andRs , we follow
the procedure illustrated in Fig. 4.61. First, we measure the open-circuit
voltage voc as in Fig. 4.61(a) and set

vs = voc (4.27)
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Then, we connect a variable load RL across the terminals as in Fig.
4.61(b). We adjust the resistance RL until we measure a load voltage
of exactly one-half of the open-circuit voltage, vL = voc/2, because now
RL = RTh = Rs . At that point, we disconnect RL and measure it. We
set

Rs = RL (4.28)

For example, a car battery may have vs = 12 V and Rs = 0.05 �.

Signal
source

(a)

voc

+

−

Signal
source

(b)

vL

+

−
RL

Figure 4.61 (a) Measuring voc , (b) measuring vL.

E X A M P L E 4 . 1 6

The terminal voltage of a voltage source is 12 V when connected to a 2-W
load. When the load is disconnected, the terminal voltage rises to 12.4 V.
(a) Calculate the source voltage vs and internal resistance Rs . (b) Deter-
mine the voltage when an 8-� load is connected to the source.

Rs

(a)

(b)

RLvs

Rs iL

+
− vL

+

−

8 Ω12 V −
+ v

+

−

2.4 Ω

Figure 4.62 For Example 4.16.

Solution:

(a) We replace the source by its Thevenin equivalent. The terminal voltage
when the load is disconnected is the open-circuit voltage,

vs = voc = 12.4 V

When the load is connected, as shown in Fig. 4.62(a), vL = 12 V and
pL = 2 W. Hence,

pL = vL2

RL

�⇒ RL = v2
L

pL

= 122

2
= 72 �

The load current is

iL = vL

RL

= 12

72
= 1

6
A

The voltage across Rs is the difference between the source voltage vs and
the load voltage vL, or

12.4 − 12 = 0.4 = RsiL, Rs = 0.4

IL
= 2.4 �

(b) Now that we have the Thevenin equivalent of the source, we connect
the 8-� load across the Thevenin equivalent as shown in Fig. 4.62(b).
Using voltage division, we obtain

v = 8

8 + 2.4
(12) = 9.231 V
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P R A C T I C E P R O B L E M 4 . 1 6

The measured open-circuit voltage across a certain amplifier is 9 V. The
voltage drops to 8 V when a 20-� loudspeaker is connected to the am-
plifier. Calculate the voltage when a 10-� loudspeaker is used instead.

Answer: 7.2 V.

4 . 10 . 2 Re s i s t a n ce Mea su remen t
Although the ohmmeter method provides the simplest way to measure re-
sistance, more accurate measurement may be obtained using the Wheat-
stone bridge. While ohmmeters are designed to measure resistance in
low, mid, or high range, a Wheatstone bridge is used to measure resis-
tance in the mid range, say, between 1 � and 1 M�. Very low values of
resistances are measured with a milliohmmeter, while very high values
are measured with a Megger tester.

Historical note: The bridge was invented by
Charles Wheatstone (1802–1875), a British
professor who also invented the telegraph, as
Samuel Morse did independently in the United
States.

v

R1 R3

R2 Rx

+
−

Galvanometer

v1

+

−

+

−
v2

Figure 4.63 The Wheatstone bridge; Rx is
the resistance to be measured.

The Wheatstone bridge (or resistance bridge) circuit is used in a
number of applications. Here we will use it to measure an unknown re-
sistance. The unknown resistance Rx is connected to the bridge as shown
in Fig. 4.63. The variable resistance is adjusted until no current flows
through the galvanometer, which is essentially a d’Arsonval movement
operating as a sensitive current-indicating device like an ammeter in the
microamp range. Under this condition v1 = v2, and the bridge is said
to be balanced. Since no current flows through the galvanometer, R1

and R2 behave as though they were in series; so do R3 and Rx . The fact
that no current flows through the galvanometer also implies that v1 = v2.

Applying the voltage division principle,

v1 = R2

R1 + R2
v = v2 = Rx

R3 + Rx

v (4.29)

Hence, no current flows through the galvanometer when

R2

R1 + R2
= Rx

R3 + Rx

�⇒ R2R3 = R1Rx

or

Rx = R3

R1
R2 (4.30)

If R1 = R3, and R2 is adjusted until no current flows through the gal-
vanometer, then Rx = R2.

How do we find the current through the galvanometer when the
Wheatstone bridge is unbalanced? We find the Thevenin equivalent (VTh

and RTh) with respect to the galvanometer terminals. If Rm is the resis-
tance of the galvanometer, the current through it under the unbalanced
condition is

I = VTh

RTh + Rm

(4.31)

Example 4.18 will illustrate this.
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E X A M P L E 4 . 1 7

In Fig. 4.63, R1 = 500 � and R3 = 200 �. The bridge is balanced when
R2 is adjusted to be 125 �. Determine the unknown resistance Rx .

Solution:

Using Eq. (4.30),

Rx = R3

R1
R2 = 200

500
125 = 50 �

P R A C T I C E P R O B L E M 4 . 1 7

A Wheatstone bridge has R1 = R3 = 1 k�. R2 is adjusted until no cur-
rent flows through the galvanometer. At that point, R2 = 3.2 k�. What
is the value of the unknown resistance?

Answer: 3.2 k�.

E X A M P L E 4 . 1 8

The circuit in Fig. 4.64 represents an unbalanced bridge. If the galvano-
meter has a resistance of 40 �, find the current through the galvanometer.

220 V

400 Ω

600 Ω

+
− G

3 kΩ

1 kΩ

40 Ωa b

Figure 4.64 Unbalanced bridge of Example 4.18.

Solution:

We first need to replace the circuit by its Thevenin equivalent at termi-
nals a and b. The Thevenin resistance is found using the circuit in Fig.
4.65(a). Notice that the 3-k� and 1-k� resistors are in parallel; so are the
400-� and 600-� resistors. The two parallel combinations form a series
combination with respect to terminals a and b. Hence,

RTh = 3000 ‖ 1000 + 400 ‖ 600

= 3000 × 1000

3000 + 1000
+ 400 × 600

400 + 600
= 750 + 240 = 990 �

To find the Thevenin voltage, we consider the circuit in Fig. 4.65(b).
Using the voltage division principle,

v1 = 1000

1000 + 3000
(220) = 55 V, v2 = 600

600 + 400
(220) = 132 V

Applying KVL around loop ab gives

−v1 + VTh + v2 = 0 or VTh = v1 − v2 = 55 − 132 = −77 V
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220 V

400 Ω

600 Ω

+
−

3 kΩ

1 kΩ
a b

+ −
VTh

(b)

VTh

40 Ω
+
−

(c)

400 Ω

600 Ω

3 kΩ

1 kΩ
a b

RTh

(a)

RTh a

b

G

IG

+

−
v1

+

−
v2

Figure 4.65 For Example 4.18: (a) Finding RTh, (b) finding VTh, (c) determining the current through the
galvanometer.

Having determined the Thevenin equivalent, we find the current through
the galvanometer using Fig. 4.65(c).

IG = VTh

RTh + Rm

= −77

990 + 40
= −74.76 mA

The negative sign indicates that the current flows in the direction opposite
to the one assumed, that is, from terminal b to terminal a.

P R A C T I C E P R O B L E M 4 . 1 8

Obtain the current through the galvanometer, having a resistance of 14�,
in the Wheatstone bridge shown in Fig. 4.66.

14 Ω

60 Ω

16 V

40 Ω

20 Ω 30 Ω
G

Figure 4.66 For Practice Prob. 4.18.

Answer: 64 mA.
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4.11 SUMMARY
1. A linear network consists of linear elements, linear dependent

sources, and linear independent sources.

2. Network theorems are used to reduce a complex circuit to a simpler
one, thereby making circuit analysis much simpler.

3. The superposition principle states that for a circuit having multiple
independent sources, the voltage across (or current through) an
element is equal to the algebraic sum of all the individual voltages
(or currents) due to each independent source acting one at a time.

4. Source transformation is a procedure for transforming a voltage
source in series with a resistor to a current source in parallel with a
resistor, or vice versa.

5. Thevenin’s and Norton’s theorems allow us to isolate a portion of a
network while the remaining portion of the network is replaced by an
equivalent network. The Thevenin equivalent consists of a voltage
source VTh in series with a resistor RTh, while the Norton equivalent
consists of a current source IN in parallel with a resistor RN . The
two theorems are related by source transformation.

RN = RTh, IN = VTh

RTh

6. For a given Thevenin equivalent circuit, maximum power transfer
occurs when RL = RTh, that is, when the load resistance is equal to
the Thevenin resistance.

7. PSpice can be used to verify the circuit theorems covered in this
chapter.

8. Source modeling and resistance measurement using the Wheatstone
bridge provide applications for Thevenin’s theorem.

R E V I EW QU E S T I ON S

4.1 The current through a branch in a linear network is
2 A when the input source voltage is 10 V. If the
voltage is reduced to 1 V and the polarity is
reversed, the current through the branch is:
(a) −2 (b) −0.2 (c) 0.2
(d) 2 (e) 20

4.2 For superposition, it is not required that only one
independent source be considered at a time; any
number of independent sources may be considered
simultaneously.
(a) True (b) False

4.3 The superposition principle applies to power
calculation.
(a) True (b) False

4.4 Refer to Fig. 4.67. The Thevenin resistance at
terminals a and b is:

(a) 25 � (b) 20 �

(c) 5 � (d) 4 �

50 V 20 Ω+
−

5 Ω

a

b

Figure 4.67 For Review Questions 4.4 to 4.6.

4.5 The Thevenin voltage across terminals a and b of
the circuit in Fig. 4.67 is:
(a) 50 V (b) 40 V
(c) 20 V (d) 10 V
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4.6 The Norton current at terminals a and b of the
circuit in Fig. 4.67 is:
(a) 10 A (b) 2.5 A
(c) 2 A (d) 0 A

4.7 The Norton resistance RN is exactly equal to the
Thevenin resistance RTh.
(a) True (b) False

4.8 Which pair of circuits in Fig. 4.68 are equivalent?
(a) a and b (b) b and d
(c) a and c (d) c and d

+
−20 V

5 Ω

(a)

4 A

5 Ω

(b)

5 Ω

(c)

+
−20 V 5 Ω

(d)

4 A

Figure 4.68 For Review Question 4.8.

4.9 A load is connected to a network. At the terminals
to which the load is connected, RTh = 10 � and
VTh = 40 V. The maximum power supplied to the
load is:
(a) 160 W (b) 80 W
(c) 40 W (d) 1 W

4.10 The source is supplying the maximum power to the
load when the load resistance equals the source
resistance.
(a) True (b) False

Answers: 4.1b, 4.2a, 4.3b, 4.4d, 4.5b, 4.6a, 4.7a, 4.8c, 4.9c, 4.10b.

P RO B L E M S

Section 4.2 Linearity Property

4.1 Calculate the current io in the current of Fig. 4.69.
What does this current become when the input
voltage is raised to 10 V?

+
−

io

1 Ω 5 Ω

3 Ω8 Ω1 V

Figure 4.69 For Prob. 4.1.

4.2 Find vo in the circuit of Fig. 4.70. If the source
current is reduced to 1 µA, what is vo?

5 Ω 4 Ω

6 Ω8 Ω1 A 2 Ω
+

−
vo

Figure 4.70 For Prob. 4.2.

4.3 (a) In the circuit in Fig. 4.71, calculate vo and io
when vs = 1 V.

(b) Find vo and io when vs = 10 V.
(c) What are vo and io when each of the 1-�

resistors is replaced by a 10-� resistor and
vs = 10 V?

+
−

1 Ω

1 Ω

1 Ω 1 Ωvs

1 Ω

io
+

−
vo

Figure 4.71 For Prob. 4.3.

4.4 Use linearity to determine io in the circuit of Fig.
4.72.

2 Ω3 Ω

4 Ω6 Ω 9 A

io

Figure 4.72 For Prob. 4.4.
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4.5 For the circuit in Fig. 4.73, assume vo = 1 V, and
use linearity to find the actual value of vo.

2 Ω 3 Ω

4 Ω6 Ω

vo 2 Ω

6 Ω15 V +
−

Figure 4.73 For Prob. 4.5.

Section 4.3 Superposition

4.6 Apply superposition to find i in the circuit of Fig.
4.74.

20 V 5 A

6 Ω

4 Ω+
−

i

Figure 4.74 For Prob. 4.6.

4.7 Given the circuit in Fig. 4.75, calculate ix and the
power dissipated by the 10-� resistor using
superposition.

12 Ω

4 A10 Ω 40 Ω15 V −
+

ix

Figure 4.75 For Prob. 4.7.

4.8 For the circuit in Fig. 4.76, find the terminal voltage
Vab using superposition.

4 V 2 A

a

b

10 Ω
3Vab

+ −

+
− Vab

+

−

Figure 4.76 For Prob. 4.8.

4.9 Use superposition principle to find i in Fig. 4.77.

6 Ω

4 A2 Ω 3 Ω12 V −
+

i

Figure 4.77 For Prob. 4.9.

4.10 Determine vo in the circuit of Fig. 4.78 using the
superposition principle.

12 V

5 Ω6 Ω

2 A

4 Ω

12 Ω3 Ω+
− 19 V+

−

+ −vo

Figure 4.78 For Prob. 4.10.

4.11 Apply the superposition principle to find vo in the
circuit of Fig. 4.79.

+
−

6 Ω

2 Ω

3 Ω1 A

2 A

20 V

4 Ω

+

−
vo

Figure 4.79 For Prob. 4.11.

4.12 For the circuit in Fig. 4.80, use superposition to find
i. Calculate the power delivered to the 3-� resistor.

20 V
2 A

3 Ω
2 Ω

1 Ω
4 Ω

16 V−
+

i

+
−

Figure 4.80 For Probs. 4.12 and 4.45.
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4.13 Given the circuit in Fig. 4.81, use superposition to
get io.

12 V

3 Ω4 Ω

4 A

2 Ω

5 Ω10 Ω+
− 2 A

io

Figure 4.81 For Probs. 4.13 and 4.23.

4.14 Use superposition to obtain vx in the circuit of Fig.
4.82. Check your result using PSpice.

90 V 6 A

30 Ω 10 Ω 20 Ω

60 Ω 30 Ω+
− 40 V+

−

+ −vx

Figure 4.82 For Prob. 4.14.

4.15 Find vx in Fig. 4.83 by superposition.

2 Ω

1 Ω
5ix

2 A 4 Ω10 V +
−

ix

+ −vx

Figure 4.83 For Prob. 4.15.

4.16 Use superposition to solve for ix in the circuit of
Fig. 4.84.

8 Ω2 Ω 6 A 4 A

− +

ix

4ix

+

−
vx

Figure 4.84 For Prob. 4.16.

Section 4.4 Source Transformation

4.17 Find i in Prob. 4.9 using source transformation.

4.18 Apply source transformation to determine vo and io
in the circuit in Fig. 4.85.

12 V 2 A

6 Ω

3 Ω+
−

io

+

−
vo

Figure 4.85 For Prob. 4.18.

4.19 For the circuit in Fig. 4.86, use source
transformation to find i.

5 Ω 10 Ω

4 Ω5 Ω2 A 20 V+
−

i

Figure 4.86 For Prob. 4.19.

4.20 Obtain vo in the circuit of Fig. 4.87 using source
transformation. Check your result using PSpice.

3 A

9 Ω

2 Ω

2 A

30 V

5 Ω4 Ω 6 A

+ −
+ −vo

Figure 4.87 For Prob. 4.20.

4.21 Use source transformation to solve Prob. 4.14.

4.22 Apply source transformation to find vx in the circuit
of Fig. 4.88.
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50 V 8 A

10 Ω 12 Ω 20 Ω

40 Ω+
− 40 V+

−

a b

+ −vx

Figure 4.88 For Probs. 4.22 and 4.32.

4.23 Given the circuit in Fig. 4.81, use source
transformation to find io.

4.24 Use source transformation to find vo in the circuit of
Fig. 4.89.

4 kΩ

1 kΩ3 mA

2 kΩ
3vo

− +
+

−
vo

Figure 4.89 For Prob. 4.24.

4.25 Determine vx in the circuit of Fig. 4.90 using source
transformation.

+
−

3 Ω 6 Ω

2vx8 Ω12 V
+
−

+ −vx

Figure 4.90 For Prob. 4.25.

4.26 Use source transformation to find ix in the circuit of
Fig. 4.91.

10 Ω

15 Ω
0.5ix

40 Ω60 V +
− 50 Ω

ix

Figure 4.91 For Prob. 4.26.

Sections 4.5 and 4.6 Thevenin’s and Norton’s
Theorems

4.27 Determine RTh and VTh at terminals 1-2 of each of
the circuits in Fig. 4.92.

10 Ω

+
−20 V 40 Ω

(a)

(b)

1

2

2 A 30 Ω 30 V+
−

60 Ω

1

2

Figure 4.92 For Probs. 4.27 and 4.37.

4.28 Find the Thevenin equivalent at terminals a-b of the
circuit in Fig. 4.93.

20 Ω10 Ω

3 A

40 V 40 Ω

a

b

+
−

Figure 4.93 For Probs. 4.28 and 4.39.

4.29 Use Thevenin’s theorem to find vo in Prob. 4.10.

4.30 Solve for the current i in the circuit of Fig. 4.94
using Thevenin’s theorem. (Hint: Find the Thevenin
equivalent across the 12-� resistor.)

12 Ω

30 V

40 Ω
+
−

10 Ω

50 V +
−

i

Figure 4.94 For Prob. 4.30.

4.31 For Prob. 4.8, obtain the Thevenin equivalent at
terminals a-b.
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4.32 Given the circuit in Fig. 4.88, obtain the Thevenin
equivalent at terminals a-b and use the result to
get vx .

4.33∗ For the circuit in Fig. 4.95, find the Thevenin
equivalent between terminals a and b.

20 Ω

20 Ω10 Ω

10 Ω

5 A 10 Ω

20 V

30 V +
−

−
+

10 Ω

a b

Figure 4.95 For Prob. 4.33.

4.34 Find the Thevenin equivalent looking into terminals
a-b of the circuit in Fig. 4.96 and solve for ix .

20 V 2 A

10 Ω 6 Ω

10 Ω+
− 5 Ω

a b

ix

Figure 4.96 For Prob. 4.34.

4.35 For the circuit in Fig. 4.97, obtain the Thevenin
equivalent as seen from terminals:
(a) a-b (b) b-c

4 Ω24 V

5 Ω2 Ω

1 Ω3 Ω

2 A

a

b

c

+
−

Figure 4.97 For Prob. 4.35.

4.36 Find the Norton equivalent of the circuit in Fig. 4.98.

*An asterisk indicates a challenging problem.

4 A 4 Ω

a

b

6 Ω

6 Ω

Figure 4.98 For Prob. 4.36.

4.37 Obtain RN and IN at terminals 1 and 2 of each of the
circuits in Fig. 4.92.

4.38 Determine the Norton equivalent at terminals a-b
for the circuit in Fig. 4.99.

2 A

a

b

4 Ω

2 Ω
10io

+ −
io

Figure 4.99 For Prob. 4.38.

4.39 Find the Norton equivalent looking into terminals
a-b of the circuit in Fig. 4.93.

4.40 Obtain the Norton equivalent of the circuit in Fig.
4.100 to the left of terminals a-b. Use the result to
find current i.

2 A

a

b

4 A4 Ω 5 Ω

12 V6 Ω
+ −

i

Figure 4.100 For Prob. 4.40.

4.41 Given the circuit in Fig. 4.101, obtain the Norton
equivalent as viewed from terminals:
(a) a-b (b) c-d

120 V

c

a b

d

6 A 2 Ω3 Ω

4 Ω6 Ω

+
−

Figure 4.101 For Prob. 4.41.
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4.42 For the transistor model in Fig. 4.102, obtain the
Thevenin equivalent at terminals a-b.

6 V 20io

3 kΩ

2 kΩ+
−

a

b

io

Figure 4.102 For Prob. 4.42.

4.43 Find the Norton equivalent at terminals a-b of the
circuit in Fig. 4.103.

2 Ω6 Ω

0.25vo

3 Ω18 V +
− vo

+

−

a

b

Figure 4.103 For Prob. 4.43.

4.44∗ Obtain the Norton equivalent at terminals a-b of the
circuit in Fig. 4.104.

2 V 80I

8 kΩ

50 kΩ+
−

a

b

0.01Vab
+
−

I

+

−
Vab

Figure 4.104 For Prob. 4.44.

4.45 Use Norton’s theorem to find current i in the circuit
of Fig. 4.80.

4.46 Obtain the Thevenin and Norton equivalent circuits
at the terminals a-b for the circuit in Fig. 4.105.

50 V

3 Ω 2 Ω

10 Ω+
−

a

b

0.5vx6 Ω
+

−
vx

Figure 4.105 For Probs. 4.46 and 4.65.

4.47 The network in Fig. 4.106 models a bipolar
transistor common-emitter amplifier connected to a
load. Find the Thevenin resistance seen by the load.

vs

R1
bib

RL
+
− R2

ib

Figure 4.106 For Prob. 4.47.

4.48 Determine the Thevenin and Norton equivalents at
terminals a-b of the circuit in Fig. 4.107.

8 A

10 Ω 20 Ω

50 Ω 40 Ω

a b

Figure 4.107 For Probs. 4.48 and 4.66.

4.49∗ For the circuit in Fig. 4.108, find the Thevenin and
Norton equivalent circuits at terminals a-b.

+ −
18 V

3 A

4 Ω 6 Ω

5 Ω

a b

2 A

10 V

+ −

Figure 4.108 For Probs. 4.49 and 4.67.

4.50∗ Obtain the Thevenin and Norton equivalent circuits
at terminals a-b of the circuit in Fig. 4.109.
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12 V

6 Ω
2 Ω

6 Ω

2 Ω

6 Ω
+
− 12 V

2 Ω

+
−

12 V+
−

a

b

Figure 4.109 For Prob. 4.50.

4.51∗ Find the Thevenin equivalent of the circuit in Fig.
4.110.

10 Ω

20 Ω40 Ω

+ −

io

0.1io

2vo

+

−
vo

b

a

Figure 4.110 For Prob. 4.51.

4.52 Find the Norton equivalent for the circuit in Fig.
4.111.

0.5vo

10 Ω

+

−
vo 20 V

Figure 4.111 For Prob. 4.52.

4.53 Obtain the Thevenin equivalent seen at terminals
a-b of the circuit in Fig. 4.112.

10ix

4 Ω

2 Ω

1 Ω

+
−

ix

a

b

Figure 4.112 For Prob. 4.53.

Section 4.8 Maximum Power Transfer

4.54 Find the maximum power that can be delivered to
the resistor R in the circuit in Fig. 4.113.

R3 Ω

2 Ω

5 Ω20 V 6 A+
−

− +

10 V

Figure 4.113 For Prob. 4.54.

4.55 Refer to Fig. 4.114. For what value of R is the
power dissipated in R maximum? Calculate that power.

6 Ω
30 V

4 Ω

8 Ω

R

12 Ω

+ −

Figure 4.114 For Prob. 4.55.

4.56∗ Compute the value of R that results in maximum
power transfer to the 10-� resistor in Fig. 4.115.
Find the maximum power.

+
−

+
−

R

20 Ω
10 Ω

8 V

12 V

Figure 4.115 For Prob. 4.56.

4.57 Find the maximum power transferred to resistor R
in the circuit of Fig. 4.116.

R40 kΩ 30 kΩ100 V +
− 3vo

22 kΩ10 kΩ

+

−
vo

Figure 4.116 For Prob. 4.57.
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4.58 For the circuit in Fig. 4.117, what resistor connected
across terminals a-b will absorb maximum power
from the circuit? What is that power?

8 V 120vo

3 kΩ 10 kΩ

40 kΩ1 kΩ+
−

a

b

–
+

+

−
vo

Figure 4.117 For Prob. 4.58.

4.59 (a) For the circuit in Fig. 4.118, obtain the Thevenin
equivalent at terminals a-b.

(b) Calculate the current in RL = 8 �.
(c) Find RL for maximum power deliverable to RL.
(d) Determine that maximum power.

6 Ω4 Ω

2 A

20 V

4 A 2 Ω

a

b

RL

+ −

Figure 4.118 For Prob. 4.59.

4.60 For the bridge circuit shown in Fig. 4.119, find the
load RL for maximum power transfer and the
maximum power absorbed by the load.

R3
RL

R4

R1

R2

vs
+
−

Figure 4.119 For Prob. 4.60.

4.61 For the circuit in Fig. 4.120, determine the value of
R such that the maximum power delivered to the
load is 3 mW.

R

R

R

2 V
3 V

RL
+
−

1 V +
−

+
−

Figure 4.120 For Prob. 4.61.

Section 4.9 Verifying Circuit Theorems with
PSpice

4.62 Solve Prob. 4.28 using PSpice.

4.63 Use PSpice to solve Prob. 4.35.

4.64 Use PSpice to solve Prob. 4.42.

4.65 Obtain the Thevenin equivalent of the circuit in Fig.
4.105 using PSpice.

4.66 Use PSpice to find the Thevenin equivalent circuit at
terminals a-b of the circuit in Fig. 4.107.

4.67 For the circuit in Fig. 4.108, use PSpice to find the
Thevenin equivalent at terminals a-b.

Section 4.10 Applications

4.68 A battery has a short-circuit current of 20 A and an
open-circuit voltage of 12 V. If the battery is
connected to an electric bulb of resistance 2 �,
calculate the power dissipated by the bulb.

4.69 The following results were obtained from
measurements taken between the two terminals of a
resistive network.

Terminal Voltage 12 V 0 V
Terminal Current 0 V 1.5 A

Find the Thevenin equivalent of the network.

4.70 A black box with a circuit in it is connected to a
variable resistor. An ideal ammeter (with zero
resistance) and an ideal voltmeter (with infinite
resistance) are used to measure current and voltage
as shown in Fig. 4.121. The results are shown in the
table below.

Black
box

V

A

i

R

Figure 4.121 For Prob. 4.70.
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(a) Find i when R = 4 �.
(b) Determine the maximum power from the box.

R(�) V (V) i(A)

2 3 1.5
8 8 1.0

14 10.5 0.75

4.71 A transducer is modeled with a current source Is and
a parallel resistance Rs . The current at the terminals
of the source is measured to be 9.975 mA when an
ammeter with an internal resistance of 20 � is used.
(a) If adding a 2-k� resistor across the source

terminals causes the ammeter reading to fall to
9.876 mA, calculate Is and Rs .

(b) What will the ammeter reading be if the
resistance between the source terminals is
changed to 4 k�?

4.72 The Wheatstone bridge circuit shown in Fig. 4.122
is used to measure the resistance of a strain gauge.
The adjustable resistor has a linear taper with a
maximum value of 100 �. If the resistance of the
strain gauge is found to be 42.6 �, what fraction of
the full slider travel is the slider when the bridge is
balanced?

4 kΩ

100 Ω

2 kΩ

+
−vs

Rs

Rx

G

Figure 4.122 For Prob. 4.72.

4.73 (a) In the Wheatstone bridge circuit of Fig. 4.123,
select the values of R1 and R3 such that the
bridge can measure Rx in the range of 0–10 �.

R3

Rx

R1

V +
−

G

50 Ω

Figure 4.123 For Prob. 4.73.

(b) Repeat for the range of 0–100 �.

4.74∗ Consider the bridge circuit of Fig. 4.124. Is the
bridge balanced? If the 10-k� resistor is replaced
by an 18-k� resistor, what resistor connected
between terminals a-b absorbs the maximum
power? What is this power?

220 V

2 kΩ

3 kΩ 6 kΩ

5 kΩ 10 kΩ

+
− a b

Figure 4.124 For Prob. 4.74.

COM P R E H EN S I V E P RO B L E M S

4.75 The circuit in Fig. 4.125 models a common-emitter
transistor amplifier. Find ix using source
transformation.

vs

Rs

+
− bixRo

ix

Figure 4.125 For Prob. 4.75.

4.76 An attenuator is an interface circuit that reduces the
voltage level without changing the output resistance.
(a) By specifying Rs and Rp of the interface circuit

in Fig. 4.126, design an attenuator that will meet
the following requirements:

Vo

Vg

= 0.125, Req = RTh = Rg = 100 �

(b) Using the interface designed in part (a),
calculate the current through a load of
RL = 50 � when Vg = 12 V.
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Vg

Rg Rs

RL

Req

+
− Rp Vo

+

−

Attenuator
Load

Figure 4.126 For Prob. 4.76.

4.77∗ A dc voltmeter with a sensitivity of 20 k�/V is used
to find the Thevenin equivalent of a linear network.
Readings on two scales are as follows:
(a) 0–10 V scale: 4 V (b) 0–50 V scale: 5 V
Obtain the Thevenin voltage and the Thevenin
resistance of the network.

4.78∗ A resistance array is connected to a load resistor R
and a 9-V battery as shown in Fig. 4.127.
(a) Find the value of R such that Vo = 1.8 V.
(b) Calculate the value of R that will draw the

maximum current. What is the maximum
current?

60 Ω 10 Ω

10 Ω

8 Ω 8 Ω

R

10 Ω 40 Ω

9 V+ −

3

4

1

2

+ −Vo

Figure 4.127 For Prob. 4.78.

4.79 A common-emitter amplifier circuit is shown in Fig.
4.128. Obtain the Thevenin equivalent to the left of
points B and E.

RL

Rc

E

4 kΩ

6 kΩ

12 V
B +

−

Figure 4.128 For Prob. 4.79.

4.80∗ For Practice Prob. 4.17, determine the current
through the 40-� resistor and the power dissipated
by the resistor.
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C H A P T E R

OPERATIONAL AMPLIFIERS

5

If A is success in life, then A equals X plus Y plus Z. Work is X, Y is
play and Z is keeping your mouth shut.

—Albert Einstein

Enhancing Your Career
Career in Electronic Instrumentation Engineering in-
volves applying physical principles to design devices for
the benefit of humanity. But physical principles cannot be
understood without measurement. In fact, physicists often
say that physics is the science that measures reality. Just
as measurements are a tool for understanding the physical
world, instruments are tools for measurement. The opera-
tional amplifier introduced in this chapter is a building block
of modern electronic instrumentation. Therefore, mastery
of operational amplifier fundamentals is paramount to any
practical application of electronic circuits.

Electronic instruments are used in all fields of sci-
ence and engineering. They have proliferated in science and
technology to the extent that it would be ridiculous to have
a scientific or technical education without exposure to elec-
tronic instruments. For example, physicists, physiologists,
chemists, and biologists must learn to use electronic instru-
ments. For electrical engineering students in particular, the
skill in operating digital and analog electronic instruments
is crucial. Such instruments include ammeters, voltmeters,
ohmmeters, oscilloscopes, spectrum analyzers, and signal
generators.

Beyond developing the skill for operating the instru-
ments, some electrical engineers specialize in designing and
constructing electronic instruments. These engineers derive
pleasure in building their own instruments. Most of them

Electronic Instrumentation used in medical research.
Source: Geoff Tompkinson/Science Photo Library.

invent and patent their inventions. Specialists in electronic
instruments find employment in medical schools, hospitals,
research laboratories, aircraft industries, and thousands of
other industries where electronic instruments are routinely
used.
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5.1 INTRODUCTION
Having learned the basic laws and theorems for circuit analysis, we are
now ready to study an active circuit element of paramount importance:
theoperational amplifier, or op amp for short. The op amp is a versatile
circuit building block.

The term operational amplifier was introduced
in 1947 by John Ragazzini and his colleagues, in
their work on analog computers for the National
Defense Research Council during World War II.
The first op amps used vacuum tubes rather than
transistors.

The op amp is an electronic unit that behaves like a
voltage-controlled voltage source.

An op amp may also be regarded as a voltage
amplifier with very high gain. It can also be used in making a voltage- or current-controlled current

source. An op amp can sum signals, amplify a signal, integrate it, or
differentiate it. The ability of the op amp to perform these mathematical
operations is the reason it is called anoperational amplifier. It is also
the reason for the widespread use of op amps in analog design. Op
amps are popular in practical circuit designs because they are versatile,
inexpensive, easy to use, and fun to work with.

We begin by discussing the ideal op amp and later consider the
nonideal op amp. Using nodal analysis as a tool, we consider ideal op
amp circuits such as the inverter, voltage follower, summer, and difference
amplifier. We will analyze op amp circuits withPSpice. Finally, we learn
how an op amp is used in digital-to-analog converters and instrumentation
amplifiers.

5.2 OPERATIONAL AMPLIFIERS
An operational amplifier is designed so that it performs some mathemat-
ical operations when external components, such as resistors and capaci-
tors, are connected to its terminals. Thus,

An op amp is an active circuit element designed to perform mathematical operations
of addition, subtraction, multiplication, division, differentiation, and integration.

The op amp is an electronic device consisting of a complex arrange-
ment of resistors, transistors, capacitors, and diodes. A full discussion
of what is inside the op amp is beyond the scope of this book. It will
suffice to treat the op amp as a circuit building block and simply study
what takes place at its terminals.

Figure 5.1 A typical operational amplifier.
(Courtesy of Tech America.)

Op amps are commercially available in integrated circuit packages
in several forms. Figure 5.1 shows a typical op amp package. A typical
one is the eight-pin dual in-line package (or DIP), shown in Fig. 5.2(a).
Pin or terminal 8 is unused, and terminals 1 and 5 are of little concern to
us. The five important terminals are:

The pin diagram in Fig. 5.2(a) corresponds to the
741 general-purpose op amp made by Fairchild
Semiconductor.

1. The inverting input, pin 2.

2. The noninverting input, pin 3.

3. The output, pin 6.
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4. The positive power supplyV +, pin 7.

5. The negative power supplyV −, pin 4.

The circuit symbol for the op amp is the triangle in Fig. 5.2(b); as shown,
the op amp has two inputs and one output. The inputs are marked with
minus (−) and plus(+) to specify inverting and noninverting inputs,
respectively. An input applied to the noninverting terminal will appear
with the same polarity at the output, while an input applied to the inverting
terminal will appear inverted at the output.

+

−1Balance

2Inverting input

3Noninverting input

4V − 5 Balance

6 Output

7 V +

8 No connection

(a) (b)

2Inverting input

3Noninverting input

4
V −

V +

1 5

Offset Null

6 Output

7

Figure 5.2 A typical op amp: (a) pin configuration, (b) circuit symbol.

As an active element, the op amp must be powered by a voltage
supply as typically shown in Fig. 5.3. Although the power supplies are
often ignored in op amp circuit diagrams for the sake of simplicity, the
power supply currents must not be overlooked. By KCL,

io = i1 + i2 + i+ + i− (5.1)

7

4

6

Vcc

Vcc

+

−

+

−i o

i1

i2

i +

i −

2

3

Figure 5.3 Powering the op amp.

v1

v2

vo

+
−

+

−
vd Ri

Ro

Avd

Figure 5.4 The equivalent circuit of the non-
ideal op amp.

The equivalent circuit model of an op amp is shown in Fig. 5.4. The
output section consists of a voltage-controlled source in series with the
output resistance Ro. It is evident from Fig. 5.4 that the input resistance
Ri is the Thevenin equivalent resistance seen at the input terminals, while
the output resistance Ro is the Thevenin equivalent resistance seen at the
output. The differential input voltage vd is given by

vd = v2 − v1 (5.2)

where v1 is the voltage between the inverting terminal and ground and v2

is the voltage between the noninverting terminal and ground. The op amp
senses the difference between the two inputs, multiplies it by the gain A,
and causes the resulting voltage to appear at the output. Thus, the output
vo is given by

vo = Avd = A(v2 − v1) (5.3)

A is called the open-loop voltage gain because it is the gain of the op amp
without any external feedback from output to input. Table 5.1 shows
typical values of voltage gain A, input resistance Ri , output resistance
Ro, and supply voltage VCC .

Sometimes, voltage gain is expressed in decibels
(dB), as discussed in Chapter 14.

A dB = 20 log10 A

The concept of feedback is crucial to our understanding of op amp
circuits. A negative feedback is achieved when the output is fed back to
the inverting terminal of the op amp. As Example 5.1 shows, when there
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TABLE 5.1 Typical ranges for op amp
parameters.

Parameter Typical range Ideal values

Open-loop gain, A 105 to 108 ∞
Input resistance, Ri 106 to 1013 � ∞ �

Output resistance, Ro 10 to 100 � 0 �
Supply voltage, Vcc 5 to 24 V

is a feedback path from output to input, the ratio of the output voltage to
the input voltage is called the closed-loop gain. As a result of the negative
feedback, it can be shown that the closed-loop gain is almost insensitive
to the open-loop gainA of the op amp. For this reason, op amps are used
in circuits with feedback paths.

A practical limitation of the op amp is that the magnitude of its
output voltage cannot exceed |VCC |. In other words, the output voltage
is dependent on and is limited by the power supply voltage. Figure 5.5
illustrates that the op amp can operate in three modes, depending on the
differential input voltage vd :

1. Positive saturation, vo = VCC.

2. Linear region, −VCC ≤ vo = Avd ≤ VCC.

3. Negative saturation, vo = −VCC.

Positive saturation

Negative saturation

vd

vo

VCC

−VCC

0

Figure 5.5 Op amp output voltage vo as a
function of the differential input voltage vd .

If we attempt to increase vd beyond the linear range, the op amp becomes
saturated and yields vo = VCC or vo = −VCC . Throughout this book,
we will assume that our op amps operate in the linear mode. This means
that the output voltage is restricted by

−VCC ≤ vo ≤ VCC (5.4)

Although we shall always operate the op amp in the linear region, the
possibility of saturation must be borne in mind when one designs with
op amps, to avoid designing op amp circuits that will not work in the
laboratory.

E X A M P L E 5 . 1

A 741 op amp has an open-loop voltage gain of 2 × 105, input resistance
of 2 M�, and output resistance of 50�. The op amp is used in the circuit
of Fig. 5.6(a). Find the closed-loop gain vo/vs . Determine current i when
vs = 2 V.

Solution:

Using the op amp model in Fig. 5.4, we obtain the equivalent circuit of
Fig. 5.6(a) as shown in Fig. 5.6(b). We now solve the circuit in Fig. 5.6(b)
by using nodal analysis. At node 1, KCL gives

vs − v1

10 × 103
= v1

2000 × 103
+ v1 − vo

20 × 103
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10 kΩ

20 kΩ

vs

i

vo

+

−

+
−

1

O

(a) (b)

+

−
741

10 kΩ

20 kΩ

vs

i
Ro = 50 Ω

Ri = 2 MΩ+
−

1 O

+
− Avd

v1 vo

−

+
vd

Figure 5.6 For Example 5.1: (a) original circuit, (b) the equivalent circuit.

Multiplying through by 2000 × 103, we obtain

200vs = 301v1 − 100vo

or

2vs � 3v1 − vo 	⇒ v1 = 2vs + vo

3
(5.1.1)

At node O,

v1 − vo

20 × 103
= vo − Avd

50

But vd = −v1 and A = 200,000. Then

v1 − vo = 400(vo + 200,000v1) (5.1.2)

Substituting v1 from Eq. (5.1.1) into Eq. (5.1.2) gives

0 � 26,667,067vo + 53,333,333vs
vo

vs
= −1.9999699

This is closed-loop gain, because the 20-k� feedback resistor closes the
loop between the output and input terminals. When vs = 2 V, vo =
−3.9999398 V. From Eq. (5.1.1), we obtain v1 = 20.066667 µV. Thus,

i = v1 − vo

20 × 103
= 0.1999 mA

It is evident that working with a nonideal op amp is tedious, as we are
dealing with very large numbers.

P R A C T I C E P R O B L E M 5 . 1

If the same 741 op amp in Example 5.1 is used in the circuit of Fig. 5.7,
calculate the closed-loop gain vo/vs . Find io when vs = 1 V.

40 kΩ
20 kΩ5 kΩ

vs

vo

io

+
− +

−

+

−
741

Figure 5.7 For Practice Prob. 5.1.

Answer: 9.0041, −362 mA.
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5.3 IDEAL OP AMP
To facilitate the understanding of op amp circuits, we will assume ideal
op amps. An op amp is ideal if it has the following characteristics:

1. Infinite open-loop gain, A � ∞.

2. Infinite input resistance, Ri � ∞.

3. Zero output resistance, Ro � 0.

An ideal op amp is an amplifier with infinite open-loop gain, infinite input
resistance, and zero output resistance.

Although assuming an ideal op amp provides only an approxi-
mate analysis, most modern amplifiers have such large gains and input
impedances that the approximate analysis is a good one. Unless stated
otherwise, we will assume from now on that every op amp is ideal.

For circuit analysis, the ideal op amp is illustrated in Fig. 5.8, which
is derived from the nonideal model in Fig. 5.4. Two important character-
istics of the ideal op amp are:i2 = 0

i1 = 0

v1

v2 = v1

+

−

vo

+

−
vd

+

−

+

−

+

−

Figure 5.8 Ideal op amp model.

1. The currents into both input terminals are zero:

i1 = 0, i2 = 0 (5.5)

This is due to infinite input resistance. An infinite resistance
between the input terminals implies that an open circuit exists
there and current cannot enter the op amp. But the output
current is not necessarily zero according to Eq. (5.1).

2. The voltage across the input terminals is negligibly small; i.e.,

vd = v2 − v1 � 0 (5.6)

or

v1 = v2 (5.7)

Thus, an ideal op amp has zero current into its two input
terminals and negligibly small voltage between the two input
terminals. Equations (5.5) and (5.7) are extremely important
and should be regarded as the key handles to analyzing op amp
circuits.

The two characteristics can be exploited by
noting that for voltage calculations the input
port behaves as a short circuit, while for current
calculations the input port behaves as an open
circuit.

E X A M P L E 5 . 2

Rework Practice Prob. 5.1 using the ideal op amp model.

Solution:

We may replace the op amp in Fig. 5.7 by its equivalent model in Fig.
5.9 as we did in Example 5.1. But we do not really need to do this. We
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just need to keep Eqs. (5.5) and (5.7) in mind as we analyze the circuit in
Fig. 5.7. Thus, the Fig. 5.7 circuit is presented as in Fig. 5.9. Notice that

v2 = vs (5.2.1)

Since i1 = 0, the 40-k� and 5-k� resistors are in series because the same
current flows through them. v1 is the voltage across the 5-k� resistor.
Hence, using the voltage division principle,

v1 = 5

5 + 40
vo = vo

9
(5.2.2)

According to Eq. (5.7),

v2 = v1 (5.2.3)

Substituting Eqs. (5.2.1) and (5.2.2) into Eq. (5.2.3) yields the closed-loop
gain,

vs = vo

9
	⇒ vo

vs
= 9 (5.2.4)

which is very close to the value of 8.99955796 obtained with the nonideal
model in Practice Prob. 5.1. This shows that negligibly small error results
from assuming ideal op amp characteristics.

40 kΩ

20 kΩ
5 kΩ

vs

i1 = 0

i2 = 0

i0

+
−

v1

v2

O

+

−

+

−
vo

Figure 5.9 For Example 5.2.

At node O,

io = vo

40 + 5
+ vo

20
mA (5.2.5)

From Eq. (5.2.4), when vs = 1 V, vo = 9 V. Substituting for vo = 9 V
in Eq. (5.2.5) produces

io = 0.2 + 0.45 = 0.65 mA

This, again, is close to the value of 0.649 mA obtained in Practice Prob.
5.1 with the nonideal model.

P R A C T I C E P R O B L E M 5 . 2

Repeat Example 5.1 using the ideal op amp model.

Answer: −2 , 0.2 mA.

Throughout this book, we assume that an op amp
operates in the linear range. Keep in mind the
voltage constraint on the op amp in this mode.

A key feature of the inverting amplifier is that
both the input signal and the feedback are applied
at the inverting terminal of the op amp.

5.4 INVERTING AMPLIFIER
In this and the following sections, we consider some useful op amp circuits
that often serve as modules for designing more complex circuits. The first
of such op amp circuits is the inverting amplifier shown in Fig. 5.10. In this
circuit, the noninverting input is grounded, vi is connected to the inverting
input through R1, and the feedback resistor Rf is connected between the
inverting input and output. Our goal is to obtain the relationship between
the input voltage vi and the output voltage vo. Applying KCL at node 1,

i1 = i2 	⇒ vi − v1

R1
= v1 − vo

Rf
(5.8)
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But v1 = v2 = 0 for an ideal op amp, since the noninverting terminal is
grounded. Hence,

vi

R1
= − vo

Rf

or

vo = −Rf
R1
vi (5.9)

The voltage gain is Av = vo/vi = −Rf /R1. The designation of the
circuit in Fig. 5.10 as an inverter arises from the negative sign. Thus,

An inverting amplifier reverses the polarity of the input signal while amplifying it.

Notice that the gain is the feedback resistance divided by the input
resistance which means that the gain depends only on the external ele-
ments connected to the op amp. In view of Eq. (5.9), an equivalent circuit
for the inverting amplifier is shown in Fig. 5.11. The inverting amplifier
is used, for example, in a current-to-voltage converter.

Note there are two types of gains: the one here
is the closed-loop voltage gain Av , while the op
amp itself has an open-loop voltage gain A.

R1

Rf

vi
vo

+

−

+
− v2

v1
0 A

0 V

+

−

+

−1

i1

i2

Figure 5.10 The inverting amplifier.

–
+

+

−
vi

+

−
voR1

Rf 

R1
vi

Figure 5.11 An equivalent circuit
for the inverter in Fig. 5.10.

E X A M P L E 5 . 3

Refer to the op amp in Fig. 5.12. If vi = 0.5 V, calculate: (a) the output
voltage vo, and (b) the current in the 10 k� resistor.

10 kΩ

25 kΩ

vi vo

+

−

+
−

+
−

Figure 5.12 For Example 5.3.

Solution:

(a) Using Eq. (5.9),

vo

vi
= −Rf

R1
= −25

10
= −2.5

vo = −2.5vi = −2.5(0.5) = −1.25 V

(b) The current through the 10-k� resistor is

i = vi − 0

R1
= 0.5 − 0

10 × 103
= 50 µA
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P R A C T I C E P R O B L E M 5 . 3

Find the output of the op amp circuit shown in Fig. 5.13. Calculate the
current through the feedback resistor.

5 kΩ

15 kΩ

40 mV vo

+

−

+
−

+
−

Figure 5.13 For Practice Prob. 5.3.

Answer: −120 mV, 8 µA.

E X A M P L E 5 . 4

Determine vo in the op amp circuit shown in Fig. 5.14.

20 kΩ

40 kΩ

6 V vo

+

−

2 V +
−

+
−

a

b +
−

Figure 5.14 For Example 5.4.

Solution:

Applying KCL at node a,

va − vo

40
= 6 − va

20

va − vo = 12 − 2va 	⇒ vo = 3va − 12

But va = vb = 2 V for an ideal op amp, because of the zero voltage drop
across the input terminals of the op amp. Hence,

vo = 6 − 12 = −6 V

Notice that if vb = 0 = va , then vo = −12, as expected from Eq. (5.9).

P R A C T I C E P R O B L E M 5 . 4

Two kinds of current-to-voltage converters (also known as transresistance
amplifiers) are shown in Fig. 5.15.
(a) Show that for the converter in Fig. 5.15(a),

vo

is
= −R

(b) Show that for the converter in Fig. 5.15(b),

vo

is
= −R1

(
1 + R3

R1
+ R3

R2

)
Answer: Proof.

R

is vo

+

−

(a)

+
−

R1

is

R2

vo

+

−

(b)

R3

+
−

Figure 5.15 For Practice Prob. 5.4.
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R1

Rf

vo

+

−

v1

v2

vi
+
−

i2

i1

+
−

Figure 5.16 The noninverting amplifier.

5.5 NONINVERTING AMPLIFIER
Another important application of the op amp is the noninverting amplifier
shown in Fig. 5.16. In this case, the input voltage vi is applied directly at
the noninverting input terminal, and resistor R1 is connected between the
ground and the inverting terminal. We are interested in the output voltage
and the voltage gain. Application of KCL at the inverting terminal gives

i1 = i2 	⇒ 0 − v1

R1
= v1 − vo

Rf
(5.10)

But v1 = v2 = vi . Equation (5.10) becomes

−vi
R1

= vi − vo

Rf

or

vo =
(

1 + Rf

R1

)
vi (5.11)

The voltage gain is Av = vo/vi = 1 + Rf /R1, which does not have a
negative sign. Thus, the output has the same polarity as the input.

A noninverting amplifier is an op amp circuit designed
to provide a positive voltage gain.

Again we notice that the gain depends only on the external resistors.
Notice that if feedback resistor Rf = 0 (short circuit) or R1 = ∞

(open circuit) or both, the gain becomes 1. Under these conditions (Rf =
0 and R1 = ∞), the circuit in Fig. 5.16 becomes that shown in Fig. 5.17,
which is called a voltage follower (or unity gain amplifier) because the
output follows the input. Thus, for a voltage follower

vo = vi (5.12)

Such a circuit has a very high input impedance and is therefore useful as an
intermediate-stage (or buffer) amplifier to isolate one circuit from another,
as portrayed in Fig. 5.18. The voltage follower minimizes interaction
between the two stages and eliminates interstage loading.

vo = vi

+

−

vi
+
−

+
−

Figure 5.17 The voltage
follower.

+
−

vi

+

−
vo

+

−

First
stage

Second
stage

Figure 5.18 A voltage follower used to
isolate two cascaded stages of a circuit.



CHAPTER 5 Operational Amplifiers 175

E X A M P L E 5 . 5

For the op amp circuit in Fig. 5.19, calculate the output voltage vo.

4 kΩ

10 kΩ

6 V vo

+

−

+
− 4 V +

−

a

b +
−

Figure 5.19 For Example 5.9.

Solution:

We may solve this in two ways: using superposition and using nodal
analysis.

METHOD 1 Using superposition, we let

vo = vo1 + vo2

where vo1 is due to the 6-V voltage source, and vo2 is due to the 4-V input.
To get vo1, we set the 4-V source equal to zero. Under this condition, the
circuit becomes an inverter. Hence Eq. (5.9) gives

vo1 = −10

4
(6) = −15 V

To get vo2, we set the 6-V source equal to zero. The circuit becomes a
noninverting amplifier so that Eq. (5.11) applies.

vo2 =
(

1 + 10

4

)
4 = 14 V

Thus,

vo = vo1 + vo2 = −15 + 14 = −1 V

METHOD 2 Applying KCL at node a,

6 − va

4
= va − vo

10

But va = vb = 4, and so

6 − 4

4
= 4 − vo

10
	⇒ 5 = 4 − vo

or vo = −1 V, as before.

P R A C T I C E P R O B L E M 5 . 5

Calculate vo in the circuit in Fig. 5.20.

5 kΩ

4 kΩ

2 kΩ

3 V vo

+

−

+
− 8 kΩ

+
−

Figure 5.20 For Practice Prob. 5.5.

Answer: 7 V.
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5.6 SUMMING AMPLIFIER
Besides amplification, the op amp can perform addition and subtraction.
The addition is performed by the summing amplifier covered in this sec-
tion; the subtraction is performed by the difference amplifier covered in
the next section.

A summing amplifier is an op amp circuit that combines several inputs and produces
an output that is the weighted sum of the inputs.

i1

i2

i3

v1

v2

v3

i

i

+

−

vo

0

0

R1 Rf

R2

R3

a
+

−

Figure 5.21 The summing amplifier.

The summing amplifier, shown in Fig. 5.21, is a variation of the
inverting amplifier. It takes advantage of the fact that the inverting con-
figuration can handle many inputs at the same time. We keep in mind that
the current entering each op amp input is zero. Applying KCL at node a
gives

i = i1 + i2 + i3 (5.13)

But

i1 = v1 − va

R1
, i2 = v2 − va

R2

i3 = v3 − va

R3
, i = va − vo

Rf

(5.14)

We note that va = 0 and substitute Eq. (5.14) into Eq. (5.13). We get

vo = −
(
Rf

R1
v1 + Rf

R2
v2 + Rf

R3
v3

)
(5.15)

indicating that the output voltage is a weighted sum of the inputs. For
this reason, the circuit in Fig. 5.21 is called a summer. Needless to say,
the summer can have more than three inputs.

E X A M P L E 5 . 6

Calculate vo and io in the op amp circuit in Fig. 5.22.

10 kΩ5 kΩ

2.5 kΩ

2 kΩ

io

vo

a

b

1 V+
−

+
− +

−

2 V
+
−

Figure 5.22 For Example 5.6.
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Solution:

This is a summer with two inputs. Using Eq. (5.15),

vo = −
[

10

5
(2)+ 10

2.5
(1)

]
= −(4 + 4) = −8 V

The current io is the sum of the currents through the 10-k� and 2-k�
resistors. Both of these resistors have voltage vo = −8 V across them,
since va = vb = 0. Hence,

io = vo − 0

10
+ vo − 0

2
mA = −0.8 − 0.4 = −1.2 mA

P R A C T I C E P R O B L E M 5 . 6

Find vo and io in the op amp circuit shown in Fig. 5.23.

vo

io

+

−

20 kΩ

10 kΩ

6 kΩ

8 kΩ

4 kΩ+
−

+
−

+
−

1.2 V
2 V

1.5 V

+
−

Figure 5.23 For Practice Prob. 5.6.

Answer: −3.8 V, −1.425 mA.

5.7 DIFFERENCE AMPLIFIER
Difference (or differential) amplifiers are used in various applications
where there is need to amplify the difference between two input signals.
They are first cousins of the instrumentation amplifier, the most useful
and popular amplifier, which we will discuss in Section 5.10.

A difference amplifier is a device that amplifies the difference between two inputs
but rejects any signals common to the two inputs.

The difference amplifier is also known as the sub-
tractor, for reasons to be shown later.

Consider the op amp circuit shown in Fig. 5.24. Keep in mind that
zero currents enter the op amp terminals. Applying KCL to node a,

v1 − va

R1
= va − vo

R2

or

vo =
(
R2

R1
+ 1

)
va − R2

R1
v1 (5.16)
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v1

v2

+

−

vo

0

0

+

−
R1

R2

R3

R4

va

vb

+
−

+
−

Figure 5.24 Difference amplifier.

Applying KCL to node b,

v2 − vb

R3
= vb − 0

R4

or

vb = R4

R3 + R4
v2 (5.17)

But va = vb. Substituting Eq. (5.17) into Eq. (5.16) yields

vo =
(
R2

R1
+ 1

)
R4

R3 + R4
v2 − R2

R1
v1

or

vo = R2

R1

(1 + R1/R2)

(1 + R3/R4)
v2 − R2

R1
v1 (5.18)

Since a difference amplifier must reject a signal common to the two inputs,
the amplifier must have the property that vo = 0 when v1 = v2. This
property exists when

R1

R2
= R3

R4
(5.19)

Thus, when the op amp circuit is a difference amplifier, Eq. (5.18) be-
comes

vo = R2

R1
(v2 − v1) (5.20)

If R2 = R1 and R3 = R4, the difference amplifier becomes a subtractor,
with the output

vo = v2 − v1 (5.21)

E X A M P L E 5 . 7

Design an op amp circuit with inputs v1 and v2 such that vo = −5v1+3v2.

Solution:

The circuit requires that

vo = 3v2 − 5v1 (5.7.1)

This circuit can be realized in two ways.
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DES IGN 1 If we desire to use only one op amp, we can use the op
amp circuit of Fig. 5.24. Comparing Eq. (5.7.1) with Eq. (5.18),

R2

R1
= 5 	⇒ R2 = 5R1 (5.7.2)

Also,

5
(1 + R1/R2)

(1 + R3/R4)
= 3 	⇒

6
5

1 + R3/R4
= 3

5

or

2 = 1 + R3

R4
	⇒ R3 = R4 (5.7.3)

If we choose R1 = 10 k� and R3 = 20 k�, then R2 = 50 k� and
R4 = 20 k�.

vo

5R1
R6

R1

va +
−+

−

v1

v2

3R3
5R1

Figure 5.25 For Example 5.7.

DES IGN 2 If we desire to use more than one op amp, we may cascade
an inverting amplifier and a two-input inverting summer, as shown in Fig.
5.25. For the summer,

vo = −va − 5v1 (5.7.4)

and for the inverter,

va = −3v2 (5.7.5)

Combining Eqs. (5.7.4) and (5.7.5) gives

vo = 3v2 − 5v1

which is the desired result. In Fig. 5.25, we may select R1 = 10 k� and
R2 = 20 k� or R1 = R2 = 10 k�.

P R A C T I C E P R O B L E M 5 . 7

Design a difference amplifier with gain 4.

Answer: Typical: R1 = R3 = 10 k�, R2 = R4 = 40 k�.

E X A M P L E 5 . 8

An instrumentation amplifier shown in Fig. 5.26 is an amplifier of low-
level signals used in process control or measurement applications and
commercially available in single-package units. Show that

vo = R2

R1

(
1 + 2R3

R4

)
(v2 − v1)

Solution:

We recognize that the amplifier A3 in Fig. 5.26 is a difference amplifier.
Thus, from Eq. (5.20),

vo = R2

R1
(vo2 − vo1) (5.8.1)
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vo1

vo2

v1

v2

0

0

vo

+

−

+

−

+

−

A1

A2

A3

R3

R4

R1

R1

R2

R2

R3

va

vb

+
−

+
−

i

Figure 5.26 Instrumentation amplifier; for Example 5.8.

Since the op amps A1 and A2 draw no current, current i flows through
the three resistors as though they were in series. Hence,

vo1 − vo2 = i(R3 + R4 + R3) = i(2R3 + R4) (5.8.2)

But

i = va − vb

R4

and va = v1, vb = v2. Therefore,

i = v1 − v2

R4
(5.8.3)

Inserting Eqs. (5.8.2) and (5.8.3) into Eq. (5.8.1) gives

vo = R2

R1

(
1 + 2R3

R4

)
(v2 − v1)

as required. We will discuss the instrumentation amplifier in detail in
Section 5.10.

P R A C T I C E P R O B L E M 5 . 8

Obtain io in the instrumentation amplifier circuit of Fig. 5.27.

+

−

+

−

+

−
io

20 kΩ

20 kΩ

40 kΩ

10 kΩ40 kΩ

8.00 V

8.01 V

Figure 5.27 Instrumentation amplifier; for Practice Prob. 5.8.

Answer: 2 µA.
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5.8 CASCADED OP AMP CIRCUITS
As we know, op amp circuits are modules or building blocks for designing
complex circuits. It is often necessary in practical applications to connect
op amp circuits in cascade (i.e., head to tail) to achieve a large overall
gain. In general, two circuits are cascaded when they are connected in
tandem, one behind another in a single file.

A cascade connection is a head-to-tail arrangement of two or more op amp circuits
such that the output of one is the input of the next.

When op amp circuits are cascaded, each circuit in the string is
called a stage; the original input signal is increased by the gain of the
individual stage. Op amp circuits have the advantage that they can be
cascaded without changing their input-output relationships. This is due
to the fact that each (ideal) op amp circuit has infinite input resistance and
zero output resistance. Figure 5.28 displays a block diagram representa-
tion of three op amp circuits in cascade. Since the output of one stage is
the input to the next stage, the overall gain of the cascade connection is
the product of the gains of the individual op amp circuits, or

A = A1A2A3 (5.22)

Although the cascade connection does not affect the op amp input-output
relationships, care must be exercised in the design of an actual op amp
circuit to ensure that the load due to the next stage in the cascade does
not saturate the op amp.

Stage 1
v2 = A1v1

+

−
v1 

+

−

+

−
A1

Stage 2
A2

v3 = A2v2 vo = A3v3

+

−

Stage 3
A3

Figure 5.28 A three-stage cascaded connection.

E X A M P L E 5 . 9

Find vo and io in the circuit in Fig. 5.29.

10 kΩ
12 kΩ

4 kΩ

20 mV vo

+

−

+
−

3 kΩ

a

b
io

+
− +

−

Figure 5.29 For Example 5.9.

Solution:

This circuit consists of two noninverting amplifiers cascaded. At the
output of the first op amp,

va =
(

1 + 12

3

)
(20) = 100 mV

At the output of the second op amp,

vo =
(

1 + 10

4

)
va = (1 + 2.5)100 = 350 mV
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The required current io is the current through the 10-k� resistor.

io = vo − vb

10
mA

But vb = va = 100 mV. Hence,

io = (350 − 100)× 10−3

10 × 103
= 25 µA

P R A C T I C E P R O B L E M 5 . 9

Determine vo and io in the op amp circuit in Fig. 5.30.

6 kΩ
4 kΩ

4 V vo

+

−

+
−

io

+
−

+
−

Figure 5.30 For Practice Prob. 5.9.

Answer: 10 V, 1 mA.

E X A M P L E 5 . 1 0

If v1 = 1 V and v2 = 2 V, find vo in the op amp circuit of Fig. 5.31.

+
−

+
−

+
−

A

B

C
5 kΩ

15 kΩ

v1

10 kΩ

2 kΩ

4 kΩ

8 kΩ

6 kΩ

v2

vo

a

b

Figure 5.31 For Example 5.10.

Solution:

The circuit consists of two inverters A and B and a summer C as shown
in Fig. 5.31. We first find the outputs of the inverters.

va = −6

2
(v1) = −3(1) = −3 V, vb = −8

4
(v2) = −2(2) = −4 V
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These become the inputs to the summer so that the output is obtained as

vo = −
(

10

5
va + 10

15
vb

)
= −

[
2(−3)+ 2

3
(−4)

]
= 8.333 V

P R A C T I C E P R O B L E M 5 . 1 0

If v1 = 2 V and v2 = 1.5 V, find vo in the op amp circuit of Fig. 5.32.

+
−

+
−

+
−

+
−

+
−

10 kΩ

v1

v2

vo

50 kΩ

20 kΩ

30 kΩ

60 kΩ

Figure 5.32 Practice Prob. 5.10.

Answer: 9 V.

5.9 OP AMP CIRCUIT ANALYSIS WITH PSPICE
PSpice for Windows does not have a model for an ideal op amp, although
one may create one as a subcircuit using the Create Subcircuit line in the
Tools menu. Rather than creating an ideal op amp, we will use one of the
four nonideal, commercially available op amps supplied in the PSpice
library eval.slb. The op amp models have the part names LF411, LM111,
LM324, and uA471, as shown in Fig. 5.33. Each of them can be obtained
from Draw/Get New Part/libraries · · ·/eval.lib or by simply selecting
Draw/Get New Part and typing the part name in the PartName dialog
box, as usual. Note that each of them requires dc supplies, without which
the op amp will not work. The dc supplies should be connected as shown
in Fig. 5.3.

+

−

LM324

2

3

1

4 U1A

11

V+

V−

+

−

LM111

3

2

7V+

V−

U2
8 5

6

1
4

G
BB ⁄S

(c) Five–connection 
op amp subcircuit

(b) Op amp subcircuit

+

−

uA741

2

3
U3

4

V+

V−

+

−

LF411

2

3

6

7
5

1

U4

4

V+

V−

7
5

1

6052

051

B2

B1

(d) Five–connection 
op amp subcircuit

(a) JFET–input op amp
subcircuit

Figure 5.33 Nonideal op amp model available in PSpice.
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E X A M P L E 5 . 1 1

Use PSpice to solve the op amp circuit for Example 5.1.

Solution:

Using Schematics, we draw the circuit in Fig. 5.6(a) as shown in Fig.
5.34. Notice that the positive terminal of the voltage source vs is con-
nected to the inverting terminal (pin 2) via the 10-k� resistor, while the
noninverting terminal (pin 3) is grounded as required in Fig. 5.6(a). Also,
notice how the op amp is powered; the positive power supply terminal
V+ (pin 7) is connected to a 15-V dc voltage source, while the negative
power supply terminal V− (pin 4) is connected to −15 V. Pins 1 and 5 are
left floating because they are used for offset null adjustment, which does
not concern us in this chapter. Besides adding the dc power supplies to
the original circuit in Fig. 5.6(a), we have also added pseudocomponents
VIEWPOINT and IPROBE to respectively measure the output voltage vo
at pin 6 and the required current i through the 20-k� resistor.

+

−

uA741

2

3
U1

4

V+

V−

7
5

1

6052

051

+
− +

−

+

−

20 K

R2
1.999E–04

V3

–15 V 0

15 V

V2

10 K

R1

VS 2 V

0

–3.9983

Figure 5.34 Schematic for Example 5.11.

After saving the schematic, we simulate the circuit by selecting
Analysis/Simulate and have the results displayed on VIEWPOINT and
IPROBE. From the results, the closed-loop gain is

vo

vs
= −3.9983

2
= −1.99915

and i = 0.1999 mA, in agreement with the results obtained analytically
in Example 5.1.

P R A C T I C E P R O B L E M 5 . 1 1

Rework Practice Prob. 5.1 using PSpice.

Answer: 9.0027, 0.6502 mA.
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†5.10 APPLICATIONS
The op amp is a fundamental building block in modern electronic instru-
mentation. It is used extensively in many devices, along with resistors
and other passive elements. Its numerous practical applications include
instrumentation amplifiers, digital-to-analog converters, analog comput-
ers, level shifters, filters, calibration circuits, inverters, summers, inte-
grators, differentiators, subtractors, logarithmic amplifiers, comparators,
gyrators, oscillators, rectifiers, regulators, voltage-to-current converters,
current-to-voltage converters, and clippers. Some of these we have al-
ready considered. We will consider two more applications here: the
digital-to-analog converter and the instrumentation amplifier.

5 . 10 . 1 D i g i t a l - t o -Ana lo g Conve r t e r
The digital-to-analog converter (DAC) transforms digital signals into ana-
log form. A typical example of a four-bit DAC is illustrated in Fig. 5.35(a).
The four-bit DAC can be realized in many ways. A simple realization is
the binary weighted ladder, shown in Fig. 5.35(b). The bits are weights
according to the magnitude of their place value, by descending value of
Rf /Rn so that each lesser bit has half the weight of the next higher. This
is obviously an inverting summing amplifier. The output is related to the
inputs as shown in Eq. (5.15). Thus,

−Vo = Rf

R1
V1 + Rf

R2
V2 + Rf

R3
V3 + Rf

R4
V4 (5.23)

Input V1 is called the most significant bit (MSB), while input V4 is the
least significant bit (LSB). Each of the four binary inputs V1, . . . , V4 can
assume only two voltage levels: 0 or 1 V. By using the proper input
and feedback resistor values, the DAC provides a single output that is
proportional to the inputs.

Analog
output

Digital
input

(0000–1111)

Four-bit
DAC

(a)

+
−

V1 V2 V3 V4

R1 R2 R3 R4

Rf

VoMSB LSB

(b)

Figure 5.35 Four-bit DAC: (a) block diagram,
(b) binary weighted ladder type.

In practice, the voltage levels may be typically 0
and ± 5 V.

E X A M P L E 5 . 1 2

In the op amp circuit of Fig. 5.35(b), let Rf = 10 k�, R1 = 10 k�,
R2 = 20 k�, R3 = 40 k�, and R4 = 80 k�. Obtain the analog output
for binary inputs [0000], [0001], [0010], . . . , [1111].

Solution:

Substituting the given values of the input and feedback resistors in Eq.
(5.23) gives

−Vo = Rf

R1
V1 + Rf

R2
V2 + Rf

R3
V3 + Rf

R4
V4

= V1 + 0.5V2 + 0.25V3 + 0.125V4

Using this equation, a digital input [V1V2V3V4] = [0000] produces an
analog output of −Vo = 0 V; [V1V2V3V4] = [0001] gives −Vo =
0.125 V. Similarly,
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[V1V2V3V4] = [0010] 	⇒ −Vo = 0.25 V

[V1V2V3V4] = [0011] 	⇒ −Vo = 0.25 + 0.125 = 0.375 V

[V1V2V3V4] = [0100] 	⇒ −Vo = 0.5 V
...

[V1V2V3V4] = [1111] 	⇒ −Vo = 1 + 0.5 + 0.25 + 0.125

= 1.875 V

Table 5.2 summarizes the result of the digital-to-analog conversion. Note
that we have assumed that each bit has a value of 0.125 V. Thus, in
this system, we cannot represent a voltage between 1.000 and 1.125,
for example. This lack of resolution is a major limitation of digital-to-
analog conversions. For greater accuracy, a word representation with a
greater number of bits is required. Even then a digital representation of
an analog voltage is never exact. In spite of this inexact representation,
digital representation has been used to accomplish remarkable things such
as audio CDs and digital photography.

TABLE 5.2 Input and output values
of the four-bit DAC.

Binary input Output
[V1V2V3V4] Decimal value −Vo

0000 0 0
0001 1 0.125
0010 2 0.25
0011 3 0.375
0100 4 0.5
0101 5 0.625
0110 6 0.75
0111 7 0.875
1000 8 1.0
1001 9 0.125
1010 10 0.25
1011 11 1.375
1011 12 1.5
1100 13 1.625
1101 14 1.75
1111 15 1.875

P R A C T I C E P R O B L E M 5 . 1 2

A three-bit DAC is shown in Fig. 5.36.

(a) Determine |Vo| for [V1V2V3] = [010].

(b) Find |Vo| if [V1V2V3] = [110].
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(c) If |Vo| = 1.25 V is desired, what should be [V1V2V3] ?

(d) To get |Vo| = 1.75 V, what should be [V1V2V3] ?

+
−

10 kΩ

20 kΩ

40 kΩ

10 kΩ
v1

v2

v3

vo

Figure 5.36 Three-bit DAC; for Practice
Prob. 5.12.

Answer: 0.5 V, 1.5 V, [101], [111].

5 . 10 . 2 I n s t r umen t a t i on Amp l i f i e r s
One of the most useful and versatile op amp circuits for precision mea-
surement and process control is the instrumentation amplifier (IA), so
called because of its widespread use in measurement systems. Typical
applications of IAs include isolation amplifiers, thermocouple amplifiers,
and data acquisition systems.

The instrumentation amplifier is an extension of the difference am-
plifier in that it amplifies the difference between its input signals. As
shown in Fig. 5.26 (see Example 5.8), an instrumentation amplifier typ-
ically consists of three op amps and seven resistors. For convenience,
the amplifier is shown again in Fig. 5.37(a), where the resistors are made
equal except for the external gain-setting resistorRG, connected between
the gain set terminals. Figure 5.37(b) shows its schematic symbol. Ex-
ample 5.8 showed that

vo = Av(v2 − v1) (5.24)

where the voltage gain is

Av = 1 + 2R

RG
(5.25)

As shown in Fig. 5.38, the instrumentation amplifier amplifies small dif-
ferential signal voltages superimposed on larger common-mode voltages.
Since the common-mode voltages are equal, they cancel each other.

The IA has three major characteristics:

+
−

+
−

+
−

1

2

3

R

R

R

R

R

R

RG

v1

v2

vo

Inverted input

Gain set

Gain set

Noninverting input

Output

(a) (b)

+

−

Figure 5.37 (a) The instrumentation amplifier with an external resistance to adjust the gain, (b) schematic diagram.
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+

−
RG

Small differential signals riding on larger
common–mode signals

Instrumentation amplifier Amplified differential signal,
No common-mode signal

Figure 5.38 The IA rejects common voltages but amplifies small signal voltages.
(Source: T. L. Floyd, Electronic Devices, 2nd ed., Englewood Cliffs, NJ: Prentice Hall, 1996, p. 795.)

1. The voltage gain is adjusted by one external resistor RG.

2. The input impedance of both inputs is very high and does not
vary as the gain is adjusted.

3. The output vo depends on the difference between the inputs v1

and v2, not on the voltage common to them (common-mode
voltage).

Due to the widespread use of IAs, manufacturers have developed
these amplifiers on single-package units. A typical example is the
LH0036, developed by National Semiconductor. The gain can be var-
ied from 1 to 1,000 by an external resistor whose value may vary from
100 � to 10 k�.

E X A M P L E 5 . 1 3

In Fig. 5.37, letR = 10 k�, v1 = 2.011 V, and v2 = 2.017 V. IfRG is ad-
justed to 500�, determine: (a) the voltage gain, (b) the output voltage vo.

Solution:

(a) The voltage gain is

Av = 1 + 2R

RG
= 1 + 2 × 10,000

500
= 41

(b) The output voltage is

vo = Av(v2 − v1) = 41(2.017 − 2.011) = 41(6) mV = 246 mV

P R A C T I C E P R O B L E M 5 . 1 3

Determine the value of the external gain-setting resistor RG required for
the IA in Fig. 5.37 to produce a gain of 142 when R = 25 k�.

Answer: 354.6 �.

5.11 SUMMARY
1. The op amp is a high-gain amplifier that has high input resistance

and low output resistance.
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2. Table 5.3 summarizes the op amp circuits considered in this
chapter. The expression for the gain of each amplifier circuit holds
whether the inputs are dc, ac, or time-varying in general.

TABLE 5.3 Summary of basic op amp circuits.

Op amp circuit Name/output-input relationship

+
−

R2

R1
vi vo

Inverting amplifier

vo = −R2

R1
vi

vo

R1

+
−

vi

R2 Noninverting amplifier

vo =
(

1 + R2

R1

)
vi

+
− vovi

Voltage follower

vo = vi

v1

v2

v3

vo

R1

R2

R3

Rf

+
−

Summer

vo = −
(
Rf

R1
v1 + Rf

R2
v2 + Rf

R3
v3

)

+
−

R2R1
v1

R1 R2
v2

vo

Difference amplifier

vo = R2

R1
(v2 − v1)

3. An ideal op amp has an infinite input resistance, a zero output
resistance, and an infinite gain.

4. For an ideal op amp, the current into each of its two input terminals
is zero, and the voltage across its input terminals is negligibly small.

5. In an inverting amplifier, the output voltage is a negative multiple of
the input.

6. In a noninverting amplifier, the output is a positive multiple of the
input.

7. In a voltage follower, the output follows the input.

8. In a summing amplifier, the output is the weighted sum of the
inputs.
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9. In a difference amplifier, the output is proportional to the difference
of the two inputs.

10. Op amp circuits may be cascaded without changing their
input-output relationships.

11. PSpice can be used to analyze an op amp circuit.

12. Typical applications of the op amp considered in this chapter
include the digital-to-analog converter and the instrumentation
amplifier.

R E V I EW QU E S T I ON S

5.1 The two input terminals of an op amp are labeled as:
(a) high and low.
(b) positive and negative.
(c) inverting and noninverting.
(d) differential and nondifferential.

5.2 For an ideal op amp, which of the following
statements are not true?
(a) The differential voltage across the input

terminals is zero.
(b) The current into the input terminals is zero.
(c) The current from the output terminal is zero.
(d) The input resistance is zero.
(e) The output resistance is zero.

5.3 For the circuit in Fig. 5.39, voltage vo is:
(a) −6 V (b) −5 V
(c) −1.2 V (d) −0.2 V

+
−

+
−

2 kΩ

ix

vo1 V

10 kΩ

3 kΩ
+

−

Figure 5.39 For Reivew Questions 5.3 and 5.4.

5.4 For the circuit in Fig. 5.39, current ix is:
(a) 0.6 A (b) 0.5 A
(c) 0.2 A (d) 1/12 A

5.5 If vs = 0 in the circuit of Fig. 5.40, current io is:
(a) −10 A (b) −2.5 A
(c) 10/12 A (d) 10/14 A

+

−

+
− +

−

4 kΩ

io

vo
10 V

8 kΩ

2 kΩ
+

−
vs

a

Figure 5.40 For Review Questions 5.5 to 5.7.

5.6 If vs = 8 V in the circuit of Fig. 5.40, the output
voltage is:
(a) −44 V (b) −8 V
(c) 4 V (d) 7 V

5.7 Refer to Fig. 5.40. If vs = 8 V, voltage va is:
(a) −8 V (b) 0 V
(c) 10/3 V (d) 8 V

5.8 The power absorbed by the 4-k� resistor in Fig.
5.41 is:
(a) 9 mW (b) 4 mW
(c) 2 mW (d) 1 mW

+
−6 V 2 kΩ vo

+

−

4 kΩ
+
−

Figure 5.41 For Review Question 5.8.

5.9 Which of these amplifiers is used in a
digital-to-analog converter?
(a) noninverter (b) voltage follower
(c) summer (d) difference amplifier
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5.10 Difference amplifiers are used in:
(a) instrumentation amplifiers
(b) voltage followers
(c) voltage regulators
(d) buffers

(e) summing amplifiers
(f) subtracting amplifiers

Answers: 5.1c, 5.2c,d, 5.3b, 5.4b, 5.5a, 5.6c, 5.7d, 5.8b, 5.9c, 5.10a,f.

P RO B L E M S

Section 5.2 Operational Amplifiers

5.1 The equivalent model of a certain op amp is shown
in Fig. 5.42. Determine:
(a) the input resistance
(b) the output resistance
(c) the voltage gain in dB.

60 Ω

+

−
vd +

−1.5 MΩ 8 × 10vd

Figure 5.42 For Prob. 5.1.

5.2 The open-loop gain of an op amp is 100,000.
Calculate the output voltage when there are inputs of
+10 µV on the inverting terminal and + 20 µV on
the noninverting terminal.

5.3 Determine the output voltage when −20 µV is
applied to the inverting terminal of an op amp and
+30 µV to its noninverting terminal. Assume that
the op amp has an open-loop gain of 200,000.

5.4 The output voltage of an op amp is −4 V when the
noninverting input is 1 mV. If the open-loop gain of
the op amp is 2 × 106, what is the inverting input?

5.5 For the op amp circuit of Fig. 5.43, the op amp has
an open-loop gain of 100,000, an input resistance of
10 k�, and an output resistance of 100 �. Find the
voltage gain vo/vi using the nonideal model of the
op amp.

+
−

+

−

vovi

+
−

Figure 5.43 For Prob. 5.5.

5.6 Using the same parameters for the 741 op amp in
Example 5.1, find vo in the op amp circuit of Fig.
5.44.

+

−

+ −

vo741

1 mV

Figure 5.44 For Prob. 5.6.

5.7 The op amp in Fig. 5.45 has Ri = 100 k�,
Ro = 100 �,A = 100,000. Find the differential
voltage vd and the output voltage vo.

+

−

+

−

10 kΩ 100 kΩ

vo

vd

+
−1 mV

+

−

Figure 5.45 For Prob. 5.7.

Section 5.3 Ideal Op Amp

5.8 Obtain vo for each of the op amp circuits in Fig. 5.46.

2 kΩ

(a)

vo

+

−

1 mA

2 V

10 kΩ

(b)

vo+
−1 V 2 kΩ

+

−

+
−

+
− +

−

Figure 5.46 For Prob. 5.8.

5.9 Determine vo for each of the op amp circuits in Fig.
5.47.
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+

−

+
− 4 V

2 kΩ

vo
1 mA

+
− 1 V 2 kΩ vo

+

−

+
−3 V

+
−

+
−

Figure 5.47 For Prob. 5.9.

5.10 Find the gain vo/vs of the circuit in Fig. 5.48.

10 kΩ

10 kΩ

vo

+

−

+
−

20 kΩ

+
−vs

Figure 5.48 For Prob. 5.10.

5.11 Find vo and io in the circuit in Fig. 5.49.

+

−

5 kΩ

2 kΩ

+
−

io

+

−

8 kΩ

10 kΩ 4 kΩ3 V vo

Figure 5.49 For Prob. 5.11.

5.12 Refer to the op amp circuit in Fig. 5.50. Determine
the power supplied by the voltage source.

1.2 V
2 kΩ

4 kΩ

+
−

vo

1 kΩ

4 kΩ

+
−

Figure 5.50 For Prob. 5.12.

5.13 Find vo and io in the circuit of Fig. 5.51.

50 kΩ

vo

+

−

+
−1 V

100 kΩ
90 kΩ

10 kΩ
io

10 kΩ

+
−

Figure 5.51 For Prob. 5.13.

5.14 Determine the output voltage vo in the circuit of Fig.
5.52.

5 kΩ vo

+

−

2 mA

20 kΩ

10 kΩ

10 kΩ

+
−

Figure 5.52 For Prob. 5.14.

Section 5.4 Inverting Amplifier
5.15 (a) For the circuit shown in Fig. 5.53, show that the

gain is

vo

vi
= − 1

R

(
R1 + R2 + R1R2

R3

)

(b) Evaluate the gain when R = 10 k�,
R1 = 100 k�, R2 = 50 k�, R3 = 25 k�.
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vo
vi

R

R1 R2

R3

+
−

Figure 5.53 For Prob. 5.15.

5.16 Calculate the gain vo/vi when the switch in Fig.
5.54 is in:
(a) position 1 (b) position 2 (c) position 3

10 kΩ

1

vo

+

−

5 kΩ

+
−vi

2 MΩ

80 kΩ

12 kΩ

2

3

+
−

Figure 5.54 For Prob. 5.16.

5.17 Calculate the gain vo/vi of the op amp circuit in Fig.
5.55.

20 kΩ vo

+

−

+
−vi

10 kΩ 50 kΩ

1 MΩ

+
−

Figure 5.55 For Prob. 5.17.

5.18 Determine io in the circuit of Fig. 5.56.

1 V

5 kΩ
4 kΩ

io
+
−

4 kΩ 10 kΩ2 kΩ

+
−

Figure 5.56 For Prob. 5.18.

5.19 In the circuit in Fig. 5.57, calculate vo if vs = 0.

+
− +

−9 V

4 kΩ 4 kΩ
2 kΩ

8 kΩ

vo

+

−
vs

+
−

Figure 5.57 For Prob. 5.19.

5.20 Repeat the previous problem if vs = 3 V.

5.21 Design an inverting amplifier with a gain of −15.

Section 5.5 Noninverting Amplifier

5.22 Find va and vo in the op amp circuit of Fig. 5.58.

2 V
vo+ −

3 V

va

+
−

Figure 5.58 For Prob. 5.22.

5.23 Refer to Fig. 5.59.
(a) Determine the overall gain vo/vi of the circuit.
(b) What value of vi will result in

vo = 15 cos 120πt?

+
− 2 kΩ

+

−

1 MΩ

vo

8 kΩ

20 kΩ

vi

+
−

Figure 5.59 For Prob. 5.23.
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5.24 Find io in the op amp circuit of Fig. 5.60.

+
− 0.4 V 20 kΩ10 kΩ

io

50 kΩ

+
−

Figure 5.60 For Prob. 5.24.

5.25 In the circuit shown in Fig. 5.61, find ix and the
power absorbed by the 20-� resistor.

+
−1.2 V 30 kΩ 20 kΩ

ix

60 kΩ
+
−

Figure 5.61 For Prob. 5.25.

5.26 For the circuit in Fig. 5.62, find ix .

+
−

+

−

6 kΩ

6 kΩ

3 kΩ4 mA vo

12 kΩ

ix

Figure 5.62 For Prob. 5.26.

5.27 Calculate ix and vo in the circuit of Fig. 5.63. Find
the power dissipated by the 60-k� resistor.

+

−
vo

+
− 30 kΩ60 kΩ

ix

4 mV

20 kΩ

50 kΩ

10 kΩ

+
−

Figure 5.63 For Prob. 5.27.

5.28 Refer to the op amp circuit in Fig. 5.64. Calculate ix
and the power dissipated by the 3-k� resistor.

+
−

4 kΩ 2 kΩ

ix

1 mA 3 kΩ

1 kΩ

Figure 5.64 For Prob. 5.28.

5.29 Design a noninverting amplifier with a gain of 10.

Section 5.6 Summing Amplifier

5.30 Determine the output of the summing amplifier in
Fig. 5.65.

30 kΩ
10 kΩ1 V

20 kΩ2 V

30 kΩ3 V

+ −

+−

+−

vo

+

−

+
−

Figure 5.65 For Prob. 5.30.

5.31 Calculate the output voltage due to the summing
amplifier shown in Fig. 5.66.

50 kΩ

25 kΩ10 mV

20 kΩ20 mV

50 kΩ100 mV

+ −

+ −

10 kΩ50 mV

+−

+−

vo

+

−

+

−

Figure 5.66 For Prob. 5.31.

5.32 An averaging amplifier is a summer that provides an
output equal to the average of the inputs. By using
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proper input and feedback resistor values, one can
get

−vout = 1
4 (v1 + v2 + v3 + v4)

Using a feedback resistor of 10 k�, design an
averaging amplifier with four inputs.

5.33 A four-input summing amplifier has
R1 = R2 = R3 = R4 = 12 k�. What value of
feedback resistor is needed to make it an averaging
amplifier?

5.34 Show that the output voltage vo of the circuit in Fig.
5.67 is

vo = (R3 + R4)

R3(R1 + R2)
(R2v1 + R1v2)

R4

R3

R1

R2

vo

v1

v2

+

−

Figure 5.67 For Prob. 5.34.

5.35 Design an op amp circuit to perform the following
operation:

vo = 3v1 − 2v2

All resistances must be ≤ 100 k�.

5.36 Using only two op amps, design a circuit to solve

−vout = v1 − v2

3
+ v3

2

Section 5.7 Difference Amplifier

5.37 Find vo and io in the differential amplifier of Fig.
5.68.

10 V

io

2 kΩ

1 kΩ

4 kΩ

3 kΩ 5 kΩ vo

+

−

+
−

8 V+
−

+
−

Figure 5.68 For Prob. 5.37.

5.38 The circuit in Fig. 5.69 is a differential amplifier
driven by a bridge. Find vo.

20  kΩ

80  kΩ20  kΩ

80 kΩ

vo+ 5 mV

40 kΩ

10 kΩ

60 kΩ

30 kΩ

+
−

Figure 5.69 For Prob. 5.38.

5.39 Design a difference amplifier to have a gain of 2 and
a common mode input resistance of 10 k� at each
input.

5.40 Design a circuit to amplify the difference between
two inputs by 2.
(a) Use only one op amp.
(b) Use two op amps.

5.41 Using two op amps, design a subtractor.

5.42∗ The ordinary difference amplifier for fixed-gain
operation is shown in Fig. 5.70(a). It is simple and
reliable unless gain is made variable. One way of
providing gain adjustment without losing simplicity
and accuracy is to use the circuit in Fig. 5.70(b).
Another way is to use the circuit in Fig. 5.70(c).
Show that:
(a) for the circuit in Fig. 5.70(a),

vo

vi
= R2

R1

(b) for the circuit in Fig. 5.70(b),

vo

vi
= R2

R1

1

1 + R1

2RG

(c) for the circuit in Fig. 5.70(c),

vo

vi
= R2

R1

(
1 + R2

2RG

)

∗An asterisk indicates a challenging problem.
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R1

R2

R2

R2

R1

(a)

vo

R2

RG

(b)

R1
2

R1
2

R2
2

R2
2

R2
2

R2
2

R1
2

R1
2

vi

(c)

R1

R1

RG

+

−

+

−

+

−

+

−

vi
+

−

vi

+

− +

−

vo

+

−

vo

+

−

Figure 5.70 For Prob. 5.42.

Section 5.8 Cascaded Op Amp Circuits

5.43 The individual gains of the stages in a multistage
amplifier are shown in Fig. 5.71.
(a) Calculate the overall voltage gain vo/vi .
(b) Find the voltage gain that would be needed in a

fourth stage which would make the overall gain
to be 60 dB when added.

vovi –20 –12.5 +0.8

Figure 5.71 For Prob. 5.43.

5.44 In a certain electronic device, a three-stage amplifier
is desired, whose overall voltage gain is 42 dB. The
individual voltage gains of the first two stages are to
be equal, while the gain of the third is to be
one-fourth of each of the first two. Calculate the
voltage gain of each.

5.45 Refer to the circuit in Fig. 5.72. Calculate io if:
(a) vs = 12 mV (b) vs = 10 cos 377t mV.

vs
+
−

2 kΩ

io

12 kΩ

6 kΩ
12 kΩ

4 kΩ
+
−

+
−

Figure 5.72 For Prob. 5.45.

5.46 Calculate io in the op amp circuit of Fig. 5.73.

0.6 V +
− 4 kΩ

io

1 kΩ

10 kΩ

5 kΩ

2 kΩ
+
−

+
−

3 kΩ

Figure 5.73 For Prob. 5.46.

5.47 Find the voltage gain vo/vs of the circuit in Fig. 5.74.

vs
+
−

10 kΩ

5 kΩ

20 kΩ

vo

+
− +

− +

−

Figure 5.74 For Prob. 5.47.

5.48 Calculate the current gain io/is of the op amp circuit
in Fig. 5.75.
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is

10 kΩ

3 kΩ

4 kΩ

+
− +

−

5 kΩ

3 kΩ 2 kΩ

io

Figure 5.75 For Prob. 5.48.

5.49 Find vo in terms of v1 and v2 in the circuit in Fig.
5.76.

R3

R2

R1

R4

+
−

+
−

v1

v2

vo

R5

Figure 5.76 For Prob. 5.49.

5.50 Obtain the closed-loop voltage gain vo/vi of the
circuit in Fig. 5.77.

Rf

R2

R1

+
−

+
−

vi

R3

voR4
+
−

+

−

Figure 5.77 For Prob. 5.50.

5.51 Determine the gain vo/vi of the circuit in Fig. 5.78.

+
−

+ +
−

−

R3

R2

R1

R4

R5

R6 vo
vi

+

−

Figure 5.78 For Prob. 5.51.

5.52 For the circuit in Fig. 5.79, find vo.

+
−

+
−

+
−

+
−

+
−

25 kΩ

10 kΩ

40 kΩ 100 kΩ

20 kΩ

6 V

4 V

2 V

20 kΩ

vo

+

−

Figure 5.79 For Prob. 5.52.

5.53 Obtain the output vo in the circuit of Fig. 5.80.

+
−

+
−

+
−

80 kΩ 80 kΩ

20 kΩ

0.4 V

40 kΩ

20 kΩ

vo

+
−

+
−

0.2 V

+
−

Figure 5.80 For Prob. 5.53.

5.54 Find vo in the circuit in Fig. 5.81, assuming that
Rf = ∞ (open circuit).
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10 mV +
−

15 kΩ

6 kΩ

5 kΩ

Rf

+
− +

−

1 kΩ
2 kΩ

+

−
vo

Figure 5.81 For Probs. 5.54 and 5.55.

5.55 Repeat the previous problem if Rf = 10 k�.

5.56 Determine vo in the op amp circuit of Fig. 5.82.

+
−

30 kΩ

A
C

40 kΩ

10 kΩ

1 V

20 kΩ

60 kΩ

+
−

10 kΩ

2 V

+
−

20 kΩ

B

3 V

+
−

10 kΩ

4 V

10 kΩ

vo+

−
+

−

+

−
10 kΩ

Figure 5.82 For Prob. 5.56.

5.57 Find the load voltage vL in the circuit of Fig. 5.83.

+
−

+
−
+
−

100 kΩ 250 kΩ

0.4 V 2 kΩ+
−

+
−

+

−
vL

20 kΩ

Figure 5.83 For Prob. 5.57.

5.58 Determine the load voltage vL in the circuit of Fig.
5.84.

50 kΩ

10 kΩ

5 kΩ

1.8 V
4 kΩ vL

+

−+
−

+

−
+

−

Figure 5.84 For Prob. 5.58.

5.59 Find io in the op amp circuit of Fig. 5.85.

+
−

+
−
+
−

100 kΩ 32 kΩ

10 kΩ

20 kΩ

1.6 kΩ

0.6 V

+
−

0.4 V+
−

+
−

io

Figure 5.85 For Prob. 5.59.

Section 5.9 Op Amp Circuit Analysis with
PSpice

5.60 Rework Example 5.11 using the nonideal op amp
LM324 instead of uA741.

5.61 Solve Prob. 5.18 using PSpice and op amp uA741.

5.62 Solve Prob. 5.38 using PSpice and op amp LM324.

5.63 Use PSpice to obtain vo in the circuit of Fig. 5.86.

+
−

20 kΩ 30 kΩ10 kΩ

1 V +
−

+
−

+
−

40 kΩ

2 V +
−

+
−

vo

+

−

Figure 5.86 For Prob. 5.63.

5.64 Determine vo in the op amp circuit of Fig. 5.87
using PSpice.
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vo

+
−

20 kΩ

5 V

1 V

10 kΩ

+
−

+
−

20 kΩ 10 kΩ 40 kΩ

+
−

100 kΩ

+

−

Figure 5.87 For Prob. 5.64.

5.65 Use PSpice to solve Prob. 5.56, assuming that the op
amps are uA741.

5.66 Use PSpice to verify the results in Example 5.9.
Assume nonideal op amps LM324.

Section 5.10 Applications

5.67 A five-bit DAC covers a voltage range of 0 to 7.75 V.
Calculate how much voltage each bit is worth.

5.68 Design a six-bit digital-to-analog converter.
(a) If |Vo| = 1.1875 V is desired, what should

[V1V2V3V4V5V6] be?
(b) Calculate |Vo| if [V1V2V3V4V5V6] = [011011].
(c) What is the maximum value |Vo| can assume?

5.69∗ A four-bit R-2R ladder DAC is presented in Fig. 5.88.
(a) Show that the output voltage is given by

−Vo = Rf

(
V1

2R
+ V2

4R
+ V3

8R
+ V4

16R

)
(b) If Rf = 12 k� and R = 10 k�, find |Vo| for

[V1V2V3V4] = [1011] and [V1V2V3V4] = [0101].

R

R

R

R

Vo+
−V1

V2

V3

V4

2R

2R

2R

2R

Rf

Figure 5.88 For Prob. 5.69.

5.70 If RG = 100 � and R = 20 k�, calculate the
voltage gain of the IA in Fig. 5.37.

5.71 Assuming a gain of 200 for an IA, find its output
voltage for:
(a) v1 = 0.402 V and v2 = 0.386 V
(b) v1 = 1.002 V and v2 = 1.011 V.

5.72 Figure 5.89 displays a two-op-amp instrumentation
amplifier. Derive an expression for vo in terms of v1

and v2. How can this amplifier be used as a
subtractor?

v2

v1

vo

R4

R3R2

R1
+

−

+

−

Figure 5.89 For Prob. 5.72.

5.73∗ Figure 5.90 shows an instrumentation amplifier
driven by a bridge. Obtain the gain vo/vi of the
amplifier.

25 kΩ

10 kΩ

10 kΩ

500 kΩ

vo

25 kΩ

2 kΩ

30 kΩ20 kΩ

vi

80 kΩ40 kΩ

500 kΩ

+
−

+
−

+
−

Figure 5.90 For Prob. 5.73.
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COM P R E H EN S I V E P RO B L E M S

5.74 A gain of 6 (+ or −, it does not matter) is required
in an audio system. Design an op amp circuit to
provide the gain with an input resistance of 2 k�.

5.75 The op amp circuit in Fig. 5.91 is a current amplifier.
Find the current gain io/is of the amplifier.

+
−

20 kΩ

4 kΩ

5 kΩ 2 kΩis

io

Figure 5.91 For Prob. 5.75.

5.76 A noninverting current amplifier is portrayed in Fig.
5.92. Calculate the gain io/is . Take R1 = 8 k� and
R2 = 1 k�.

+
−

R1

R2

R2

is

io

Figure 5.92 For Prob. 5.76.

5.77 Refer to the bridge amplifier shown in Fig. 5.93.
Determine the voltage gain vo/vi .

+
−

60 kΩ

vi

voRL

+

−

+
−

+
−

50 kΩ

20 kΩ

30 kΩ

Figure 5.93 For Prob. 5.77.

5.78∗ A voltage-to-current converter is shown in Fig. 5.94,
which means that iL = Avi if R1R2 = R3R4. Find
the constant term A.

+
−

R3

R1

iL

R2

vi

RL

R4

+

−

Figure 5.94 For Prob. 5.78.
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C H A P T E R

CAPACITORS AND INDUCTORS

6

The important thing about a problem is not its solution, but the strength
we gain in finding the solution.

—Anonymous

Historical Profiles
Michael Faraday (1791–1867), an English chemist and physicist, was probably the
greatest experimentalist who ever lived.

Born near London, Faraday realized his boyhood dream by working with the
great chemist Sir Humphry Davy at the Royal Institution, where he worked for 54 years.
He made several contributions in all areas of physical science and coined such words
as electrolysis, anode, and cathode. His discovery of electromagnetic induction in
1831 was a major breakthrough in engineering because it provided a way of generating
electricity. The electric motor and generator operate on this principle. The unit of
capacitance, the farad, was named in his honor.

Joseph Henry (1797–1878), an American physicist, discovered inductance and con-
structed an electric motor.

Born in Albany, New York, Henry graduated from Albany Academy and taught
philosophy at Princeton University from 1832 to 1846. He was the first secretary of the
Smithsonian Institution. He conducted several experiments on electromagnetism and
developed powerful electromagnets that could lift objects weighing thousands of pounds.
Interestingly, Joseph Henry discovered electromagnetic induction before Faraday
but failed to publish his findings. The unit of inductance, the henry, was named after him.
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6.1 INTRODUCTION
So far we have limited our study to resistive circuits. In this chapter, we
shall introduce two new and important passive linear circuit elements:
the capacitor and the inductor. Unlike resistors, which dissipate energy,
capacitors and inductors do not dissipate but store energy, which can be
retrieved at a later time. For this reason, capacitors and inductors are
calledstorage elements.In contrast to a resistor, which spends or dis-

sipates energy irreversibly, an inductor or ca-
pacitor stores or releases energy (i.e., has a
memory).

The application of resistive circuits is quite limited. With the in-
troduction of capacitors and inductors in this chapter, we will be able to
analyze more important and practical circuits. Be assured that the circuit
analysis techniques covered in Chapters 3 and 4 are equally applicable to
circuits with capacitors and inductors.

We begin by introducing capacitors and describing how to combine
them in series or in parallel. Later, we do the same for inductors. As
typical applications, we explore how capacitors are combined with op
amps to form integrators, differentiators, and analog computers.

6.2 CAPACITORS
A capacitor is a passive element designed to store energy in its electric
field. Besides resistors, capacitors are the most common electrical com-
ponents. Capacitors are used extensively in electronics, communications,
computers, and power systems. For example, they are used in the tuning
circuits of radio receivers and as dynamic memory elements in computer
systems.

A capacitor is typically constructed as depicted in Fig. 6.1.

Metal plates,
each with area A

d

Dielectric with permittivity e

Figure 6.1 A typical capacitor.

A capacitor consists of two conducting plates separated
by an insulator (or dielectric).

In many practical applications, the plates may be aluminum foil while the
dielectric may be air, ceramic, paper, or mica.

When a voltage source v is connected to the capacitor, as in Fig.
6.2, the source deposits a positive charge q on one plate and a negative
charge −q on the other. The capacitor is said to store the electric charge.
The amount of charge stored, represented by q, is directly proportional
to the applied voltage v so that

q = Cv (6.1)

where C, the constant of proportionality, is known as the capacitance
of the capacitor. The unit of capacitance is the farad (F), in honor of
the English physicist Michael Faraday (1791–1867). From Eq. (6.1), we
may derive the following definition.Alternatively, capacitance is the amount of charge

stored per plate for a unit voltage difference in a
capacitor.

−

−

−

−q+q

+

+

+

+

+

+

−+
v

Figure 6.2 A capacitor
with applied voltage v.

Capacitance is the ratio of the charge on one plate of a capacitor to the voltage
difference between the two plates, measured in farads (F).

Note from Eq. (6.1) that 1 farad = 1 coulomb/volt.
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Although the capacitance C of a capacitor is the ratio of the charge
q per plate to the applied voltage v, it does not depend on q or v. It
depends on the physical dimensions of the capacitor. For example, for
the parallel-plate capacitor shown in Fig. 6.1, the capacitance is given by

C = εA

d
(6.2)

where A is the surface area of each plate, d is the distance between the
plates, and ε is the permittivity of the dielectric material between the
plates. Although Eq. (6.2) applies to only parallel-plate capacitors, we
may infer from it that, in general, three factors determine the value of the
capacitance:

Capacitor voltage rating and capacitance are typ-
ically inversely rated due to the relationships in
Eqs. (6.1) and (6.2). Arcing occurs if d is small
and V is high.

1. The surface area of the plates—the larger the area, the greater
the capacitance.

2. The spacing between the plates—the smaller the spacing, the
greater the capacitance.

3. The permittivity of the material—the higher the permittivity,
the greater the capacitance.

Capacitors are commercially available in different values and types.
Typically, capacitors have values in the picofarad (pF) to microfarad (µF)
range. They are described by the dielectric material they are made of and
by whether they are of fixed or variable type. Figure 6.3 shows the circuit
symbols for fixed and variable capacitors. Note that according to the
passive sign convention, current is considered to flow into the positive
terminal of the capacitor when the capacitor is being charged, and out of
the positive terminal when the capacitor is discharging.

i iC

v+ −

C

v+ −

Figure 6.3 Circuit symbols for capacitors:
(a) fixed capacitor, (b) variable capacitor.

Figure 6.4 shows common types of fixed-value capacitors. Polyester
capacitors are light in weight, stable, and their change with temperature is
predictable. Instead of polyester, other dielectric materials such as mica
and polystyrene may be used. Film capacitors are rolled and housed in
metal or plastic films. Electrolytic capacitors produce very high capaci-
tance. Figure 6.5 shows the most common types of variable capacitors.
The capacitance of a trimmer (or padder) capacitor or a glass piston capac-
itor is varied by turning the screw. The trimmer capacitor is often placed
in parallel with another capacitor so that the equivalent capacitance can
be varied slightly. The capacitance of the variable air capacitor (meshed
plates) is varied by turning the shaft. Variable capacitors are used in radio

(a) (b) (c)

Figure 6.4 Fixed capacitors: (a) polyester capacitor, (b) ceramic capacitor, (c) electrolytic capacitor.
(Courtesy of Tech America.)
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receivers allowing one to tune to various stations. In addition, capacitors
are used to block dc, pass ac, shift phase, store energy, start motors, and
suppress noise.

(a)

(b)

Figure 6.5 Variable capacitors:
(a) trimmer capacitor, (b) filmtrim
capacitor.
(Courtesy of Johanson.)

To obtain the current-voltage relationship of the capacitor, we take
the derivative of both sides of Eq. (6.1). Since

i = dq

dt
(6.3)

differentiating both sides of Eq. (6.1) gives

i = C
dv

dt
(6.4)

According to Eq. (6.4), for a capacitor to carry
current, its voltage must vary with time. Hence,
for constant voltage, i = 0 .

This is the current-voltage relationship for a capacitor, assuming the pos-
itive sign convention. The relationship is illustrated in Fig. 6.6 for a
capacitor whose capacitance is independent of voltage. Capacitors that
satisfy Eq. (6.4) are said to be linear. For a nonlinear capacitor, the
plot of the current-voltage relationship is not a straight line. Although
some capacitors are nonlinear, most are linear. We will assume linear
capacitors in this book.

Slope = C

dv ⁄dt0

i

Figure 6.6 Current-voltage
relationship of a capacitor.

The voltage-current relation of the capacitor can be obtained by
integrating both sides of Eq. (6.4). We get

v = 1

C

∫ t

−∞
i dt (6.5)

or

v = 1

C

∫ t

t0

i dt + v(t0) (6.6)

where v(t0) = q(t0)/C is the voltage across the capacitor at time t0.
Equation (6.6) shows that capacitor voltage depends on the past history
of the capacitor current. Hence, the capacitor has memory—a property
that is often exploited.

The instantaneous power delivered to the capacitor is

p = vi = Cv
dv

dt
(6.7)

The energy stored in the capacitor is therefore

w =
∫ t

−∞
p dt = C

∫ t

−∞
v
dv

dt
dt = C

∫ t

−∞
v dv = 1

2
Cv2

∣∣∣∣
t

t=−∞
(6.8)

We note that v(−∞) = 0, because the capacitor was uncharged at t =
−∞. Thus,

w = 1

2
Cv2 (6.9)

Using Eq. (6.1), we may rewrite Eq. (6.9) as

w = q2

2C
(6.10)
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Equation (6.9) or (6.10) represents the energy stored in the electric field
that exists between the plates of the capacitor. This energy can be re-
trieved, since an ideal capacitor cannot dissipate energy. In fact, the word
capacitor is derived from this element’s capacity to store energy in an
electric field.

We should note the following important properties of a capacitor:

1. Note from Eq. (6.4) that when the voltage across a capacitor is
not changing with time (i.e., dc voltage), the current through
the capacitor is zero. Thus,

A capacitor is an open circuit to dc.

However, if a battery (dc voltage) is connected across a
capacitor, the capacitor charges.

2. The voltage on the capacitor must be continuous.

The voltage on a capacitor cannot change abruptly.

The capacitor resists an abrupt change in the voltage across it.
According to Eq. (6.4), a discontinuous change in voltage
requires an infinite current, which is physically impossible.
For example, the voltage across a capacitor may take the form
shown in Fig. 6.7(a), whereas it is not physically possible for
the capacitor voltage to take the form shown in Fig. 6.7(b)
because of the abrupt change. Conversely, the current through
a capacitor can change instantaneously.

3. The ideal capacitor does not dissipate energy. It takes power
from the circuit when storing energy in its field and returns
previously stored energy when delivering power to the circuit.

4. A real, nonideal capacitor has a parallel-model leakage
resistance, as shown in Fig. 6.8. The leakage resistance may be
as high as 100 M� and can be neglected for most practical
applications. For this reason, we will assume ideal capacitors
in this book.

An alternative way of looking at this is using Eq.
(6.9), which indicates that energy is proportional
to voltage squared. Since injecting or extracting
energy can only be done over some finite time,
voltage cannot change instantaneously across a
capacitor.

v

t

(a)

v

t

(b)

Figure 6.7 Voltage across a capacitor:
(a) allowed, (b) not allowable; an abrupt
change is not possible.

Leakage resistance

Capacitance

Figure 6.8 Circuit model of a
nonideal capacitor.

E X A M P L E 6 . 1

(a) Calculate the charge stored on a 3-pF capacitor with 20 V across it.
(b) Find the energy stored in the capacitor.

Solution:

(a) Since q = Cv,

q = 3 × 10−12 × 20 = 60 pC

(b) The energy stored is

w = 1

2
Cv2 = 1

2
× 3 × 10−12 × 400 = 600 pJ
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P R A C T I C E P R O B L E M 6 . 1

What is the voltage across a 3-µF capacitor if the charge on one plate is
0.12 mC? How much energy is stored?

Answer: 40 V, 2.4 mJ.

E X A M P L E 6 . 2

The voltage across a 5-µF capacitor is

v(t) = 10 cos 6000t V

Calculate the current through it.

Solution:

By definition, the current is

i(t) = C
dv

dt
= 5 × 10−6 d

dt
(10 cos 6000t)

= −5 × 10−6 × 6000 × 10 sin 6000t = −0.3 sin 6000t A

P R A C T I C E P R O B L E M 6 . 2

If a 10-µF capacitor is connected to a voltage source with

v(t) = 50 sin 2000t V

determine the current through the capacitor.

Answer: cos 2000t A.

E X A M P L E 6 . 3

Determine the voltage across a 2-µF capacitor if the current through it is

i(t) = 6e−3000t mA

Assume that the initial capacitor voltage is zero.

Solution:

Since v = 1

C

∫ t

0
i dt + v(0) and v(0) = 0,

v = 1

2 × 10−6

∫ t

0
6e−3000t dt ·10−3

= 3 × 103

−3000
e−3000t

∣∣∣∣
t

0

= (1 − e−3000t ) V

P R A C T I C E P R O B L E M 6 . 3

The current through a 100-µF capacitor is i(t) = 50 sin 120πt mA. Cal-
culate the voltage across it at t = 1 ms and t = 5 ms. Take v(0) = 0.

Answer: −93.137 V, −1.736 V.
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E X A M P L E 6 . 4

Determine the current through a 200-µF capacitor whose voltage is shown
in Fig. 6.9.

v(t)

0
4321

50

−50

t

Figure 6.9 For Example 6.4.

Solution:

The voltage waveform can be described mathematically as

v(t) =




50t V 0 < t < 1
100 − 50t V 1 < t < 3

−200 + 50t V 3 < t < 4
0 otherwise

Since i = C dv/dt and C = 200 µF, we take the derivative of v to obtain

i(t) = 200 × 10−6 ×




50 0 < t < 1
−50 1 < t < 3

50 3 < t < 4
0 otherwise

=




10 mA 0 < t < 1
−10 mA 1 < t < 3

10 mA 3 < t < 4
0 otherwise

Thus the current waveform is as shown in Fig. 6.10.

i (mA)

0
4321

10

−10

t

Figure 6.10 For Example 6.4.

P R A C T I C E P R O B L E M 6 . 4

An initially uncharged 1-mF capacitor has the current shown in Fig. 6.11
across it. Calculate the voltage across it at t = 2 ms and t = 5 ms.

i (mA)

0
642

100

t (ms)

Figure 6.11 For Practice Prob. 6.4.

Answer: 100 mV, 400 mV.

E X A M P L E 6 . 5

Obtain the energy stored in each capacitor in Fig. 6.12(a) under dc con-
ditions.

Solution:

Under dc conditions, we replace each capacitor with an open circuit, as
shown in Fig. 6.12(b). The current through the series combination of the
2-k� and 4-k� resistors is obtained by current division as

i = 3

3 + 2 + 4
(6 mA) = 2 mA

Hence, the voltages v1 and v2 across the capacitors are

v1 = 2000i = 4 V v2 = 4000i = 8 V
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v1+ −

v2

+

−
6  mA 3 kΩ

5 kΩ
4 kΩ

2 kΩ

2 mF

4 mF

(a)

6  mA 3 kΩ

5 kΩ

4 kΩ

2 kΩ

(b)

i

Figure 6.12 For Example 6.5.

and the energies stored in them are

w1 = 1

2
C1v

2
1 = 1

2
(2 × 10−3)(4)2 = 16 mJ

w2 = 1

2
C2v

2
2 = 1

2
(4 × 10−3)(8)2 = 128 mJ

P R A C T I C E P R O B L E M 6 . 5

Under dc conditions, find the energy stored in the capacitors in Fig. 6.13.

10 V +
− 6 kΩ

1 kΩ

20 mF

10 mF

3 kΩ

Figure 6.13 For Practice Prob. 6.5.

Answer: 405 µJ, 90 µJ.

6.3 SERIES AND PARALLEL CAPACITORS
We know from resistive circuits that series-parallel combination is a pow-
erful tool for reducing circuits. This technique can be extended to series-
parallel connections of capacitors, which are sometimes encountered. We
desire to replace these capacitors by a single equivalent capacitor Ceq.

i C1

(a)

i1

C2 C3 CN

iN

v

i

(b)

Ceq v

+

−

+

−

i2 i3

Figure 6.14 (a) Parallel-connected N

capacitors, (b) equivalent circuit for the parallel
capacitors.

In order to obtain the equivalent capacitor Ceq of N capacitors in
parallel, consider the circuit in Fig. 6.14(a). The equivalent circuit is in
Fig. 6.14(b). Note that the capacitors have the same voltage v across
them. Applying KCL to Fig. 6.14(a),

i = i1 + i2 + i3 + · · · + iN (6.11)

But ik = Ck dv/dt . Hence,

i = C1
dv

dt
+ C2

dv

dt
+ C3

dv

dt
+ · · · + CN

dv

dt

=
(

N∑
k=1

Ck

)
dv

dt
= Ceq

dv

dt

(6.12)
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where

Ceq = C1 + C2 + C3 + · · · + CN (6.13)

The equivalent capacitance of N parallel-connected capacitors is the
sum of the individual capacitances.

We observe that capacitors in parallel combine in the same manner as
resistors in series.

v

C1

(a)

C2 C3 CN

v

(b)

Ceq v

v1 v2 v3 vN
+
−

+
−

i

i

+ −+ −+ − + −

+

−

Figure 6.15 (a) Series-connected N

capacitors, (b) equivalent circuit for the series
capacitor.

We now obtain Ceq of N capacitors connected in series by compar-
ing the circuit in Fig. 6.15(a) with the equivalent circuit in Fig. 6.15(b).
Note that the same current i flows (and consequently the same charge)
through the capacitors. Applying KVL to the loop in Fig. 6.15(a),

v = v1 + v2 + v3 + · · · + vN (6.14)

But vk = 1

Ck

∫ t

t0

i(t) dt + vk(t0). Therefore,

v = 1

C1

∫ t

t0

i(t) dt + v1(t0) + 1

C2

∫ t

t0

i(t) dt + v2(t0)

+ · · · + 1

CN

∫ t

t0

i(t) dt + vN(t0)

=
(

1

C1
+ 1

C2
+ · · · + 1

CN

)∫ t

t0

i(t) dt + v1(t0) + v2(t0)

+ · · · + vN(t0)

= 1

Ceq

∫ t

t0

i(t) dt + v(t0)

(6.15)

where

1

Ceq
= 1

C1
+ 1

C2
+ 1

C3
+ · · · + 1

CN

(6.16)

The initial voltage v(t0) across Ceq is required by KVL to be the sum of
the capacitor voltages at t0. Or according to Eq. (6.15),

v(t0) = v1(t0) + v2(t0) + · · · + vN(t0)

Thus, according to Eq. (6.16),

The equivalent capacitance of series-connected capacitors is the reciprocal of the
sum of the reciprocals of the individual capacitances.

Note that capacitors in series combine in the same manner as resistors in
parallel. For N = 2 (i.e., two capacitors in series), Eq. (6.16) becomes

1

Ceq
= 1

C1
+ 1

C2
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or

Ceq = C1C2

C1 + C2
(6.17)

E X A M P L E 6 . 6

Find the equivalent capacitance seen between terminals a and b of the
circuit in Fig. 6.16.

a

b

Ceq

5 mF

20 mF 20 mF6 mF

60 mF

Figure 6.16 For Example 6.6.

Solution:

The 20-µF and 5-µF capacitors are in series; their equivalent capacitance
is

20 × 5

20 + 5
= 4 µF

This 4-µF capacitor is in parallel with the 6-µF and 20-µF capacitors;
their combined capacitance is

4 + 6 + 20 = 30 µF

This 30-µF capacitor is in series with the 60-µF capacitor. Hence, the
equivalent capacitance for the entire circuit is

Ceq = 30 × 60

30 + 60
= 20 µF

P R A C T I C E P R O B L E M 6 . 6

Find the equivalent capacitance seen at the terminals of the circuit in Fig.
6.17.

Answer: 40 µF.

Ceq
120 mF20 mF70 F

60 mF

50 mF

Figure 6.17 For Practice Prob. 6.6.

E X A M P L E 6 . 7

For the circuit in Fig. 6.18, find the voltage across each capacitor.
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Solution:

We first find the equivalent capacitance Ceq, shown in Fig. 6.19. The two
parallel capacitors in Fig. 6.18 can be combined to get 40+20 = 60 mF.
This 60-mF capacitor is in series with the 20-mF and 30-mF capacitors.
Thus,

Ceq = 1
1

60 + 1
30 + 1

20

mF = 10 mF

The total charge is

q = Ceqv = 10 × 10−3 × 30 = 0.3 C

This is the charge on the 20-mF and 30-mF capacitors, because they are
in series with the 30-V source. (A crude way to see this is to imagine that
charge acts like current, since i = dq/dt .) Therefore,

v1 = q

C1
= 0.3

20 × 10−3
= 15 V v2 = q

C2
= 0.3

30 × 10−3
= 10 V

Having determined v1 and v2, we now use KVL to determine v3 by

v3 = 30 − v1 − v2 = 5 V

20 mF40 mF

30 mF20 mF

30 V +
−

v1 v2

v3

+

−

+ − + −

Figure 6.18 For Example 6.7.

Ceq30 V +
−

q
+

−

Figure 6.19 Equivalent
circuit for Fig. 6.18.

Alternatively, since the 40-mF and 20-mF capacitors are in parallel,
they have the same voltage v3 and their combined capacitance is 40 +
20 = 60 mF. This combined capacitance is in series with the 20-mF and
30-mF capacitors and consequently has the same charge on it. Hence,

v3 = q

60 mF
= 0.3

60 × 10−3
= 5 V

P R A C T I C E P R O B L E M 6 . 7

Find the voltage across each of the capacitors in Fig. 6.20.

30 mF20 mF

60 mF40 mF

60 V +
−

v1 v3

v2 v4

+ − + −
+

−

+

−

Figure 6.20 For Practice Prob. 6.7.

Answer: v1 = 30 V, v2 = 30 V, v3 = 10 V, v4 = 20 V.

6.4 INDUCTORS
An inductor is a passive element designed to store energy in its magnetic
field. Inductors find numerous applications in electronic and power sys-
tems. They are used in power supplies, transformers, radios, TVs, radars,
and electric motors.

Any conductor of electric current has inductive properties and may
be regarded as an inductor. But in order to enhance the inductive effect,
a practical inductor is usually formed into a cylindrical coil with many
turns of conducting wire, as shown in Fig. 6.21.
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An inductor consists of a coil of conducting wire.

If current is allowed to pass through an inductor, it is found that the voltage
across the inductor is directly proportional to the time rate of change of
the current. Using the passive sign convention,

v = L
di

dt
(6.18)

where L is the constant of proportionality called the inductance of the
inductor. The unit of inductance is the henry (H), named in honor of the
American inventor Joseph Henry (1797–1878). It is clear from Eq. (6.18)
that 1 henry equals 1 volt-second per ampere.

Length, l
Cross-sectional area, A

Core material

Number of turns, N

Figure 6.21 Typical form of an inductor.

In view of Eq. (6.18), for an inductor to have
voltage across its terminals, its current must vary
with time. Hence, v = 0 for constant current
through the inductor.

Inductance is the property whereby an inductor exhibits opposition to the change
of current flowing through it, measured in henrys (H).

The inductance of an inductor depends on its physical dimension
and construction. Formulas for calculating the inductance of inductors
of different shapes are derived from electromagnetic theory and can be
found in standard electrical engineering handbooks. For example, for the
inductor (solenoid) shown in Fig. 6.21,

L = N2µA

�
(6.19)

where N is the number of turns, � is the length, A is the cross-sectional
area, and µ is the permeability of the core. We can see from Eq. (6.19)
that inductance can be increased by increasing the number of turns of
coil, using material with higher permeability as the core, increasing the
cross-sectional area, or reducing the length of the coil.

Like capacitors, commercially available inductors come in different
values and types. Typical practical inductors have inductance values
ranging from a few microhenrys (µH), as in communication systems,
to tens of henrys (H) as in power systems. Inductors may be fixed or
variable. The core may be made of iron, steel, plastic, or air. The terms
coil and choke are also used for inductors. Common inductors are shown
in Fig. 6.22. The circuit symbols for inductors are shown in Fig. 6.23,
following the passive sign convention.

(a)

(b)

(c)

Figure 6.22 Various types of inductors:
(a) solenoidal wound inductor, (b) toroidal
inductor, (c) chip inductor.
(Courtesy of Tech America.)

Equation (6.18) is the voltage-current relationship for an inductor.
Figure 6.24 shows this relationship graphically for an inductor whose
inductance is independent of current. Such an inductor is known as a
linear inductor. For a nonlinear inductor, the plot of Eq. (6.18) will not
be a straight line because its inductance varies with current. We will
assume linear inductors in this textbook unless stated otherwise.

The current-voltage relationship is obtained from Eq. (6.18) as

di = 1

L
v dt
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Integrating gives

i = 1

L

∫ t

−∞
v(t) dt (6.20)

i i i

(a)

v L

+

−

(b)

v L

+

−

(c)

v L

+

−

Figure 6.23 Circuit symbols for inductors:
(a) air-core, (b) iron-core, (c) variable
iron-core.

or

i = 1

L

∫ t

t0

v(t) dt + i(t0) (6.21)

where i(t0) is the total current for −∞ < t < t0 and i(−∞) = 0. The
idea of making i(−∞) = 0 is practical and reasonable, because there
must be a time in the past when there was no current in the inductor.

The inductor is designed to store energy in its magnetic field. The
energy stored can be obtained from Eqs. (6.18) and (6.20). The power
delivered to the inductor is

p = vi =
(
L
di

dt

)
i (6.22)

The energy stored is

w =
∫ t

−∞
p dt =

∫ t

−∞

(
L
di

dt

)
i dt

= L

∫ t

−∞
i di = 1

2
Li2(t) − 1

2
Li2(−∞)

(6.23)

Since i(−∞) = 0,

w = 1

2
Li2 (6.24)

Slope = L

di ⁄dt0

v

Figure 6.24 Voltage-current
relationship of an inductor.

We should note the following important properties of an inductor.

i

t

(a)

i

t

(b)

Figure 6.25 Current through an inductor:
(a) allowed, (b) not allowable; an abrupt
change is not possible.

1. Note from Eq. (6.18) that the voltage across an inductor is zero
when the current is constant. Thus,

An inductor acts like a short circuit to dc.

2. An important property of the inductor is its opposition to the
change in current flowing through it.

The current through an inductor cannot change instantaneously.

According to Eq. (6.18), a discontinuous change in the current
through an inductor requires an infinite voltage, which is not
physically possible. Thus, an inductor opposes an abrupt
change in the current through it. For example, the current
through an inductor may take the form shown in Fig. 6.25(a),
whereas the inductor current cannot take the form shown in
Fig. 6.25(b) in real-life situations due to the discontinuities.
However, the voltage across an inductor can change abruptly.
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3. Like the ideal capacitor, the ideal inductor does not dissipate
energy. The energy stored in it can be retrieved at a later time.
The inductor takes power from the circuit when storing energy
and delivers power to the circuit when returning previously
stored energy.

4. A practical, nonideal inductor has a significant resistive
component, as shown in Fig. 6.26. This is due to the fact that
the inductor is made of a conducting material such as copper,
which has some resistance. This resistance is called the
winding resistance Rw, and it appears in series with the
inductance of the inductor. The presence of Rw makes it both
an energy storage device and an energy dissipation device.
Since Rw is usually very small, it is ignored in most cases. The
nonideal inductor also has a winding capacitance Cw due to
the capacitive coupling between the conducting coils. Cw is
very small and can be ignored in most cases, except at high
frequencies. We will assume ideal inductors in this book.

Since an inductor is often made of a highly con-
ducting wire, it has a very small resistance.

L Rw

Cw

Figure 6.26 Circuit model
for a practical inductor.

E X A M P L E 6 . 8

The current through a 0.1-H inductor is i(t) = 10te−5t A. Find the voltage
across the inductor and the energy stored in it.

Solution:

Since v = Ldi/dt and L = 0.1 H,

v = 0.1
d

dt
(10te−5t ) = e−5t + t (−5)e−5t = e−5t (1 − 5t) V

The energy stored is

w = 1

2
Li2 = 1

2
(0.1)100t2e−10t = 5t2e−10t J

P R A C T I C E P R O B L E M 6 . 8

If the current through a 1-mH inductor is i(t) = 20 cos 100t mA, find the
terminal voltage and the energy stored.

Answer: −2 sin 100t mV, 0.2 cos2 100t µJ.

E X A M P L E 6 . 9

Find the current through a 5-H inductor if the voltage across it is

v(t) =
{

30t2, t > 0
0, t < 0

Also find the energy stored within 0 < t < 5 s.

Solution:

Since i = 1

L

∫ t

t0

v(t) dt + i(t0) and L = 5 H,

i = 1

5

∫ t

0
30t2 dt + 0 = 6 × t3

3
= 2t3 A
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The power p = vi = 60t5, and the energy stored is then

w =
∫

p dt =
∫ 5

0
60t5 dt = 60

t6

6

∣∣∣∣
5

0

= 156.25 kJ

Alternatively, we can obtain the energy stored using Eq. (6.13), by writing

w
∣∣5
0 = 1

2
Li2(5) − 1

2
Li(0) = 1

2
(5)(2 × 53)2 − 0 = 156.25 kJ

as obtained before.

P R A C T I C E P R O B L E M 6 . 9

The terminal voltage of a 2-H inductor is v = 10(1−t)V. Find the current
flowing through it at t = 4 s and the energy stored in it within 0 < t <

4 s. Assume i(0) = 2 A.

Answer: −18 A, 320 J.

E X A M P L E 6 . 1 0

Consider the circuit in Fig. 6.27(a). Under dc conditions, find: (a) i, vC ,
and iL, (b) the energy stored in the capacitor and inductor.

12 V

1 F

+
−

4 Ω

5 Ω1 Ω

2 H

i

iL

vC

+

−

vC

+

−

(a)(a)

12 V +
−

4 Ω

5 Ω1 Ωi

iL

(b)

Figure 6.27 For Example 6.10.

Solution:

(a) Under dc conditions, we replace the capacitor with an open circuit
and the inductor with a short circuit, as in Fig. 6.27(b). It is evident from
Fig. 6.27(b) that

i = iL = 12

1 + 5
= 2 A

The voltage vC is the same as the voltage across the 5-� resistor. Hence,

vC = 5i = 10 V

(b) The energy in the capacitor is

wC = 1

2
Cv2

C = 1

2
(1)(102) = 50 J

and that in the inductor is

wL = 1

2
Li2

L = 1

2
(2)(22) = 4 J

P R A C T I C E P R O B L E M 6 . 1 0

Determine vC , iL, and the energy stored in the capacitor and inductor in
the circuit of Fig. 6.28 under dc conditions.

4 A 2 F3 Ω 1 Ω

0.25 HiL

vC

+

−

Figure 6.28 For Practice Prob. 6.10.

Answer: 3 V, 3 A, 9 J, 1.125 J.
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6.5 SERIES AND PARALLEL INDUCTORS
Now that the inductor has been added to our list of passive elements, it is
necessary to extend the powerful tool of series-parallel combination. We
need to know how to find the equivalent inductance of a series-connected
or parallel-connected set of inductors found in practical circuits.

Consider a series connection of N inductors, as shown in Fig.
6.29(a), with the equivalent circuit shown in Fig. 6.29(b). The inductors
have the same current through them. Applying KVL to the loop,

v = v1 + v2 + v3 + · · · + vN (6.25)

L1

(a)

L2 L3 LN

(b)

Leq

i

i

v

+

−

v

+

−

+ −v1
+ −v2

+ −v3
+ −vN

. . .

Figure 6.29 (a) A series connection of N

inductors, (b) equivalent circuit for the
series inductors.

Substituting vk = Lk di/dt results in

v = L1
di

dt
+ L2

di

dt
+ L3

di

dt
+ · · · + LN

di

dt

= (L1 + L2 + L3 + · · · + LN)
di

dt

=
(

N∑
k=1

Lk

)
di

dt
= Leq

di

dt

(6.26)

where

Leq = L1 + L2 + L3 + · · · + LN (6.27)

Thus,

The equivalent inductance of series-connected inductors is the
sum of the individual inductances.

Inductors in series are combined in exactly the same way as resistors in
series.

(a)

(b)

Leq

i

v

+

−

v

+

−
L1 L2 L3 LN

i

i1 i2 i3 iN

Figure 6.30 (a) A parallel connection of N

inductors, (b) equivalent circuit for the parallel
inductors.

We now consider a parallel connection of N inductors, as shown
in Fig. 6.30(a), with the equivalent circuit in Fig. 6.30(b). The inductors
have the same voltage across them. Using KCL,

i = i1 + i2 + i3 + · · · + iN (6.28)

But ik = 1

Lk

∫ t

t0

v dt + ik(t0); hence,

i = 1

L1

∫ t

t0

v dt + i1(t0) + 1

L2

∫ t

t0

v dt + i2(t0)

+ · · · + 1

LN

∫ t

t0

v dt + iN (t0)

=
(

1

L1
+ 1

L2
+ · · · + 1

LN

)∫ t

t0

v dt + i1(t0) + i2(t0)

+ · · · + iN (t0)

=
(

N∑
k=1

1

Lk

)∫ t

t0

v dt +
N∑

k=1

ik(t0) = 1

Leq

∫ t

t0

v dt + i(t0)

(6.29)
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where

1

Leq
= 1

L1
+ 1

L2
+ 1

L3
+ · · · + 1

LN

(6.30)

The initial current i(t0) through Leq at t = t0 is expected by KCL to be
the sum of the inductor currents at t0. Thus, according to Eq. (6.29),

i(t0) = i1(t0) + i2(t0) + · · · + iN (t0)

According to Eq. (6.30),

The equivalent inductance of parallel inductors is the reciprocal of the sum of the
reciprocals of the individual inductances.

Note that the inductors in parallel are combined in the same way as resis-
tors in parallel.

For two inductors in parallel (N = 2), Eq. (6.30) becomes

1

Leq
= 1

L1
+ 1

L2
or Leq = L1L2

L1 + L2
(6.31)

It is appropriate at this point to summarize the most important character-
istics of the three basic circuit elements we have studied. The summary
is given in Table 6.1.

TABLE 6.1 Important characteristics of the basic elements.†

Relation Resistor (R) Capacitor (C) Inductor (L)

v-i: v = iR v = 1

C

∫ t

t0

i dt + v(t0) v = L
di

dt

i-v: i = v/R i = C
dv

dt
i = 1

L

∫ t

t0

i dt + i(t0)

p or w: p = i2R = v2

R
w = 1

2
Cv2 w = 1

2
Li2

Series: Req = R1 + R2 Ceq = C1C2

C1 + C2
Leq = L1 + L2

Parallel: Req = R1R2

R1 + R2
Ceq = C1 + C2 Leq = L1L2

L1 + L2

At dc: Same Open circuit Short circuit

Circuit variable
that cannot
change abruptly: Not applicable v i

†Passive sign convention is assumed.

E X A M P L E 6 . 1 1

Find the equivalent inductance of the circuit shown in Fig. 6.31.
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4 H 20 H

8 H 10 H

12 H7 H
Leq

Figure 6.31 For Example 6.11.

Solution:

The 10-H, 12-H, and 20-H inductors are in series; thus, combining them
gives a 42-H inductance. This 42-H inductor is in parallel with the 7-H
inductor so that they are combined, to give

7 × 42

7 + 42
= 6 H

This 6-H inductor is in series with the 4-H and 8-H inductors. Hence,

Leq = 4 + 6 + 8 = 18 H

P R A C T I C E P R O B L E M 6 . 1 1

Calculate the equivalent inductance for the inductive ladder network in
Fig. 6.32.

20 mH 100 mH 40 mH

30 mH 20 mH40 mH50 mH
Leq

Figure 6.32 For Practice Prob. 6.11.

Answer: 25 mH.

E X A M P L E 6 . 1 2

For the circuit in Fig. 6.33, i(t) = 4(2 − e−10t ) mA. If i2(0) = −1 mA,
find: (a) i1(0); (b) v(t), v1(t), and v2(t); (c) i1(t) and i2(t).

4 H

12 H4 Hv

+

−

v2

v1
+

+ −

−

i

i1 i2

Figure 6.33 For Example 6.12.

Solution:

(a) From i(t) = 4(2 − e−10t ) mA, i(0) = 4(2 − 1) = 4 mA. Since i =
i1 + i2,

i1(0) = i(0) − i2(0) = 4 − (−1) = 5 mA

(b) The equivalent inductance is

Leq = 2 + 4 ‖ 12 = 2 + 3 = 5 H

Thus,

v(t) = Leq
di

dt
= 5(4)(−1)(−10)e−10t mV = 200e−10t mV

and

v1(t) = 2
di

dt
= 2(−4)(−10)e−10t mV = 80e−10t mV

Since v = v1 + v2,

v2(t) = v(t) − v1(t) = 120e−10t mV
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(c) The current i1 is obtained as

i1(t) = 1

4

∫ t

0
v2 dt + i1(0) = 120

4

∫ t

0
e−10t dt + 5 mA

= −3e−10t
∣∣t
0 + 5 mA = −3e−10t + 3 + 5 = 8 − 3e−10t mA

Similarly,

i2(t) = 1

12

∫ t

0
v2 dt + i2(0) = 120

12

∫ t

0
e−10t dt − 1 mA

= −e−10t
∣∣t
0 − 1 mA = −e−10t + 1 − 1 = −e−10t mA

Note that i1(t) + i2(t) = i(t).

P R A C T I C E P R O B L E M 6 . 1 2

In the circuit of Fig. 6.34, i1(t) = 0.6e−2t A. If i(0) = 1.4 A, find:
(a) i2(0); (b) i2(t) and i(t); (c) v(t), v1(t), and v2(t).

3 H

6 H
8 Hv

+

−

v2

+

−

i

i1

i2

+ −v1

Figure 6.34 For Practice Prob. 6.12.

Answer: (a) 0.8 A, (b) (−0.4 + 1.2e−2t ) A, (−0.4 + 1.8e−2t ) A,
(c) −7.2e−2t V, −28.8e−2t V, −36e−2t V.

†6.6 APPLICATIONS
Circuit elements such as resistors and capacitors are commercially avail-
able in either discrete form or integrated-circuit (IC) form. Unlike ca-
pacitors and resistors, inductors with appreciable inductance are difficult
to produce on IC substrates. Therefore, inductors (coils) usually come
in discrete form and tend to be more bulky and expensive. For this rea-
son, inductors are not as versatile as capacitors and resistors, and they
are more limited in applications. However, there are several applications
in which inductors have no practical substitute. They are routinely used
in relays, delays, sensing devices, pick-up heads, telephone circuits, ra-
dio and TV receivers, power supplies, electric motors, microphones, and
loudspeakers, to mention a few.

Capacitors and inductors possess the following three special prop-
erties that make them very useful in electric circuits:

1. The capacity to store energy makes them useful as temporary
voltage or current sources. Thus, they can be used for
generating a large amount of current or voltage for a short
period of time.

2. Capacitors oppose any abrupt change in voltage, while
inductors oppose any abrupt change in current. This property
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makes inductors useful for spark or arc suppression and for
converting pulsating dc voltage into relatively smooth dc
voltage.

3. Capacitors and inductors are frequency sensitive. This
property makes them useful for frequency discrimination.

The first two properties are put to use in dc circuits, while the third
one is taken advantage of in ac circuits. We will see how useful these
properties are in later chapters. For now, consider three applications
involving capacitors and op amps: integrator, differentiator, and analog
computer.

6 . 6 . 1 I n t e g r a to r
Important op amp circuits that use energy-storage elements include inte-
grators and differentiators. These op amp circuits often involve resistors
and capacitors; inductors (coils) tend to be more bulky and expensive.

The op amp integrator is used in numerous applications, especially
in analog computers, to be discussed in Section 6.6.3.

An integrator is an op amp circuit whose output is proportional
to the integral of the input signal.

R1

Rf

i1 v1

i2

vi

+

−

vo

+

−

v2

0 A

0 V

+

−

+

−

(a)

R

a

C

iR

iC

vi

+

−

vo

+

−

+

−

(b)

1

Figure 6.35 Replacing the feedback resistor
in the inverting amplifier in (a) produces an
integrator in (b).

If the feedback resistor Rf in the familiar inverting amplifier of
Fig. 6.35(a) is replaced by a capacitor, we obtain an ideal integrator, as
shown in Fig. 6.35(b). It is interesting that we can obtain a mathematical
representation of integration this way. At node a in Fig. 6.35(b),

iR = iC (6.32)

But

iR = vi

R
, iC = −C

dvo

dt

Substituting these in Eq. (6.32), we obtain

vi

R
= −C

dvo

dt
(6.33a)

dvo = − 1

RC
vi dt (6.33b)

Integrating both sides gives

vo(t) − vo(0) = − 1

RC

∫ t

0
vi(t) dt (6.34)

To ensure that vo(0) = 0, it is always necessary to discharge the integra-
tor’s capacitor prior to the application of a signal. Assuming vo(0) = 0,

vo = − 1

RC

∫ t

0
vi(t) dt (6.35)

which shows that the circuit in Fig. 6.35(b) provides an output voltage
proportional to the integral of the input. In practice, the op amp integrator
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requires a feedback resistor to reduce dc gain and prevent saturation. Care
must be taken that the op amp operates within the linear range so that it
does not saturate.

E X A M P L E 6 . 1 3

If v1 = 10 cos 2t mV and v2 = 0.5t mV, find vo in the op amp circuit in
Fig. 6.36. Assume that the voltage across the capacitor is initially zero.

vo

v1

v2

2 mF
3 MΩ

100 kΩ

+
−

Figure 6.36 For Example 6.13.

Solution:

This is a summing integrator, and

vo = − 1

R1C

∫
v1 dt − 1

R2C

∫
v2 dt

= − 1

3 × 106 × 2 × 10−6

∫ t

0
10 cos 2t dt

− 1

100 × 103 × 2 × 10−6

∫ t

0
0.5t dt

= −1

6

10

2
sin 2t − 1

0.2

0.5t2

2
= −0.833 sin 2t − 1.25t2 mV

P R A C T I C E P R O B L E M 6 . 1 3

The integrator in Fig. 6.35 has R = 25 k�, C = 10 µF. Determine the
output voltage when a dc voltage of 10 mV is applied at t = 0. Assume
that the op amp is initially nulled.

Answer: −40t mV.

6 . 6 . 2 D i f f e r en t i a to r

A differentiator is an op amp circuit whose output is proportional to
the rate of change of the input signal.

R

a

CiC

iR

vi

+

−
vo

+

−

+
−

Figure 6.37 An op amp differentiator.

In Fig. 6.35(a), if the input resistor is replaced by a capacitor, the
resulting circuit is a differentiator, shown in Fig. 6.37. Applying KCL at
node a,

iR = iC (6.36)

But

iR = −vo

R
, iC = C

dvi

dt

Substituting these in Eq. (6.36) yields

vo = −RC
dvi

dt
(6.37)

showing that the output is the derivative of the input. Differentiator cir-
cuits are electronically unstable because any electrical noise within the
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circuit is exaggerated by the differentiator. For this reason, the differen-
tiator circuit in Fig. 6.37 is not as useful and popular as the integrator. It
is seldom used in practice.

E X A M P L E 6 . 1 4

Sketch the output voltage for the circuit in Fig. 6.38(a), given the input
voltage in Fig. 6.38(b). Take vo = 0 at t = 0.

vo
vi

+

−

(a)

(b)

+
−

0.2 mF

5 kΩ

vi

86420

4

t (ms)

+
−

Figure 6.38 For Example 6.14.

Solution:

This is a differentiator with

RC = 5 × 103 × 0.2 × 10−6 = 10−3 s

For 0 < t < 4 ms, we can express the input voltage in Fig. 6.38(b) as

vi =
{

2t 0 < t < 2 ms
8 − 2t 2 < t < 4 ms

This is repeated for 4 < t < 8. Using Eq. (6.37), the output is obtained
as

vo = −RC
dvi

dt
=
{−2 mV 0 < t < 2 ms

2 mV 2 < t < 4 ms

Thus, the output is as sketched in Fig. 6.39.

vi (mV)

8642

2

0

−2

t (ms)

Figure 6.39 Output of the circuit in Fig. 6.38(a).

P R A C T I C E P R O B L E M 6 . 1 4

The differentiator in Fig. 6.37 has R = 10 k� and C = 2 µF. Given that
vi = 3t V, determine the output vo.

Answer: −60 mV.

6 . 6 . 3 Ana lo g Compu te r
Op amps were initially developed for electronic analog computers. Ana-
log computers can be programmed to solve mathematical models of me-
chanical or electrical systems. These models are usually expressed in
terms of differential equations.

To solve simple differential equations using the analog computer
requires cascading three types of op amp circuits: integrator circuits,
summing amplifiers, and inverting/noninverting amplifiers for negative/
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positive scaling. The best way to illustrate how an analog computer solves
a differential equation is with an example.

Suppose we desire the solution x(t) of the equation

a
d2x

dt2
+ b

dx

dt
+ cx = f (t), t > 0 (6.38)

where a, b, and c are constants, and f (t) is an arbitrary forcing function.
The solution is obtained by first solving the highest-order derivative term.
Solving for d2x/dt2 yields

d2x

dt2
= f (t)

a
− b

a

dx

dt
− c

a
x (6.39)

To obtain dx/dt , the d2x/dt2 term is integrated and inverted. Finally, to
obtain x, the dx/dt term is integrated and inverted. The forcing function
is injected at the proper point. Thus, the analog computer for solving Eq.
(6.38) is implemented by connecting the necessary summers, inverters,
and integrators. A plotter or oscilloscope may be used to view the output
x, or dx/dt , or d2x/dt2, depending on where it is connected in the
system.

Although the above example is on a second-order differential equa-
tion, any differential equation can be simulated by an analog computer
comprising integrators, inverters, and inverting summers. But care must
be exercised in selecting the values of the resistors and capacitors, to
ensure that the op amps do not saturate during the solution time
interval.

The analog computers with vacuum tubes were built in the 1950s
and 1960s. Recently their use has declined. They have been superseded
by modern digital computers. However, we still study analog computers
for two reasons. First, the availability of integrated op amps has made
it possible to build analog computers easily and cheaply. Second, un-
derstanding analog computers helps with the appreciation of the digital
computers.

E X A M P L E 6 . 1 5

Design an analog computer circuit to solve the differential equation:

d2vo

dt2
+ 2

dvo

dt
+ vo = 10 sin 4t t > 0

subject to vo(0) = −4, v′
o(0) = 1, where the prime refers to the time

derivative.

Solution:

We first solve for the second derivative as

d2vo

dt2
= 10 sin 4t − 2

dvo

dt
− vo (6.15.1)

Solving this requires some mathematical operations, including summing,
scaling, and integration. Integrating both sides of Eq. (6.15.1) gives

dvo

dt
= −

∫ t

0

(
−10 sin 4t + 2

dvo

dt
+ vo

)
+ v′

o(0) (6.15.2)
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where v′
o(0) = 1. We implement Eq. (6.15.2) using the summing inte-

grator shown in Fig. 6.40(a). The values of the resistors and capacitors
have been chosen so that RC = 1 for the term

− 1

RC

∫ t

0
vo dt

Other terms in the summing integrator of Eq. (6.15.2) are implemented
accordingly. The initial condition dvo(0)/dt = 1 is implemented by
connecting a 1-V battery with a switch across the capacitor as shown in
Fig. 6.40(a).

(a)

1 mF1 MΩ

1 V

0.6 MΩ

1 MΩ
dvo

dt
dvo

dt

dvo

dt

t = 0

–10 sin (4t)

vo

1 mF

1 MΩ 1 V

0.5 MΩ

1 MΩ

t = 0

10 sin (4t)

vo

(b)

1 mF

4 V

1 MΩ
1 MΩdvo

dt

t = 0

−vo
vo

1 MΩ

(c)

1 mF

4 V

1 MΩ 1 MΩ

t = 0

vo

1 MΩ

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+ −

+ −

+ −
+ −

Figure 6.40 For Example 6.15.

The next step is to obtain vo by integrating dvo/dt and inverting
the result,

vo = −
∫ t

0

(
−dvo

dt

)
dt + v(0) (6.15.3)

This is implemented with the circuit in Fig. 6.40(b) with the battery giving
the initial condition of −4 V. We now combine the two circuits in Fig.
6.40 (a) and (b) to obtain the complete circuit shown in Fig. 6.40(c). When
the input signal 10 sin 4t is applied, we open the switches at t = 0 to obtain
the output waveform vo, which may be viewed on an oscilloscope.
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P R A C T I C E P R O B L E M 6 . 1 5

Design an analog computer circuit to solve the differential equation:

d2vo

dt2
+ 3

dvo

dt
+ 2vo = 4 cos 10t t > 0

subject to vo(0) = 2, v′
o(0) = 0.

Answer: See Fig. 6.41, where RC = 1 s.

d2v

dt2

d2v

dt2

cos (10t)

2 V
t = 0

v

+
−

C

R
R

2

R

C

R

R

R

R
3

R
4  

+
−

+
−

+
−

+
−

+
−

R
R

Figure 6.41 For Practice Prob. 6.15.

6.7 SUMMARY
1. The current through a capacitor is directly proportional to the time

rate of change of the voltage across it.

i = C
dv

dt

The current through a capacitor is zero unless the voltage is
changing. Thus, a capacitor acts like an open circuit to a dc source.

2. The voltage across a capacitor is directly proportional to the time
integral of the current through it.

v = 1

C

∫ t

−∞
i dt = 1

C

∫ t

t0

i dt + i(t0)

The voltage across a capacitor cannot change instantly.

3. Capacitors in series and in parallel are combined in the same way as
conductances.
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4. The voltage across an inductor is directly proportional to the time
rate of change of the current through it.

v = L
di

dt

The voltage across the inductor is zero unless the current is chang-
ing. Thus an inductor acts like a short circuit to a dc source.

5. The current through an inductor is directly proportional to the time
integral of the voltage across it.

i = 1

L

∫ t

−∞
v dt = 1

L

∫ t

t0

v dt + v(t0)

The current through an inductor cannot change instantly.

6. Inductors in series and in parallel are combined in the same way
resistors in series and in parallel are combined.

7. At any given time t , the energy stored in a capacitor is 1
2Cv2, while

the energy stored in an inductor is 1
2Li2.

8. Three application circuits, the integrator, the differentiator, and the
analog computer, can be realized using resistors, capacitors, and op
amps.

R E V I EW QU E S T I ON S

6.1 What charge is on a 5-F capacitor when it is
connected across a 120-V source?
(a) 600 C (b) 300 C
(c) 24 C (d) 12 C

6.2 Capacitance is measured in:
(a) coulombs (b) joules
(c) henrys (d) farads

6.3 When the total charge in a capacitor is doubled, the
energy stored:
(a) remains the same (b) is halved
(c) is doubled (d) is quadrupled

6.4 Can the voltage waveform in Fig. 6.42 be associated
with a capacitor?
(a) Yes (b) No

0
21

10

−10

t

v(t)

Figure 6.42 For Review Question 6.4.

6.5 The total capacitance of two 40-mF series-connected
capacitors in parallel with a 4-mF capacitor is:
(a) 3.8 mF (b) 5 mF (c) 24 mF
(d) 44 mF (e) 84 mF

6.6 In Fig. 6.43, if i = cos 4t and v = sin 4t , the
element is:
(a) a resistor (b) a capacitor (c) an inductor

v +
−

i

Element

Figure 6.43 For Review Question 6.6.

6.7 A 5-H inductor changes its current by 3 A in 0.2 s.
The voltage produced at the terminals of the
inductor is:
(a) 75 V (b) 8.888 V
(c) 3 V (d) 1.2 V

6.8 If the current through a 10-mH inductor increases
from zero to 2 A, how much energy is stored in the
inductor?
(a) 40 mJ (b) 20 mJ
(c) 10 mJ (d) 5 mJ
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6.9 Inductors in parallel can be combined just like
resistors in parallel.
(a) True (b) False

6.10 For the circuit in Fig. 6.44, the voltage divider
formula is:

(a) v1 = L1 + L2

L1
vs (b) v1 = L1 + L2

L2
vs

(c) v1 = L2

L1 + L2
vs (d) v1 = L1

L1 + L2
vs

vs
+
− v2

v1

L1

L2

+

−

+ −

Figure 6.44 For Review Question 6.10.

Answers: 6.1a, 6.2d, 6.3d, 6.4b, 6.5c, 6.6b, 6.7a, 6.8b, 6.9a, 6.10d.

P RO B L E M S

Section 6.2 Capacitors

6.1 If the voltage across a 5-F capacitor is 2te−3t V, find
the current and the power.

6.2 A 40-µF capacitor is charged to 120 V and is then
allowed to discharge to 80 V. How much energy is
lost?

6.3 In 5 s, the voltage across a 40-mF capacitor changes
from 160 V to 220 V. Calculate the average current
through the capacitor.

6.4 A current of 6 sin 4t A flows through a 2-F
capacitor. Find the voltage v(t) across the capacitor
given that v(0) = 1 V.

6.5 If the current waveform in Fig. 6.45 is applied to a
20-µF capacitor, find the voltage v(t) across the
capacitor. Assume that v(0) = 0.

0
21

4

t

i(t)

Figure 6.45 For Prob. 6.5.

6.6 The voltage waveform in Fig. 6.46 is applied across
a 30-µF capacitor. Draw the current waveform
through it.

v(t) V

0
6 8 10 1242

10

−10

t (ms)

Figure 6.46 For Prob. 6.6.

6.7 At t = 0, the voltage across a 50-mF capacitor is
10 V. Calculate the voltage across the capacitor for
t > 0 when current 4t mA flows through it.

6.8 The current through a 0.5-F capacitor is
6(1 − e−t ) A. Determine the voltage and power at
t = 2 s. Assume v(0) = 0.

6.9 If the voltage across a 2-F capacitor is as shown in
Fig. 6.47, find the current through the capacitor.

v (t) (V)

0

5

3 4 5 6 721

10

t (s)

Figure 6.47 For Prob. 6.9.

6.10 The current through an initially uncharged 4-µF
capacitor is shown in Fig. 6.48. Find the voltage
across the capacitor for 0 < t < 3.
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0
2 31

40

−40

t (s)

i(t) (mA)

Figure 6.48 For Prob. 6.10.

6.11 A voltage of 60 cos 4πt V appears across the
terminals of a 3-mF capacitor. Calculate the current
through the capacitor and the energy stored in it
from t = 0 to t = 0.125 s.

6.12 Find the voltage across the capacitors in the circuit
of Fig. 6.49 under dc conditions.

3 Ω

60 V

20 Ω

10 Ω 50 Ω

v2v1C1 C2

+
−

+

−

+

−

Figure 6.49 For Prob. 6.12.

Section 6.3 Series and Parallel Capacitors

6.13 What is the total capacitance of four 30-mF
capacitors connected in:
(a) parallel (b) series

6.14 Two capacitors (20 µF and 30 µF) are connected to
a 100-V source. Find the energy stored in each
capacitor if they are connected in:
(a) parallel (b) series

6.15 Determine the equivalent capacitance for each of the
circuits in Fig. 6.50.

4 F

4 F

6 F3 F

12 F

(a)

6 F

4 F 2 F5 F

(b)

2 F

3 F

(c)

6 F3 F

4 F

Figure 6.50 For Prob. 6.15.

6.16 Find Ceq for the circuit in Fig. 6.51.

30 mF

5 mF 40 mF15 mF

20 mF

Ceq

Figure 6.51 For Prob. 6.16.

6.17 Calculate the equivalent capacitance for the circuit
in Fig. 6.52. All capacitances are in mF.

48

1

15

5

6 6
2

3

Ceq

Figure 6.52 For Prob. 6.17.

6.18 Determine the equivalent capacitance at terminals
a-b of the circuit in Fig. 6.53.

6 mF 4 mF5 mF

3 mF 12 mF2 mF

a

b

Figure 6.53 For Prob. 6.18.
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6.19 Obtain the equivalent capacitance of the circuit in
Fig. 6.54.

40 mF

20 mF

a b

35 mF 5 mF

10 mF

15 mF 15 mF

10 mF

Figure 6.54 For Prob. 6.19.

6.20 For the circuit in Fig. 6.55, determine:
(a) the voltage across each capacitor,
(b) the energy stored in each capacitor.

2 mF
6 mF

4 mF

3 mF

+
−120 V

Figure 6.55 For Prob. 6.20.

6.21 Repeat Prob. 6.20 for the circuit in Fig. 6.56.

60 mF 20 mF

14 mF 80 mF30 mF+
−90 V

Figure 6.56 For Prob. 6.21.

6.22 (a) Show that the voltage-division rule for two
capacitors in series as in Fig. 6.57(a) is

v1 = C2

C1 + C2
vs, v2 = C1

C1 + C2
vs

assuming that the initial conditions are zero.

C1is C2

(b)

C1

vs

v1

v2 C2

(a)

+
−

+

−

+ − i1 i2

Figure 6.57 For Prob. 6.22.

(b) For two capacitors in parallel as in Fig. 6.57(b),
show that the current-division rule is

i1 = C1

C1 + C2
is , i2 = C2

C1 + C2
is

assuming that the initial conditions are zero.

6.23 Three capacitors, C1 = 5 µF, C2 = 10 µF, and
C3 = 20 µF, are connected in parallel across a
150-V source. Determine:
(a) the total capacitance,
(b) the charge on each capacitor,
(c) the total energy stored in the parallel

combination.

6.24 The three capacitors in the previous problem are
placed in series with a 200-V source. Compute:
(a) the total capacitance,
(b) the charge on each capacitor,
(c) the total energy stored in the series combination.

6.25∗ Obtain the equivalent capacitance of the network
shown in Fig. 6.58.

30 mF

20 mF10 mF

50 mF40 mF

Figure 6.58 For Prob. 6.25.

6.26 Determine Ceq for each circuit in Fig. 6.59.

∗An asterisk indicates a challenging problem.
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C

C
C

C

CCeq

(a)

C

CC

C

Ceq

(b)

Figure 6.59 For Prob. 6.26.

6.27 Assuming that the capacitors are initially uncharged,
find vo(t) in the circuit in Fig. 6.60.

is +

−
vo(t)

6 mF

3 mF

is (mA)

0
21

60

t (s)

Figure 6.60 For Prob. 6.27.

6.28 If v(0) = 0, find v(t), i1(t), and i2(t) in the circuit in
Fig. 6.61.

i1

is

i2

v6 mF 4 mF

is (mA)

53 41 2

20

0

−20

t

+

−

Figure 6.61 For Prob. 6.28.

6.29 For the circuit in Fig. 6.62, let v = 10e−3t V and
v1(0) = 2 V. Find:

(a) v2(0) (b) v1(t) and v2(t)

(c) i(t), i1(t), and i2(t)

50 mF30 mF

20 mF

v

+

−

v2

v1

i

−+
+

−

i1 i2

Figure 6.62 For Prob. 6.29.

Section 6.4 Inductors

6.30 The current through a 10-mH inductor is 6e−t/2 A.
Find the voltage and the power at t = 3 s.

6.31 The current in a coil increases uniformly from 0.4 to
1 A in 2 s so that the voltage across the coil is
60 mV. Calculate the inductance of the coil.

6.32 The current through a 0.25-mH inductor is
12 cos 2t A. Determine the terminal voltage and the
power.

6.33 The current through a 12-mH inductor is
4 sin 100t A. Find the voltage, and also the energy
stored in the inductor for 0 < t < π/200 s.

6.34 The current through a 40-mH inductor is

i(t) =
{

0, t < 0
te−2t A, t > 0

Find the voltage v(t).

6.35 The voltage across a 2-H inductor is 20(1 − e−2t ) V.
If the initial current through the inductor is 0.3 A,
find the current and the energy stored in the inductor
at t = 1 s.

6.36 If the voltage waveform in Fig. 6.63 is applied
across the terminals of a 5-H inductor, calculate the
current through the inductor. Assume i(0) = −1 A.

v (t) (V) 

5421 3

10

0
t

Figure 6.63 For Prob. 6.36.

6.37 The current in an 80-mH inductor increases from 0
to 60 mA. How much energy is stored in the
inductor?

6.38 A voltage of (4 + 10 cos 2t) V is applied to a 5-H
inductor. Find the current i(t) through the inductor
if i(0) = −1 A.
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6.39 If the voltage waveform in Fig. 6.64 is applied to a
10-mH inductor, find the inductor current i(t).
Assume i(0) = 0.

v(t)

0
21

5

–5

t

Figure 6.64 For Prob. 6.39.

6.40 Find vC , iL, and the energy stored in the capacitor
and inductor in the circuit of Fig. 6.65 under dc
conditions.

5 Ω

2 Ω

4 Ω

2 F

3 A 0.5 H

vC

+

−

iL

Figure 6.65 For Prob. 6.40.

6.41 For the circuit in Fig. 6.66, calculate the value of R
that will make the energy stored in the capacitor the
same as that stored in the inductor under dc
conditions.

R

2 Ω5 A 4 mH

160 mF

Figure 6.66 For Prob. 6.41.

6.42 Under dc conditions, find the voltage across the
capacitors and the current through the inductors in
the circuit of Fig. 6.67.

6 Ω

4 Ω

30 V +
− C1

L1

C2 L2

Figure 6.67 For Prob. 6.42.

Section 6.5 Series and Parallel Inductors

6.43 Find the equivalent inductance for each circuit in
Fig. 6.68.

5 H 1 H

4 H 4 H6 H

(a)

1 H 2 H

6 H 4 H12 H

(b)

6 H

2 H

4 H

3 H

(c)

Figure 6.68 For Prob. 6.43.

6.44 Obtain Leq for the inductive circuit of Fig. 6.69. All
inductances are in mH.

65

4

12

10

3

Figure 6.69 For Prob. 6.44.
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6.45 Determine Leq at terminals a-b of the circuit in Fig.
6.70.

60 mH

20 mH

30 mH

25 mH

10 mH

a b

Figure 6.70 For Prob. 6.45.

6.46 Find Leq at the terminals of the circuit in Fig. 6.71.

8 mH6 mH

8 mH

12 mH

4 mH
6 mH

5 mH

8 mH10 mH

a

b

Figure 6.71 For Prob. 6.46.

6.47 Find the equivalent inductance looking into the
terminals of the circuit in Fig. 6.72.

9 H

6 H4 H

3 H12 H

10 H

a b

Figure 6.72 For Prob. 6.47.

6.48 Determine Leq in the circuit in Fig. 6.73.

L

L

L

L

L

L

Leq

Figure 6.73 For Prob. 6.48.

6.49 Find Leq in the circuit in Fig. 6.74.

L

L

L

L L

Leq

L

L
L

Figure 6.74 For Prob. 6.49.

6.50∗ Determine Leq that may be used to represent the
inductive network of Fig. 6.75 at the terminals.

3 H

4 H

5 H
Leq

+ −
i

a

b

dt
di2

Figure 6.75 For Prob. 6.50.

6.51 The current waveform in Fig. 6.76 flows through a
3-H inductor. Sketch the voltage across the inductor
over the interval 0 < t < 6 s.

i(t)

0

2

3 4 5 621 t

Figure 6.76 For Prob. 6.51.
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6.52 (a) For two inductors in series as in Fig. 6.77(b),
show that the current-division principle is

v1 = L1

L1 + L2
vs, v2 = L2

L1 + L2
vs

assuming that the initial conditions are zero.
(b) For two inductors in parallel as in Fig. 6.77(b),

show that the current-division principle is

i1 = L2

L1 + L2
is , i2 = L1

L1 + L2
is

assuming that the initial conditions are zero.

vs
+
−

+

−
v2

+ −v1

L1

L2

(a)(a)

is L1 L2

(b)

i1 i2

Figure 6.77 For Prob. 6.52.

6.53 In the circuit of Fig. 6.78, let is(t) = 6e−2t mA,
t ≥ 0 and i1(0) = 4 mA. Find:
(a) i2(0),
(b) i1(t) and i2(t), t > 0,
(c) v1(t) and v2(t), t > 0,
(d) the energy in each inductor at t = 0.5 s.

is(t)

i1 i2

20 mH30 mH

10 mH

+ −v1

v2

+

−

Figure 6.78 For Prob. 6.53.

6.54 The inductors in Fig. 6.79 are initially charged and
are connected to the black box at t = 0. If
i1(0) = 4 A, i2(0) = −2 A, and v(t) = 50e−200t mV,
t ≥ 0, find:
(a) the energy initially stored in each inductor,
(b) the total energy delivered to the black box from

t = 0 to t = ∞,
(c) i1(t) and i2(t), t ≥ 0,
(d) i(t), t ≥ 0.

i1 i2

20 H5 Hv

+

−

Black box

i(t)

t = 0

Figure 6.79 For Prob. 6.54.

6.55 Find i and v in the circuit of Fig. 6.80 assuming that
i(0) = 0 = v(0).

40 mH60 mH

20 mH

16 mH

v
+

−
12 sin 4t mV +

−

i

Figure 6.80 For Prob. 6.55.

Section 6.6 Applications

6.56 An op amp integrator has R = 50 k� and
C = 0.04 µF. If the input voltage is
vi = 10 sin 50t mV, obtain the output voltage.

6.57 A 10-V dc voltage is applied to an integrator with
R = 50 k�, C = 100 µF at t = 0. How long will it
take for the op amp to saturate if the saturation
voltages are +12 V and −12 V? Assume that the
initial capacitor voltage was zero.

6.58 An op amp integrator with R = 4 M� and
C = 1 µF has the input waveform shown in Fig.
6.81. Plot the output waveform.

vi (mV)

0

20

10

–10

–20

3 4 5 621 t (ms)

Figure 6.81 For Prob. 6.58.

6.59 Using a single op amp, a capacitor, and resistors of
100 k� or less, design a circuit to implement

vo = −50
∫ t

0
vi(t) dt

Assume vo = 0 at t = 0.
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6.60 Show how you would use a single op amp to
generate

vo = −
∫ t

0
(v1 + 4v2 + 10v3) dt

If the integrating capacitor is C = 2 µF, obtain other
component values.

6.61 At t = 1.5 ms, calculate vo due to the cascaded
integrators in Fig. 6.82. Assume that the integrators
are reset to 0 V at t = 0.

1 V

2 mF

10 kΩ
20 kΩ

vo

+
−

0.5 mF

+

−

+
−

+
−

Figure 6.82 For Prob. 6.61.

6.62 Show that the circuit in Fig. 6.83 is a noninverting
integrator.

vo

vi
+
−

+

−

R

R

R

C

R

+
−

Figure 6.83 For Prob. 6.62.

6.63 The triangular waveform in Fig. 6.84(a) is applied to
the input of the op amp differentiator in Fig. 6.84(b).
Plot the output.

(a)

vi(t)

0

10

3 421 t (ms)

–10

vo
vi

+
−

+

−

20 kΩ

0.01 mF

(b)

+
−

Figure 6.84 For Prob. 6.63.

6.64 An op amp differentiator has R = 250 k� and
C = 10 µF. The input voltage is a ramp
r(t) = 12t mV. Find the output voltage.

6.65 A voltage waveform has the following
characteristics: a positive slope of 20 V/s for 5 ms
followed by a negative slope of 10 V/s for 10 ms. If
the waveform is applied to a differentiator with
R = 50 k�, C = 10 µF, sketch the output voltage
waveform.

6.66∗ The output vo of the op amp circuit of Fig. 6.85(a) is
shown in Fig. 6.85(b). Let Ri = Rf = 1 M� and
C = 1 µF. Determine the input voltage waveform
and sketch it.

(b)

(a)

0

4

3 421 t (ms)

−4

vo
vi

vo

Ri

C

Rf

+
−

+

−

+
−

Figure 6.85 For Prob. 6.66.

6.67 Design an analog computer to simulate

d2vo

dt2
+ 2

dvo

dt
+ vo = 10 sin 2t

where v0(0) = 2 and v′
0(0) = 0.
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6.68 Design an analog computer to solve the differential
equation

di(t)

dt
+ 3i(t) = 2 t > 0

and assume that i(0) = 1 mA.

6.69 Figure 6.86 presents an analog computer designed to
solve a differential equation. Assuming f (t) is
known, set up the equation for f (t).

vo(t)

−f (t)

1 mF
1 mF

1 MΩ
1 MΩ

1 MΩ

100 kΩ 200 kΩ

500 kΩ

100 kΩ

+
−

+
−

+
−

+
−

Figure 6.86 For Prob. 6.69.

COM P R E H EN S I V E P RO B L E M S

6.70 Your laboratory has available a large number of
10-µF capacitors rated at 300 V. To design a
capacitor bank of 40-µF rated at 600 V, how many
10-µF capacitors are needed and how would you
connect them?

6.71 When a capacitor is connected to a dc source, its
voltage rises from 20 V to 36 V in 4 µs with an
average charging current of 0.6 A. Determine the
value of the capacitance.

6.72 A square-wave generator produces the voltage
waveform shown in Fig. 6.87(a). What kind of a
circuit component is needed to convert the voltage
waveform to the triangular current waveform shown
in Fig. 6.87(b)? Calculate the value of the
component, assuming that it is initially uncharged.

v (V)

0

5

−5

3 421 t (ms)

(a)

(b)

i (A)

4

3 4210 t (ms)

Figure 6.87 For Prob. 6.72.

6.73 In an electric power plant substation, a capacitor
bank is made of 10 capacitor strings connected in
parallel. Each string consists of eight 1000-µF
capacitors connected in series, with each capacitor
charged to 100 V.
(a) Calculate the total capacitance of the bank.
(b) Determine the total energy stored in the bank.
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C H A P T E R

FIRST-ORDER CIRCUITS

7

I often say that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory
kind; it may be the beginning of knowledge, but you have scarcely, in
your thoughts, advanced to the stage of a science, whatever the matter
may be.

—Lord Kelvin

Enhancing Your Career
Careers in Computer Engineering Electrical engineer-
ing education has gone through drastic changes in recent
decades. Most departments have come to be known as De-
partment of Electrical and Computer Engineering, empha-
sizing the rapid changes due to computers. Computers oc-
cupy a prominent place in modern society and education.
They have become commonplace and are helping to change
the face of research, development, production, business,
and entertainment. The scientist, engineer, doctor, attor-
ney, teacher, airline pilot, businessperson—almost anyone
benefits from a computer’s abilities to store large amounts
of information and to process that information in very short
periods of time. The internet, a computer communication
network, is becoming essential in business, education, and
library science. Computer usage is growing by leaps and
bounds.

Three major disciplines study computer systems:
computer science, computer engineering, and information
management science. Computer engineering has grown so
fast and wide that it is divorcing itself from electrical en-
gineering. But, in many schools of engineering, computer
engineering is still an integral part of electrical engineering.

An education in computer engineering should provide
breadth in software, hardware design, and basic modeling
techniques. It should include courses in data structures, dig-
ital systems, computer architecture, microprocessors, inter-
facing, software engineering, and operating systems. Elec-
trical engineers who specialize in computer engineering find

Computer design of very large scale integrated (VLSI) circuits.
Source: M. E. Hazen, Fundamentals of DC and AC Circuits,
Philadelphia: Saunders, 1990, p. 20A4.

jobs in computer industries and in numerous fields where
computers are being used. Companies that produce soft-
ware are growing rapidly in number and size and providing
employment for those who are skilled in programming. An
excellent way to advance one’s knowledge of computers is
to join the IEEE Computer Society, which sponsors diverse
magazines, journals, and conferences.
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7.1 INTRODUCTION
Now that we have considered the three passive elements (resistors, ca-
pacitors, and inductors) and one active element (the op amp) individually,
we are prepared to consider circuits that contain various combinations of
two or three of the passive elements. In this chapter, we shall examine
two types of simple circuits: a circuit comprising a resistor and capaci-
tor and a circuit comprising a resistor and an inductor. These are called
RC andRL circuits, respectively. As simple as these circuits are, they
find continual applications in electronics, communications, and control
systems, as we shall see.

We carry out the analysis ofRC andRL circuits by applying Kirch-
hoff’s laws, as we did for resistive circuits. The only difference is that
applying Kirchhoff’s laws to purely resistive circuits results in algebraic
equations, while applying the laws toRC andRL circuits produces dif-
ferential equations, which are more difficult to solve than algebraic equa-
tions. The differential equations resulting from analyzingRC andRL
circuits are of the first order. Hence, the circuits are collectively known
asfirst-order circuits.

A first-order circuit is characterized by a first-order differential equation.

In addition to there being two types of first-order circuits (RC

andRL), there are two ways to excite the circuits. The first way is by
initial conditions of the storage elements in the circuits. In these so-
calledsource-free circuits, we assume that energy is initially stored in
the capacitive or inductive element. The energy causes current to flow in
the circuit and is gradually dissipated in the resistors. Although source-
free circuits are by definition free of independent sources, they may have
dependent sources. The second way of exciting first-order circuits is by
independent sources. In this chapter, the independent sources we will
consider are dc sources. (In later chapters, we shall consider sinusoidal
and exponential sources.) The two types of first-order circuits and the
two ways of exciting them add up to the four possible situations we will
study in this chapter.

Finally, we consider four typical applications ofRC andRL cir-
cuits: delay and relay circuits, a photoflash unit, and an automobile igni-
tion circuit.

7.2 THE SOURCE-FREE RC CIRCUIT
A source-freeRC circuit occurs when its dc source is suddenly discon-
nected. The energy already stored in the capacitor is released to the
resistors.

v

+

−

iRiC

RC

Figure 7.1 A source-free
RC circuit.

A circuit response is the manner in which the
circuit reacts to an excitation.

Consider a series combination of a resistor and an initially charged
capacitor, as shown in Fig. 7.1. (The resistor and capacitor may be the
equivalent resistance and equivalent capacitance of combinations of re-
sistors and capacitors.) Our objective is to determine the circuit response,
which, for pedagogic reasons, we assume to be the voltage v(t) across
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the capacitor. Since the capacitor is initially charged, we can assume that
at time t = 0, the initial voltage is

v(0) = V0 (7.1)

with the corresponding value of the energy stored as

w(0) = 1

2
CV 2

0 (7.2)

Applying KCL at the top node of the circuit in Fig. 7.1,

iC + iR = 0 (7.3)

By definition, iC = C dv/dt and iR = v/R. Thus,

C
dv

dt
+ v

R
= 0 (7.4a)

or
dv

dt
+ v

RC
= 0 (7.4b)

This is a first-order differential equation, since only the first derivative of
v is involved. To solve it, we rearrange the terms as

dv

v
= − 1

RC
dt (7.5)

Integrating both sides, we get

ln v = − t

RC
+ lnA

where lnA is the integration constant. Thus,

ln
v

A
= − t

RC
(7.6)

Taking powers of e produces

v(t) = Ae−t/RC

But from the initial conditions, v(0) = A = V0. Hence,

v(t) = V0e
−t/RC (7.7)

This shows that the voltage response of the RC circuit is an exponential
decay of the initial voltage. Since the response is due to the initial energy
stored and the physical characteristics of the circuit and not due to some
external voltage or current source, it is called the natural response of the
circuit.

The natural response of a circuit refers to the behavior (in terms of voltages and
currents) of the circuit itself, with no external sources of excitation.

The natural response depends on the nature of
the circuit alone, with no external sources. In
fact, the circuit has a response only because of
the energy initially stored in the capacitor.

The natural response is illustrated graphically in Fig. 7.2. Note that at
t = 0, we have the correct initial condition as in Eq. (7.1). As t increases,
the voltage decreases toward zero. The rapidity with which the voltage
decreases is expressed in terms of the time constant, denoted by the lower
case Greek letter tau, τ .



240 PART 1 DC Circuits

The time constant of a circuit is the time required for the response to decay by a
factor of 1/e or 36.8 percent of its initial value.1

Voe−t ⁄ t 

t t

0.368Vo

Vo

v

0

Figure 7.2 The voltage response of the RC
circuit.

t 2t 3t 4t 5t t (s)0

v
Vo

0.37

0.25

0.75

1.0

0.50
Tangent at t = 0

Figure 7.3 Graphical determination of the
time constant τ from the response curve.

This implies that at t = τ , Eq. (7.7) becomes

V0e
−τ/RC = V0e

−1 = 0.368V0

or

τ = RC (7.8)

In terms of the time constant, Eq. (7.7) can be written as

v(t) = V0e
−t/τ (7.9)

With a calculator it is easy to show that the value of v(t)/V0 is as
shown in Table 7.1. It is evident from Table 7.1 that the voltage v(t) is less
than 1 percent of V0 after 5τ (five time constants). Thus, it is customary
to assume that the capacitor is fully discharged (or charged) after five
time constants. In other words, it takes 5τ for the circuit to reach its final
state or steady state when no changes take place with time. Notice that
for every time interval of τ , the voltage is reduced by 36.8 percent of its
previous value, v(t + τ) = v(t)/e = 0.368v(t), regardless of the value
of t .

TABLE 7.1 Values of
v(t)/V0 = e−t/τ .

t v(t)/V0

τ 0.36788
2τ 0.13534
3τ 0.04979
4τ 0.01832
5τ 0.00674

Observe from Eq. (7.8) that the smaller the time constant, the more
rapidly the voltage decreases, that is, the faster the response. This is
illustrated in Fig. 7.4. A circuit with a small time constant gives a fast
response in that it reaches the steady state (or final state) quickly due to
quick dissipation of energy stored, whereas a circuit with a large time

1The time constant may be viewed from another perspective. Evaluating the derivative of
v(t) in Eq. (7.7) at t = 0, we obtain

d

dt

(
v

V0

) ∣∣∣∣
t = 0

= − 1

τ
e−t/τ

∣∣∣∣
t=0

= − 1

τ

Thus the time constant is the initial rate of decay, or the time taken for v/V0 to decay from
unity to zero, assuming a constant rate of decay. This initial slope interpretation of the
time constant is often used in the laboratory to find τ graphically from the response curve
displayed on an oscilloscope. To find τ from the response curve, draw the tangent to the
curve, as shown in Fig. 7.3. The tangent intercepts with the time axis at t = τ .
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0 t

1

3 4 51 2

v
Vo

e−t ⁄t=

t = 0.5

t = 1

t = 2

Figure 7.4 Plot of v/V0 = e−t/τ for various values of the time constant.

constant gives a slow response because it takes longer to reach steady
state. At any rate, whether the time constant is small or large, the circuit
reaches steady state in five time constants.

With the voltage v(t) in Eq. (7.9), we can find the current iR(t),

iR(t) = v(t)

R
= V0

R
e−t/τ (7.10)

The power dissipated in the resistor is

p(t) = viR = V 2
0

R
e−2t/τ (7.11)

The energy absorbed by the resistor up to time t is

wR(t) =
∫ t

0
p dt =

∫ t

0

V 2
0

R
e−2t/τ dt

= −τV 2
0

2R
e−2t/τ

∣∣∣∣
t

0

= 1

2
CV 2

0 (1 − e−2t/τ ), τ = RC

(7.12)

Notice that as t → ∞, wR(∞) → 1
2CV

2
0 , which is the same as wC(0),

the energy initially stored in the capacitor. The energy that was initially
stored in the capacitor is eventually dissipated in the resistor.

In summary:

T h e K e y t o Wo r k i n g w i t h a S o u r c e - f r e e RC C i r c u i t i s
F i n d i n g :

1. The initial voltage v(0) = V0 across the capacitor.

2. The time constant τ .

The time constant is the same regardless of what
the output is defined to be.

With these two items, we obtain the response as the capacitor voltage
vC(t) = v(t) = v(0)e−t/τ . Once the capacitor voltage is first obtained,
other variables (capacitor current iC , resistor voltage vR , and resistor
current iR) can be determined. In finding the time constant τ = RC, R is
often the Thevenin equivalent resistance at the terminals of the capacitor;
that is, we take out the capacitor C and find R = RTh at its terminals.

When a circuit contains a single capacitor and
several resistors and dependent sources, the
Thevenin equivalent can be found at the termi-
nals of the capacitor to form a simple RC circuit.
Also, one can use Thevenin’s theorem when sev-
eral capacitors can be combined to form a single
equivalent capacitor.
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E X A M P L E 7 . 1

In Fig. 7.5, let vC(0) = 15 V. Find vC , vx , and ix for t > 0.

5 Ω

8 Ω

12 ΩvC vx

ix
+

−

+

−
0.1 F

Figure 7.5 For Example 7.1.

Solution:

We first need to make the circuit in Fig. 7.5 conform with the standard
RC circuit in Fig. 7.1. We find the equivalent resistance or the Thevenin
resistance at the capacitor terminals. Our objective is always to first obtain
capacitor voltage vC . From this, we can determine vx and ix .

The 8-� and 12-� resistors in series can be combined to give a
20-� resistor. This 20-� resistor in parallel with the 5-� resistor can be
combined so that the equivalent resistance is

Req = 20 × 5

20 + 5
= 4 �

Hence, the equivalent circuit is as shown in Fig. 7.6, which is analogous
to Fig. 7.1. The time constant is

τ = ReqC = 4(0.1) = 0.4 s

Thus,

v = v(0)e−t/τ = 15e−t/0.4 V, vC = v = 15e−2.5t V

From Fig. 7.5, we can use voltage division to get vx ; so

vx = 12

12 + 8
v = 0.6(15e−2.5t ) = 9e−2.5t V

Finally,

ix = vx

12
= 0.75e−2.5tA

v

+

−

Req 0.1 F

Figure 7.6 Equivalent circuit
for the circuit in Fig. 7.5.

P R A C T I C E P R O B L E M 7 . 1

Refer to the circuit in Fig. 7.7. Let vC(0) = 30 V. Determine vC , vx , and
io for t ≥ 0.

12 Ω

8 Ω

vC  F6 Ω

io

+

−
vx

+

−
1
3

Figure 7.7 For Practice Prob. 7.1.

Answer: 30e−0.25t V, 10e−0.25t V, −2.5e−0.25t A.

E X A M P L E 7 . 2

The switch in the circuit in Fig. 7.8 has been closed for a long time, and
it is opened at t = 0. Find v(t) for t ≥ 0. Calculate the initial energy
stored in the capacitor.

3 Ω

20 V
+

−
v9 Ω

t = 0
1 Ω

20 mF+
−

Figure 7.8 For Example 7.2.

Solution:

For t < 0, the switch is closed; the capacitor is an open circuit to dc, as
represented in Fig. 7.9(a). Using voltage division
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vC(t) = 9

9 + 3
(20) = 15 V, t < 0

Since the voltage across a capacitor cannot change instantaneously, the
voltage across the capacitor at t = 0− is the same at t = 0, or

vC(0) = V0 = 15 V

9 Ω

1 Ω

vC(0)

3 Ω

9 Ω

1 Ω

+

−

+
−20 V

(a)

(b)

+

−
Vo = 15 V 20 mF

Figure 7.9 For Example 7.2: (a) t < 0,
(b) t > 0.

For t > 0, the switch is opened, and we have the RC circuit shown
in Fig. 7.9(b). [Notice that the RC circuit in Fig. 7.9(b) is source free;
the independent source in Fig. 7.8 is needed to provide V0 or the initial
energy in the capacitor.] The 1-� and 9-� resistors in series give

Req = 1 + 9 = 10 �

The time constant is

τ = ReqC = 10 × 20 × 10−3 = 0.2 s

Thus, the voltage across the capacitor for t ≥ 0 is

v(t) = vC(0)e
−t/τ = 15e−t/0.2 V

or

v(t) = 15e−5t V

The initial energy stored in the capacitor is

wC(0) = 1

2
Cv2

C(0) = 1

2
× 20 × 10−3 × 152 = 2.25 J

P R A C T I C E P R O B L E M 7 . 2

If the switch in Fig. 7.10 opens at t = 0, find v(t) for t ≥ 0 and wC(0).

Answer: 8e−2t V, 5.33 J.
6 Ω

+
−24 V

+

−
v 12 Ω 4 Ω

t = 0

  F1
6

Figure 7.10 For Practice Prob. 7.2.

7.3 THE SOURCE-FREE RL CIRCUIT

vL+

−

RL

i

vR

+

−

Figure 7.11 A source-
free RL circuit.

Consider the series connection of a resistor and an inductor, as shown in
Fig. 7.11. Our goal is to determine the circuit response, which we will
assume to be the current i(t) through the inductor. We select the inductor
current as the response in order to take advantage of the idea that the
inductor current cannot change instantaneously. At t = 0, we assume
that the inductor has an initial current I0, or

i(0) = I0 (7.13)

with the corresponding energy stored in the inductor as

w(0) = 1

2
LI 2

0 (7.14)
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Applying KVL around the loop in Fig. 7.11,

vL + vR = 0 (7.15)

But vL = Ldi/dt and vR = iR. Thus,

L
di

dt
+ Ri = 0

or
di

dt
+ R

L
i = 0 (7.16)

Rearranging terms and integrating gives∫ i(t)

I0

di

i
= −

∫ t

0

R

L
dt

ln i

∣∣∣∣
i(t)

I0

= −Rt

L

∣∣∣∣
t

0

�⇒ ln i(t)− ln I0 = −Rt

L
+ 0

or

ln
i(t)

I0
= −Rt

L
(7.17)

Taking the powers of e, we have

i(t) = I0e
−Rt/L (7.18)

This shows that the natural response of the RL circuit is an exponential
decay of the initial current. The current response is shown in Fig. 7.12.
It is evident from Eq. (7.18) that the time constant for the RL circuit is

τ = L

R
(7.19)

with τ again having the unit of seconds. Thus, Eq. (7.18) may be written
as

i(t) = I0e
−t/τ (7.20)

Tangent at t = 0

Ioe−t ⁄ t 

t t

0.368Io

Io

i(t)

0

Figure 7.12 The current response of the RL

circuit.

The smaller the time constant τ of a circuit, the
faster the rate of decay of the response. The
larger the time constant, the slower the rate of
decay of the response. At any rate, the response
decays to less than 1 percent of its initial value
(i.e., reaches steady state) after 5τ .

Figure 7.12 shows an initial slope interpretation
may be given to τ .

With the current in Eq. (7.20), we can find the voltage across the
resistor as

vR(t) = iR = I0Re
−t/τ (7.21)

The power dissipated in the resistor is

p = vRi = I 2
0Re

−2t/τ (7.22)

The energy absorbed by the resistor is

wR(t) =
∫ t

0
p dt =

∫ t

0
I 2

0Re
−2t/τ dt = −1

2
τI 2

0Re
−2t/τ

∣∣∣∣
t

0

, τ = L

R

or

wR(t) = 1

2
LI 2

0 (1 − e−2t/τ ) (7.23)

Note that as t → ∞, wR(∞) → 1
2LI

2
0 , which is the same as wL(0), the

initial energy stored in the inductor as in Eq. (7.14). Again, the energy
initially stored in the inductor is eventually dissipated in the resistor.
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In summary:

T h e K e y t o Wo r k i n g w i t h a S o u r c e - f r e e RL C i r c u i t i s
t o F i n d :

1. The initial current i(0) = I0 through the inductor.

2. The time constant τ of the circuit.

With the two items, we obtain the response as the inductor current iL(t) =
i(t) = i(0)e−t/τ . Once we determine the inductor current iL, other vari-
ables (inductor voltage vL, resistor voltage vR , and resistor current iR)
can be obtained. Note that in general, R in Eq. (7.19) is the Thevenin
resistance at the terminals of the inductor.

When a circuit has a single inductor and several
resistors and dependent sources, the Thevenin
equivalent can be found at the terminals of the
inductor to form a simple RL circuit. Also, one
can use Thevenin’s theorem when several induc-
tors can be combined to form a single equivalent
inductor.

E X A M P L E 7 . 3

Assuming that i(0) = 10 A, calculate i(t) and ix(t) in the circuit in Fig.
7.13.

2 Ω

4 Ω

0.5 H +
−

i

3i

ix

Figure 7.13 For Example 7.3.

Solution:

There are two ways we can solve this problem. One way is to obtain the
equivalent resistance at the inductor terminals and then use Eq. (7.20).
The other way is to start from scratch by using Kirchhoff’s voltage law.
Whichever approach is taken, it is always better to first obtain the inductor
current.

METHOD 1 The equivalent resistance is the same as the Thevenin
resistance at the inductor terminals. Because of the dependent source,
we insert a voltage source with vo = 1 V at the inductor terminals a-b,
as in Fig. 7.14(a). (We could also insert a 1-A current source at the ter-
minals.) Applying KVL to the two loops results in

2(i1 − i2)+ 1 = 0 �⇒ i1 − i2 = −1

2
(7.3.1)

6i2 − 2i1 − 3i1 = 0 �⇒ i2 = 5

6
i1 (7.3.2)

Substituting Eq. (7.3.2) into Eq. (7.3.1) gives

4 Ω

2 Ωvo = 1 V +
−

+
−

io

i1 i2 3i

(a)

a

b

4 Ω

2 Ω +
−i1 i2 3i

(b)

0.5 H

Figure 7.14 Solving the circuit in Fig. 7.13.
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i1 = −3 A, io = −i1 = 3 A

Hence,

Req = RTh = vo

io
= 1

3
�

The time constant is

τ = L

Req
=

1
2
1
3

= 3

2
s

Thus, the current through the inductor is

i(t) = i(0)e−t/τ = 10e−(2/3)t A, t > 0

METHOD 2 We may directly apply KVL to the circuit as in Fig.
7.14(b). For loop 1,

1

2

di1

dt
+ 2(i1 − i2) = 0

or
di1

dt
+ 4i1 − 4i2 = 0 (7.3.3)

For loop 2,

6i2 − 2i1 − 3i1 = 0 �⇒ i2 = 5

6
i1 (7.3.4)

Substituting Eq. (7.3.4) into Eq. (7.3.3) gives

di1

dt
+ 2

3
i1 = 0

Rearranging terms,

di1

i1
= −2

3
dt

Since i1 = i, we may replace i1 with i and integrate:

ln i

∣∣∣∣
i(t)

i(0)

= − 2

3
t

∣∣∣∣
t

0

or

ln
i(t)

i(0)
= −2

3
t

Taking the powers of e, we finally obtain

i(t) = i(0)e−(2/3)t = 10e−(2/3)t A, t > 0

which is the same as by Method 1.
The voltage across the inductor is

v = L
di

dt
= 0.5(10)

(
−2

3

)
e−(2/3)t = −10

3
e−(2/3)t V

Since the inductor and the 2-� resistor are in parallel,

ix(t) = v

2
= −1.667e−(2/3)t A, t > 0
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P R A C T I C E P R O B L E M 7 . 3

Find i and vx in the circuit in Fig. 7.15. Let i(0) = 5 A.

1 Ω
5 Ω

3 Ω

+
− 2vx

 H

i + −vx

1
6

Figure 7.15 For Practice Prob. 7.3.

Answer: 5e−53t A, −15e−53t V.

E X A M P L E 7 . 4

The switch in the circuit of Fig. 7.16 has been closed for a long time. At
t = 0, the switch is opened. Calculate i(t) for t > 0.

2 Ω 4 Ω

+
− 40 V 16 Ω12 Ω 2 H

t = 0

i(t)

Figure 7.16 For Example 7.4.

Solution:

When t < 0, the switch is closed, and the inductor acts as a short circuit
to dc. The 16-� resistor is short-circuited; the resulting circuit is shown
in Fig. 7.17(a). To get i1 in Fig. 7.17(a), we combine the 4-� and 12-�
resistors in parallel to get

4 × 12

4 + 12
= 3 �

Hence,

i1 = 40

2 + 3
= 8 A

We obtain i(t) from i1 in Fig. 7.17(a) using current division, by writing

i(t) = 12

12 + 4
i1 = 6 A, t < 0

Since the current through an inductor cannot change instantaneously,

i(0) = i(0−) = 6 A

When t > 0, the switch is open and the voltage source is discon-
nected. We now have the RL circuit in Fig. 7.17(b). Combining the re-
sistors, we have

Req = (12 + 4) ‖ 16 = 8 �

The time constant is

τ = L

Req
= 2

8
= 1

4
s

Thus,

i(t) = i(0)e−t/τ = 6e−4t A

4 Ω

12 Ω

2 Ω

+
−

i1

2 H

i(t)

40 V

i(t)

(a)

16 Ω12 Ω

4 Ω

(b)

Figure 7.17 Solving the circuit of Fig. 7.16: (a)
for t < 0, (b) for t > 0.
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P R A C T I C E P R O B L E M 7 . 4

For the circuit in Fig. 7.18, find i(t) for t > 0.

5 Ω5 A

12 Ω 8 Ω

2 H

t = 0

i(t)

Figure 7.18 For Practice Prob. 7.4.

Answer: 2e−2t A, t > 0.

E X A M P L E 7 . 5

In the circuit shown in Fig. 7.19, find io, vo, and i for all time, assuming
that the switch was open for a long time.

10 V 6 Ω 2 Ht = 0

iio+ −vo

3 Ω2 Ω

+
−

Figure 7.19 For Example 7.5.

Solution:

It is better to first find the inductor current i and then obtain other quantities
from it.

2 Ω 3 Ω

+
−10 V 6 Ω

iio+ −vo

+ −vo

(a)

(b)

6 Ω

3 Ω

2 H

iio

vL

+

−

Figure 7.20 The circuit in Fig. 7.19 for:
(a) t < 0, (b) t > 0.

For t < 0, the switch is open. Since the inductor acts like a short
circuit to dc, the 6-� resistor is short-circuited, so that we have the circuit
shown in Fig. 7.20(a). Hence, io = 0, and

i(t) = 10

2 + 3
= 2 A, t < 0

vo(t) = 3i(t) = 6 V, t < 0

Thus, i(0) = 2.
For t > 0, the switch is closed, so that the voltage source is short-

circuited. We now have a source-freeRL circuit as shown in Fig. 7.20(b).
At the inductor terminals,

RTh = 3 ‖ 6 = 2 �

so that the time constant is

τ = L

RTh
= 1 s

Hence,

i(t) = i(0)e−t/τ = 2e−t A, t > 0

Since the inductor is in parallel with the 6-� and 3-� resistors,

vo(t) = −vL = −L
di

dt
= −2(−2e−t ) = 4e−t V, t > 0

and

io(t) = vL

6
= −2

3
e−t A, t > 0
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Thus, for all time,

io(t) =



0 A, t < 0

−2

3
e−t A, t > 0

, vo(t) =
{

6 V, t < 0
4e−t V, t > 0

i(t) =
{

2 A, t < 0
2e−t A, t ≥ 0

We notice that the inductor current is continuous at t = 0, while the
current through the 6-� resistor drops from 0 to −2/3 at t = 0, and the
voltage across the 3-� resistor drops from 6 to 4 at t = 0. We also notice
that the time constant is the same regardless of what the output is defined
to be. Figure 7.21 plots i and io.

t

2
i(t)

2
3− io(t)

Figure 7.21 A plot of i and i0.

P R A C T I C E P R O B L E M 7 . 5

Determine i, io, and vo for all t in the circuit shown in Fig. 7.22. Assume
that the switch was closed for a long time.

1 H

4 Ω 2 Ω

3 Ω

6 A

it = 0

io

vo

+

−

Figure 7.22 For Practice Prob. 7.5.

Answer: i =
{

4 A, t < 0
4e−2t A, t ≥ 0

, io =
{

2 A, t < 0
−(4/3)e−2t A, t > 0

,

vo =
{

4 V, t < 0
−(8/3)e−2t V, t > 0

7.4 SINGULARITY FUNCTIONS
Before going on with the second half of this chapter, we need to digress
and consider some mathematical concepts that will aid our understanding
of transient analysis. A basic understanding of singularity functions will
help us make sense of the response of first-order circuits to a sudden
application of an independent dc voltage or current source.

Singularity functions (also called switching functions) are very use-
ful in circuit analysis. They serve as good approximations to the switching
signals that arise in circuits with switching operations. They are helpful in
the neat, compact description of some circuit phenomena, especially the
step response of RC or RL circuits to be discussed in the next sections.
By definition,

Singularity functions are functions that either are discontinuous or have
discontinuous derivatives.

The three most widely used singularity functions in circuit analysis
are the unit step, the unit impulse, and the unit ramp functions.
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The unit step function u(t) is 0 for negative values of t and 1 for positive values of t.

In mathematical terms,

u(t) =
{

0, t < 0
1, t > 0

(7.24)

0 t

1

u(t)

Figure 7.23 The unit step
function.

The unit step function is undefined at t = 0, where it changes abruptly
from 0 to 1. It is dimensionless, like other mathematical functions such as
sine and cosine. Figure 7.23 depicts the unit step function. If the abrupt
change occurs at t = t0 (where t0 > 0) instead of t = 0, the unit step
function becomes

u(t − t0) =
{

0, t < t0
1, t > t0

(7.25)

which is the same as saying that u(t) is delayed by t0 seconds, as shown in
Fig. 7.24(a). To get Eq. (7.25) from Eq. (7.24), we simply replace every
t by t − t0. If the change is at t = −t0, the unit step function becomes

u(t + t0) =
{

0, t < −t0
1, t > −t0

(7.26)

meaning that u(t) is advanced by t0 seconds, as shown in Fig. 7.24(b).

0 t

1

u(t − to)

to

(a)

0 t

u(t + to)

−to

(b)

1

Figure 7.24 (a) The unit step
function delayed by t0, (b) the unit
step advanced by t0.

Alternatively, wemay derive Eqs. (7.25) and (7.26)
from Eq. (7.24) by writing u[f (t)] = 1, f (t) > 0,
where f (t) may be t − t0 or t + t0.

We use the step function to represent an abrupt change in voltage
or current, like the changes that occur in the circuits of control systems
and digital computers. For example, the voltage

v(t) =
{

0, t < t0
V0, t > t0

(7.27)

may be expressed in terms of the unit step function as

v(t) = V0u(t − t0) (7.28)

If we let t0 = 0, then v(t) is simply the step voltage V0u(t). A voltage
source of V0u(t) is shown in Fig. 7.25(a); its equivalent circuit is shown
in Fig. 7.25(b). It is evident in Fig. 7.25(b) that terminals a-b are short-
circuited (v = 0) for t < 0 and that v = V0 appears at the terminals
for t > 0. Similarly, a current source of I0u(t) is shown in Fig. 7.26(a),
while its equivalent circuit is in Fig. 7.26(b). Notice that for t < 0, there
is an open circuit (i = 0), and that i = I0 flows for t > 0.

+
−

(a)

Vou(t) +
−

(b)

Vo

b

a

b

a
t = 0

=

Figure 7.25 (a) Voltage source of V0u(t), (b) its equivalent circuit.
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(a)

Iou(t)

(b)

Io

b

a

b

a
t = 0 i

=

Figure 7.26 (a) Current source of I0u(t), (b) its equivalent circuit.

The derivative of the unit step function u(t) is the unit impulse
function δ(t), which we write as

δ(t) = d

dt
u(t) =




0, t < 0
Undefined, t = 0
0, t > 0

(7.29)

The unit impulse function—also known as the delta function—is shown
in Fig. 7.27.

The unit impulse function δ(t) is zero everywhere except at t = 0, where
it is undefined.

Impulsive currents and voltages occur in electric circuits as a result of
switching operations or impulsive sources. Although the unit impulse
function is not physically realizable ( just like ideal sources, ideal resistors,
etc.), it is a very useful mathematical tool.

The unit impulse may be regarded as an applied or resulting shock.
It may be visualized as a very short duration pulse of unit area. This may
be expressed mathematically as∫ 0+

0−
δ(t) dt = 1 (7.30)

where t = 0− denotes the time just before t = 0 and t = 0+ is the time
just after t = 0. For this reason, it is customary to write 1 (denoting
unit area) beside the arrow that is used to symbolize the unit impulse
function, as in Fig. 7.27. The unit area is known as the strength of the
impulse function. When an impulse function has a strength other than
unity, the area of the impulse is equal to its strength. For example, an
impulse function 10δ(t) has an area of 10. Figure 7.28 shows the impulse
functions 5δ(t + 2), 10δ(t), and −4δ(t − 3).

0 t

(1)d(t)

Figure 7.27 The unit
impulse function.

5d(t + 2)

10d(t)

−4d(t − 3)

10 2 3 t−1−2

Figure 7.28 Three impulse functions.

To illustrate how the impulse function affects other functions, let
us evaluate the integral ∫ b

a

f (t)δ(t − t0) dt (7.31)

where a < t0 < b. Since δ(t − t0) = 0 except at t = t0, the integrand is
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zero except at t0. Thus,∫ b

a

f (t)δ(t − t0) dt =
∫ b

a

f (t0)δ(t − t0) dt

= f (t0)

∫ b

a

δ(t − t0) dt = f (t0)

or ∫ b

a

f (t)δ(t − t0) dt = f (t0) (7.32)

This shows that when a function is integrated with the impulse function,
we obtain the value of the function at the point where the impulse occurs.
This is a highly useful property of the impulse function known as the
sampling or sifting property. The special case of Eq. (7.31) is for t0 = 0.
Then Eq. (7.32) becomes∫ 0+

0−
f (t)δ(t) dt = f (0) (7.33)

Integrating the unit step function u(t) results in the unit ramp func-
tion r(t); we write

r(t) =
∫ t

−∞
u(t) dt = tu(t) (7.34)

or

r(t) =
{

0, t ≤ 0
t, t ≥ 0

(7.35)

The unit ramp function is zero for negative values of t and has a unit slope for
positive values of t.

Figure 7.29 shows the unit ramp function. In general, a ramp is a function
that changes at a constant rate.

0 t

1

r(t)

1

Figure 7.29 The unit ramp
function.

The unit ramp function may be delayed or advanced as shown in
Fig. 7.30. For the delayed unit ramp function,

r(t − t0) =
{

0, t ≤ t0
t − t0, t ≥ t0

(7.36)

and for the advanced unit ramp function,

r(t + t0) =
{

0, t ≤ −t0
t − t0, t ≥ −t0

(7.37)

(a)

0 t−to + 1−to

1

r(t + to)

r(t − to)

(b)

0 tto + 1to

1

Figure 7.30 The unit ramp
function: (a) delayed by t0,
(b) advanced by t0.

We should keep in mind that the three singularity functions (im-
pulse, step, and ramp) are related by differentiation as

δ(t) = du(t)

dt
, u(t) = dr(t)

dt
(7.38)

or by integration as

u(t) =
∫ t

−∞
δ(t) dt, r(t) =

∫ t

−∞
u(t) dt (7.39)
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Although there are many more singularity functions, we are only inter-
ested in these three (the impulse function, the unit step function, and the
ramp function) at this point.

E X A M P L E 7 . 6

Express the voltage pulse in Fig. 7.31 in terms of the unit step. Calculate
its derivative and sketch it.

0 t

10

v (t)

3 4 51 2

Figure 7.31 For Example 7.6.

Solution:

The type of pulse in Fig. 7.31 is called the gate function. It may be re-
garded as a step function that switches on at one value of t and switches
off at another value of t . The gate function shown in Fig. 7.31 switches
on at t = 2 s and switches off at t = 5 s. It consists of the sum of two
unit step functions as shown in Fig. 7.32(a). From the figure, it is evident
that

v(t) = 10u(t − 2)− 10u(t − 5) = 10[u(t − 2)− u(t − 5)]

Taking the derivative of this gives

dv

dt
= 10[δ(t − 2)− δ(t − 5)]

which is shown in Fig. 7.32(b). We can obtain Fig. 7.32(b) directly from
Fig. 7.31 by simply observing that there is a sudden increase by 10 V at
t = 2 s leading to 10δ(t − 2). At t = 5 s, there is a sudden decrease by
10 V leading to −10 V δ(t − 5).

Gate functions are used along with switches to
pass or block another signal.

0 t21

10

10u(t − 2) −10u(t − 5)

(a)

1 2
0

3 4 5 t

10

−10

+

(b)

10

3 4 5 t1 2
0

−10

dv
dt

Figure 7.32 (a) Decomposition of the pulse in Fig. 7.31, (b) derivative of the pulse in Fig. 7.31.
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P R A C T I C E P R O B L E M 7 . 6

Express the current pulse in Fig. 7.33 in terms of the unit step. Find its
integral and sketch it.

Answer: 10[u(t)−2u(t−2)+u(t−4)], 10[r(t)−2r(t−2)+r(t−4)].
See Fig. 7.34.

0
t

10

−10

i(t)

2 4

Figure 7.33 For Practice Prob. 7.6.

20 4 t

20

i dt∫

Figure 7.34 Integral of i(t) in Fig. 7.33.

E X A M P L E 7 . 7

Express the sawtooth function shown in Fig. 7.35 in terms of singularity
functions.

0 t

10

v(t)

2

Figure 7.35 For Example 7.7.

Solution:

There are three ways of solving this problem. The first method is by mere
observation of the given function, while the other methods involve some
graphical manipulations of the function.

METHOD 1 By looking at the sketch of v(t) in Fig. 7.35, it is not
hard to notice that the given function v(t) is a combination of singularity
functions. So we let

v(t) = v1(t)+ v2(t)+ · · · (7.7.1)

The function v1(t) is the ramp function of slope 5, shown in Fig. 7.36(a);
that is,

v1(t) = 5r(t) (7.7.2)

0 t

10

v1(t)

2 0 t

10

v1 + v2

2
0

t

−10

v2(t)

2
+

(a)

(b)

(c)

=

Figure 7.36 Partial decomposition of v(t) in Fig. 7.35.
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Since v1(t) goes to infinity, we need another function at t = 2 s in order
to get v(t). We let this function be v2, which is a ramp function of slope
−5, as shown in Fig. 7.36(b); that is,

v2(t) = −5r(t − 2) (7.7.3)

Adding v1 and v2 gives us the signal in Fig. 7.36(c). Obviously, this is
not the same as v(t) in Fig. 7.35. But the difference is simply a constant
10 units for t > 2 s. By adding a third signal v3, where

v3 = −10u(t − 2) (7.7.4)

we get v(t), as shown in Fig. 7.37. Substituting Eqs. (7.7.2) through
(7.7.4) into Eq. (7.7.1) gives

v(t) = 5r(t)− 5r(t − 2)− 10u(t − 2)

0 t

10

v1 + v2

2

+

(c)(a)

=
0 t

10

v(t)

2
0

t

−10

v3(t)

2

(b)

Figure 7.37 Complete decomposition of v(t) in Fig. 7.35.

METHOD 2 A close observation of Fig. 7.35 reveals that v(t) is a mul-
tiplication of two functions: a ramp function and a gate function. Thus,

v(t) = 5t[u(t)− u(t − 2)]

= 5tu(t)− 5tu(t − 2)

= 5r(t)− 5(t − 2 + 2)u(t − 2)

= 5r(t)− 5(t − 2)u(t − 2)− 10u(t − 2)

= 5r(t)− 5r(t − 2)− 10u(t − 2)

the same as before.

METHOD 3 This method is similar to Method 2. We observe from
Fig. 7.35 that v(t) is a multiplication of a ramp function and a unit step
function, as shown in Fig. 7.38. Thus,

v(t) = 5r(t)u(−t + 2)

If we replace u(−t) by 1 − u(t), then we can replace u(−t + 2) by
1 − u(t − 2). Hence,

v(t) = 5r(t)[1 − u(t − 2)]

which can be simplified as in Method 2 to get the same result.
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0 t

10

5r(t)

2

×
0 t

u(−t + 2)

2

1

Figure 7.38 Decomposition of v(t) in Fig. 7.35.

P R A C T I C E P R O B L E M 7 . 7

Refer to Fig. 7.39. Express i(t) in terms of singularity functions.i(t) (A)

1
0

2 3 t (s)

2

−2

Figure 7.39 For Practice Prob. 7.7.

Answer: 2u(t)− 2r(t)+ 4r(t − 2)− 2r(t − 3).

E X A M P L E 7 . 8

Given the signal

g(t) =



3, t < 0
−2, 0 < t < 1

2t − 4, t > 1

express g(t) in terms of step and ramp functions.

Solution:

The signal g(t) may be regarded as the sum of three functions specified
within the three intervals t < 0, 0 < t < 1, and t > 1.

For t < 0, g(t) may be regarded as 3 multiplied by u(−t), where
u(−t) = 1 for t < 0 and 0 for t > 0. Within the time interval 0 < t < 1,
the function may be considered as −2 multiplied by a gated function
[u(t) − u(t − 1)]. For t > 1, the function may be regarded as 2t − 4
multiplied by the unit step function u(t − 1). Thus,

g(t) = 3u(−t)− 2[u(t)− u(t − 1)] + (2t − 4)u(t − 1)

= 3u(−t)− 2u(t)+ (2t − 4 + 2)u(t − 1)

= 3u(−t)− 2u(t)+ 2(t − 1)u(t − 1)

= 3u(−t)− 2u(t)+ 2r(t − 1)

One may avoid the trouble of using u(−t) by replacing it with 1 − u(t).
Then
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g(t) = 3[1 − u(t)] − 2u(t)+ 2r(t − 1) = 3 − 5u(t)+ 2r(t − 1)

Alternatively, we may plot g(t) and apply Method 1 from Example 7.7.

P R A C T I C E P R O B L E M 7 . 8

If

h(t) =




0, t < 0
4, 0 < t < 2
6 − t, 2 < t < 6
0, t > 6

express h(t) in terms of the singularity functions.

Answer: 4u(t)− r(t − 2)+ r(t − 6).

E X A M P L E 7 . 9

Evaluate the following integrals involving the impulse function:∫ 10

0
(t2 + 4t − 2)δ(t − 2) dt

∫ ∞

−∞
(δ(t − 1)e−t cos t + δ(t + 1)e−t sin t)dt

Solution:

For the first integral, we apply the sifting property in Eq. (7.32).∫ 10

0
(t2 + 4t − 2)δ(t − 2)dt = (t2 + 4t − 2)|t=2 = 4 + 8 − 2 = 10

Similarly, for the second integral,∫ ∞

−∞
(δ(t − 1)e−t cos t + δ(t + 1)e−t sin t)dt

= e−t cos t |t=1 + e−t sin t |t=−1

= e−1 cos 1 + e1 sin(−1) = 0.1988 − 2.2873 = −2.0885

P R A C T I C E P R O B L E M 7 . 9

Evaluate the following integrals:∫ ∞

−∞
(t3 + 5t2 + 10)δ(t + 3) dt,

∫ 10

0
δ(t − π) cos 3t dt

Answer: 28, −1.

7.5 STEP RESPONSE OF AN RC CIRCUIT
When the dc source of an RC circuit is suddenly applied, the voltage
or current source can be modeled as a step function, and the response is
known as a step response.
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The step response of a circuit is its behavior when the excitation is the step
function, which may be a voltage or a current source.

The step response is the response of the circuit due to a sudden application
of a dc voltage or current source.

R

C

t = 0

+
−

Vsu(t)

Vs

+

−
v

(a)

R

C+
−

+

−
v

(b)

Figure 7.40 An RC circuit with
voltage step input.

Consider theRC circuit in Fig. 7.40(a) which can be replaced by the
circuit in Fig. 7.40(b), where Vs is a constant, dc voltage source. Again,
we select the capacitor voltage as the circuit response to be determined.
We assume an initial voltage V0 on the capacitor, although this is not
necessary for the step response. Since the voltage of a capacitor cannot
change instantaneously,

v(0−) = v(0+) = V0 (7.40)

where v(0−) is the voltage across the capacitor just before switching and
v(0+) is its voltage immediately after switching. Applying KCL, we have

C
dv

dt
+ v − Vsu(t)

R
= 0

or
dv

dt
+ v

RC
= Vs

RC
u(t) (7.41)

where v is the voltage across the capacitor. For t > 0, Eq. (7.41) becomes

dv

dt
+ v

RC
= Vs

RC
(7.42)

Rearranging terms gives

dv

dt
= −v − Vs

RC
or

dv

v − Vs
= − dt

RC
(7.43)

Integrating both sides and introducing the initial conditions,

ln(v − Vs)

∣∣∣∣
v(t)

V0

= − t

RC

∣∣∣∣
t

0

ln(v(t)− Vs)− ln(V0 − Vs) = − t

RC
+ 0

or

ln
v − Vs

V0 − Vs
= − t

RC
(7.44)

Taking the exponential of both sides

v − Vs

V0 − Vs
= e−t/τ , τ = RC

v − Vs = (V0 − Vs)e
−t/τ

or

v(t) = Vs + (V0 − Vs)e
−t/τ , t > 0 (7.45)
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Thus,

v(t) =
{
V0, t < 0
Vs + (V0 − Vs)e

−t/τ , t > 0
(7.46)

This is known as the complete response of the RC circuit to a sudden
application of a dc voltage source, assuming the capacitor is initially
charged. The reason for the term “complete” will become evident a little
later. Assuming that Vs > V0, a plot of v(t) is shown in Fig. 7.41.

0 t

Vs

v(t)

Vo

Figure 7.41 Response of an
RC circuit with initially charged
capacitor.

If we assume that the capacitor is uncharged initially, we setV0 = 0
in Eq. (7.46) so that

v(t) =
{

0, t < 0
Vs(1 − e−t/τ ), t > 0

(7.47)

which can be written alternatively as

v(t) = Vs(1 − e−t/τ )u(t) (7.48)

This is the complete step response of the RC circuit when the capacitor
is initially uncharged. The current through the capacitor is obtained from
Eq. (7.47) using i(t) = C dv/dt . We get

i(t) = C
dv

dt
= C

τ
Vse

−t/τ , τ = RC, t > 0

or

i(t) = Vs

R
e−t/τ u(t) (7.49)

Figure 7.42 shows the plots of capacitor voltage v(t) and capacitor current
i(t).

0 t

Vs

v(t)

0 t

i(t)

Vs
R

(a)

(b)

Figure 7.42 Step response of an
RC circuit with initially uncharged
capacitor: (a) voltage response,
(b) current response.

Rather than going through the derivations above, there is a sys-
tematic approach—or rather, a short-cut method—for finding the step
response of an RC or RL circuit. Let us reexamine Eq. (7.45), which is
more general than Eq. (7.48). It is evident that v(t) has two components.
Thus, we may write

v = vf + vn (7.50)

where

vf = Vs (7.51)

and

vn = (V0 − Vs)e
−t/τ (7.52)

We know that vn is the natural response of the circuit, as discussed in
Section 7.2. Since this part of the response will decay to almost zero
after five time constants, it is also called the transient response because it
is a temporary response that will die out with time. Now, vf is known as
the forced response because it is produced by the circuit when an external
“ force” is applied (a voltage source in this case). It represents what the
circuit is forced to do by the input excitation. It is also known as the
steady-state response, because it remains a long time after the circuit is
excited.
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The natural response or transient response is the circuit’s temporary response
that will die out with time.

The forced response or steady-state response is the behavior of the circuit
a long time after an external excitation is applied.

The complete response of the circuit is the sum of the natural response
and the forced response. Therefore, we may write Eq. (7.45) as

v(t) = v(∞)+ [v(0)− v(∞)]e−t/τ (7.53)

where v(0) is the initial voltage at t = 0+ and v(∞) is the final or steady-
state value. Thus, to find the step response of anRC circuit requires three
things:

This is the same as saying that the complete re-
sponse is the sum of the transient response and
the steady-state response.

Once we know x(0), x(∞), and τ , almost all the
circuit problems in this chapter can be solved
using the formula

x(t) = x(∞)+ [x(0) − x(∞)] e-t/τ

1. The initial capacitor voltage v(0).

2. The final capacitor voltage v(∞).

3. The time constant τ .

We obtain item 1 from the given circuit for t < 0 and items 2 and 3 from
the circuit for t > 0. Once these items are determined, we obtain the
response using Eq. (7.53). This technique equally applies to RL circuits,
as we shall see in the next section.

Note that if the switch changes position at time t = t0 instead of at
t = 0, there is a time delay in the response so that Eq. (7.53) becomes

v(t) = v(∞)+ [v(t0)− v(∞)]e−(t−t0)/τ (7.54)

where v(t0) is the initial value at t = t+0 . Keep in mind that Eq. (7.53) or
(7.54) applies only to step responses, that is, when the input excitation is
constant.

E X A M P L E 7 . 1 0

The switch in Fig. 7.43 has been in position A for a long time. At t = 0,
the switch moves to B. Determine v(t) for t > 0 and calculate its value
at t = 1 s and 4 s.

3 kΩ

24 V 30 Vv5 kΩ 0.5 mF

4 kΩ

+
−

+
−

t = 0

A B

+

−

Figure 7.43 For Example 7.10.
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Solution:

For t < 0, the switch is at position A. Since v is the same as the voltage
across the 5-k� resistor, the voltage across the capacitor just before t = 0
is obtained by voltage division as

v(0−) = 5

5 + 3
(24) = 15 V

Using the fact that the capacitor voltage cannot change instantaneously,

v(0) = v(0−) = v(0+) = 15 V

For t > 0, the switch is in positionB. The Thevenin resistance connected
to the capacitor is RTh = 4 k�, and the time constant is

τ = RThC = 4 × 103 × 0.5 × 10−3 = 2 s

Since the capacitor acts like an open circuit to dc at steady state, v(∞) =
30 V. Thus,

v(t) = v(∞)+ [v(0)− v(∞)]e−t/τ

= 30 + (15 − 30)e−t/2 = (30 − 15e−0.5t ) V

At t = 1,

v(1) = 30 − 15e−0.5 = 20.902 V

At t = 4,

v(4) = 30 − 15e−2 = 27.97 V

P R A C T I C E P R O B L E M 7 . 1 0

Find v(t) for t > 0 in the circuit in Fig. 7.44. Assume the switch has been
open for a long time and is closed at t = 0. Calculate v(t) at t = 0.5.

2 Ω

10 V 50 Vv

6 Ω

+
−

+
−

t = 0

  F1
3

+

−

Figure 7.44 For Practice Prob. 7.10.

Answer: −5 + 15e−2t V, 0.5182 V.

E X A M P L E 7 . 1 1

In Fig. 7.45, the switch has been closed for a long time and is opened at
t = 0. Find i and v for all time.

10 Ω

30u(t) V 10 Vv20 Ω+
−

+
−

i t = 0

  F1
4

+

−

Figure 7.45 For Example 7.11.
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Solution:

The resistor current i can be discontinuous at t = 0, while the capacitor
voltage v cannot. Hence, it is always better to find v and then obtain i

from v.
By definition of the unit step function,

30u(t) =
{

0, t < 0
30, t > 0

For t < 0, the switch is closed and 30u(t) = 0, so that the 30u(t)
voltage source is replaced by a short circuit and should be regarded as
contributing nothing to v. Since the switch has been closed for a long
time, the capacitor voltage has reached steady state and the capacitor acts
like an open circuit. Hence, the circuit becomes that shown in Fig. 7.46(a)
for t < 0. From this circuit we obtain

v = 10 V, i = − v

10
= −1 A

Since the capacitor voltage cannot change instantaneously,

v(0) = v(0−) = 10 V

10 Ω

10 V
+

−
v20 Ω +

−

i

(a)

10 Ω

30 V
+

−
v20 Ω+

−

i

(b)

  F1
4

Figure 7.46 Solution of Example 7.11:
(a) for t < 0, (b) for t > 0.

For t > 0, the switch is opened and the 10-V voltage source is
disconnected from the circuit. The 30u(t) voltage source is now opera-
tive, so the circuit becomes that shown in Fig. 7.46(b). After a long time,
the circuit reaches steady state and the capacitor acts like an open circuit
again. We obtain v(∞) by using voltage division, writing

v(∞) = 20

20 + 10
(30) = 20 V

The Thevenin resistance at the capacitor terminals is

RTh = 10 ‖ 20 = 10 × 20

30
= 20

3
�

and the time constant is

τ = RThC = 20

3
· 1

4
= 5

3
s

Thus,

v(t) = v(∞)+ [v(0)− v(∞)]e−t/τ

= 20 + (10 − 20)e−(3/5)t = (20 − 10e−0.6t ) V

To obtain i, we notice from Fig. 7.46(b) that i is the sum of the currents
through the 20-� resistor and the capacitor; that is,

i = v

20
+ C

dv

dt

= 1 − 0.5e−0.6t + 0.25(−0.6)(−10)e−0.6t = (1 + e−0.6t ) A

Notice from Fig. 7.46(b) that v + 10i = 30 is satisfied, as expected.
Hence,

v =
{

10 V, t < 0
(20 − 10e−0.6t ) V, t ≥ 0
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i =
{−1 A, t < 0
(1 + e−0.6t ) A, t > 0

Notice that the capacitor voltage is continuous while the resistor current
is not.

P R A C T I C E P R O B L E M 7 . 1 1

The switch in Fig. 7.47 is closed at t = 0. Find i(t) and v(t) for all time.
Note that u(−t) = 1 for t < 0 and 0 for t > 0. Also, u(−t) = 1 − u(t).

5 Ω

+
−20u(−t) V 10 Ω0.2 F 3 Av

i t = 0

+

−

Figure 7.47 For Practice Prob. 7.11.

Answer: i(t) =
{

0, t < 0
−2(1 + e−1.5t ) A, t > 0

,

v =
{

20 V, t < 0
10(1 + e−1.5t ) V, t > 0

7.6 STEP RESPONSE OF AN RL CIRCUIT
Consider the RL circuit in Fig. 7.48(a), which may be replaced by the
circuit in Fig. 7.48(b). Again, our goal is to find the inductor current i as
the circuit response. Rather than apply Kirchhoff’s laws, we will use the
simple technique in Eqs. (7.50) through (7.53). Let the response be the
sum of the natural current and the forced current,

i = in + if (7.55)

We know that the natural response is always a decaying exponential, that
is,

in = Ae−t/τ , τ = L

R
(7.56)

where A is a constant to be determined.

R

Vs

t = 0
i

i

+
−

+

−
v (t)L

(a)

R

Vsu(t) +
−

+

−
v (t)L

(b)

Figure 7.48 An RL circuit with a
step input voltage.

The forced response is the value of the current a long time after
the switch in Fig. 7.48(a) is closed. We know that the natural response
essentially dies out after five time constants. At that time, the inductor
becomes a short circuit, and the voltage across it is zero. The entire source
voltage Vs appears across R. Thus, the forced response is

if = Vs

R
(7.57)
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Substituting Eqs. (7.56) and (7.57) into Eq. (7.55) gives

i = Ae−t/τ + Vs

R
(7.58)

We now determine the constant A from the initial value of i. Let I0 be
the initial current through the inductor, which may come from a source
other than Vs . Since the current through the inductor cannot change
instantaneously,

i(0+) = i(0−) = I0 (7.59)

Thus at t = 0, Eq. (7.58) becomes

I0 = A+ Vs

R

From this, we obtain A as

A = I0 − Vs

R

Substituting for A in Eq. (7.58), we get

i(t) = Vs

R
+
(
I0 − Vs

R

)
e−t/τ (7.60)

This is the complete response of the RL circuit. It is illustrated in Fig.
7.49. The response in Eq. (7.60) may be written as

i(t) = i(∞)+ [i(0)− i(∞)]e−t/τ (7.61)

where i(0) and i(∞) are the initial and final values of i. Thus, to find the
step response of an RL circuit requires three things:

0 t

i(t)

Vs
R

Io

Figure 7.49 Total response
of the RL circuit with initial
inductor current I0.

1. The initial inductor current i(0) at t = 0+.

2. The final inductor current i(∞).

3. The time constant τ .

We obtain item 1 from the given circuit for t < 0 and items 2 and 3 from
the circuit for t > 0. Once these items are determined, we obtain the
response using Eq. (7.61). Keep in mind that this technique applies only
for step responses.

Again, if the switching takes place at time t = t0 instead of t = 0,
Eq. (7.61) becomes

i(t) = i(∞)+ [i(t0)− i(∞)]e−(t−t0)/τ (7.62)

If I0 = 0, then

i(t) =



0, t < 0
Vs

R
(1 − e−t/τ ), t > 0

(7.63a)

or

i(t) = Vs

R
(1 − e−t/τ )u(t) (7.63b)

This is the step response of theRL circuit. The voltage across the inductor
is obtained from Eq. (7.63) using v = Ldi/dt . We get
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v(t) = L
di

dt
= Vs

L

τR
e−t/τ , τ = L

R
, t > 0

or

v(t) = Vse
−t/τ u(t) (7.64)

Figure 7.50 shows the step responses in Eqs. (7.63) and (7.64).

0 t

v(t)

0 t

i(t)

Vs
R

(a) (b)

Vs

Figure 7.50 Step responses of an RL circuit with no initial
inductor current: (a) current response, (b) voltage response.

E X A M P L E 7 . 1 2

Find i(t) in the circuit in Fig. 7.51 for t > 0. Assume that the switch has
been closed for a long time.

2 Ω 3 Ω

+
−10 V

i

t = 0

  H1
3

Figure 7.51 For Example 7.12.

Solution:

When t < 0, the 3-� resistor is short-circuited, and the inductor acts
like a short circuit. The current through the inductor at t = 0− (i.e., just
before t = 0) is

i(0−) = 10

2
= 5 A

Since the inductor current cannot change instantaneously,

i(0) = i(0+) = i(0−) = 5 A

When t > 0, the switch is open. The 2-� and 3-� resistors are in series,
so that

i(∞) = 10

2 + 3
= 2 A

The Thevenin resistance across the inductor terminals is

RTh = 2 + 3 = 5 �

For the time constant,

τ = L

RTh
=

1
3

5
= 1

15
s

Thus,

i(t) = i(∞)+ [i(0)− i(∞)]e−t/τ

= 2 + (5 − 2)e−15t = 2 + 3e−15t A, t > 0
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Check: In Fig. 7.51, for t > 0, KVL must be satisfied; that is,

10 = 5i + L
di

dt

5i + L
di

dt
= [10 + 15e−15t ] +

[
1

3
(3)(−15)e−15t

]
= 10

This confirms the result.

P R A C T I C E P R O B L E M 7 . 1 2

The switch in Fig. 7.52 has been closed for a long time. It opens at t = 0.
Find i(t) for t > 0.

1.5 H

10 Ω5 Ω 3 At = 0

i

Figure 7.52 For Practice Prob. 7.12.

Answer: (2 + e−10t ) A, t > 0.

E X A M P L E 7 . 1 3

At t = 0, switch 1 in Fig. 7.53 is closed, and switch 2 is closed 4 s later.
Find i(t) for t > 0. Calculate i for t = 2 s and t = 5 s.

4 Ω 6 Ω

+
−

+
−

40 V

10 V

2 Ω 5 H

i

t = 0

t = 4

S1

S2

P

Figure 7.53 For Example 7.13.

Solution:

We need to consider the three time intervals t ≤ 0, 0 ≤ t ≤ 4, and t ≥ 4
separately. For t < 0, switches S1 and S2 are open so that i = 0. Since
the inductor current cannot change instantly,

i(0−) = i(0) = i(0+) = 0

For 0 ≤ t ≤ 4, S1 is closed so that the 4-� and 6-� resistors are in
series. Hence, assuming for now that S1 is closed forever,

i(∞) = 40

4 + 6
= 4 A, RTh = 4 + 6 = 10 �

τ = L

RTh
= 5

10
= 1

2
s
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Thus,

i(t) = i(∞)+ [i(0)− i(∞)]e−t/τ

= 4 + (0 − 4)e−2t = 4(1 − e−2t ) A, 0 ≤ t ≤ 4

For t ≥ 4, S2 is closed; the 10-V voltage source is connected, and
the circuit changes. This sudden change does not affect the inductor
current because the current cannot change abruptly. Thus, the initial
current is

i(4) = i(4−) = 4(1 − e−8) � 4 A

To find i(∞), let v be the voltage at node P in Fig. 7.53. Using KCL,

40 − v

4
+ 10 − v

2
= v

6
�⇒ v = 180

11
V

i(∞) = v

6
= 30

11
= 2.727 A

The Thevenin resistance at the inductor terminals is

RTh = 4 ‖ 2 + 6 = 4 × 2

6
+ 6 = 22

3
�

and

τ = L

RTh
= 5

22
3

= 15

22
s

Hence,

i(t) = i(∞)+ [i(4)− i(∞)]e−(t−4)/τ , t ≥ 4

We need (t − 4) in the exponential because of the time delay. Thus,

i(t) = 2.727 + (4 − 2.727)e−(t−4)/τ , τ = 15

22
= 2.727 + 1.273e−1.4667(t−4), t ≥ 4

Putting all this together,

i(t) =



0, t ≤ 0
4(1 − e−2t ), 0 ≤ t ≤ 4
2.727 + 1.273e−1.4667(t−4), t ≥ 4

At t = 2,

i(2) = 4(1 − e−4) = 3.93 A

At t = 5,

i(5) = 2.727 + 1.273e−1.4667 = 3.02 A

P R A C T I C E P R O B L E M 7 . 1 3

Switch S1 in Fig. 7.54 is closed at t = 0, and switch S2 is closed at t =
2 s. Calculate i(t) for all t . Find i(1) and i(3).
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Answer:

i(t) =



0, t < 0
2(1 − e−9t ), 0 < t < 2
3.6 − 1.6e−5(t−2), t > 2

i(1) = 1.9997 A, i(3) = 3.589 A.

10 Ω

15 Ω

20 Ω

6 A 5 H

t = 0

S1

t = 2

S2

i(t)

Figure 7.54 For Practice Prob. 7.13.

†7.7 FIRST-ORDER OP AMP CIRCUITS
An op amp circuit containing a storage element will exhibit first-order
behavior. Differentiators and integrators treated in Section 6.6 are exam-
ples of first-order op amp circuits. Again, for practical reasons, inductors
are hardly ever used in op amp circuits; therefore, the op amp circuits we
consider here are of the RC type.

As usual, we analyze op amp circuits using nodal analysis. Some-
times, the Thevenin equivalent circuit is used to reduce the op amp circuit
to one that we can easily handle. The following three examples illustrate
the concepts. The first one deals with a source-free op amp circuit, while
the other two involve step responses. The three examples have been care-
fully selected to cover all possibleRC types of op amp circuits, depending
on the location of the capacitor with respect to the op amp; that is, the
capacitor can be located in the input, the output, or the feedback loop.

E X A M P L E 7 . 1 4

For the op amp circuit in Fig. 7.55(a) , find vo for t > 0, given that v(0) =
3 V. Let Rf = 80 k�, R1 = 20 k�, and C = 5 µF.

vo

v +

−

R1

Rf

(a)

+ − 3

21 1

vo (0
+)

3 V +

−

(b)

+ −
3

2

vo

v +

−

(c)

80 kΩ80 kΩ

20 kΩ20 kΩ

1 AC

−+

C

+
−

+
−

+
−

Figure 7.55 For Example 7.14.
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Solution:

This problem can be solved in two ways:

METHOD 1 Consider the circuit in Fig. 7.55(a). Let us derive the
appropriate differential equation using nodal analysis. If v1 is the voltage
at node 1, at that node, KCL gives

0 − v1

R1
= C

dv

dt
(7.14.1)

Since nodes 2 and 3 must be at the same potential, the potential at node
2 is zero. Thus, v1 − 0 = v or v1 = v and Eq. (7.14.1) becomes

dv

dt
+ v

CR1
= 0 (7.14.2)

This is similar to Eq. (7.4b) so that the solution is obtained the same way
as in Section 7.2, i.e.,

v(t) = V0e
−t/τ , τ = R1C (7.14.3)

where V0 is the initial voltage across the capacitor. But v(0) = 3 = V0

and τ = 20 × 103 × 5 × 10−6 = 0.1. Hence,

v(t) = 3e−10t (7.14.4)

Applying KCL at node 2 gives

C
dv

dt
= 0 − vo

Rf

or

vo = −RfC
dv

dt
(7.14.5)

Now we can find v0 as

vo = −80 × 103 × 5 × 10−6(−30e−10t ) = 12e−10t V, t > 0

METHOD 2 Let us now apply the short-cut method from Eq. (7.53).
We need to find vo(0+), vo(∞), and τ . Since v(0+) = v(0−) = 3 V, we
apply KCL at node 2 in the circuit of Fig. 7.55(b) to obtain

3

20,000
+ 0 − vo(0+)

80,000
= 0

or vo(0+) = 12 V. Since the circuit is source free, v(∞) = 0 V. To find τ ,
we need the equivalent resistance Req across the capacitor terminals. If
we remove the capacitor and replace it by a 1-A current source, we have
the circuit shown in Fig. 7.55(c). Applying KVL to the input loop yields

20,000(1)− v = 0 �⇒ v = 20 kV

Then

Req = v

1
= 20 k�

and τ = ReqC = 0.1. Thus,

vo(t) = vo(∞)+ [vo(0)− vo(∞)]e−t/τ

= 0 + (12 − 0)e−10t = 12e−10t V, t > 0

as before.
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P R A C T I C E P R O B L E M 7 . 1 4

For the op amp circuit in Fig. 7.56, find vo for t > 0 if v(0) = 4 V. Assume
that Rf = 50 k�, R1 = 10 k�, and C = 10 µF.

vo

+

−

R1

Rf

v+ −

C

+
−

Figure 7.56 For Practice Prob. 7.14.

Answer: −4e−2t V, t > 0.

E X A M P L E 7 . 1 5

Determine v(t) and vo(t) in the circuit of Fig. 7.57.

vo

v1

+

−

3 V

v+ −

1 mF

50 kΩ

20 kΩ
20 kΩ+

−

t = 0
10 kΩ

+
−

Figure 7.57 For Example 7.15.

Solution:

This problem can be solved in two ways, just like the previous example.
However, we will apply only the second method. Since what we are
looking for is the step response, we can apply Eq. (7.53) and write

v(t) = v(∞)+ [v(0)− v(∞)]e−t/τ , t > 0 (7.15.1)

where we need only find the time constant τ , the initial value v(0), and
the final value v(∞). Notice that this applies strictly to the capacitor
voltage due a step input. Since no current enters the input terminals of
the op amp, the elements on the feedback loop of the op amp constitute
an RC circuit, with

τ = RC = 50 × 103 × 10−6 = 0.05 (7.15.2)

For t < 0, the switch is open and there is no voltage across the capacitor.
Hence, v(0) = 0. For t > 0, we obtain the voltage at node 1 by voltage
division as

v1 = 20

20 + 10
3 = 2 V (7.15.3)

Since there is no storage element in the input loop, v1 remains constant
for all t . At steady state, the capacitor acts like an open circuit so that the
op amp circuit is a noninverting amplifier. Thus,

vo(∞) =
(

1 + 50

20

)
v1 = 3.5 × 2 = 7 V (7.15.4)

But

v1 − vo = v (7.15.5)
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so that

v(∞) = 2 − 7 = −5 V

Substituting τ, v(0), and v(∞) into Eq. (7.15.1) gives

v(t) = −5 + [0 − (−5)]e−20t = 5(e−20t − 1) V, t > 0 (7.15.6)

From Eqs. (7.15.3), (7.15.5), and (7.15.6), we obtain

vo(t) = v1(t)− v(t) = 7 − 5e−20t V, t > 0 (7.15.7)

P R A C T I C E P R O B L E M 7 . 1 5

Find v(t) and vo(t) in the op amp circuit of Fig. 7.58.

vo

+

−

4 mV

v+ −

1 mF

100 kΩ

+
−

t = 0
10 kΩ

+
−

Figure 7.58 For Practice Prob. 7.15.

Answer: 40(1 − e−10t ) mV, 40(e−10t − 1) mV.

E X A M P L E 7 . 1 6

Find the step response vo(t) for t > 0 in the op amp circuit of Fig. 7.59.
Let vi = 2u(t) V, R1 = 20 k�, Rf = 50 k�, R2 = R3 = 10 k�,
C = 2 µF.

vi vo
+
− C

+

−

R1

Rf

R2

R3

+
−

Figure 7.59 For Example 7.16.

Solution:

Notice that the capacitor in Example 7.14 is located in the input loop,
while the capacitor in Example 7.15 is located in the feedback loop. In
this example, the capacitor is located in the output of the op amp. Again,
we can solve this problem directly using nodal analysis. However, using
the Thevenin equivalent circuit may simplify the problem.

We temporarily remove the capacitor and find the Thevenin equiv-
alent at its terminals. To obtain VTh, consider the circuit in Fig. 7.60(a).
Since the circuit is an inverting amplifier,

Vab = −Rf

R1
vi

By voltage division,

VTh = R3

R2 + R3
Vab = − R3

R2 + R3

Rf

R1
vi
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vi
+
−

R1

Rf

R2

R3

+

−

Vab VTh

+

−

a

b

(a) (b)

RThRo

R2

R3

+
−

Figure 7.60 Obtaining VTh and RTh across the capacitor in Fig. 7.59.

To obtain RTh, consider the circuit in Fig. 7.60(b), where Ro is the
output resistance of the op amp. Since we are assuming an ideal op amp,
Ro = 0, and

RTh = R2 ‖ R3 = R2R3

R2 + R3

Substituting the given numerical values,

VTh = − R3

R2 + R3

Rf

R1
vi = −10

20

50

20
2u(t) = −2.5u(t)

RTh = R2R3

R2 + R3
= 5 k�

The Thevenin equivalent circuit is shown in Fig. 7.61, which is similar
to Fig. 7.40. Hence, the solution is similar to that in Eq. (7.48); that is,

vo(t) = −2.5(1 − e−t/τ ) u(t)

where τ = RThC = 5 × 103 × 2 × 10−6 = 0.01. Thus, the step response
for t > 0 is

vo(t) = 2.5(e−100t − 1) u(t) V

5 kΩ

+
−−2.5u(t) 2 mF

Figure 7.61 Thevenin equivalent circuit of
the circuit in Fig. 7.59.

P R A C T I C E P R O B L E M 7 . 1 6

Obtain the step response vo(t) for the circuit of Fig. 7.62. Let vi = 2u(t)
V, R1 = 20 k�, Rf = 40 k�, R2 = R3 = 10 k�, C = 2 µF.

Rf

+
−

R1

R2

R3

vovi

+

−
C

+
−

Figure 7.62 For Practice Prob. 7.16.

Answer: 6(1 − e−50t )u(t) V.
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7.8 TRANSIENT ANALYSIS WITH PSPICE
As we discussed in Section 7.5, the transient response is the tem-

porary response of the circuit that soon disappears. PSpice can be used
to obtain the transient response of a circuit with storage elements. Sec-
tion D.4 in Appendix D provides a review of transient analysis using
PSpice for Windows. It is recommended that you read Section D.4 before
continuing with this section.

PSpice uses “transient” to mean “function of
time.” Therefore, the transient response in
PSpice may not actually die out as expected.

If necessary, dc PSpice analysis is first carried out to determine the
initial conditions. Then the initial conditions are used in the transient
PSpice analysis to obtain the transient responses. It is recommended
but not necessary that during this dc analysis, all capacitors should be
open-circuited while all inductors should be short-circuited.

E X A M P L E 7 . 1 7

Use PSpice to find the response i(t) for t > 0 in the circuit of Fig. 7.63. 4 Ω

2 Ω6 A 3 H

t = 0
i(t)

Figure 7.63 For Example 7.17.

Solution:

Solving this problem by hand gives i(0) = 0, i(∞) = 2 A,RTh = 6, τ =
3/6 = 0.5 s, so that

i(t) = i(∞)+ [i(0)− i(∞)]e−t/τ = 2(1 − e−2t ), t > 0

To use PSpice, we first draw the schematic as shown in Fig. 7.64.
We recall from Appendix D that the part name for a close switch is
Sw−tclose. We do not need to specify the initial condition of the in-
ductor because PSpice will determine that from the circuit. By select-
ing Analysis/Setup/Transient, we set Print Step to 25 ms and Final
Step to 5τ = 2.5 s. After saving the circuit, we simulate by selecting
Analysis/Simulate. In the Probe menu, we select Trace/Add and
display −I(L1) as the current through the inductor. Figure 7.65 shows the
plot of i(t), which agrees with that obtained by hand calculation.

R2

26 A 3 H

IDC

R1 L1

tClose = 0
1 2

U1 4

0

Figure 7.64 The schematic of the circuit in
Fig. 7.63.1.5 A

0.5 A

2.0 A

1.0 A

0 A
0 s 1.0 s 2.0 s 3.0 s

 -I(L1)

Time

Figure 7.65 For Example 7.17; the response
of the circuit in Fig. 7.63.
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Note that the negative sign on I(L1) is needed because the current
enters through the upper terminal of the inductor, which happens to be the
negative terminal after one counterclockwise rotation. A way to avoid
the negative sign is to ensure that current enters pin 1 of the inductor. To
obtain this desired direction of positive current flow, the initially horizon-
tal inductor symbol should be rotated counterclockwise 270◦ and placed
in the desired location.

P R A C T I C E P R O B L E M 7 . 1 7

For the circuit in Fig. 7.66, use PSpice to find v(t) for t > 0.
3 Ω

+
−12 V 6 Ω 0.5 F

+

−
v(t)

t = 0

Figure 7.66 For Practice Prob. 7.17.

Answer: v(t) = 8(1 − e−t ) V, t > 0. The response is similar in shape
to that in Fig. 7.65.

E X A M P L E 7 . 1 8

In the circuit in Fig. 7.67, determine the response v(t).

12 Ω

+
−30 V 3 Ω6 Ω6 Ω

0.1 F

4 A

+ −v(t)t = 0 t = 0

Figure 7.67 For Example 7.18.

Solution:

There are two ways of solving this problem using PSpice.

METHOD 1 One way is to first do the dc PSpice analysis to determine
the initial capacitor voltage. The schematic of the revelant circuit is in
Fig. 7.68(a). Two pseudocomponent VIEWPOINTs are inserted to mea-
sure the voltages at nodes 1 and 2. When the circuit is simulated, we
obtain the displayed values in Fig. 7.68(a) as V1 = 0 V and V2 = 8 V.
Thus the initial capacitor voltage is v(0) = V1 −V2 = −8 V. The PSpice
transient analysis uses this value along with the schematic in Fig. 7.68(b).
Once the circuit in Fig. 7.68(b) is drawn, we insert the capacitor initial
voltage as IC = −8. We select Analysis/Setup/Transient and set Print
Step to 0.1 s and Final Step to 4τ = 4 s. After saving the circuit, we select
Analysis/Simulate to simulate the circuit. In the Probe menu, we select



CHAPTER 7 First-Order Circuits 275

Trace/Add and display V(R2:2) - V(R3:2) or V(C1:1) - V(C1:2) as the
capacitor voltage v(t). The plot of v(t) is shown in Fig. 7.69. This agrees
with the result obtained by hand calculation, v(t) = 10 − 18e−t .

0.0000 8.0000

6 4A

0.1

1

R3 3R4 I1

2

6R2

0

C1

(a)

6

12

R2 6R330 V

0

R1

(b)

+
−

0.1 

C1

V1

Figure 7.68 (a) Schematic for dc analysis to get v(0),
(b) schematic for transient analysis used in getting the
response v(t).

5 V

-5 V

10 V

0 V

-10 V
0 s 1.0 s 2.0 s 3.0 s 4.0 s

  V(R2:2) - V(R3:2)

Time

Figure 7.69 Response v(t) for the circuit in Fig. 7.67.

METHOD 2 We can simulate the circuit in Fig. 7.67 directly, since
PSpice can handle the open and close switches and determine the initial
conditions automatically. Using this approach, the schematic is drawn
as shown in Fig. 7.70. After drawing the circuit, we select Analysis/
Setup/Transient and set Print Step to 0.1 s and Final Step to 4τ = 4 s.
We save the circuit, then select Analysis/Simulate to simulate the circuit.
In the Probe menu, we select Trace/Add and display V(R2:2) - V(R3:2)
as the capacitor voltage v(t). The plot of v(t) is the same as that shown
in Fig. 7.69.

R1

630 V 4 AR2 6R3 3R4 I1

tClose = 0
1 2

12 U1

1 2

U2

0

+
−

tOpen = 0

0.1 

C1

V1

Figure 7.70 For Example 7.18.
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P R A C T I C E P R O B L E M 7 . 1 8

The switch in Fig. 7.71 was open for a long time but closed at t = 0. If
i(0) = 10 A, find i(t) for t > 0 by hand and also by PSpice.

5 Ω

30 Ω12 A 2 H

t = 0

6 Ω

i(t)

Figure 7.71 For Practice Prob. 7.18.

Answer: i(t) = 6 + 4e−5t A. The plot of i(t) obtained by PSpice
analysis is shown in Fig. 7.72.

9 A

10 A

7 A

8 A

6 A
0 s 0.5 s 1.0 s

  I(L1)

Time

Figure 7.72 For Practice Prob. 7.18.

†7.9 APPLICATIONS
The various devices in which RC and RL circuits find applications in-
clude filtering in dc power supplies, smoothing circuits in digital com-
munications, differentiators, integrators, delay circuits, and relay circuits.
Some of these applications take advantage of the short or long time con-
stants of theRC orRL circuits. We will consider four simple applications
here. The first two are RC circuits, the last two are RL circuits.

7 . 9 . 1 De l a y C i r cu i t s
An RC circuit can be used to provide various time delays. Figure 7.73
shows such a circuit. It basically consists of an RC circuit with the
capacitor connected in parallel with a neon lamp. The voltage source can
provide enough voltage to fire the lamp. When the switch is closed, the
capacitor voltage increases gradually toward 110 V at a rate determined

R1
R2

110 V C 0.1 mF

S

+

−

70 V
Neon
lamp

Figure 7.73 An RC delay circuit.
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by the circuit’s time constant, (R1 +R2)C. The lamp will act as an open
circuit and not emit light until the voltage across it exceeds a particular
level, say 70 V. When the voltage level is reached, the lamp fires (goes
on), and the capacitor discharges through it. Due to the low resistance of
the lamp when on, the capacitor voltage drops fast and the lamp turns off.
The lamp acts again as an open circuit and the capacitor recharges. By
adjusting R2, we can introduce either short or long time delays into the
circuit and make the lamp fire, recharge, and fire repeatedly every time
constant τ = (R1 + R2)C, because it takes a time period τ to get the
capacitor voltage high enough to fire or low enough to turn off.

The warning blinkers commonly found on road construction sites
are one example of the usefulness of such an RC delay circuit.

E X A M P L E 7 . 1 9

Consider the circuit in Fig. 7.73, and assume thatR1 = 1.5 M�, 0 < R <

2.5 M�. (a) Calculate the extreme limits of the time constant of the cir-
cuit. (b) How long does it take for the lamp to glow for the first time after
the switch is closed? Let R2 assume its largest value.

Solution:

(a) The smallest value for R2 is 0 �, and the corresponding time constant
for the circuit is

τ = (R1 + R2)C = (1.5 × 106 + 0)× 0.1 × 10−6 = 0.15 s

The largest value for R2 is 2.5 M�, and the corresponding time constant
for the circuit is

τ = (R1 + R2)C = (1.5 + 2.5)× 106 × 0.1 × 10−6 = 0.4 s

Thus, by proper circuit design, the time constant can be adjusted to in-
troduce a proper time delay in the circuit.
(b) Assuming that the capacitor is initially uncharged, vC(0) = 0, while
vC(∞) = 110. But

vC(t) = vC(∞)+ [vC(0)− vC(∞)]e−t/τ = 110[1 − e−t/τ ]

where τ = 0.4 s, as calculated in part (a). The lamp glows when vC =
70 V. If vC(t) = 70 V at t = t0, then

70 = 110[1 − e−t0/τ ] �⇒ 7

11
= 1 − e−t0/τ

or

e−t0/τ = 4

11
�⇒ et0/τ = 11

4

Taking the natural logarithm of both sides gives

t0 = τ ln
11

4
= 0.4 ln 2.75 = 0.4046 s

A more general formula for finding t0 is

t0 = τ ln
v(0)− v(∞)

v(t0)− v(∞)



278 PART 1 DC Circuits

The lamp will fire repeatedly every τ seconds if and only if t0 < τ . In
this example, that condition is not satisfied.

P R A C T I C E P R O B L E M 7 . 1 9

The RC circuit in Fig. 7.74 is designed to operate an alarm which acti-
vates when the current through it exceeds 120 µA. If 0 ≤ R ≤ 6 k�, find
the range of the time delay that the circuit can cause.

10 kΩ R

9 V 80 mF 4 kΩ

S

+

−

Alarm

Figure 7.74 For Practice Prob. 7.19.

Answer: Between 47.23 ms and 124 ms.

7 . 9 . 2 Pho to f l a s h Un i t

R1

+
−

High
voltage
dc supply R2

C vvs

1

2
i

+

−

Figure 7.75 Circuit for a flash unit providing
slow charge in position 1 and fast discharge in
position 2.

An electronic flash unit provides a common example of an RC circuit.
This application exploits the ability of the capacitor to oppose any abrupt
change in voltage. Figure 7.75 shows a simplified circuit. It consists
essentially of a high-voltage dc supply, a current-limiting large resistor
R1, and a capacitor C in parallel with the flashlamp of low resistance R2.
When the switch is in position 1, the capacitor charges slowly due to the
large time constant (τ1 = R1C). As shown in Fig. 7.76, the capacitor
voltage rises gradually from zero to Vs , while its current decreases grad-
ually from I1 = Vs/R1 to zero. The charging time is approximately five
times the time constant,

tcharge = 5R1C (7.65)

With the switch in position 2, the capacitor voltage is discharged. The low
resistanceR2 of the photolamp permits a high discharge current with peak
I2 = Vs/R2 in a short duration, as depicted in Fig. 7.76(b). Discharging
takes place in approximately five times the time constant,

0 t

Vs

v

0

(a) (b)

−I2

I1

i

Figure 7.76 (a) Capacitor voltage showing slow charge and fast discharge,
(b) capacitor current showing low charging current I1 = Vs/R1 and high discharge
current I2 = Vs/R2.
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tdischarge = 5R2C (7.66)

Thus, the simple RC circuit of Fig. 7.75 provides a short-duration, high-
current pulse. Such a circuit also finds applications in electric spot weld-
ing and the radar transmitter tube.

E X A M P L E 7 . 2 0

An electronic flashgun has a current-limiting 6-k� resistor and 2000-µF
electrolytic capacitor charged to 240 V. If the lamp resistance is 12 �,
find: (a) the peak charging current, (b) the time required for the capaci-
tor to fully charge, (c) the peak discharging current, (d) the total energy
stored in the capacitor, and (e) the average power dissipated by the lamp.

Solution:

(a) The peak charging current is

I1 = Vs

R1
= 240

6 × 103
= 40 mA

(b) From Eq. (7.65),

tcharge = 5R1C = 5 × 6 × 103 × 2000 × 10−6 = 60 s = 1 minute

(c) The peak discharging current is

I2 = Vs

R2
= 240

12
= 20 A

(d) The energy stored is

W = 1

2
CV 2

s = 1

2
× 2000 × 10−6 × 2402 = 57.6 J

(e) The energy stored in the capacitor is dissipated across the lamp during
the discharging period. From Eq. (7.66),

tdischarge = 5R2C = 5 × 12 × 2000 × 10−6 = 0.12 s

Thus, the average power dissipated is

p = W

tdischarge
= 57.6

0.12
= 480 W

P R A C T I C E P R O B L E M 7 . 2 0

The flash unit of a camera has a 2-mF capacitor charged to 80 V.

(a) How much charge is on the capacitor?

(b) What is the energy stored in the capacitor?

(c) If the flash fires in 0.8 ms, what is the average current through the
flashtube?

(d) How much power is delivered to the flashtube?

(e) After a picture has been taken, the capacitor needs to be recharged by
a power unit which supplies a maximum of 5 mA. How much time does
it take to charge the capacitor?

Answer: (a) 0.16 C, (b) 6.4 J, (c) 200 A, (d) 8 kW, (e) 32 s.
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7 . 9 . 3 Re l a y C i r cu i t s
A magnetically controlled switch is called a relay. A relay is essentially an
electromagnetic device used to open or close a switch that controls another
circuit. Figure 7.77(a) shows a typical relay circuit. The coil circuit is an
RL circuit like that in Fig. 7.77(b), where R and L are the resistance and
inductance of the coil. When switch S1 in Fig. 7.77(a) is closed, the coil
circuit is energized. The coil current gradually increases and produces
a magnetic field. Eventually the magnetic field is sufficiently strong to
pull the movable contact in the other circuit and close switch S2. At this
point, the relay is said to be pulled in. The time interval td between the
closure of switches S1 and S2 is called the relay delay time.

Relays were used in the earliest digital circuits and are still used
for switching high-power circuits.

S2

Coil

Magnetic fieldS1

S1

Vs

(a) (b)

Vs

R

L

Figure 7.77 A relay circuit.

E X A M P L E 7 . 2 1

The coil of a certain relay is operated by a 12-V battery. If the coil has a
resistance of 150 � and an inductance of 30 mH and the current needed
to pull in is 50 mA, calculate the relay delay time.

Solution:

The current through the coil is given by

i(t) = i(∞)+ [i(0)− i(∞)]e−t/τ

where

i(0) = 0, i(∞) = 12

150
= 80 mA

τ = L

R
= 30 × 10−3

150
= 0.2 ms

Thus,

i(t) = 80[1 − e−t/τ ] mA

If i(td) = 50 mA, then

50 = 80[1 − e−td /τ ] �⇒ 5

8
= 1 − e−td /τ



CHAPTER 7 First-Order Circuits 281

or

e−td /τ = 3

8
�⇒ etd/τ = 8

3
By taking the natural logarithm of both sides, we get

td = τ ln
8

3
= 0.2 ln

8

3
ms = 0.1962 ms

P R A C T I C E P R O B L E M 7 . 2 1

A relay has a resistance of 200� and an inductance of 500 mH. The relay
contacts close when the current through the coil reaches 350 mA. What
time elapses between the application of 110 V to the coil and contact
closure?

Answer: 2.529 ms.

7 . 9 . 4 Au tomob i l e I g n i t i on C i r cu i t
The ability of inductors to oppose rapid change in current makes them
useful for arc or spark generation. An automobile ignition system takes
advantage of this feature.

R

Vs v
+

−

i
Spark
plug

Air gap

L

Figure 7.78 Circuit for an automobile ignition
system.

The gasoline engine of an automobile requires that the fuel-air
mixture in each cylinder be ignited at proper times. This is achieved
by means of a spark plug (Fig. 7.78), which essentially consists of a
pair of electrodes separated by an air gap. By creating a large voltage
(thousands of volts) between the electrodes, a spark is formed across the
air gap, thereby igniting the fuel. But how can such a large voltage be
obtained from the car battery, which supplies only 12 V? This is achieved
by means of an inductor (the spark coil) L. Since the voltage across the
inductor is v = Ldi/dt , we can make di/dt large by creating a large
change in current in a very short time. When the ignition switch in Fig.
7.78 is closed, the current through the inductor increases gradually and
reaches the final value of i = Vs/R, where Vs = 12 V. Again, the time
taken for the inductor to charge is five times the time constant of the
circuit (τ = L/R),

tcharge = 5
L

R
(7.67)

Since at steady state, i is constant, di/dt = 0 and the inductor voltage
v = 0. When the switch suddenly opens, a large voltage is developed
across the inductor (due to the rapidly collapsing field) causing a spark
or arc in the air gap. The spark continues until the energy stored in the
inductor is dissipated in the spark discharge. In laboratories, when one
is working with inductive circuits, this same effect causes a very nasty
shock, and one must exercise caution.

E X A M P L E 7 . 2 2

A solenoid with resistance 4 � and inductance 6 mH is used in an auto-
mobile ignition circuit similar to that in Fig. 7.78. If the battery supplies
12 V, determine: the final current through the solenoid when the switch
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is closed, the energy stored in the coil, and the voltage across the air gap,
assuming that the switch takes 1 µs to open.

Solution:

The final current through the coil is

I = Vs

R
= 12

4
= 3 A

The energy stored in the coil is

W = 1

2
LI 2 = 1

2
× 6 × 10−3 × 32 = 27 mJ

The voltage across the gap is

V = L
)I

)t
= 6 × 10−3 × 3

1 × 10−6
= 18 kV

P R A C T I C E P R O B L E M 7 . 2 2

The spark coil of an automobile ignition system has a 20-mH inductance
and a 5-� resistance. With a supply voltage of 12 V, calculate: the time
needed for the coil to fully charge, the energy stored in the coil, and the
voltage developed at the spark gap if the switch opens in 2 µs.

Answer: 20 ms, 57.6 mJ, and 24 kV.

7.10 SUMMARY
1. The analysis in this chapter is applicable to any circuit that can be

reduced to an equivalent circuit comprising a resistor and a single
energy-storage element (inductor or capacitor). Such a circuit is
first-order because its behavior is described by a first-order differen-
tial equation. When analyzing RC and RL circuits, one must always
keep in mind that the capacitor is an open circuit to steady-state dc
conditions while the inductor is a short circuit to steady-state dc
conditions.

2. The natural response is obtained when no independent source is
present. It has the general form

x(t) = x(0)e−t/τ

where x represents current through (or voltage across) a resistor, a
capacitor, or an inductor, and x(0) is the initial value of x. The
natural response is also called the transient response because it is the
temporary response that vanishes with time.

3. The time constant τ is the time required for a response to decay to
1/e of its initial value. For RC circuits, τ = RC and for RL circuits,
τ = L/R.

4. The singularity functions include the unit step, the unit ramp func-
tion, and the unit impulse functions. The unit step function u(t) is

u(t) =
{

0, t < 0
1, t > 0
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The unit impulse function is

δ(t) =



0, t < 0
Undefined, t = 0
0, t > 0

The unit ramp function is

r(t) =
{

0, t ≤ 0
t, t ≥ 0

5. The forced (or steady-state) response is the behavior of the circuit
after an independent source has been applied for a long time.

6. The total or complete response consists of the natural response and
the forced response.

7. The step response is the response of the circuit to a sudden applica-
tion of a dc current or voltage. Finding the step response of a first-
order circuit requires the initial value x(0+), the final value x(∞),
and the time constant τ . With these three items, we obtain the step
response as

x(t) = x(∞)+ [x(0+)− x(∞)]e−t/τ

A more general form of this equation is

x(t) = x(∞)+ [x(t+0 )− x(∞)]e−(t−t0)/τ

Or we may write it as

Instantaneous value = Final + [Initial − Final]e−(t−t0)/τ

8. PSpice is very useful for obtaining the transient response of a circuit.

9. Four practical applications of RC and RL circuits are: a delay
circuit, a photoflash unit, a relay circuit, and an automobile ignition
circuit.

R E V I EW QU E S T I ON S

7.1 An RC circuit has R = 2 � and C = 4 F. The time
constant is:
(a) 0.5 s (b) 2 s (c) 4 s
(d) 8 s (e) 15 s

7.2 The time constant for an RL circuit with R = 2 �
and L = 4 H is:
(a) 0.5 s (b) 2 s (c) 4 s
(d) 8 s (e) 15 s

7.3 A capacitor in an RC circuit with R = 2 � and
C = 4 F is being charged. The time required for the
capacitor voltage to reach 63.2 percent of its
steady-state value is:
(a) 2 s (b) 4 s (c) 8 s
(d) 16 s (e) none of the above

7.4 An RL circuit has R = 2 � and L = 4 H. The time
needed for the inductor current to reach 40 percent

of its steady-state value is:
(a) 0.5 s (b) 1 s (c) 2 s
(d) 4 s (e) none of the above

7.5 In the circuit of Fig. 7.79, the capacitor voltage just
before t = 0 is:
(a) 10 V (b) 7 V (c) 6 V
(d) 4 V (e) 0 V

v(t)10 V
2 Ω

3 Ω

+
−

+

− t = 0

7 F

Figure 7.79 For Review Questions 7.5 and 7.6.
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7.6 In the circuit of Fig. 7.79, v(∞) is:
(a) 10 V (b) 7 V (c) 6 V
(d) 4 V (e) 0 V

7.7 For the circuit of Fig. 7.80, the inductor current just
before t = 0 is:
(a) 8 A (b) 6 A (c) 4 A
(d) 2 A (e) 0 A

10 A

3 Ω

2 Ω
5 H

i(t)

t = 0

Figure 7.80 For Review Questions 7.7 and 7.8.

7.8 In the circuit of Fig. 7.80, i(∞) is:
(a) 8 A (b) 6 A (c) 4 A
(d) 2 A (e) 0 A

7.9 If vs changes from 2 V to 4 V at t = 0, we may
express vs as:
(a) δ(t) V (b) 2u(t) V
(c) 2u(−t)+ 4u(t) V (d) 2 + 2u(t) V
(e) 4u(t)− 2 V

7.10 The pulse in Fig. 7.110(a) can be expressed in terms
of singularity functions as:
(a) 2u(t)+ 2u(t − 1) V (b) 2u(t)− 2u(t − 1) V
(c) 2u(t)− 4u(t − 1) V (d) 2u(t)+ 4u(t − 1) V

Answers: 7.1d, 7.2b, 7.3c, 7.4b, 7.5d, 7.6a, 7.7c, 7.8e, 7.9c,d, 7.10b.

P RO B L E M S

Section 7.2 The Source-Free RC Circuit

7.1 Show that Eq. (7.9) can be obtained by working with
the current i in the RC circuit rather than working
with the voltage v.

7.2 Find the time constant for the RC circuit in Fig.
7.81.

+
− 80 Ω

120 Ω 12 Ω

50 V 0.5 mF

Figure 7.81 For Prob. 7.2.

7.3 Determine the time constant of the circuit in Fig.
7.82.

4 kΩ12 kΩ 3 mF

1 mF

5 kΩ

Figure 7.82 For Prob. 7.3.

7.4 Obtain the time constant of the circuit in Fig. 7.83.

+
− R2

R1

vs

C2

C1

Figure 7.83 For Prob. 7.4.

7.5 The switch in Fig. 7.84 has been in position a for a
long time, until t = 4 s when it is moved to position
b and left there. Determine v(t) at t = 10 s.

v(t)24 V 20 Ω

80 Ω

+
−

+

−
0.1 F

t = 4

a b

Figure 7.84 For Prob. 7.5.

7.6 If v(0) = 20 V in the circuit in Fig. 7.85, obtain v(t)
for t > 0.

10 Ω

8 Ω

0.5 V 0.1 F+
− v

+

−

Figure 7.85 For Prob. 7.6.
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7.7 For the circuit in Fig. 7.86, if

v = 10e−4t V and i = 0.2e−4t A, t > 0

(a) Find R and C.
(b) Determine the time constant.
(c) Calculate the initial energy in the capacitor.
(d) Obtain the time it takes to dissipate 50 percent

of the initial energy.

R v

i

C
+

−

Figure 7.86 For Prob. 7.7.

7.8 In the circuit of Fig. 7.87, v(0) = 20 V. Find v(t) for
t > 0.

2 Ω

0.25 F

8 Ω

6 Ω 3 Ω

8 Ω
+

−
v

Figure 7.87 For Prob. 7.8.

7.9 Given that i(0) = 3 A, find i(t) for t > 0 in the
circuit in Fig. 7.88.

i

10 mF

10 Ω

4 Ω

15 Ω

Figure 7.88 For Prob. 7.9.

Section 7.3 The Source-Free RL Circuit

7.10 Derive Eq. (7.20) by working with voltage v across
the inductor of the RL circuit instead of working
with the current i.

7.11 The switch in the circuit in Fig. 7.89 has been closed
for a long time. At t = 0, the switch is opened.
Calculate i(t) for t > 0.

3 Ω

+
−12 V 4 Ω

i

t = 0

2 H

Figure 7.89 For Prob. 7.11.

7.12 For the circuit shown in Fig. 7.90, calculate the time
constant.

70 Ω 2 mH

+
−20 V 80 Ω 20 Ω30 Ω

Figure 7.90 For Prob. 7.12.

7.13 What is the time constant of the circuit in Fig. 7.91?

10 kΩ

10 mH30 kΩ 6 kΩ

20 mH

Figure 7.91 For Prob. 7.13.

7.14 Determine the time constant for each of the circuits
in Fig. 7.92.

L

R1

R2

R3

(a)

R1 R2

L2L1

R3

(b)

Figure 7.92 For Prob. 7.14.

7.15 Consider the circuit of Fig. 7.93. Find vo(t) if
i(0) = 2 A and v(t) = 0.
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vo(t)v(t)

1 Ω

3 Ω +

−

+
− i(t)

  H1
4

Figure 7.93 For Prob. 7.15.

7.16 For the circuit in Fig. 7.94, determine vo(t) when
i(0) = 1 A and v(t) = 0.

vo(t)v(t) 3 Ω

+

−

+
−

i(t)

2 Ω

0.4 H

Figure 7.94 For Prob. 7.16.

7.17 In the circuit of Fig. 7.95, find i(t) for t > 0 if
i(0) = 2 A.

40 Ω10 Ω 0.5i

6 Hi

Figure 7.95 For Prob. 7.17.

7.18 For the circuit in Fig. 7.96,

v = 120e−50t V

and

i = 30e−50t A, t > 0
(a) Find L and R.
(b) Determine the time constant.
(c) Calculate the initial energy in the inductor.
(d) What fraction of the initial energy is dissipated

in 10 ms?

R

i

+

−
vL

Figure 7.96 For Prob. 7.18.

7.19 In the circuit in Fig. 7.97, find the value of R for
which energy stored in the inductor will be 1 J.

40 Ω R

+
−60 V 2 H80 Ω

Figure 7.97 For Prob. 7.19.

7.20 Find i(t) and v(t) for t > 0 in the circuit of Fig.
7.98 if i(0) = 10 A.

5 Ω 20 Ω

1 Ω

2 H +

−
v(t)

i(t)

Figure 7.98 For Prob. 7.20.

7.21 Consider the circuit in Fig. 7.99. Given that
vo(0) = 2 V, find vo and vx for t > 0.

3 Ω

1 Ω 2 Ω vo

+

−
vx   H1

3

+

−

Figure 7.99 For Prob. 7.21.

Section 7.4 Singularity Functions

7.22 Express the following signals in terms of singularity
functions.

(a) v(t) =
{

0, t < 0
−5, t > 0

(b) i(t) =




0, t < 1
−10, 1 < t < 3

10, 3 < t < 5
0, t > 5
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(c) x(t) =



t − 1, 1 < t < 2
1, 2 < t < 3
4 − t, 3 < t < 4
0, Otherwise

(d) y(t) =



2, t < 0
−5, 0 < t < 1

0, t > 1

7.23 Express the signals in Fig. 7.100 in terms of
singularity functions.

0 t

1

−1

v1(t)

1

−1

(a)

0
1 2 t

−1

−2

v4(t)

(d)

0 2 4 6 t

2

4

v3(t)

(c)

0 2 4 t

2

v2(t)

(b)

Figure 7.100 For Prob. 7.23.

7.24 Sketch the waveform that is represented by

v(t) = u(t)+ u(t − 1)− 3u(t − 2)+ 2u(t − 3)

7.25 Sketch the waveform represented by

i(t) = r(t)+ r(t − 1)− u(t − 2)− r(t − 2)

+ r(t − 3)+ u(t − 4)

7.26 Evaluate the following integrals involving the
impulse functions:

(a)
∫ ∞

−∞
4t2δ(t − 1) dt

(b)
∫ ∞

−∞
4t2 cos 2πtδ(t − 0.5) dt

7.27 Evaluate the following integrals:

(a)
∫ ∞

−∞
e−4t2δ(t − 2) dt

(b)
∫ ∞

−∞
[5δ(t)+ e−t δ(t)+ cos 2πtδ(t)]dt

7.28 The voltage across a 10-mH inductor is
20δ(t − 2) mV. Find the inductor current, assuming
that the inductor is initially uncharged.

7.29 Find the solution of the following first-order
differential equations subject to the specified initial
conditions.
(a) 5 dv/dt + 3v = 0, v(0) = −2
(b) 4 dv/dt − 6v = 0, v(0) = 5

7.30 Solve for v in the following differential equations,
subject to the stated initial condition.
(a) dv/dt + v = u(t), v(0) = 0
(b) 2 dv/dt − v = 3u(t), v(0) = −6

Section 7.5 Step Response of an RC Circuit

7.31 Calculate the capacitor voltage for t < 0 and t > 0
for each of the circuits in Fig. 7.101.

+
−

1 Ω

4 Ω

20 V

12 V

+

−
t = 0

v 2 F

(a)

(b)

3 Ω

2 A4 Ω

+ −
+
− t = 0

2 F

v

Figure 7.101 For Prob. 7.31.

7.32 Find the capacitor voltage for t < 0 and t > 0 for
each of the circuits in Fig. 7.102.
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3 Ω 2 Ω

+
− 3 F

+

−
v12 V 4 V +

−

t = 0

(a)

(b)

4 Ω

2 Ω 5 F6 A
+

−
v

t = 0

Figure 7.102 For Prob. 7.32.

7.33 For the circuit in Fig. 7.103, find v(t) for t > 0.

1 F
+

−
v

6 Ω

30 Ω12 V

t = 0

+
−

Figure 7.103 For Prob. 7.33.

7.34 (a) If the switch in Fig. 7.104 has been open for a
long time and is closed at t = 0, find vo(t).

(b) Suppose that the switch has been closed for a
long time and is opened at t = 0. Find vo(t).

3 F
+

−
vo

2 Ω

4 Ω12 V +
−

t = 0

Figure 7.104 For Prob. 7.34.

7.35 Consider the circuit in Fig. 7.105. Find i(t) for
t < 0 and t > 0.

3 F

40 Ω 30 Ω

50 Ω0.5i80 V +
−

t = 0

i

Figure 7.105 For Prob. 7.35.

7.36 The switch in Fig. 7.106 has been in position a for a
long time. At t = 0, it moves to position b.
Calculate i(t) for all t > 0.

2 F

6 Ω

3 Ω30 V +
− 12 V +

−

i

t = 0a

b

Figure 7.106 For Prob. 7.36.

7.37 Find the step responses v(t) and i(t) to
vs = 5u(t) V in the circuit of Fig. 7.107.

v(t)vs 4 Ω

12 Ω

+
−

+

−
0.5 F

7 Ω

i(t)

Figure 7.107 For Prob. 7.37.

7.38 Determine v(t) for t > 0 in the circuit in Fig. 7.108
if v(0) = 0.

3u(t − 1) A 3u(t) A8 Ω2 Ω

+ −

0.1 F

v

Figure 7.108 For Prob. 7.38.

7.39 Find v(t) and i(t) in the circuit of Fig. 7.109.
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vu(−t) A 10 Ω
+

−
0.1 F

20 Ω

i

Figure 7.109 For Prob. 7.39.

7.40 If the waveform in Fig. 7.110(a) is applied to the
circuit of Fig. 7.110(b), find v(t). Assume v(0) = 0.

vis 4 Ω
+

−
0.5 F

6 Ω

(b)

0 1 t (s)

2

is (A)

(a)

Figure 7.110 For Prob. 7.40 and Review Question 7.10.

7.41∗ In the circuit in Fig. 7.111, find ix for t > 0. Let
R1 = R2 = 1 k�, R3 = 2 k�, and C = 0.25 mF.

R2

R130 mA

t = 0

R3

ix

C

Figure 7.111 For Prob. 7.41.

Section 7.6 Step Response of an RL Circuit

7.42 Rather than applying the short-cut technique used in
Section 7.6, use KVL to obtain Eq. (7.60).

7.43 For the circuit in Fig. 7.112, find i(t) for t > 0.

40 Ω
20 V 5 H

i

+
−

t = 0

10 Ω

Figure 7.112 For Prob. 7.43.

7.44 Determine the inductor current i(t) for both t < 0
and t > 0 for each of the circuits in Fig. 7.113.

4 Ω6 A 2 Ω 3 H

i

t = 0

(b)

25 V 4 H

i

(a)

+
− t = 0

2 Ω3 Ω

Figure 7.113 For Prob. 7.44.

7.45 Obtain the inductor current for both t < 0 and t > 0
in each of the circuits in Fig. 7.114.

∗An asterisk indicates a challenging problem.
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4 Ω2 A

2 Ω 3 Ω
6 Ω

12 Ω

3.5 H

i

4 Ω

(a)

10 V 2 H

i

(b)

+
−

24 V +
−

t = 0

t = 0

Figure 7.114 For Prob. 7.45.

7.46 Find v(t) for t < 0 and t > 0 in the circuit in Fig.
7.115.

8 Ω
4io

3 Ω

0.5 H

2 Ω

20 V +
−

24 V +
−

t = 0

+
−

io

+

−
v

Figure 7.115 For Prob. 7.46.

7.47 For the network shown in Fig. 7.116, find v(t) for
t > 0.

6 Ω

12 Ω2 A 0.5 H20 Ω

5 Ω

+

−
v

+
− 20 V

t = 0

Figure 7.116 For Prob. 7.47.

7.48∗ Find i1(t) and i2(t) for t > 0 in the circuit of Fig.
7.117.

6 Ω5 A

2.5 H

5 Ω 20 Ω

4 H

i1 i2

t = 0

Figure 7.117 For Prob. 7.48.

7.49 Rework Prob. 7.15 if i(0) = 10 A and
v(t) = 20u(t) V.

7.50 Determine the step response vo(t) to vs = 18u(t) in
the circuit of Fig. 7.118.

3 Ω

6 Ω

vs

1.5 H

4 Ω
+
− +

−
vo

Figure 7.118 For Prob. 7.50.

7.51 Find v(t) for t > 0 in the circuit of Fig. 7.119 if the
initial current in the inductor is zero.

5 Ω 20 Ω4u(t) 8 H
+

−
v

Figure 7.119 For Prob. 7.51.

7.52 In the circuit in Fig. 7.120, is changes from 5 A to
10 A at t = 0; that is, is = 5u(−t)+ 10u(t). Find v
and i.

4 Ωis 0.5 H
+

−
v

i

Figure 7.120 For Prob. 7.52.

7.53 For the circuit in Fig. 7.121, calculate i(t) if
i(0) = 0.
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3 Ω 6 Ω

+
−u(t − 1) V u(t) V2 H

i

+
−

Figure 7.121 For Prob. 7.53.

7.54 Obtain v(t) and i(t) in the circuit of Fig. 7.122.

5 Ω

+
−10u(−t) V 20 Ω 0.5 H

i

+

−
v

Figure 7.122 For Prob. 7.54.

7.55 Find vo(t) for t > 0 in the circuit of Fig. 7.123.

6 Ω

2 Ω

3 Ω+
−

+

−
vo

t = 0

4 H

10 V

Figure 7.123 For Prob. 7.55.

7.56 If the input pulse in Fig. 7.124(a) is applied to the
circuit in Fig. 7.124(b), determine the response i(t).

5 Ω

+
− vs 20 Ω 2 H

i

(b)(a)

0 t (s)

vs (V)

10

1

Figure 7.124 For Prob. 7.56.

Section 7.7 First-order Op Amp Circuits

7.57 Find the output current io for t > 0 in the op amp
circuit of Fig. 7.125. Let v(0) = −4 V.

10 kΩ

10 kΩ

v

20 kΩ

io

+ −

2 mF

+
−

Figure 7.125 For Prob. 7.57.

7.58 If v(0) = 5 V, find vo(t) for t > 0 in the op amp
circuit in Fig. 7.126. Let R = 10 k� and C = 1 µF.

R

R

R v

vo

+

−
C

+
−

Figure 7.126 For Prob. 7.58.

7.59 Obtain vo for t > 0 in the circuit of Fig. 7.127.

10 kΩ
10 kΩ

+
− vo

+

−
25 mF

t = 0

4 V

+
−

Figure 7.127 For Prob. 7.59.

7.60 For the op amp circuit in Fig. 7.128, find vo(t) for
t > 0.
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20 kΩ 100 kΩ10 kΩ

+
−

vo

+

−

25 mF

t = 0

4 V +
−

Figure 7.128 For Prob. 7.60.

7.61 Determine vo for t > 0 when vs = 20 mV in the op
amp circuit of Fig. 7.129.

20 kΩ

+
−

vo

vs 5 mF

t = 0

+
−

Figure 7.129 For Prob. 7.61.

7.62 For the op amp circuit in Fig. 7.130, find io for t > 2.

10 kΩ

10 kΩ 20 kΩ

+
− 100 mF

t = 2

4 V

io
+
−

Figure 7.130 For Prob. 7.62.

7.63 Find io in the op amp circuit in Fig. 7.131. Assume
that v(0) = −2 V, R = 10 k�, and C = 10 µF.

R+
−

v

3u(t)

io+ −

C

+
−

Figure 7.131 For Prob. 7.63.

7.64 For the op amp circuit of Fig. 7.132, let R1 = 10 k�,
Rf = 20 k�,C = 20 µF, and v(0) = 1 V. Find vo.

Rf

R1

+
− vo

+

−

4u(t)

v+ −

C

+
−

Figure 7.132 For Prob. 7.64.

7.65 Determine vo(t) for t > 0 in the circuit of Fig.
7.133. Let is = 10u(t) µA and assume that the
capacitor is initially uncharged.

10 kΩ

50 kΩ vo

+

−

is

2 mF

+
−

Figure 7.133 For Prob. 7.65.

7.66 In the circuit of Fig. 7.134, find vo and io, given that
vs = 4u(t) V and v(0) = 1 V.

vo

vs
2 mF

10 kΩ

20 kΩ
+ −v

+
−

io

+
−

Figure 7.134 For Prob. 7.66.
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Section 7.8 Transient Analysis with PSpice

7.67 Repeat Prob. 7.40 using PSpice.

7.68 The switch in Fig. 7.135 opens at t = 0. Use PSpice
to determine v(t) for t > 0.

5 Ω

4 Ω5 A 6 Ω 20 Ω +
− 30 V

t = 0 + −v

100 mF

Figure 7.135 For Prob. 7.68.

7.69 The switch in Fig. 7.136 moves from position a to b
at t = 0. Use PSpice to find i(t) for t > 0.

4 Ω
6 Ω

3 Ω+
− 108 V 6 Ω 2 H

i(t)t = 0

a

b

Figure 7.136 For Prob. 7.69.

7.70 Repeat Prob. 7.56 using PSpice.

Section 7.9 Applications

7.71 In designing a signal-switching circuit, it was found
that a 100-µF capacitor was needed for a time
constant of 3 ms. What value resistor is necessary
for the circuit?

7.72 A simple relaxation oscillator circuit is shown in
Fig. 7.137. The neon lamp fires when its voltage
reaches 75 V and turns off when its voltage drops to
30 V. Its resistance is 120 � when on and infinitely
high when off.
(a) For how long is the lamp on each time the

capacitor discharges?

(b) What is the time interval between light flashes?

120 V

4 MΩ

Neon lamp6 mF

+

−

Figure 7.137 For Prob. 7.72.

7.73 Figure 7.138 shows a circuit for setting the length of
time voltage is applied to the electrodes of a welding
machine. The time is taken as how long it takes the
capacitor to charge from 0 to 8 V. What is the time
range covered by the variable resistor?

100 kΩ to 1 MΩ

12 V 2 mF
Welding
control 
unit

Electrode

Figure 7.138 For Prob. 7.73.

7.74 A 120-V dc generator energizes a motor whose coil
has an inductance of 50 H and a resistance of 100 �.
A field discharge resistor of 400 � is connected in
parallel with the motor to avoid damage to the
motor, as shown in Fig. 7.139. The system is at
steady state. Find the current through the discharge
resistor 100 ms after the breaker is tripped.

+
− 120 V 400 Ω

Circuit breaker

Motor

Figure 7.139 For Prob. 7.74.

COM P R E H EN S I V E P RO B L E M S

7.75 The circuit in Fig. 7.140(a) can be designed as an
approximate differentiator or an integrator,
depending on whether the output is taken across the
resistor or the capacitor, and also on the time
constant τ = RC of the circuit and the width T of
the input pulse in Fig. 7.140(b). The circuit is a

differentiator if τ � T , say τ < 0.1T , or an
integrator if τ � T , say τ > 10T .
(a) What is the minimum pulse width that will allow

a differentiator output to appear across the
capacitor?
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(b) If the output is to be an integrated form of the
input, what is the maximum value the pulse
width can assume?

300 kΩ

+
− 200 pFvi

(a)

0 T t

Vm

vi

(b)

Figure 7.140 For Prob. 7.75.

7.76 An RL circuit may be used as a differentiator if the
output is taken across the inductor and τ � T (say
τ < 0.1T ), where T is the width of the input pulse.
If R is fixed at 200 k�, determine the maximum
value of L required to differentiate a pulse with
T = 10 µs.

7.77 An attenuator probe employed with oscilloscopes
was designed to reduce the magnitude of the input
voltage vi by a factor of 10. As shown in Fig. 7.141,
the oscilloscope has internal resistance Rs and
capacitance Cs , while the probe has an internal
resistance Rp . If Rp is fixed at 6 M�, find Rs and
Cs for the circuit to have a time constant of 15 µs.

vovi

Probe Scope

Rp

Cs

+

−

+

−

Rs

Figure 7.141 For Prob. 7.77.

7.78 The circuit in Fig. 7.142 is used by a biology student
to study “ frog kick.” She noticed that the frog
kicked a little when the switch was closed but
kicked violently for 5 s when the switch was
opened. Model the frog as a resistor and calculate
its resistance. Assume that it takes 10 mA for the
frog to kick violently.

50 Ω

2 H

+

−
12 V

Switch
Frog

Figure 7.142 For Prob. 7.78.

7.79 To move a spot of a cathode-ray tube across the
screen requires a linear increase in the voltage
across the deflection plates, as shown in Fig. 7.143.
Given that the capacitance of the plates is 4 nF,
sketch the current flowing through the plates.

Rise time = 2 ms Drop time = 5 ms
t

10

v (V)

(not to scale)

Figure 7.143 For Prob. 7.79.
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C H A P T E R

SECOND-ORDER CIRCUITS

8

“Engineering is not only a learned profession, it is also a learning pro-
fession, one whose practitioners first become and then remain students
throughout their active careers.”

—William L. Everitt

Enhancing Your Career
To increase your engineering career opportunities after grad-
uation, develop a strong fundamental understanding in a
broad set of engineering areas. When possible, this might
best be accomplished by working toward a graduate degree
immediately upon receiving your undergraduate degree.

Each degree in engineering represents certain skills
the students acquire. At the Bachelor degree level, you learn
the language of engineering and the fundamentals of engi-
neering and design. At the Master’s level, you acquire the
ability to do advanced engineering projects and to commu-
nicate your work effectively both orally and in writing. The
Ph.D. represents a thorough understanding of the fundamen-
tals of electrical engineering and a mastery of the skills nec-
essary both for working at the frontiers of an engineering
area and for communicating one’s effort to others.

If you have no idea what career you should pursue af-
ter graduation, a graduate degree program will enhance your
ability to explore career options. Since your undergraduate
degree will only provide you with the fundamentals of en-
gineering, a Master’s degree in engineering supplemented
by business courses benefits more engineering students than
does getting a Master’s of Business Administration (MBA).
The best time to get your MBA is after you have been a prac-
ticing engineer for some years and decide your career path
would be enhanced by strengthening your business skills.

Engineers should constantly educate themselves,
formally and informally, taking advantage of all means of
education. Perhaps there is no better way to enhance your
career than to join a professional society such as IEEE and
be an active member.

Key career plot points

Networking
worldwide

Professional organization

Technical information

Career resources

Networking
the World TM

Enhancing your career involves understanding your goals,
adapting to changes, anticipating opportunities, and planning
your own niche. (Courtesy of IEEE.)
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8.1 INTRODUCTION
In the previous chapter we considered circuits with a single storage ele-
ment (a capacitor or an inductor). Such circuits are first-order because
the differential equations describing them are first-order. In this chap-
ter we will consider circuits containing two storage elements. These are
known assecond-ordercircuits because their responses are described by
differential equations that contain second derivatives.

Typical examples of second-order circuits areRLC circuits, in
which the three kinds of passive elements are present. Examples of such
circuits are shown in Fig. 8.1(a) and (b). Other examples areRC andRL
circuits, as shown in Fig. 8.1(c) and (d). It is apparent from Fig. 8.1 that
a second-order circuit may have two storage elements of different type or
the same type (provided elements of the same type cannot be represented
by an equivalent single element). An op amp circuit with two storage
elements may also be a second-order circuit. As with first-order circuits,
a second-order circuit may contain several resistors and dependent and
independent sources.

A second-order circuit is characterized by a second-order differential equation. It
consists of resistors and the equivalent of two energy storage elements.

Our analysis of second-order circuits will be similar to that used for
first-order. We will first consider circuits that are excited by the initial
conditions of the storage elements. Although these circuits may contain
dependent sources, they are free of independent sources. These source-
free circuits will give natural responses as expected. Later we will con-
sider circuits that are excited by independent sources. These circuits will
give both the natural response and the forced response. We consider
only dc independent sources in this chapter. The case of sinusoidal and
exponential sources is deferred to later chapters.

vs

R

R

L

C+
−

(a)

is C LR

(b)

vs

R1 R2

+
−

(c)

is C2C1

(d)

L1 L2

Figure 8.1 Typical examples of
second-order circuits: (a) series
RLC circuit, (b) parallel RLC
circuit, (c) RL circuit, (d) RC
circuit.

We begin by learning how to obtain the initial conditions for the cir-
cuit variables and their derivatives, as this is crucial to analyzing second-
order circuits. Then we consider series and parallel RLC circuits such as
shown in Fig. 8.1 for the two cases of excitation: by initial conditions of
the energy storage elements and by step inputs. Later we examine other
types of second-order circuits, including op amp circuits. We will con-
sider PSpice analysis of second-order circuits. Finally, we will consider
the automobile ignition system and smoothing circuits as typical appli-
cations of the circuits treated in this chapter. Other applications such as
resonant circuits and filters will be covered in Chapter 14.

8.2 FINDING INITIAL AND FINAL VALUES
Perhaps the major problem students face in handling second-order circuits
is finding the initial and final conditions on circuit variables. Students are
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usually comfortable getting the initial and final values of v and i but often
have difficulty finding the initial values of their derivatives: dv/dt and
di/dt . For this reason, this section is explicitly devoted to the subtleties
of getting v(0), i(0), dv(0)/dt , di(0)/dt , i(∞), and v(∞). Unless
otherwise stated in this chapter, v denotes capacitor voltage, while i is
the inductor current.

There are two key points to keep in mind in determining the initial
conditions.

First—as always in circuit analysis—we must carefully handle the
polarity of voltage v(t) across the capacitor and the direction of the cur-
rent i(t) through the inductor. Keep in mind that v and i are defined
strictly according to the passive sign convention (see Figs. 6.3 and 6.23).
One should carefully observe how these are defined and apply them ac-
cordingly.

Second, keep in mind that the capacitor voltage is always continu-
ous so that

v(0+) = v(0−) (8.1a)

and the inductor current is always continuous so that

i(0+) = i(0−) (8.1b)

where t = 0− denotes the time just before a switching event and t = 0+ is
the time just after the switching event, assuming that the switching event
takes place at t = 0.

Thus, in finding initial conditions, we first focus on those variables
that cannot change abruptly, capacitor voltage and inductor current, by
applying Eq. (8.1). The following examples illustrate these ideas.

E X A M P L E 8 . 1

The switch in Fig. 8.2 has been closed for a long time. It is open at t = 0.
Find: (a) i(0+), v(0+), (b) di(0+)dt , dv(0+)/dt , (c) i(∞), v(∞).

12 V

4 Ω 0.25 H

+
− 0.1 F

i

v
+

−
2 Ω

t = 0

Figure 8.2 For Example 8.1.

Solution:

(a) If the switch is closed a long time before t = 0, it means that the circuit
has reached dc steady state at t = 0. At dc steady state, the inductor acts
like a short circuit, while the capacitor acts like an open circuit, so we
have the circuit in Fig. 8.3(a) at t = 0−. Thus,

12 V

4 Ω 0.25 H

+
− 0.1 F

i

(b)

12 V

4 Ω

+
−

i

v

+

−
2 Ω

(a)

12 V

4 Ω

+
−

i

v

+

−

(c)

+ −vL

v
+

−

Figure 8.3 Equivalent circuit of that in Fig. 8.2 for: (a) t = 0−, (b) t = 0+, (c) t → ∞.
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i(0−) = 12

4 + 2
= 2 A, v(0−) = 2i(0−) = 4 V

As the inductor current and the capacitor voltage cannot change abruptly,

i(0+) = i(0−) = 2 A, v(0+) = v(0−) = 4 V

(b) At t = 0+, the switch is open; the equivalent circuit is as shown in Fig.
8.3(b). The same current flows through both the inductor and capacitor.
Hence,

iC(0
+) = i(0+) = 2 A

Since C dv/dt = iC , dv/dt = iC/C, and

dv(0+)
dt

= iC(0+)
C

= 2

0.1
= 20 V/s

Similarly, since L di/dt = vL, di/dt = vL/L. We now obtain vL by
applying KVL to the loop in Fig. 8.3(b). The result is

−12 + 4i(0+) + vL(0
+) + v(0+) = 0

or

vL(0
+) = 12 − 8 − 4 = 0

Thus,

di(0+)
dt

= vL(0+)
L

= 0

0.25
= 0 A/s

(c) For t > 0, the circuit undergoes transience. But as t → ∞, the circuit
reaches steady state again. The inductor acts like a short circuit and the
capacitor like an open circuit, so that the circuit becomes that shown in
Fig. 8.3(c), from which we have

i(∞) = 0 A, v(∞) = 12 V

P R A C T I C E P R O B L E M 8 . 1

The switch in Fig. 8.4 was open for a long time but closed at t = 0. De-
termine: (a) i(0+), v(0+), (b) di(0+)dt , dv(0+)/dt , (c) i(∞), v(∞).

10 Ω

24 Vv
+

−
2 Ω +

−

i

t = 0

0.4 H

 F1
20

Figure 8.4 For Practice Prob. 8.1.

Answer: (a) 2 A, 4 V, (b) 50 A/s, 0 V/s, (c) 12 A, 24 V.
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E X A M P L E 8 . 2

In the circuit of Fig. 8.5, calculate: (a) iL(0+), vC(0+), vR(0+),
(b) diL(0+)dt , dvC(0+)/dt , dvR(0+)/dt , (c) iL(∞), vC(∞), vR(∞).

3u(t) A

4 Ω

20 V
0.6 H

vC

+

−vR

+

−
2 Ω

+
−

iL
 F1

2

Figure 8.5 For Example 8.2.

Solution:

(a) For t < 0, 3u(t) = 0. At t = 0−, since the circuit has reached steady
state, the inductor can be replaced by a short circuit, while the capacitor
is replaced by an open circuit as shown in Fig. 8.6(a). From this figure
we obtain

iL(0
−) = 0, vR(0

−) = 0, vC(0
−) = −20 V (8.2.1)

Although the derivatives of these quantities at t = 0− are not required, it
is evident that they are all zero, since the circuit has reached steady state
and nothing changes.

3 A

4 Ω

20 V

0.6 HvR

+

−
2 Ω

+
−

iLiC

vL

(b)

a b4 Ω

20 V

vC

+

−
vR

+

−

2 Ω
+
−

iL

(a)

vo

vC

+

−

+ −

+

−

F1
2

Figure 8.6 The circuit in Fig. 8.5 for: (a) t = 0−, (b) t = 0+.

For t > 0, 3u(t) = 3, so that the circuit is now equivalent to that
in Fig. 8.6(b). Since the inductor current and capacitor voltage cannot
change abruptly,

iL(0
+) = iL(0

−) = 0, vC(0
+) = vC(0

−) = −20 V (8.2.2)

Although the voltage across the 4-� resistor is not required, we will use
it to apply KVL and KCL; let it be called vo. Applying KCL at node a
in Fig. 8.6(b) gives

3 = vR(0+)
2

+ vo(0+)
4

(8.2.3)
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Applying KVL to the middle mesh in Fig. 8.6(b) yields

−vR(0
+) + vo(0

+) + vC(0
+) + 20 = 0 (8.2.4)

Since vC(0+) = −20 V from Eq. (8.2.2), Eq. (8.2.4) implies that

vR(0
+) = vo(0

+) (8.2.5)

From Eqs. (8.2.3) and (8.2.5), we obtain

vR(0
+) = vo(0

+) = 4 V (8.2.6)

(b) Since L diL/dt = vL,

diL(0+)
dt

= vL(0+)
L

But applying KVL to the right mesh in Fig. 8.6(b) gives

vL(0
+) = vC(0

+) + 20 = 0

Hence,

diL(0+)
dt

= 0 (8.2.7)

Similarly, since C dvC/dt = iC , then dvC/dt = iC/C. We apply KCL
at node b in Fig. 8.6(b) to get iC :

vo(0+)
4

= iC(0
+) + iL(0

+) (8.2.8)

Since vo(0+) = 4 and iL(0+) = 0, iC(0+) = 4/4 = 1 A. Then

dvC(0+)
dt

= iC(0+)
C

= 1

0.5
= 2 V/s (8.2.9)

To get dvR(0+)/dt , we apply KCL to node a and obtain

3 = vR

2
+ vo

4

Taking the derivative of each term and setting t = 0+ gives

0 = 2
dvR(0+)

dt
+ dvo(0+)

dt
(8.2.10)

We also apply KVL to the middle mesh in Fig. 8.6(b) and obtain

−vR + vC + 20 + vo = 0

Again, taking the derivative of each term and setting t = 0+ yields

−dvR(0+)
dt

+ dvC(0+)
dt

+ dvo(0+)
dt

= 0

Substituting for dvC(0+)/dt = 2 gives

dvR(0+)
dt

= 2 + dvo(0+)
dt

(8.2.11)

From Eqs. (8.2.10) and (8.2.11), we get
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dvR(0+)
dt

= 2

3
V/s

We can find diR(0+)/dt although it is not required. Since vR = 5iR ,

diR(0+)
dt

= 1

5

dvR(0+)
dt

= 1

5

2

3
= 2

15
A/s

(c) As t → ∞, the circuit reaches steady state. We have the equivalent
circuit in Fig. 8.6(a) except that the 3-A current source is now operative.
By current division principle,

iL(∞) = 2

2 + 4
3 A = 1 A

vR(∞) = 4

2 + 4
3 A × 2 = 4 V, vC(∞) = −20 V

(8.2.12)

P R A C T I C E P R O B L E M 8 . 2

For the circuit in Fig. 8.7, find: (a) iL(0+), vC(0+), vR(0+),
(b) diL(0+)/dt , dvC(0+)/dt , dvR(0+)/dt , (c) iL(∞), vC(∞), vR(∞).

2u(t) A 3 A

5 Ω

2 H

iC iL

vC

+

−

iR

vL

vR+ −

+

−
F1

5

Figure 8.7 For Practice Prob. 8.2.

Answer: (a) −3 A, 0, 0, (b) 0, 10 V/s, 0, (c) −1 A, 10 V, 10 V.

8.3 THE SOURCE-FREE SERIES RLC CIRCUIT
An understanding of the natural response of the series RLC circuit is a
necessary background for future studies in filter design and communica-
tions networks.

Consider the series RLC circuit shown in Fig. 8.8. The circuit is
being excited by the energy initially stored in the capacitor and inductor.
The energy is represented by the initial capacitor voltage V0 and initial
inductor current I0. Thus, at t = 0,

v(0) = 1

C

∫ 0

−∞
i dt = V0 (8.2a)

i(0) = I0 (8.2b)

i

R L

Io

Vo C

+

−

Figure 8.8 A source-free series
RLC circuit.Applying KVL around the loop in Fig. 8.8,

Ri + L
di

dt
+ 1

C

∫ t

−∞
i dt = 0 (8.3)
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To eliminate the integral, we differentiate with respect to t and rearrange
terms. We get

d2i

dt2
+ R

L

di

dt
+ i

LC
= 0 (8.4)

This is a second-order differential equation and is the reason for calling
theRLC circuits in this chapter second-order circuits. Our goal is to solve
Eq. (8.4). To solve such a second-order differential equation requires that
we have two initial conditions, such as the initial value of i and its first
derivative or initial values of some i and v. The initial value of i is given
in Eq. (8.2b). We get the initial value of the derivative of i from Eqs.
(8.2a) and (8.3); that is,

Ri(0) + L
di(0)

dt
+ V0 = 0

or

di(0)

dt
= − 1

L
(RI0 + V0) (8.5)

With the two initial conditions in Eqs. (8.2b) and (8.5), we can now
solve Eq. (8.4). Our experience in the preceding chapter on first-order
circuits suggests that the solution is of exponential form. So we let

i = Aest (8.6)

where A and s are constants to be determined. Substituting Eq. (8.6) into
Eq. (8.4) and carrying out the necessary differentiations, we obtain

As2est + AR

L
sest + A

LC
est = 0

or

Aest
(
s2 + R

L
s + 1

LC

)
= 0 (8.7)

Since i = Aest is the assumed solution we are trying to find, only the
expression in parentheses can be zero:

s2 + R

L
s + 1

LC
= 0 (8.8)

See Appendix C.1 for the formula to find the
roots of a quadratic equation.

This quadratic equation is known as the characteristic equation of the
differential Eq. (8.4), since the roots of the equation dictate the character
of i. The two roots of Eq. (8.8) are

s1 = − R

2L
+
√(

R

2L

)2

− 1

LC
(8.9a)

s2 = − R

2L
−
√(

R

2L

)2

− 1

LC
(8.9b)

A more compact way of expressing the roots is

s1 = −α +
√
α2 − ω2

0, s2 = −α −
√
α2 − ω2

0 (8.10)
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where

α = R

2L
, ω0 = 1√

LC
(8.11)

The roots s1 and s2 are called natural frequencies, measured in
nepers per second (Np/s), because they are associated with the natural
response of the circuit;ω0 is known as the resonant frequency or strictly as
the undamped natural frequency, expressed in radians per second (rad/s);
and α is the neper frequency or the damping factor, expressed in nepers
per second. In terms of α and ω0, Eq. (8.8) can be written as

s2 + 2αs + ω2
0 = 0 (8.8a)

The variables s and ω are important quantities we will be discussing
throughout the rest of the text.

The neper (Np) is a dimensionless unit named
after John Napier (1550–1617), a Scottish math-
ematician.

The ratio α/ω0 is known as the damping ratio ζ .

The two values of s in Eq. (8.10) indicate that there are two possible
solutions for i, each of which is of the form of the assumed solution in
Eq. (8.6); that is,

i1 = A1e
s1t , i2 = A2e

s2t (8.12)

Since Eq. (8.4) is a linear equation, any linear combination of the two
distinct solutions i1 and i2 is also a solution of Eq. (8.4). A complete or
total solution of Eq. (8.4) would therefore require a linear combination
of i1 and i2. Thus, the natural response of the series RLC circuit is

i(t) = A1e
s1t + A2e

s2t (8.13)

where the constantsA1 andA2 are determined from the initial values i(0)
and di(0)/dt in Eqs. (8.2b) and (8.5).

From Eq. (8.10), we can infer that there are three types of solutions:

1. If α > ω0, we have the overdamped case.

2. If α = ω0, we have the critically damped case.

3. If α < ω0, we have the underdamped case.

We will consider each of these cases separately.

The response is overdamped when the roots of
the circuit’s characteristic equation are unequal
and real, critically damped when the roots are
equal and real, and underdamped when the roots
are complex.

Overdamped Case (α > ω0)

From Eqs. (8.9) and (8.10), α > ω0 when C > 4L/R2. When this hap-
pens, both roots s1 and s2 are negative and real. The response is

i(t) = A1e
s1t + A2e

s2t (8.14)

which decays and approaches zero as t increases. Figure 8.9(a) illustrates
a typical overdamped response.

Critically Damped Case (α = ω0)

When α = ω0, C = 4L/R2 and

s1 = s2 = −α = − R

2L
(8.15)

For this case, Eq. (8.13) yields

i(t) = A1e
−αt + A2e

−αt = A3e
−αt
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where A3 = A1 + A2. This cannot be the solution, because the two
initial conditions cannot be satisfied with the single constant A3. What
then could be wrong? Our assumption of an exponential solution is
incorrect for the special case of critical damping. Let us go back to Eq.
(8.4). When α = ω0 = R/2L, Eq. (8.4) becomes

d2i

dt2
+ 2α

di

dt
+ α2i = 0

or
d

dt

(
di

dt
+ αi

)
+ α

(
di

dt
+ αi

)
= 0 (8.16)

If we let

f = di

dt
+ αi (8.17)

then Eq. (8.16) becomes

df

dt
+ αf = 0

which is a first-order differential equation with solution f = A1e
−αt ,

where A1 is a constant. Equation (8.17) then becomes

di

dt
+ αi = A1e

−αt

or

eαt
di

dt
+ eαtαi = A1 (8.18)

This can be written as
d

dt
(eαt i) = A1 (8.19)

Integrating both sides yields

eαt i = A1t + A2

or

i = (A1t + A2)e
αt (8.20)

whereA2 is another constant. Hence, the natural response of the critically
damped circuit is a sum of two terms: a negative exponential and a
negative exponential multiplied by a linear term, or

i(t) = (A2 + A1t)e
−αt (8.21)

A typical critically damped response is shown in Fig. 8.9(b). In fact, Fig.
8.9(b) is a sketch of i(t) = te−αt , which reaches a maximum value of
e−1/α at t = 1/α, one time constant, and then decays all the way to zero.

t

i(t)

0

e–t

(c)

t1
a

i(t)

0

(b)

t

i(t)

0

(a)

2p
vd

Figure 8.9 (a) Overdamped response,
(b) critically damped response,
(c) underdamped response.

Underdamped Case (α < ω0)

For α < ω0, C < 4L/R2. The roots may be written as

s1 = −α +
√

−(ω2
0 − α2) = −α + jωd (8.22a)

s2 = −α −
√

−(ω2
0 − α2) = −α − jωd (8.22b)
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where j = √−1 and ωd =
√
ω2

0 − α2, which is called the damping
frequency. Both ω0 and ωd are natural frequencies because they help
determine the natural response; while ω0 is often called the undamped
natural frequency,ωd is called the damped natural frequency. The natural
response is

i(t) = A1e
−(α−jωd )t + A2e

−(α+jωd )t

= e−αt (A1e
jωd t + A2e

−jωd t )
(8.23)

Using Euler’s identities,

ejθ = cos θ + j sin θ, e−jθ = cos θ − j sin θ (8.24)

we get

i(t) = e−αt [A1(cosωdt + j sinωdt) + A2(cosωdt − j sinωdt)]

= e−αt [(A1 + A2) cosωdt + j (A1 − A2) sinωdt]
(8.25)

Replacing constants (A1 + A2) and j (A1 − A2) with constants B1 and
B2, we write

i(t) = e−αt (B1 cosωdt + B2 sinωdt) (8.26)

With the presence of sine and cosine functions, it is clear that the natural
response for this case is exponentially damped and oscillatory in nature.
The response has a time constant of 1/α and a period of T = 2π/ωd . Fig-
ure 8.9(c) depicts a typical underdamped response. [Figure 8.9 assumes
for each case that i(0) = 0.]

Once the inductor current i(t) is found for theRLC series circuit as
shown above, other circuit quantities such as individual element voltages
can easily be found. For example, the resistor voltage is vR = Ri, and the
inductor voltage is vL = L di/dt . The inductor current i(t) is selected
as the key variable to be determined first in order to take advantage of Eq.
(8.1b).

We conclude this section by noting the following interesting, pe-
culiar properties of an RLC network:

R = 0 produces a perfectly sinusoidal response.
This response cannot be practically accomplished
with L and C because of the inherent losses in
them. See Figs. 6.8 and 6.26. An electronic de-
vice called an oscillator can produce a perfectly
sinusoidal response.

Examples 8.5 and 8.7 demonstrate the effect of
varying R.

The response of a second-order circuit with two
storage elements of the same type, as in Fig.
8.1(c) and (d), cannot be oscillatory.

1. The behavior of such a network is captured by the idea of
damping, which is the gradual loss of the initial stored energy,
as evidenced by the continuous decrease in the amplitude of
the response. The damping effect is due to the presence of
resistance R. The damping factor α determines the rate at
which the response is damped. If R = 0, then α = 0, and we
have an LC circuit with 1/

√
LC as the undamped natural

frequency. Since α < ω0 in this case, the response is not only
undamped but also oscillatory. The circuit is said to be loss-
less, because the dissipating or damping element (R) is absent.
By adjusting the value of R, the response may be made
undamped, overdamped, critically damped, or underdamped.

2. Oscillatory response is possible due to the presence of the two
types of storage elements. Having both L and C allows the
flow of energy back and forth between the two. The damped
oscillation exhibited by the underdamped response is known as
ringing. It stems from the ability of the storage elements L and
C to transfer energy back and forth between them.
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3. Observe from Fig. 8.9 that the waveforms of the responses
differ. In general, it is difficult to tell from the waveforms the
difference between the overdamped and critically damped
responses. The critically damped case is the borderline
between the underdamped and overdamped cases and it decays
the fastest. With the same initial conditions, the overdamped
case has the longest settling time, because it takes the longest
time to dissipate the initial stored energy. If we desire the
fastest response without oscillation or ringing, the critically
damped circuit is the right choice.

What this means in most practical circuits is that
we seek an overdamped circuit that is as close as
possible to a critically damped circuit.

E X A M P L E 8 . 3

In Fig. 8.8, R = 40 �, L = 4 H, and C = 1/4 F. Calculate the char-
acteristic roots of the circuit. Is the natural response overdamped, under-
damped, or critically damped?

Solution:

We first calculate

α = R

2L
= 40

2(4)
= 5, ω0 = 1√

LC
= 1√

4 × 1
4

= 1

The roots are

s1,2 = −α ±
√
α2 − ω2

0 = −5 ± √
25 − 1

or

s1 = −0.101, s2 = −9.899

Since α > ω0, we conclude that the response is overdamped. This is also
evident from the fact that the roots are real and negative.

P R A C T I C E P R O B L E M 8 . 3

If R = 10 �, L = 5 H, and C = 2 mF in Fig. 8.8, find α, ω0, s1, and s2.
What type of natural response will the circuit have?

Answer: 1, 10, −1 ± j9.95, underdamped.

E X A M P L E 8 . 4

Find i(t) in the circuit in Fig. 8.10. Assume that the circuit has reached
steady state at t = 0−.

t = 0

10 V

4 Ω

0.5 H

0.02 F v
+

−

3 Ω

+
−

6 Ω

i

Figure 8.10 For Example 8.4.

Solution:

For t < 0, the switch is closed. The capacitor acts like an open circuit
while the inductor acts like a shunted circuit. The equivalent circuit is
shown in Fig. 8.11(a). Thus, at t = 0,

i(0) = 10

4 + 6
= 1 A, v(0) = 6i(0) = 6 V

where i(0) is the initial current through the inductor and v(0) is the initial
voltage across the capacitor.
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0.5 H

0.02 F

9 Ω

i

(b)

10 V

4 Ω

v
+

−
6 Ω+

−

i

(a)

v
+

−

Figure 8.11 The circuit in Fig. 8.10: (a) for t < 0, (b) for t > 0.

For t > 0, the switch is opened and the voltage source is dis-
connected. The equivalent circuit is shown in Fig. 8.11(b), which is a
source-free series RLC circuit. Notice that the 3-� and 6-� resistors,
which are in series in Fig. 8.10 when the switch is opened, have been
combined to give R = 9 � in Fig. 8.11(b). The roots are calculated as
follows:

α = R

2L
= 9

2
(

1
2

) = 9, ω0 = 1√
LC

= 1√
1
2 × 1

50

= 10

s1,2 = −α ±
√
α2 − ω2

0 = −9 ± √
81 − 100

or

s1,2 = −9 ± j4.359

Hence, the response is underdamped (α < ω); that is,

i(t) = e−9t (A1 cos 4.359t + A2 sin 4.359t) (8.4.1)

We now obtain A1 and A2 using the initial conditions. At t = 0,

i(0) = 1 = A1 (8.4.2)

From Eq. (8.5),

di

dt

∣∣∣∣
t=0

= − 1

L
[Ri(0) + v(0)] = −2[9(1) − 6] = −6 A/s (8.4.3)

Note that v(0) = V0 = −6 V is used, because the polarity of v in Fig.
8.11(b) is opposite that in Fig. 8.8. Taking the derivative of i(t) in Eq.
(8.4.1),

di

dt
= −9e−9t (A1 cos 4.359t + A2 sin 4.359t)

+ e−9t (4.359)(−A1 sin 4.359t + A2 cos 4.359t)

Imposing the condition in Eq. (8.4.3) at t = 0 gives

−6 = −9(A1 + 0) + 4.359(−0 + A2)

But A1 = 1 from Eq. (8.4.2). Then

−6 = −9 + 4.359A2 	⇒ A2 = 0.6882
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Substituting the values of A1 and A2 in Eq. (8.4.1) yields the com-
plete solution as

i(t) = e−9t (cos 4.359t + 0.6882 sin 4.359t) A

P R A C T I C E P R O B L E M 8 . 4

The circuit in Fig. 8.12 has reached steady state at t = 0−. If the make-
before-break switch moves to position b at t = 0, calculate i(t) for t > 0.

t = 0

a b

50 V

10 Ω

1 H

+
− 5 Ω

i(t)

F1
9

Figure 8.12 For Practice Prob. 8.4.

Answer: e−2.5t (5 cos 1.6583t − 7.5378 sin 1.6583t) A.

8.4 THE SOURCE-FREE PARALLEL RLC CIRCUIT
Parallel RLC circuits find many practical applications, notably in com-
munications networks and filter designs.

v

R L CI0v

+

−

v

+

−

V0

+

−

Figure 8.13 A source-free parallel RLC
circuit.

Consider the parallel RLC circuit shown in Fig. 8.13. Assume
initial inductor current I0 and initial capacitor voltage V0,

i(0) = I0 = 1

L

∫ 0

∞
v(t) dt (8.27a)

v(0) = V0 (8.27b)

Since the three elements are in parallel, they have the same voltage v

across them. According to passive sign convention, the current is entering
each element; that is, the current through each element is leaving the top
node. Thus, applying KCL at the top node gives

v

R
+ 1

L

∫ t

−∞
v dt + C

dv

dt
= 0 (8.28)

Taking the derivative with respect to t and dividing by C results in

d2v

dt2
+ 1

RC

dv

dt
+ 1

LC
v = 0 (8.29)

We obtain the characteristic equation by replacing the first derivative by
s and the second derivative by s2. By following the same reasoning
used in establishing Eqs. (8.4) through (8.8), the characteristic equation
is obtained as

s2 + 1

RC
s + 1

LC
= 0 (8.30)

The roots of the characteristic equation are

s1,2 = − 1

2RC
±
√(

1

2RC

)2

− 1

LC
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or

s1,2 = −α ±
√
α2 − ω2

0 (8.31)

where

α = 1

2RC
, ω0 = 1√

LC
(8.32)

The names of these terms remain the same as in the preceding section,
as they play the same role in the solution. Again, there are three possible
solutions, depending on whether α > ω0, α = ω0, or α < ω0. Let us
consider these cases separately.

Overdamped Case (α > ω0)

From Eq. (8.32), α > ω0 whenL > 4R2C. The roots of the characteristic
equation are real and negative. The response is

v(t) = A1e
s1t + A2e

s2t (8.33)

Critically Damped Case (α = ω0)

For α = ω, L = 4R2C. The roots are real and equal so that the response
is

v(t) = (A1 + A2t)e
−αt (8.34)

Underdamped Case (α < ω0)

When α < ω0, L < 4R2C. In this case the roots are complex and may
be expressed as

s1,2 = −α ± jωd (8.35)

where

ωd =
√
ω2

0 − α2 (8.36)

The response is

v(t) = e−αt (A1 cosωdt + A2 sinωdt) (8.37)

The constants A1 and A2 in each case can be determined from the
initial conditions. We need v(0) and dv(0)/dt . The first term is known
from Eq. (8.27b). We find the second term by combining Eqs. (8.27) and
(8.28), as

V0

R
+ I0 + C

dv(0)

dt
= 0

or
dv(0)

dt
= − (V0 + RI0)

RC
(8.38)

The voltage waveforms are similar to those shown in Fig. 8.9 and will
depend on whether the circuit is overdamped, underdamped, or critically
damped.
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Having found the capacitor voltage v(t) for the parallelRLC circuit
as shown above, we can readily obtain other circuit quantities such as
individual element currents. For example, the resistor current is iR =
v/R and the capacitor voltage is vC = C dv/dt . We have selected
the capacitor voltage v(t) as the key variable to be determined first in
order to take advantage of Eq. (8.1a). Notice that we first found the
inductor current i(t) for the RLC series circuit, whereas we first found
the capacitor voltage v(t) for the parallel RLC circuit.

E X A M P L E 8 . 5

In the parallel circuit of Fig. 8.13, find v(t) for t > 0, assuming v(0) =
5 V, i(0) = 0, L = 1 H, and C = 10 mF. Consider these cases:
R = 1.923 �, R = 5 �, and R = 6.25 �.

Solution:

CA S E 1 If R = 1.923 �,

α = 1

2RC
= 1

2 × 1.923 × 10 × 10−3
= 26

ω0 = 1√
LC

= 1√
1 × 10 × 10−3

= 10

Since α > ω0 in this case, the response is overdamped. The roots of the
characteristic equation are

s1,2 = −α ±
√
α2 − ω2

0 = −2,−50

and the corresponding response is

v(t) = A1e
−2t + A2e

−50t (8.5.1)

We now apply the initial conditions to get A1 and A2.

v(0) = 5 = A1 + A2 (8.5.2)

dv(0)

dt
= −v(0) + Ri(0)

RC
= − 5 + 0

1.923 × 10 × 10−3
= 260

But differentiating Eq. (8.5.1),

dv

dt
= −2A1e

−2t − 50A2e
−50t

At t = 0,

260 = −2A1 − 50A2 (8.5.3)

From Eqs. (8.5.2) and (8.5.3), we obtainA1 = 10.625 andA2 = −5.625.
Substituting A1 and A2 in Eq. (8.5.1) yields

v(t) = 10.625e−2t − 5.625e−50t (8.5.4)

CA S E 2 When R = 5 �,

α = 1

2RC
= 1

2 × 5 × 10 × 10−3
= 10
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while ω0 = 10 remains the same. Since α = ω0 = 10, the response is
critically damped. Hence, s1 = s2 = −10, and

v(t) = (A1 + A2t)e
−10t (8.5.5)

To get A1 and A2, we apply the initial conditions

v(0) = 5 = A1 (8.5.6)

dv(0)

dt
= −v(0) + Ri(0)

RC
= − 5 + 0

5 × 10 × 10−3
= 100

But differentiating Eq. (8.5.5),

dv

dt
= (−10A1 − 10A2t + A2)e

−10t

At t = 0,

100 = −10A1 + A2 (8.5.7)

From Eqs. (8.5.6) and (8.5.7), A1 = 5 and A2 = 150. Thus,

v(t) = (5 + 150t)e−10t V (8.5.8)

CA S E 3 When R = 6.25 �,

α = 1

2RC
= 1

2 × 6.25 × 10 × 10−3
= 8

while ω0 = 10 remains the same. As α < ω0 in this case, the response
is underdamped. The roots of the characteristic equation are

s1,2 = −α ±
√
α2 − ω2

0 = −8 ± j6

Hence,

v(t) = (A1 cos 6t + A2 sin 6t)e−8t (8.5.9)

We now obtain A1 and A2, as

v(0) = 5 = A1 (8.5.10)

dv(0)

dt
= −v(0) + Ri(0)

RC
= − 5 + 0

6.25 × 10 × 10−3
= 80

But differentiating Eq. (8.5.9),

dv

dt
= (−8A1 cos 6t − 8A2 sin 6t − 6A1 sin 6t + 6A2 cos 6t)e−8t

At t = 0,

80 = −8A1 + 6A2 (8.5.11)

From Eqs. (8.5.10) and (8.5.11), A1 = 5 and A2 = 20. Thus,

v(t) = (5 cos 6t + 20 sin 6t)e−8t (8.5.12)

Notice that by increasing the value of R, the degree of damping
decreases and the responses differ. Figure 8.14 plots the three cases.
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0.2 0.4 0.6

1

2

3

4

5

6

7

8

9

10

0.8 1
–1

t (s)

v(t) V

Overdamped

Critically damped

Underdamped

Figure 8.14 For Example 8.5: responses for three degrees of damping.

P R A C T I C E P R O B L E M 8 . 5

In Fig. 8.13, let R = 2 �, L = 0.4 H, C = 25 mF, v(0) = 0, i(0) =
3 A. Find v(t) for t > 0.

Answer: −120te−10t V.

E X A M P L E 8 . 6

Find v(t) for t > 0 in the RLC circuit of Fig. 8.15.

40 V

0.4 H

50 Ω 20 mF

30 Ω

+
−

i

t = 0 v
+

−

Figure 8.15 For Example 8.6.

Solution:

When t < 0, the switch is open; the inductor acts like a short circuit while
the capacitor behaves like an open circuit. The initial voltage across the
capacitor is the same as the voltage across the 50-� resistor; that is,

v(0) = 50

30 + 50
(40) = 5

8
× 40 = 25 V (8.6.1)

The initial current through the inductor is
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i(0) = − 40

30 + 50
= −0.5 A

The direction of i is as indicated in Fig. 8.15 to conform with the direction
of I0 in Fig. 8.13, which is in agreement with the convention that current
flows into the positive terminal of an inductor (see Fig. 6.23). We need
to express this in terms of dv/dt , since we are looking for v.

dv(0)

dt
= −v(0) + Ri(0)

RC
= − 25 − 50 × 0.5

50 × 20 × 10−6
= 0 (8.6.2)

When t > 0, the switch is closed. The voltage source along with
the 30-� resistor is separated from the rest of the circuit. The parallel
RLC circuit acts independently of the voltage source, as illustrated in
Fig. 8.16. Next, we determine that the roots of the characteristic equation
are

α = 1

2RC
= 1

2 × 50 × 20 × 10−6
= 500

ω0 = 1√
LC

= 1√
0.4 × 20 × 10−6

= 354

s1,2 = −α ±
√
α2 − ω2

0

= −500 ± √
250,000 − 124,997.6 = −500 ± 354

or

s1 = −854, s2 = −146

Since α > ω0, we have the overdamped response

v(t) = A1e
−854t + A2e

−164t (8.6.3)

At t = 0, we impose the condition in Eq. (8.6.1),

v(0) = 25 = A1 + A2 	⇒ A2 = 25 − A1 (8.6.4)

Taking the derivative of v(t) in Eq. (8.6.3),

dv

dt
= −854A1e

−854t − 164A2e
−164t

Imposing the condition in Eq. (8.6.2),

40 V

0.4 H

50 Ω 20 mF

30 Ω

+
−

Figure 8.16 The circuit in Fig. 8.15 when t > 0. The
parallel RLC circuit on the left-hand side acts inde-
pendently of the circuit on the right-hand side of the
junction.
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dv(0)

dt
= 0 = −854A1 − 164A2

or

0 = 854A1 + 164A2 (8.6.5)

Solving Eqs. (8.6.4) and (8.6.5) gives

A1 = −5.16, A2 = 30.16

Thus, the complete solution in Eq. (8.6.3) becomes

v(t) = −5.16e−854t + 30.16e−164t V

P R A C T I C E P R O B L E M 8 . 6

Refer to the circuit in Fig. 8.17. Find v(t) for t > 0.

2 A 4 mF20 Ω 10 H

t = 0

v
+

−

Figure 8.17 For Practice Prob. 8.6.

Answer: 66.67(e−10t − e−2.5t ) V.

8.5 STEP RESPONSE OF A SERIES RLC CIRCUIT
As we learned in the preceding chapter, the step response is obtained by
the sudden application of a dc source. Consider the series RLC circuit
shown in Fig. 8.18. Applying KVL around the loop for t > 0,

L
di

dt
+ Ri + v = Vs (8.39)

But

i = C
dv

dt

Substituting for i in Eq. (8.39) and rearranging terms,

d2v

dt2
+ R

L

dv

dt
+ v

LC
= Vs

LC
(8.40)

which has the same form as Eq. (8.4). More specifically, the coefficients
are the same (and that is important in determining the frequency param-
eters) but the variable is different. (Likewise, see Eq. (8.47).) Hence, the
characteristic equation for the series RLC circuit is not affected by the
presence of the dc source.

Vs

R L

C+
−

i
t = 0

v
+

−

Figure 8.18 Step voltage applied to a series
RLC circuit.

The solution to Eq. (8.40) has two components: the natural response
vn(t) and the forced response vf (t); that is,

v(t) = vn(t) + vf (t) (8.41)

The natural response is the solution when we set Vs = 0 in Eq. (8.40)
and is the same as the one obtained in Section 8.3. The natural response
vn for the overdamped, underdamped, and critically damped cases are:
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vn(t) = A1e
s1t + A2e

s2t (Overdamped) (8.42a)

vn(t) = (A1 + A2t)e
−αt (Critically damped) (8.42b)

vn(t) = (A1 cosωdt + A2 sinωdt)e
−αt (Underdamped) (8.42c)

The forced response is the steady state or final value of v(t). In the
circuit in Fig. 8.18, the final value of the capacitor voltage is the same as
the source voltage Vs . Hence,

vf (t) = v(∞) = Vs (8.43)

Thus, the complete solutions for the overdamped, underdamped, and
critically damped cases are:

v(t) = Vs + A1e
s1t + A2e

s2t (Overdamped) (8.44a)

v(t) = Vs + (A1 + A2t)e
−αt (Critically damped) (8.44b)

v(t) = Vs + (A1 cosωdt + A2 sinωdt)e
−αt (Underdamped) (8.44c)

The values of the constants A1 and A2 are obtained from the initial con-
ditions: v(0) and dv(0)/dt . Keep in mind that v and i are, respectively,
the voltage across the capacitor and the current through the inductor.
Therefore, Eq. (8.44) only applies for finding v. But once the capaci-
tor voltage vC = v is known, we can determine i = C dv/dt , which is
the same current through the capacitor, inductor, and resistor. Hence,
the voltage across the resistor is vR = iR, while the inductor voltage is
vL = L di/dt .

Alternatively, the complete response for any variable x(t) can be
found directly, because it has the general form

x(t) = xf (t) + xn(t) (8.45)

where the xf = x(∞) is the final value and xn(t) is the natural response.
The final value is found as in Section 8.2. The natural response has the
same form as in Eq. (8.42), and the associated constants are determined
from Eq. (8.44) based on the values of x(0) and dx(0)/dt .

E X A M P L E 8 . 7

For the circuit in Fig. 8.19, find v(t) and i(t) for t > 0. Consider these
cases: R = 5 �,R = 4 �, andR = 1 �.

24 V

R 1 H

+
− 0.5 F 1 Ω

i

t = 0

v
+

−

Figure 8.19 For Example 8.7.

Solution:

CA S E 1 When R = 5 �. For t < 0, the switch is closed. The capa-
citor behaves like an open circuit while the inductor acts like a short cir-
cuit. The initial current through the inductor is

i(0) = 24

5 + 1
= 4 A

and the initial voltage across the capacitor is the same as the voltage
across the 1-� resistor; that is,
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v(0) = 1i(0) = 4 V

For t > 0, the switch is opened, so that we have the 1-� resistor
disconnected. What remains is the series RLC circuit with the voltage
source. The characteristic roots are determined as follows.

α = R

2L
= 5

2 × 1
= 2.5, ω0 = 1√

LC
= 1√

1 × 0.25
= 2

s1,2 = −α ±
√
α2 − ω2

0 = −1,−4

Since α > ω0, we have the overdamped natural response. The total
response is therefore

v(t) = vf + (A1e
−t + A2e

−4t )

where vf is the forced or steady-state response. It is the final value of the
capacitor voltage. In Fig. 8.19, vf = 24 V. Thus,

v(t) = 24 + (A1e
−t + A2e

−4t ) (8.7.1)

We now need to find A1 and A2 using the initial conditions.

v(0) = 4 = 24 + A1 + A2

or

−20 = A1 + A2 (8.7.2)

The current through the inductor cannot change abruptly and is the same
current through the capacitor at t = 0+ because the inductor and capacitor
are now in series. Hence,

i(0) = C
dv(0)

dt
= 4 	⇒ dv(0)

dt
= 4

C
= 4

0.25
= 16

Before we use this condition, we need to take the derivative of v in Eq.
(8.7.1).

dv

dt
= −A1e

−t − 4A2e
−4t (8.7.3)

At t = 0,

dv(0)

dt
= 16 = −A1 − 4A2 (8.7.4)

From Eqs. (8.7.2) and (8.7.4), A1 = −64/3 and A2 = 4/3. Substituting
A1 and A2 in Eq. (8.7.1), we get

v(t) = 24 + 4

3
(−16e−t + e−4t ) V (8.7.5)

Since the inductor and capacitor are in series for t > 0, the inductor
current is the same as the capacitor current. Hence,

i(t) = C
dv

dt

Multiplying Eq. (8.7.3) by C = 0.25 and substituting the values of A1

and A2 gives
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i(t) = 4

3
(4e−t − e−4t ) A (8.7.6)

Note that i(0) = 4 A, as expected.

CA S E 2 WhenR = 4 �. Again, the initial current through the inductor
is

i(0) = 24

4 + 1
= 4.5 A

and the initial capacitor voltage is

v(0) = 1i(0) = 4.5 V

For the characteristic roots,

α = R

2L
= 4

2 × 1
= 2

while ω0 = 2 remains the same. In this case, s1 = s2 = −α = −2,
and we have the critically damped natural response. The total response
is therefore

v(t) = vf + (A1 + A2t)e
−2t

and, as vf = 24 V,

v(t) = 24 + (A1 + A2t)e
−2t (8.7.7)

To find A1 and A2, we use the initial conditions. We write

v(0) = 4.5 = 24 + A1 	⇒ A1 = −19.5 (8.7.8)

Since i(0) = C dv(0)/dt = 4.5 or

dv(0)

dt
= 4.5

C
= 18

From Eq. (8.7.7),

dv

dt
= (−2A1 − 2tA2 + A2)e

−2t (8.7.9)

At t = 0,

dv(0)

dt
= 18 = −2A1 + A2 (8.7.10)

From Eqs. (8.7.8) and (8.7.10), A1 = −19.5 and A2 = 57. Thus, Eq.
(8.7.7) becomes

v(t) = 24 + (−19.5 + 57t)e−2t V (8.7.11)

The inductor current is the same as the capacitor current, that is,

i(t) = C
dv

dt

Multiplying Eq. (8.7.9) by C = 0.25 and substituting the values of A1

and A2 gives

i(t) = (4.5 − 28.5t)e−2t A (8.7.12)

Note that i(0) = 4.5 A, as expected.
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C A S E 3 When R = 1 �. The initial inductor current is

i(0) = 24

1 + 1
= 12 A

and the initial voltage across the capacitor is the same as the voltage
across the 1-� resistor,

v(0) = 1i(0) = 12 V

α = R

2L
= 1

2 × 1
= 0.5

Since α = 0.5 < ω0 = 2, we have the underdamped response

s1,2 = −α ±
√
α2 − ω2

0 = −0.5 ± j1.936

The total response is therefore

v(t) = 24 + (A1 cos 1.936t + A2 sin 1.936t)e−0.5t (8.7.13)

We now determine A1 and A2. We write

v(0) = 12 = 24 + A1 	⇒ A1 = −12 (8.7.14)

Since i(0) = C dv(0)/dt = 12,

dv(0)

dt
= 12

C
= 48 (8.7.15)

But

dv

dt
= e−0.5t (−1.936A1 sin 1.936t + 1.936A2 cos 1.936t)

− 0.5e−0.5t (A1 cos 1.936t + A2 sin 1.936t)
(8.7.16)

At t = 0,

dv(0)

dt
= 48 = (−0 + 1.936A2) − 0.5(A1 + 0)

Substituting A1 = −12 gives A2 = 21.694, and Eq. (8.7.13) becomes

v(t) = 24 + (21.694 sin 1.936t − 12 cos 1.936t)e−0.5t V (8.7.17)

The inductor current is

i(t) = C
dv

dt

Multiplying Eq. (8.7.16) by C = 0.25 and substituting the values of A1

and A2 gives

i(t) = (3.1 sin 1.936t + 12 cos 1.936t)e−0.5t A (8.7.18)

Note that i(0) = 12 A, as expected.

Figure 8.20 plots the responses for the three cases. From this figure,
we observe that the critically damped response approaches the step input
of 24 V the fastest.
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t (s)

v(t) V

0 1

8

16

24

32

40

2 3 4 5 6 7

Overdamped

Critically damped

Underdamped

Figure 8.20 For Example 8.7: response for three degrees of
damping.

P R A C T I C E P R O B L E M 8 . 7

Having been in position a for a long time, the switch in Fig. 8.21 is moved
to position b at t = 0. Find v(t) and vR(t) for t > 0.

t = 0

a b

12 V

1 Ω

+
− 10 V +

−

10 Ω

2 Ω

2.5 H

− +vR

v
+

−
F1

40

Figure 8.21 For Practice Prob. 8.7.

Answer: 10 − (1.1547 sin 3.464t + 2 cos 3.464t)e−2t V,
2.31e−2t sin 3.464t V.

8.6 STEP RESPONSE OF A PARALLEL RLC CIRCUIT

Is CR Lt = 0

i

v
+

−

Figure 8.22 Parallel RLC circuit with an
applied current.

Consider the parallel RLC circuit shown in Fig. 8.22. We want to find
i due to a sudden application of a dc current. Applying KCL at the top
node for t > 0,

v

R
+ i + C

dv

dt
= Is (8.46)

But

v = L
di

dt

Substituting for v in Eq. (8.46) and dividing by LC, we get
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d2i

dt2
+ 1

RC

di

dt
+ i

LC
= Is

LC
(8.47)

which has the same characteristic equation as Eq. (8.29).
The complete solution to Eq. (8.47) consists of the natural response

in(t) and the forced response if ; that is,

i(t) = in(t) + if (t) (8.48)

The natural response is the same as what we had in Section 8.3. The
forced response is the steady state or final value of i. In the circuit in Fig.
8.22, the final value of the current through the inductor is the same as the
source current Is . Thus,

i(t) = Is + A1e
s1t + A2e

s2t (Overdamped)

i(t) = Is + (A1 + A2t)e
−αt (Critically damped) (8.49)

i(t) = Is + (A1 cosωdt + A2 sinωdt)e
−αt (Underdamped)

The constants A1 and A2 in each case can be determined from the initial
conditions for i and di/dt . Again, we should keep in mind that Eq. (8.49)
only applies for finding the inductor current i. But once the inductor cur-
rent iL = i is known, we can find v = L di/dt , which is the same voltage
across inductor, capacitor, and resistor. Hence, the current through the
resistor is iR = v/R, while the capacitor current is iC = C dv/dt . Al-
ternatively, the complete response for any variable x(t) may be found
directly, using

x(t) = xf (t) + xn(t) (8.50)

where xf and xn are its final value and natural response, respectively.

E X A M P L E 8 . 8

In the circuit in Fig. 8.23, find i(t) and iR(t) for t > 0.

4 A 20 Ω20 H

iRi

+
− 30u(–t) V

t = 0

8 mF

20 Ω

v
+

−

Figure 8.23 For Example 8.8.

Solution:

For t < 0, the switch is open, and the circuit is partitioned into two
independent subcircuits. The 4-A current flows through the inductor, so
that

i(0) = 4 A
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Since 30u(−t) = 30 when t < 0 and 0 when t > 0, the voltage source
is operative for t < 0 under consideration. The capacitor acts like an
open circuit and the voltage across it is the same as the voltage across
the 20-� resistor connected in parallel with it. By voltage division, the
initial capacitor voltage is

v(0) = 20

20 + 20
(30) = 15 V

For t > 0, the switch is closed, and we have a parallel RLC circuit
with a current source. The voltage source is off or short-circuited. The
two 20-� resistors are now in parallel. They are combined to give R =
20 ‖ 20 = 10 �. The characteristic roots are determined as follows:

α = 1

2RC
= 1

2 × 10 × 8 × 10−3
= 6.25

ω0 = 1√
LC

= 1√
20 × 8 × 10−3

= 2.5

s1,2 = −α ±
√
α2 − ω2

0 = −6.25 ± √
39.0625 − 6.25

= −6.25 ± 5.7282

or

s1 = −11.978, s2 = −0.5218

Since α > ω0, we have the overdamped case. Hence,

i(t) = Is + A1e
−11.978t + A2e

−0.5218t (8.8.1)

where Is = 4 is the final value of i(t). We now use the initial conditions
to determine A1 and A2. At t = 0,

i(0) = 4 = 4 + A1 + A2 	⇒ A2 = −A1 (8.8.2)

Taking the derivative of i(t) in Eq. (8.8.1),

di

dt
= −11.978A1e

−11.978t − 0.5218A2e
−0.5218t

so that at t = 0,

di(0)

dt
= −11.978A1 − 0.5218A2 (8.8.3)

But

L
di(0)

dt
= v(0) = 15 	⇒ di(0)

dt
= 15

L
= 15

20
= 0.75

Substituting this into Eq. (8.8.3) and incorporating Eq. (8.8.2), we get

0.75 = (11.978 − 0.5218)A2 	⇒ A2 = 0.0655

Thus, A1 = −0.0655 and A2 = 0.0655. Inserting A1 and A2 in Eq.
(8.8.1) gives the complete solution as
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i(t) = 4 + 0.0655(e−0.5218t − e−11.978t ) A

From i(t), we obtain v(t) = L di/dt and

iR(t) = v(t)

20
= L

20

di

dt
= 0.785e−11.978t − 0.0342e−0.5218t A

P R A C T I C E P R O B L E M 8 . 8

Find i(t) and v(t) for t > 0 in the circuit in Fig. 8.24.

20u(t) A  5 H

i

0.2 Fv
+

−

Figure 8.24 For Practice Prob. 8.8.

Answer: 20(1 − cos t) A, 100 sin t V.

8.7 GENERAL SECOND-ORDER CIRCUITS
Now that we have mastered series and parallel RLC circuits, we are
prepared to apply the ideas to any second-order circuit. Although the
series and parallel RLC circuits are the second-order circuits of greatest
interest, other second-order circuits including op amps are also useful.
Given a second-order circuit, we determine its step response x(t) (which
may be voltage or current) by taking the following four steps:

A circuit may look complicated at first. But once
the sources are turned off in an attempt to find
the natural response, it may be reducible to a
first-order circuit, when the storage elements
can be combined, or to a parallel/series RLC cir-
cuit. If it is reducible to a first-order circuit, the
solution becomes simply what we had in Chap-
ter 7. If it is reducible to a parallel or series
RLC circuit, we apply the techniques of previous
sections in this chapter.

1. We first determine the initial conditions x(0) and dx(0)/dt
and the final value x(∞), as discussed in Section 8.2.

2. We find the natural response xn(t) by turning off independent
sources and applying KCL and KVL. Once a second-order
differential equation is obtained, we determine its characteristic
roots. Depending on whether the response is overdamped,
critically damped, or underdamped, we obtain xn(t) with two
unknown constants as we did in the previous sections.

3. We obtain the forced response as

xf (t) = x(∞) (8.51)

where x(∞) is the final value of x, obtained in step 1.

4. The total response is now found as the sum of the natural
response and forced response

x(t) = xn(t) + xf (t) (8.52)

We finally determine the constants associated with the natural
response by imposing the initial conditions x(0) and dx(0)/dt ,
determined in step 1.

We can apply this general procedure to find the step response of
any second-order circuit, including those with op amps. The following
examples illustrate the four steps.



CHAPTER 8 Second-Order Circuits 323

E X A M P L E 8 . 9

Find the complete response v and then i for t > 0 in the circuit of Fig.
8.25.

12 V +
−

4 Ω

2 Ω

t = 0

1 Hi

v
+

−
F1

2

Figure 8.25 For Example 8.9.

Solution:

We first find the initial and final values. At t = 0−, the circuit is at steady
state. The switch is open, the equivalent circuit is shown in Fig. 8.26(a).
It is evident from the figure that

v(0−) = 12 V, i(0−) = 0

At t = 0+, the switch is closed; the equivalent circuit is in Fig. 8.26(b).
By the continuity of capacitor voltage and inductor current, we know that

v(0+) = v(0−) = 12 V, i(0+) = i(0−) = 0 (8.9.1)

To get dv(0+)/dt , we use C dv/dt = iC or dv/dt = iC/C. Applying
KCL at node a in Fig. 8.26(b),

i(0+) = iC(0
+) + v(0+)

2

0 = iC(0
+) + 12

2
	⇒ iC(0

+) = −6 A

12 V +
−

4 Ω

2 Ω

1 H i

0.5 Fv
+

−

iC

(b)

12 V +
−

4 Ω i

v

+

−

(a)

a

Figure 8.26 Equivalent circuit of the circuit
in Fig. 8.25 for: (a) t = 0, (b) t > 0.

Hence,

dv(0+)
dt

= −6

0.5
= −12 V/s (8.9.2)

The final values are obtained when the inductor is replaced by a short
circuit and the capacitor by an open circuit in Fig. 8.26(b), giving

i(∞) = 12

4 + 2
= 2 A, v(∞) = 2i(∞) = 4 V (8.9.3)

4 Ω

2 Ω

1 Hi

a

v

v
+

−
F1

2

Figure 8.27 Obtaining the natural
response for Example 8.9.

Next, we obtain the natural response for t > 0. By turning off the
12-V voltage source, we have the circuit in Fig. 8.27. Applying KCL at
node a in Fig. 8.27 gives

i = v

2
+ 1

2

dv

dt
(8.9.4)

Applying KVL to the left mesh results in

4i + 1
di

dt
+ v = 0 (8.9.5)

Since we are interested in v for the moment, we substitute i from Eq.
(8.9.4) into Eq. (8.9.5). We obtain

2v + 2
dv

dt
+ 1

2

dv

dt
+ 1

2

d2v

dt2
+ v = 0

or

d2v

dt2
+ 5

dv

dt
+ 6v = 0

From this, we obtain the characteristic equation as
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s2 + 5s + 6 = 0

with roots s = −2 and s = −3. Thus, the natural response is

vn(t) = Ae−2t + Be−3t (8.9.6)

whereA andB are unknown constants to be determined later. The forced
response is

vf (t) = v(∞) = 4 (8.9.7)

The complete response is

v(t) = vn + vf = 4 + Ae−2t + Be−3t (8.9.8)

We now determine A and B using the initial values. From Eq. (8.9.1),
v(0) = 12. Substituting this into Eq. (8.9.8) at t = 0 gives

12 = 4 + A + B 	⇒ A + B = 8 (8.9.9)

Taking the derivative of v in Eq. (8.9.8),

dv

dt
= −2Ae−2t − 3Be−3t (8.9.10)

Substituting Eq. (8.9.2) into Eq. (8.9.10) at t = 0 gives

−12 = −2A − 3B 	⇒ 2A + 3B = 12 (8.9.11)

From Eqs. (8.9.9) and (8.9.11), we obtain

A = 12, B = −4

so that Eq. (8.9.8) becomes

v(t) = 4 + 12e−2t − 4e−3t V, t > 0 (8.9.12)

From v, we can obtain other quantities of interest by referring to Fig.
8.26(b). To obtain i, for example,

i = v

2
+ 1

2

dv

dt
= 2 + 6e−2t − 2e−3t − 12e−2t + 6e−3t

= 2 − 6e−2t + 4e−3t A, t > 0
(8.9.13)

Notice that i(0) = 0, in agreement with Eq. (8.9.1).

P R A C T I C E P R O B L E M 8 . 9

Determine v and i for t > 0 in the circuit of Fig. 8.28.

t = 0

2 A10 Ω 4 Ω

2 H

i

v
+

−
F1

20

Figure 8.28 For Practice Prob. 8.9.

Answer: 8(1 − e−5t ) V, 2(1 − e−5t ) A.
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E X A M P L E 8 . 1 0

Find vo(t) for t > 0 in the circuit of Fig. 8.29.

7u(t) V +
−

3 Ω

1 Ω vo

+

−i1

i2

H1
2

H1
5

Figure 8.29 For Example 8.10.

Solution:

This is an example of a second-order circuit with two inductors. We
first obtain the mesh currents i1 and i2, which happen to be the currents
through the inductors. We need to obtain the initial and final values of
these currents.

For t < 0, 7u(t) = 0, so that i1(0−) = 0 = i2(0−). For t > 0,
7u(t) = 7, so that the equivalent circuit is as shown in Fig. 8.30(a). Due
to the continuity of inductor current,

i1(0
+) = i1(0

−) = 0, i2(0
+) = i2(0

−) = 0 (8.10.1)

vL2(0
+) = vo(0

+) = 1[(i1(0
+) − i2(0

+)] = 0 (8.10.2)

Applying KVL to the left loop in Fig. 8.30(a) at t = 0+,

7 = 3i1(0
+) + vL1(0+) + vo(0

+)

or

vL1(0
+) = 7 V

Since L1 di1/dt = vL1,

di1(0+)
dt

= vL1

L1
= 7

1
2

= 14 V/s (8.10.3)

Similarly, since L2 di2/dt = vL2,

di2(0+)
dt

= vL2

L2
= 0 (8.10.4)

As t → ∞, the circuit reaches steady state, and the inductors can be
replaced by short circuits, as shown in Fig. 8.30(b). From this figure,

i1(∞) = i2(∞) = 7

3
A (8.10.5)

7 V +
−

3 Ω

1 Ω vo vL2

+

−

+ −vL1i1
+

−

i2

(a)

7 V +
−

3 Ω

1 Ω

i1
i2

(b)

L1 =
1
2 H

L2 = 1
5 H

Figure 8.30 Equivalent circuit of that in Fig. 8.29 for: (a) t > 0, (b) t → ∞.

Next, we obtain the natural responses by removing the voltage
source, as shown in Fig. 8.31. Applying KVL to the two meshes yields

4i1 − i2 + 1

2

di1

dt
= 0 (8.10.6)
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and

i2 + 1

5

di2

dt
− i1 = 0 (8.10.7)

From Eq. (8.10.6),

i2 = 4i1 + 1

2

di1

dt
(8.10.8)

Substituting Eq. (12.8.8) into Eq. (8.10.7) gives

4i1 + 1

2

di1

dt
+ 4

5

di1

dt
+ 1

10

d2i1

dt2
− i1 = 0

d2i1

dt2
+ 13

di1

dt
+ 30i1 = 0

From this we obtain the characteristic equation as

s2 + 13s + 30 = 0

which has roots s = −3 and s = −10. Hence, the natural response is

i1n = Ae−3t + Be−10t (8.10.9)

where A and B are constants. The forced response is

i1f = i1(∞) = 7

3
A (8.10.10)

From Eqs. (8.10.9) and (8.10.10), we obtain the complete response as

i1(t) = 7

3
+ Ae−3t + Be−10t (8.10.11)

We finally obtain A and B from the initial values. From Eqs. (8.10.1)
and (8.10.11),

0 = 7

3
+ A + B (8.10.12)

Taking the derivative of Eq. (8.10.11), setting t = 0 in the derivative, and
enforcing Eq. (8.10.3), we obtain

14 = −3A − 10B (8.10.13)

From Eqs. (8.10.12) and (8.10.13), A = −4/3 and B = −1. Thus,

i1(t) = 7

3
− 4

3
e−3t − e−10t (8.10.14)

3 Ω

1 Ωi1 i2

H1
2

H1
5

Figure 8.31 Obtaining the natural
response for Example 8.10.

We now obtain i2 from i1. Applying KVL to the left loop in Fig.
8.30(a) gives

7 = 4i1 − i2 + 1

2

di1

dt
	⇒ i2 = −7 + 4i1 + 1

2

di1

dt

Substituting for i1 in Eq. (8.10.14) gives

i2(t) = −7 + 28

3
− 16

3
e−3t − 4e−10t + 2e−3t + 5e−10t

= 7

3
− 10

3
e−3t + e−10t

(8.10.15)
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From Fig. 8.29,

vo(t) = 1[i1(t) − i2(t)] (8.10.16)

Substituting Eqs. (8.10.14) and (8.10.15) into Eq. (8.10.16) yields

vo(t) = 2(e−3t − e−10t ) (8.10.17)

Note that vo(0) = 0, as expected from Eq. (8.10.2).

P R A C T I C E P R O B L E M 8 . 1 0

For t > 0, obtain vo(t) in the circuit of Fig. 8.32.
(Hint: First find v1 and v2.)

5u(t) V +
−

1 Ω 1 Ω

+ −vo

v1 v2

F1
2 F1

3

Figure 8.32 For Practice Prob. 8.10.

Answer: 2(e−t − e−6t ) V, t > 0.

8.8 SECOND-ORDER OP AMP CIRCUITS
An op amp circuit with two storage elements that cannot be combined
into a single equivalent element is second-order. Because inductors are
bulky and heavy, they are rarely used in practical op amp circuits. For
this reason, we will only consider RC second-order op amp circuits here.
Such circuits find a wide range of applications in devices such as filters
and oscillators.

The use of op amps in second-order circuits
avoids the use of inductors, which are somewhat
undesirable in some applications.

The analysis of a second-order op amp circuit follows the same four
steps given and demonstrated in the previous section.

E X A M P L E 8 . 1 1

In the op amp circuit of Fig. 8.33, find vo(t) for t > 0 when vs =
10u(t) mV. Let R1 = R2 = 10 k�, C1 = 20 µF, and C2 = 100 µF.

vs

R1 v1

+
− C1

vo

R2

–
+

C2

v2+ −

1

2

vo

+

−

Figure 8.33 For Example 8.11.
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Solution:

Although we could follow the same four steps given in the previous
section to solve this problem, we will solve it a little differently. Due to
the voltage follower configuration, the voltage across C1 is vo. Applying
KCL at node 1,

vs − v1

R1
= C2

dv2

dt
+ v1 − vo

R2
(8.11.1)

At node 2, KCL gives

v1 − vo

R2
= C1

dvo

dt
(8.11.2)

But

v2 = v1 − vo (8.11.3)

We now try to eliminate v1 and v2 in Eqs. (8.11.1) to (8.11.3). Substituting
Eqs. (8.11.2) and (8.11.3) into Eq. (8.11.1) yields

vs − v1

R1
= C2

dv1

dt
− C2

dvo

dt
+ C1

dvo

dt
(8.11.4)

From Eq. (8.11.2),

v1 = vo + R2C1
dvo

dt
(8.11.5)

Substituting Eq. (8.11.5) into Eq. (8.11.4), we obtain

vs

R1
= vo

R1
+ R2C1

R1

dvo

dt
+ C2

dvo

dt
+ R2C1C2

d2vo

dt2
− C2

dvo

dt
+ C1

dvo

dt

or

d2vo

dt2
+
(

1

R1C2
+ 1

R2C2

)
dvo

dt
+ vo

R1R2C1C2
= vs

R1R2C1C2
(8.11.6)

With the given values of R1, R2, C1, and C2, Eq. (8.11.6) becomes

d2vo

dt2
+ 2

dvo

dt
+ 5vo = 5vs (8.11.7)

To obtain the natural response, set vs = 0 in Eq. (8.11.7), which is the
same as turning off the source. The characteristic equation is

s2 + 2s + 5 = 0

which has complex roots s1,2 = −1 ± j2. Hence, the natural response is

von = e−t (A cos 2t + B sin 2t) (8.11.8)

where A and B are unknown constants to be determined.
As t → ∞, the circuit reaches the steady-state condition, and

the capacitors can be replaced by open circuits. Since no current flows
through C1 and C2 under steady-state conditions and no current can enter
the input terminals of the ideal op amp, current does not flow through R1

and R2. Thus,

vo(∞) = v1(∞) = vs
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The forced response is then

vof = vo(∞) = vs = 10 mV, t > 0 (8.11.9)

The complete response is

vo(t) = von + vof = 10 + e−t (A cos 2t + B sin 2t) mV (8.11.10)

To determine A and B, we need the initial conditions. For t < 0, vs = 0,
so that

vo(0
−) = v2(0

−) = 0

For t > 0, the source is operative. However, due to capacitor voltage
continuity,

vo(0
+) = v2(0

+) = 0 (8.11.11)

From Eq. (8.11.3),

v1(0
+) = v2(0

+) + vo(0
+) = 0

and hence, from Eq. (8.11.2),

dvo(0+)
dt

= v1 − vo

R2C1
= 0 (8.11.12)

We now impose Eq. (8.11.11) on the complete response in Eq. (8.11.10)
at t = 0, for

0 = 10 + A 	⇒ A = −10 (8.11.13)

Taking the derivative of Eq. (8.11.10),

dvo

dt
= e−t (−A cos 2t − B sin 2t − 2A sin 2t + 2B cos 2t)

Setting t = 0 and incorporating Eq. (8.11.12), we obtain

0 = −A + 2B (8.11.14)

From Eqs. (8.11.13) and (8.11.14), A = −10 and B = −5. Thus the
step response becomes

vo(t) = 10 − e−t (10 cos 2t + 5 sin 2t) mV, t > 0

P R A C T I C E P R O B L E M 8 . 1 1

In the op amp circuit shown in Fig. 8.34, vs = 4u(t)V, find vo(t) for t > 0.
Assume that R1 = R2 = 10 k�, C1 = 20 µF, and C2 = 100 µF.

vs

R1

+
− C2 vo

+

−

R2

C1

–
+

Figure 8.34 For Practice Prob. 8.11.

Answer: 4 − 5e−t + e−5t V, t > 0.
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8.9 PSPICE ANALYSIS OF RLC CIRCUITS
RLC circuits can be analyzed with great ease using PSpice, just like
the RC or RL circuits of Chapter 7. The following two examples will
illustrate this. The reader may review Section D.4 in Appendix D on
PSpice for transient analysis.

E X A M P L E 8 . 1 2

The input voltage in Fig. 8.35(a) is applied to the circuit in Fig. 8.35(b).
Use PSpice to plot v(t) for 0 < t < 4s.

20 t (s)

12

vs

(a)

(b)

vs

3 H60 Ω

60 Ω+
− v

+

−
F1

27

Figure 8.35 For Example 8.12.

Solution:

The given circuit is drawn using Schematics as in Fig. 8.36. The pulse
is specified using VPWL voltage source, but VPULSE could be used
instead. Using the piecewise linear function, we set the attributes of
VPWL as T1 = 0, V1 = 0, T2 = 0.001, V2 = 12, and so forth, as
shown in Fig. 8.36. Two voltage markers are inserted to plot the input
and output voltages. Once the circuit is drawn and the attributes are set,
we select Analysis/Setup/Transient to open up the Transient Analysis
dialog box. As a parallel RLC circuit, the roots of the characteristic
equation are −1 and −9. Thus, we may set Final Time as 4 s (four times
the magnitude of the lower root). When the schematic is saved, we select
Analysis/Simulate and obtain the plots for the input and output voltages
under the Probe window as shown in Fig. 8.37.

T1=0
T2=0.001
T3=2
T4=2.001

V1=0
V2=12
V3=12
V4=0

V1

R1

60

R2 60 0.037 C1

0

3H

L1

+

−

V V

Figure 8.36 Schematic for the circuit in Fig. 8.35(b).

12 V

4 V

8 V

0 V
0 s 1.0 s 2.0 s 3.0 s 4.0 s

 V(L1:2)

Time

 V(V1:+)

Figure 8.37 For Example 8.12: the input and output
voltages.

P R A C T I C E P R O B L E M 8 . 1 2

Find i(t) using PSpice for 0 < t < 4 s if the pulse voltage in Fig. 8.35(a)
is applied to the circuit in Fig. 8.38.

Answer: See Fig. 8.39.
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vs

5 Ω

1 mF 2 H+
−

i

Figure 8.38 For Practice Prob. 8.12.

3.0 A

1.0 A

2.0 A

0 A
0 s 1.0 s 2.0 s 3.0 s 4.0 s

 I(L1)

Time

Figure 8.39 Plot of i(t) for Practice Prob. 8.12.

E X A M P L E 8 . 1 3

For the circuit in Fig. 8.40, use PSpice to obtain i(t) for 0 < t < 3 s.

4 A 7 H5 Ω 6 Ω

i(t)
t = 0

a

b

F1
42

Figure 8.40 For Example 8.13.

Solution:

When the switch is in position a, the 6-� resistor is redundant. The
schematic for this case is shown in Fig. 8.41(a). To ensure that current
i(t) enters pin 1, the inductor is rotated three times before it is placed in the
circuit. The same applies for the capacitor. We insert pseudocomponents

IDC4 A R1 5 7 H L1

0

23.81m C1

(a)

R2 6 7 H L1

0

23.81m C1

IC=0
IC=4A

(b)

I

0.0000 4.000E+00

Figure 8.41 For Example 8.13: (a) for dc analysis, (b) for transient analysis.
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VIEWPOINT and IPROBE to determine the initial capacitor voltage and
initial inductor current. We carry out a dc PSpice analysis by selecting
Analysis/Simulate. As shown in Fig. 8.41(a), we obtain the initial ca-
pacitor voltage as 0 V and the initial inductor current i(0) as 4 A from the
dc analysis. These initial values will be used in the transient analysis.

When the switch is moved to position b, the circuit becomes a
source-free parallel RLC circuit with the schematic in Fig. 8.41(b). We
set the initial condition IC = 0 for the capacitor and IC = 4 A for
the inductor. A current marker is inserted at pin 1 of the inductor. We
select Analysis/Setup/Transient to open up the Transient Analysis dialog
box and set Final Time to 3 s. After saving the schematic, we select
Analysis/Transient. Figure 8.42 shows the plot of i(t). The plot agrees
with i(t) = 4.8e−t − 0.8e−6t A, which is the solution by hand calculation.

4.00 A

3.92 A

3.96 A

3.88 A
0 s 1.0 s 2.0 s 3.0 s

 I(L1)

Time

Figure 8.42 Plot of i(t) for Example 8.13.

P R A C T I C E P R O B L E M 8 . 1 3

Refer to the circuit in Fig. 8.21 (see Practice Prob. 8.7). Use PSpice to
obtain v(t) for 0 < t < 2.

Answer: See Fig. 8.43.

11 V

9 V

10 V

8 V
0 s 0.5 s 1.0 s 1.5 s 2.0 s

 V(C1:1)

Time

Figure 8.43 Plot of v(t) for Practice Prob. 8.13.

†8.10 DUALITY
The concept of duality is a time-saving, effort-effective measure of solv-
ing circuit problems. Consider the similarity between Eq. (8.4) and Eq.
(8.29). The two equations are the same, except that we must interchange
the following quantities: (1) voltage and current, (2) resistance and con-
ductance, (3) capacitance and inductance. Thus, it sometimes occurs in
circuit analysis that two different circuits have the same equations and
solutions, except that the roles of certain complementary elements are in-
terchanged. This interchangeability is known as the principle of duality.
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The duality principle asserts a parallelism between pairs of characterizing
equations and theorems of electric circuits.

Dual pairs are shown in Table 8.1. Note that power does not appear in
Table 8.1, because power has no dual. The reason for this is the principle
of linearity; since power is not linear, duality does not apply. Also notice
from Table 8.1 that the principle of duality extends to circuit elements,
configurations, and theorems.

TABLE 8.1 Dual pairs.

Resistance R Conductance G
Inductance L Capacitance C
Voltage v Current i
Voltage source Current source
Node Mesh
Series path Parallel path
Open circuit Short circuit
KVL KCL
Thevenin Norton

Even when the principle of linearity applies, a
circuit element or variable may not have a dual.
For example, mutual inductance (to be covered
in Chapter 13) has no dual.

Two circuits that are described by equations of the same form, but
in which the variables are interchanged, are said to be dual to each other.

Two circuits are said to be duals of one another if they are described by the same
characterizing equations with dual quantities interchanged.

The usefulness of the duality principle is self-evident. Once we
know the solution to one circuit, we automatically have the solution for
the dual circuit. It is obvious that the circuits in Figs. 8.8 and 8.13 are
dual. Consequently, the result in Eq. (8.32) is the dual of that in Eq.
(8.11). We must keep in mind that the principle of duality is limited
to planar circuits. Nonplanar circuits have no duals, as they cannot be
described by a system of mesh equations.

To find the dual of a given circuit, we do not need to write down
the mesh or node equations. We can use a graphical technique. Given a
planar circuit, we construct the dual circuit by taking the following three
steps:

1. Place a node at the center of each mesh of the given circuit.
Place the reference node (the ground) of the dual circuit
outside the given circuit.

2. Draw lines between the nodes such that each line crosses an
element. Replace that element by its dual (see Table 8.1).

3. To determine the polarity of voltage sources and direction of
current sources, follow this rule: A voltage source that pro-
duces a positive (clockwise) mesh current has as its dual a cur-
rent source whose reference direction is from the ground to the
nonreference node.

In case of doubt, one may verify the dual circuit by writing the nodal or
mesh equations. The mesh (or nodal) equations of the original circuit are
similar to the nodal (or mesh) equations of the dual circuit. The duality
principle is illustrated with the following two examples.

E X A M P L E 8 . 1 4

Construct the dual of the circuit in Fig. 8.44.
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Solution:

As shown in Fig. 8.45(a), we first locate nodes 1 and 2 in the two meshes
and also the ground node 0 for the dual circuit. We draw a line between
one node and another crossing an element. We replace the line joining
the nodes by the duals of the elements which it crosses. For example, a
line between nodes 1 and 2 crosses a 2-H inductor, and we place a 2-F
capacitor (an inductor’s dual) on the line. A line between nodes 1 and
0 crossing the 6-V voltage source will contain a 6-A current source. By
drawing lines crossing all the elements, we construct the dual circuit on
the given circuit as in Fig. 8.45(a). The dual circuit is redrawn in Fig.
8.45(b) for clarity.

6 V

2 Ω

10 mF2 H+
−

t = 0

Figure 8.44 For Example 8.14.

6 V

6 A

10 mF

10 mH

2 H

2 F

+
−

2 F

t = 0

2

0

1

1 22 Ω

0.5 Ω

t = 0

6 A 10 mH

0.5 Ω

t = 0

0

(a) (b)

Figure 8.45 (a) Construction of the dual circuit of Fig. 8.44, (b) dual circuit redrawn.

P R A C T I C E P R O B L E M 8 . 1 4

Draw the dual circuit of the one in Fig. 8.46.

Answer: See Fig. 8.47.

50 mA 4 H

3 F

10 Ω

Figure 8.46 For Practice Prob. 8.14.

50 mV 4 F+
− 0.1 Ω

3 H

Figure 8.47 Dual of the circuit in Fig. 8.46.

E X A M P L E 8 . 1 5

Obtain the dual of the circuit in Fig. 8.48.

Solution:

The dual circuit is constructed on the original circuit as in Fig. 8.49(a).
We first locate nodes 1 to 3 and the reference node 0. Joining nodes 1
and 2, we cross the 2-F capacitor, which is replaced by a 2-H inductor.
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10 V +
− 20 Ω

5 H

3 Ai2 i3i1 2 F

Figure 8.48 For Example 8.15.

Joining nodes 2 and 3, we cross the 20-� resistor, which is replaced by
a 1/20-� resistor. We keep doing this until all the elements are crossed.
The result is in Fig. 8.49(a). The dual circuit is redrawn in Fig. 8.49(b).

1 2 3

0

10 A 3 V5 F

0

2 H

+
−

1 2 3

(b)(a)

10 V

10 A

+
− 20 Ω

5 H

3 A

3 V

2 F

2 H

5 F

+
−

 Ω1
20

Ω1
20

Figure 8.49 For Example 8.15: (a) construction of the dual circuit of Fig. 8.48, (b) dual circuit redrawn.

To verify the polarity of the voltage source and the direction of
the current source, we may apply mesh currents i1, i2, and i3 (all in the
clockwise direction) in the original circuit in Fig. 8.48. The 10-V voltage
source produces positive mesh current i1, so that its dual is a 10-A current
source directed from 0 to 1. Also, i3 = −3 A in Fig. 8.48 has as its dual
v3 = −3 V in Fig. 8.49(b).

P R A C T I C E P R O B L E M 8 . 1 5

For the circuit in Fig. 8.50, obtain the dual circuit.

Answer: See Fig. 8.51.

2 A 20 V3 Ω

0.2 F 4 H

+
−

5 Ω

Figure 8.50 For Practice Prob. 8.15.

2 V 20 A

4 F0.2 H

+
−

Ω1
3

Ω1
5

Figure 8.51 Dual of the circuit in Fig. 8.50.
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†8.11 APPLICATIONS
Practical applications of RLC circuits are found in control and com-
munications circuits such as ringing circuits, peaking circuits, resonant
circuits, smoothing circuits, and filters. Most of the circuits cannot be
covered until we treat ac sources. For now, we will limit ourselves to two
simple applications: automobile ignition and smoothing circuits.

8 . 11 . 1 Au tomob i l e I g n i t i on Sy s t em
In Section 7.9.4, we considered the automobile ignition system as a charg-
ing system. That was only a part of the system. Here, we consider another
part—the voltage generating system. The system is modeled by the circuit
shown in Fig. 8.52. The 12-V source is due to the battery and alternator.
The 4-� resistor represents the resistance of the wiring. The ignition
coil is modeled by the 8-mH inductor. The 1-µF capacitor (known as
the condenser to automechanics) is in parallel with the switch (known as
the breaking points or electronic ignition). In the following example, we
determine how the RLC circuit in Fig. 8.52 is used in generating high
voltage.

12 V

4 Ω

8 mH

i

vL

+

−

t = 0

1 mF

vC+ −

Ignition coil
Spark plug

Figure 8.52 Automobile ignition circuit.

E X A M P L E 8 . 1 6

Assuming that the switch in Fig. 8.52 is closed prior to t = 0−, find the
inductor voltage vL for t > 0.

Solution:

If the switch is closed prior to t = 0− and the circuit is in steady state,
then

i(0−) = 12

4
= 3 A, vC(0

−) = 0

At t = 0+, the switch is opened. The continuity conditions require that

i(0+) = 3 A, vC(0
+) = 0 (8.16.1)

We obtain di(0+)/dt from vL(0+). Applying KVL to the mesh at t = 0+

yields

−12 + 4i(0+) + vL(0+) + vC(0+) = 0

−12 + 4 × 3 + vL(0+) + 0 = 0 	⇒ vL(0+) = 0
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Hence,

di(0+)
dt

= vL(0+)
L

= 0 (8.16.2)

As t → ∞, the system reaches steady state, so that the capacitor acts like
an open circuit. Then

i(∞) = 0 (8.16.3)

If we apply KVL to the mesh for t > 0, we obtain

12 = Ri + L
di

dt
+ 1

C

∫ t

0
i dt + vC(0)

Taking the derivative of each term yields

d2i

dt2
+ R

L

di

dt
+ i

LC
= 0 (8.16.4)

We obtain the natural response by following the procedure in Section 8.3.
Substituting R = 4 �, L = 8 mH, and C = 1 µF, we get

α = R

2L
= 250, ω0 = 1√

LC
= 1.118 × 104

Since α < ω0, the response is underdamped. The damped natural fre-
quency is

ωd =
√
ω2

0 − α2 � ω0 = 1.118 × 104

The natural response is

in(t) = e−α(A cosωdt + B sinωdt) (8.16.5)

where A and B are constants. The forced response is

if (t) = i(∞) = 0 (8.16.6)

so that the complete response is

i(t) = in(t) + if (t) = e−250t (A cos 11,180t + B sin 11,180t) (8.16.7)

We now determine A and B.

i(0) = 3 = A + 0 	⇒ A = 3

Taking the derivative of Eq. (8.16.7),

di

dt
= −250e−250t (A cos 11,180t + B sin 11,180t)

+ e−250t (−11,180A sin 11,180t + 11,180B cos 11,180t)

Setting t = 0 and incorporating Eq. (8.16.2),

0 = −250A + 11,180B 	⇒ B = 0.0671

Thus

i(t) = e−250t (3 cos 11,180t + 0.0671 sin 11,180t) (8.16.8)
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The voltage across the inductor is then

vL(t) = L
di

dt
= −268e−250t sin 11,180t (8.16.9)

This has a maximum value when sine is unity, that is, at 11,180t0 = π/2
or t0 = 140.5 µs. At time = t0, the inductor voltage reaches its peak,
which is

vL(t0) = −268e−250t0 = −259 V (8.16.10)

Although this is far less than the voltage range of 6000 to 10,000 V
required to fire the spark plug in a typical automobile, a device known
as a transformer (to be discussed in Chapter 13) is used to step up the
inductor voltage to the required level.

P R A C T I C E P R O B L E M 8 . 1 6

In Fig. 8.52, find the capacitor voltage vC for t > 0.

Answer: 12 − 12e−250t cos 11,180t + 267.7e−250t sin 11,180t V.

8 . 11 . 2 Smooth i n g C i r cu i t s
In a typical digital communication system, the signal to be transmitted
is first sampled. Sampling refers to the procedure of selecting samples
of a signal for processing, as opposed to processing the entire signal.
Each sample is converted into a binary number represented by a series
of pulses. The pulses are transmitted by a transmission line such as a
coaxial cable, twisted pair, or optical fiber. At the receiving end, the
signal is applied to a digital-to-analog (D/A) converter whose output is
a “staircase” function, that is, constant at each time interval. In order to
recover the transmitted analog signal, the output is smoothed by letting it
pass through a “smoothing” circuit, as illustrated in Fig. 8.53. An RLC

circuit may be used as the smoothing circuit.

vs(t) Smoothing
circuit

p(t)
D/A

v0(t)

Figure 8.53 A series of pulses is applied to
the digital-to-analog (D/A) converter, whose
output is applied to the smoothing circuit.

E X A M P L E 8 . 1 7

The output of a D/A converter is shown in Fig. 8.54(a). If the RLC cir-
cuit in Fig. 8.54(b) is used as the smoothing circuit, determine the output
voltage vo(t).

vs

1 Ω 1 H

1 F+
−

1 3

0 0

2

(b)(a)

t (s)–2
0

4

10

v0

+

−

vs

Figure 8.54 For Example 8.17: (a) output of a D/A converter, (b) an RLC

smoothing circuit.
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Solution:

This problem is best solved using PSpice. The schematic is shown in Fig.
8.55(a). The pulse in Fig. 8.54(a) is specified using the piecewise linear
function. The attributes of V1 are set as T1 = 0, V1 = 0, T2 = 0.001,
V2 = 4, T3 = 1, V3 = 4, and so on. To be able to plot both input
and output voltages, we insert two voltage markers as shown. We select
Analysis/Setup/Transient to open up the Transient Analysis dialog box
and set Final Time as 6 s. Once the schematic is saved, we select Anal-
ysis/Simulate to run Probe and obtain the plots shown in Fig. 8.55(b).

T1=0
T2=0.001
T3=1
T4=1.001
T5=2
T6=2.001
T7=3
T8=3.001

V1=0
V2=4
V3=4
V4=10
V5=10
V6=-2
V7=-2
V8=0

V1

R1

1

1 C1

0

1H

L1

+

−

V V
10 V

0 V

5 V

-5 V
0 s 2.0 s 4.0 s 6.0 s

 V(V1:+)

Time

 V(C1:1)

(a) (b)

Figure 8.55 For Example 8.17: (a) schematic, (b) input and output voltages.

P R A C T I C E P R O B L E M 8 . 1 7

Rework Example 8.17 if the output of the D/A converter is as shown in
Fig. 8.56.

Answer: See Fig. 8.57.

t (s)

–3
–1

0

8
7

1 2 3 4

vs

Figure 8.56 For Practice
Prob. 8.17.

8.0 V

0 V

4.0 V

-4.0 V
0 s 2.0 s 4.0 s 6.0 s

 V(V1:+)

Time

 V(C1:1)

Figure 8.57 Result of Practice Prob. 8.17.



340 PART 1 DC Circuits

8.12 SUMMARY
1. The determination of the initial values x(0) and dx(0)/dt and final

value x(∞) is crucial to analyzing second-order circuits.

2. The RLC circuit is second-order because it is described by a
second-order differential equation. Its characteristic equation is
s2 + 2αs + ω2

0 = 0, where α is the damping factor and ω0 is the
undamped natural frequency. For a series circuit, α = R/2L, for a
parallel circuit α = 1/2RC, and for both cases ω0 = 1/

√
LC.

3. If there are no independent sources in the circuit after switching (or
sudden change), we regard the circuit as source-free. The complete
solution is the natural response.

4. The natural response of an RLC circuit is overdamped, under-
damped, or critically damped, depending on the roots of the char-
acteristic equation. The response is critically damped when the roots
are equal (s1 = s2 or α = ω0), overdamped when the roots are real
and unequal (s1 = s2 or α > ω0), or underdamped when the roots are
complex conjugate (s1 = s∗

2 or α < ω0).

5. If independent sources are present in the circuit after switching, the
complete response is the sum of the natural response and the forced
or steady-state response.

6. PSpice is used to analyze RLC circuits in the same way as for RC or
RL circuits.

7. Two circuits are dual if the mesh equations that describe one circuit
have the same form as the nodal equations that describe the other.
The analysis of one circuit gives the analysis of its dual circuit.

8. The automobile ignition circuit and the smoothing circuit are typical
applications of the material covered in this chapter.

R E V I EW QU E S T I ON S

8.1 For the circuit in Fig. 8.58, the capacitor voltage at
t = 0− (just before the switch is closed) is:
(a) 0 V (b) 4 V (c) 8 V (d) 12 V

4 Ω

2 F1 H12 V +
−

t = 0

2 Ω

Figure 8.58 For Review Questions 8.1 and 8.2.

8.2 For the circuit in Fig. 8.58, the initial inductor
current (at t = 0) is:
(a) 0 A (b) 2 A (c) 6 A (d) 12 A

8.3 When a step input is applied to a second-order
circuit, the final values of the circuit variables are
found by:
(a) Replacing capacitors with closed circuits and

inductors with open circuits.
(b) Replacing capacitors with open circuits and

inductors with closed circuits.
(c) Doing neither of the above.

8.4 If the roots of the characteristic equation of an RLC
circuit are −2 and −3, the response is:
(a) (A cos 2t + B sin 2t)e−3t

(b) (A + 2Bt)e−3t

(c) Ae−2t + Bte−3t

(d) Ae−2t + Be−3t

where A and B are constants.

8.5 In a series RLC circuit, setting R = 0 will produce:
(a) an overdamped response
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(b) a critically damped response
(c) an underdamped response
(d) an undamped response
(e) none of the above

8.6 A parallel RLC circuit has L = 2 H and
C = 0.25 F. The value of R that will produce unity
damping factor is:
(a) 0.5 � (b) 1 � (c) 2 � (d) 4 �

8.7 Refer to the series RLC circuit in Fig. 8.59. What
kind of response will it produce?
(a) overdamped
(b) underdamped
(c) critically damped
(d) none of the above

1 H

1 F

1 Ω

Figure 8.59 For Review Question 8.7.

8.8 Consider the parallel RLC circuit in Fig. 8.60.
What type of response will it produce?
(a) overdamped
(b) underdamped
(c) critically damped
(d) none of the above

1 F1 H1 Ω

Figure 8.60 For Review Question 8.8.

8.9 Match the circuits in Fig. 8.61 with the following
items:
(i) first-order circuit
(ii) second-order series circuit
(iii) second-order parallel circuit
(iv) none of the above

vs

R

C1

(c)

is C2

C1

L
R1

L

(d)

(e)

is

C

(f)

R1

C2

R2

vs

R L

+
−

(a)

is C

(b)

RC

+
−

vs

R1 R2

+
− L

L

C

R2

Figure 8.61 For Review Question 8.9.

8.10 In an electric circuit, the dual of resistance is:
(a) conductance (b) inductance
(c) capacitance (d) open circuit
(e) short circuit

Answers: 8.1a, 8.2c, 8.3b, 8.4d, 8.5d, 8.6c, 8.7b, 8.8b, 8.9 (i)-c,
(ii)-b,e, (iii)-a, (iv)-d,f, 8.10a.

P RO B L E M S

Section 8.2 Finding Initial and Final Values

8.1 For the circuit in Fig. 8.62, find:
(a) i(0+) and v(0+),
(b) di(0+)/dt and dv(0+)/dt ,
(c) i(∞) and v(∞).

12 V

0.4 F

6 Ω

+
−

2 H

4 Ω

i

t = 0

v
+

−

Figure 8.62 For Prob. 8.1.
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8.2 In the circuit of Fig. 8.63, determine:
(a) iR(0+), iL(0+), and iC(0+),
(b) diR(0+)/dt , diL(0+)/dt , and diC(0+)/dt ,
(c) iR(∞), iL(∞), and iC(∞).

80 V

20 kΩ

2 mH1 mF

60 kΩ
+
−

iLiC

25 kΩiR

t = 0

Figure 8.63 For Prob. 8.2.

8.3 Refer to the circuit shown in Fig. 8.64. Calculate:
(a) iL(0+), vC(0+), and vR(0+),
(b) diL(0+)/dt , dvC(0+)/dt , and dvR(0+)/dt ,
(c) iL(∞), vC(∞), and vR(∞).

2u(t) A

40 Ω

10 V

vR

+

−
10 Ω

+
−

IL
vC

+

−
F1

4

H1
8

Figure 8.64 For Prob. 8.3.

8.4 In the circuit of Fig. 8.65, find:
(a) v(0+) and i(0+),
(b) dv(0+)/dt and di(0+)/dt ,
(c) v(∞) and i(∞).

4u(–t) V 4u(t) A

3 Ω 0.25 H

0.1 F 5 Ω+
−

i

v
+

−

Figure 8.65 For Prob. 8.4.

8.5 Refer to the circuit in Fig. 8.66. Determine:
(a) i(0+) and v(0+),
(b) di(0+)/dt and dv(0+)/dt ,
(c) i(∞) and v(∞).

4u(t) A

1 H

4 Ω v
+

−
6 Ω

i

F1
4

Figure 8.66 For Prob. 8.5.

8.6 In the circuit of Fig. 8.67, find:
(a) vR(0+) and vL(0+),
(b) dvR(0+)/dt and dvL(0+)/dt ,
(c) vR(∞) and vL(∞).

Vsu(t)

Rs R

+
− LC

+ −vR +

−
vL

Figure 8.67 For Prob. 8.6.

Section 8.3 Source-Free Series RLC Circuit

8.7 The voltage in an RLC network is described by the
differential equation

d2v

dt2
+ 4

dv

dt
+ 4v = 0

subject to the initial conditions v(0) = 1 and
dv(0)/dt = −1. Determine the characteristic
equation. Find v(t) for t > 0.

8.8 The branch current in an RLC circuit is described
by the differential equation

d2i

dt2
+ 6

di

dt
+ 9i = 0

and the initial conditions are i(0) = 0,
di(0)/dt = 4. Obtain the characteristic equation
and determine i(t) for t > 0.

8.9 The current in an RLC circuit is described by

d2i

dt2
+ 10

di

dt
+ 25i = 0

If i(0) = 10 and di(0)/dt = 0, find i(t) for t > 0.

8.10 The differential equation that describes the voltage
in an RLC network is

d2v

dt2
+ 5

dv

dt
+ 4v = 0

Given that v(0) = 0, dv(0)/dt = 10, obtain v(t).

8.11 The natural response of an RLC circuit is described
by the differential equation

d2v

dt2
+ 2

dv

dt
+ v = 0
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for which the initial conditions are v(0) = 10 and
dv(0)/dt = 0. Solve for v(t).

8.12 If R = 20 �, L = 0.6 H, what value of C will make
an RLC series circuit:
(a) overdamped, (b) critically damped,
(c) underdamped?

8.13 For the circuit in Fig. 8.68, calculate the value of R
needed to have a critically damped response.

R 4 H0.01 F

60 Ω

Figure 8.68 For Prob. 8.13.

8.14 Find v(t) for t > 0 if v(0) = 6 V and i(0) = 2 A in
the circuit shown in Fig. 8.69.

2 H30 Ω60 Ω v (t)
+

−

0.02 Fi(t)

Figure 8.69 For Prob. 8.14.

8.15 The responses of a series RLC circuit are

vC(t) = 30 − 10e−20t + 30e−10t V

iL(t) = 40e−20t − 60e−10t mA

where vC and iL are the capacitor voltage and
inductor current, respectively. Determine the values
of R, L, and C.

8.16 Find i(t) for t > 0 in the circuit of Fig. 8.70.

t = 0

30 V

10 Ω

2.5 H

1 mF
40 Ω+

−

60 Ω

i(t)

Figure 8.70 For Prob. 8.16.

8.17 Obtain v(t) for t > 0 in the circuit of Fig. 8.71.

t = 0

120 V

10 Ω

4 H

1 Fv

+
−

+

−

Figure 8.71 For Prob. 8.17.

8.18 The switch in the circuit of Fig. 8.72 has been closed
for a long time but is opened at t = 0. Determine
i(t) for t > 0.

2 Ω

12 V

i(t)

+ −
t = 0

H1
2

F1
4

Figure 8.72 For Prob. 8.18.

8.19∗ Calculate v(t) for t > 0 in the circuit of Fig. 8.73.

t = 0

24 V

12 Ω

60 Ω+
−

3 H

6 Ω

15 Ω

25 Ω

v
+

−
F1

27

Figure 8.73 For Prob. 8.19.

Section 8.4 Source-Free Parallel RLC Circuit

8.20 For a parallel RLC circuit, the responses are

vL(t) = 4e−20t cos 50t − 10e−20t sin 50t V

iC(t) = −6.5e−20t cos 50t mA

where iC and vL are the capacitor current and
inductor voltage, respectively. Determine the values
of R, L, and C.

8.21 For the network in Fig. 8.74, what value of C is
needed to make the response underdamped with
unity damping factor (α = 1)?

∗An asterisk indicates a challenging problem.
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0.5 H 10 mFC10 Ω

Figure 8.74 For Prob. 8.21.

8.22 Find v(t) for t > 0 in the circuit in Fig. 8.75.

25u(–t)

5 Ω

+
− 1 mF

i

0.1 Hv
+

−

Figure 8.75 For Prob. 8.22.

8.23 In the circuit in Fig. 8.76, calculate io(t) and vo(t)
for t > 0.

t = 0

30 V

2 Ω

vo(t)8 Ω+
−

io(t)1 H

+

−
F1

4

Figure 8.76 For Prob. 8.23.

Section 8.5 Step Response of a Series RLC
Circuit

8.24 The step response of an RLC circuit is given by

d2i

dt2
+ 2

di

dt
+ 5i = 10

Given that i(0) = 2 and di(0)/dt = 4, solve for i(t).

8.25 A branch voltage in an RLC circuit is described by

d2v

dt2
+ 4

dv

dt
+ 8v = 24

If the initial conditions are v(0) = 0 = dv(0)/dt ,
find v(t).

8.26 The current in an RLC network is governed by the
differential equation

d2i

dt2
+ 3

di

dt
+ 2i = 4

subject to i(0) = 1, di(0)/dt = −1. Solve for i(t).

8.27 Solve the following differential equations subject to
the specified initial conditions
(a) d2v/dt2 + 4v = 12, v(0) = 0, dv(0)/dt = 2

(b) d2i/dt2 + 5 di/dt + 4i = 8, i(0) = −1,
di(0)/dt = 0

(c) d2v/dt2 + 2 dv/dt + v = 3, v(0) = 5,
dv(0)/dt = 1

(d) d2i/dt2 + 2 di/dt + 5i = 10, i(0) = 4,
di(0)/dt = −2

8.28 Consider the circuit in Fig. 8.77. Find vL(0) and
vC(0).

2u(t)

40 Ω

50 V1 FvL

+

−
0.5 H +

−

10 Ω

vC

+

−

Figure 8.77 For Prob. 8.28.

8.29 For the circuit in Fig. 8.78, find v(t) for t > 0.

1 H

4 Ω

50u(t) V

2u(–t) A

0.04 F

+ −

2 Ω
v+ −

Figure 8.78 For Prob. 8.29.

8.30 Find v(t) for t > 0 in the circuit in Fig. 8.79.

3 A

1 H

10 Ω 5 Ω4 F

t = 0

4u(t) Av
+

−

Figure 8.79 For Prob. 8.30.

8.31 Calculate i(t) for t > 0 in the circuit in Fig. 8.80.



CHAPTER 8 Second-Order Circuits 345

20 V

5 Ω

+
−

t = 0

i

v+ −

F1
16

H1
4

Figure 8.80 For Prob. 8.31.

8.32 Determine v(t) for t > 0 in the circuit in Fig. 8.81.

t = 0

8 V +
− 12 V+

−

1 H

2 Ω

v
+

−
F1

5

Figure 8.81 For Prob. 8.32.

8.33 Obtain v(t) and i(t) for t > 0 in the circuit in Fig.
8.82.

3u(t) A

5 H

0.2 F

2 Ω

1 Ω

20 V

5 Ω

+ −

i(t)

v(t)

+

−

Figure 8.82 For Prob. 8.33.

8.34∗ For the network in Fig. 8.83, solve for i(t) for t > 0.

30 V

6 Ω

+
− 10 V +

−

6 Ω

t = 0

6 Ω

i(t)

H1
2

F1
8

Figure 8.83 For Prob. 8.34.

8.35 Refer to the circuit in Fig. 8.84. Calculate i(t) for
t > 0.

10 Ω

2 A

t = 0

10 Ω

5 Ω

i(t)

F1
3

H3
4

Figure 8.84 For Prob. 8.35.

8.36 Determine v(t) for t > 0 in the circuit in Fig. 8.85.

60u(t) V +
− 30u(t) V+

−20 Ω

0.25 H30 Ω 0.5 F

v+ −

Figure 8.85 For Prob. 8.36.

8.37 The switch in the circuit of Fig. 8.86 is moved from
position a to b at t = 0. Determine i(t) for t > 0.

12 V

2 H

+
−

2 Ω

14 Ω

6 Ω

4 A

i(t)
a

b

0.02 F

t = 0

Figure 8.86 For Prob. 8.37.
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8.38∗ For the network in Fig. 8.87, find i(t) for t > 0.

5 Ω

1 H

100 V 5 Ω+
−

t = 0

20 Ω

i

F1
25

Figure 8.87 For Prob. 8.38.

8.39∗ Given the network in Fig. 8.88, find v(t) for t > 0.

4 A 1 Ω t = 0

2 A

6 Ω

1 H

v
+

−
F1

25

Figure 8.88 For Prob. 8.39.

Section 8.6 Step Response of a Parallel RLC
Circuit

8.40 In the circuit of Fig. 8.89, find v(t) and i(t) for
t > 0. Assume v(0) = 0 V and i(0) = 1 A.

4u(t) A 0.5 F 1 H2 Ω

i

v
+

−

Figure 8.89 For Prob. 8.40.

8.41 Find i(t) for t > 0 in the circuit in Fig. 8.90.

12u(t) V +
−

8 mH

2 kΩ

i(t)

5 mF

Figure 8.90 For Prob. 8.41.

8.42 Find the output voltage vo(t) in the circuit of Fig.
8.91.

3 A 10 mF5 Ω 1 H

10 Ω

t = 0

vo

+

−

Figure 8.91 For Prob. 8.42.

8.43 Given the circuit in Fig. 8.92, find i(t) and v(t) for
t > 0.

1 Ω

6 V +
−

2 Ω
t = 0

1 H

i(t)

v(t)

+

−
F1

4

Figure 8.92 For Prob. 8.43.

8.44 Determine i(t) for t > 0 in the circuit of Fig. 8.93.

3 A5 Ω5 H

i(t)

12 V

t = 0

4 Ω

F1
20

+
−

Figure 8.93 For Prob. 8.44.

8.45 For the circuit in Fig. 8.94, find i(t) for t > 0.

6u(t) A 40 Ω10 mF 4 H

i(t)

30 V +
−

10 Ω

Figure 8.94 For Prob. 8.45.
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8.46 Find v(t) for t > 0 in the circuit in Fig. 8.95.

io CLR

t = 0

v
+

−

Figure 8.95 For Prob. 8.46.

Section 8.7 General Second-Order Circuits

8.47 Derive the second-order differential equation for vo
in the circuit of Fig. 8.96.

R2

vs C2
+
− R1

C1

vo

+

−

Figure 8.96 For Prob. 8.47.

8.48 Obtain the differential equation for vo in the circuit
in Fig. 8.97.

R1

vs C+
− R2

L

vo

+

−

Figure 8.97 For Prob. 8.48.

8.49 For the circuit in Fig. 8.98, find v(t) for t > 0.
Assume that v(0+) = 4 V and i(0+) = 2 A.

2 Ω

0.5 F0.1 F
i
4

v
+

−

i

Figure 8.98 For Prob. 8.49.

8.50 In the circuit of Fig. 8.99, find i(t) for t > 0.

20 V

6 Ω

4 Ω

t = 0

+
−

i

F1
25

H1
4

Figure 8.99 For Prob. 8.50.

8.51 If the switch in Fig. 8.100 has been closed for a long
time before t = 0 but is opened at t = 0, determine:
(a) the characteristic equation of the circuit,
(b) ix and vR for t > 0.

t = 0

16 V

1 H

+
−

8 Ω
12 Ω

vR

+

−

ix

F1
36

Figure 8.100 For Prob. 8.51.

8.52 Obtain i1 and i2 for t > 0 in the circuit of Fig. 8.101.

4u(t) A 1 H2 Ω

i2i1

1 H

3 Ω

Figure 8.101 For Prob. 8.52.

8.53 For the circuit in Prob. 8.5, find i and v for t > 0.

8.54 Find the response vR(t) for t > 0 in the circuit in
Fig. 8.102. Let R = 3 �, L = 2 H, and C = 1/18 F.

10u(t) V

R

+
− LC

+ −vR

Figure 8.102 For Prob. 8.54.
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Section 8.8 Second-Order Op Amp Circuits

8.55 Derive the differential equation relating vo to vs in
the op amp circuit of Fig. 8.103.

R2

C2

R1
C1

vs vo+
−

Figure 8.103 For Prob. 8.55.

8.56 Obtain the differential equation for vo(t) in the
network of Fig. 8.104.

R2

C2

R1
C1

vs vo+
−

Figure 8.104 For Prob. 8.56.

8.57 Determine the differential equation for the op amp
circuit in Fig. 8.105. If v1(0+) = 2 V and
v2(0+) = 0 V, find vo for t > 0. Let R = 100 k�
and C = 1 µF.

R

vo

+
−

−

C

v2+ −

C

v1+ −

R

+
+
−

Figure 8.105 For Prob. 8.57.

8.58 Given that vs = 2u(t) V in the op amp circuit of Fig.
8.106, find vo(t) for t > 0. Let R1 = R2 = 10 k�,
R3 = 20 k�, R4 = 40 k�, C1 = C2 = 100 µF.

vs

R1

C1 R4

vo

R2

–
+

C2

R3

Figure 8.106 For Prob. 8.58.

8.59∗ In the op amp circuit of Fig. 8.107, determine vo(t)
for t > 0. Let vin = u(t) V, R1 = R2 = 10 k�,
C1 = C2 = 100 µF.

R2

C1

R1
C2

vin vo+
−

Figure 8.107 For Prob. 8.59.

Section 8.9 PSpice Analysis of RLC Circuit

8.60 For the step function vs = u(t), use PSpice to find
the response v(t) for 0 < t < 6 s in the circuit of
Fig. 8.108.

2 Ω

vs
+
−

1 H

1 F v(t)

+

−

Figure 8.108 For Prob. 8.60.

8.61 Given the source-free circuit in Fig. 8.109, use
PSpice to get i(t) for 0 < t < 20 s. Take
v(0) = 30 V and i(0) = 2 A.
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1 Ω 10 H 2.5 F

i

v
+

−

Figure 8.109 For Prob. 8.61.

8.62 Obtain v(t) for 0 < t < 4 s in the circuit of Fig.
8.110 using PSpice.

13u(t) A 39u(t) V6 Ω

6 Ω

+
−

1 H

v(t)
+

−
20 Ω

0.4 F

Figure 8.110 For Prob. 8.62.

8.63 Rework Prob. 8.23 using PSpice. Plot vo(t) for
0 < t < 4 s.

Section 8.10 Duality

8.64 Draw the dual of the network in Fig. 8.111.

4 A 5 mH 10 mH

20 Ω

2 mF

Figure 8.111 For Prob. 8.64.

8.65 Obtain the dual of the circuit in Fig. 8.112.

12 V +
−

24 V+
−

4 Ω

10 Ω

2 H

0.5 F

Figure 8.112 For Prob. 8.65.

8.66 Find the dual of the circuit in Fig. 8.113.

20 Ω10 Ω 30 Ω

4 H

60 V

1 F 2 A

+ −
120 V

− +

Figure 8.113 For Prob. 8.66.

8.67 Draw the dual of the circuit in Fig. 8.114.

+
−

2 Ω 3 Ω

12 V

5 A

1 Ω0.25 H1 F

Figure 8.114 For Prob. 8.67.

Section 8.11 Applications

8.68 An automobile airbag igniter is modeled by the
circuit in Fig. 8.115. Determine the time it takes the
voltage across the igniter to reach its first peak after
switching from A to B. Let R = 3 �, C = 1/30 F,
and L = 60 mH.

t = 0

A B

12 V +
− L RC

Airbag igniter

Figure 8.115 For Prob. 8.68.

8.69 A passive interface is to be designed to connect an
electric motor to an ideal voltage source. If the
motor is modeled as a 40-mH inductor in parallel
with a 16-� resistor, design the interface circuit so
that the overall circuit is critically damped at the
natural frequency of 60 Hz.
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8.70 A mechanical system is modeled by a series RLC
circuit. It is desired to produce an overdamped
response with time constants 0.1 ms and 0.5 ms. If a
series 50-k� resistor is used, find the values of L
and C.

8.71 An oscillogram can be adequately modeled by a
second-order system in the form of a parallel RLC
circuit. It is desired to give an underdamped voltage
across a 200-� resistor. If the damping frequency is
4 kHz and the time constant of the envelope is
0.25 s, find the necessary values of L and C.

8.72 The circuit in Fig. 8.116 is the electrical analog of
body functions used in medical schools to study
convulsions. The analog is as follows:

C1 = Volume of fluid in a drug

C2 = Volume of blood stream in a specified
region

R1 = Resistance in the passage of the drug from
the input to the blood stream

R2 = Resistance of the excretion mechanism,
such as kidney, etc.

v0 = Initial concentration of the drug dosage

v(t) = Percentage of the drug in the blood stream

Find v(t) for t > 0 given that C1 = 0.5 µF,
C2 = 5 µF, R1 = 5 M�, R2 = 2.5 M�, and
v0 = 60u(t) V.

R1t = 0

C2C1vo

+

−
R2

v(t)

+

−

Figure 8.116 For Prob. 8.72.

8.73 Figure 8.117 shows a typical tunnel-diode oscillator
circuit. The diode is modeled as a nonlinear resistor
with iD = f (vD), i.e., the diode current is a
nonlinear function of the voltage across the diode.
Derive the differential equation for the circuit in
terms of v and iD .

R L i

Cv
+

−
+
−vs

ID

vD

+

−

Figure 8.117 For Prob. 8.73.
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C H A P T E R

SINUSOIDS AND PHASORS

9

The desire to understand the world and the desire to reform it are the two
great engines of progress.

— Bertrand Russell

Historical Profiles
Heinrich Rudorf Hertz (1857–1894), a German experimental physicist, demonstrated
that electromagnetic waves obey the same fundamental laws as light. His work confirmed
James Clerk Maxwell’s celebrated 1864 theory and prediction that such waves existed.

Hertz was born into a prosperous family in Hamburg, Germany. He attended
the University of Berlin and did his doctorate under the prominent physicist Hermann
von Helmholtz. He became a professor at Karlsruhe, where he began his quest for
electromagnetic waves. Hertz successfully generated and detected electromagnetic
waves; he was the first to show that light is electromagnetic energy. In 1887, Hertz
noted for the first time the photoelectric effect of electrons in a molecular structure.
Although Hertz only lived to the age of 37, his discovery of electromagnetic waves
paved the way for the practical use of such waves in radio, television, and other
communication systems. The unit of frequency, the hertz, bears his name.

Charles Proteus Steinmetz (1865–1923), a German-Austrian mathematician and en-
gineer, introduced the phasor method (covered in this chapter) in ac circuit analysis. He
is also noted for his work on the theory of hysteresis.

Steinmetz was born in Breslau, Germany, and lost his mother at the age of one.
As a youth, he was forced to leave Germany because of his political activities just as
he was about to complete his doctoral dissertation in mathematics at the University
of Breslau. He migrated to Switzerland and later to the United States, where he
was employed by General Electric in 1893. That same year, he published a paper in
which complex numbers were used to analyze ac circuits for the first time. This led to
one of his many textbooks,Theory and Calculation of ac Phenomena, published by
McGraw-Hill in 1897. In 1901, he became the president of the American Institute of
Electrical Engineers, which later became the IEEE.
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9.1 INTRODUCTION
Thus far our analysis has been limited for the most part to dc circuits:
those circuits excited by constant or time-invariant sources. We have
restricted the forcing function to dc sources for the sake of simplicity, for
pedagogic reasons, and also for historic reasons. Historically, dc sources
were the main means of providing electric power up until the late 1800s.
At the end of that century, the battle of direct current versus alternating
current began. Both had their advocates among the electrical engineers
of the time. Because ac is more efficient and economical to transmit over
long distances, ac systems ended up the winner. Thus, it is in keeping
with the historical sequence of events that we considered dc sources first.

We now begin the analysis of circuits in which the source voltage or
current is time-varying. In this chapter, we are particularly interested in
sinusoidally time-varying excitation, or simply, excitation by asinusoid.

A sinusoid is a signal that has the form of the sine or cosine function.

A sinusoidal current is usually referred to asalternating current (ac).
Such a current reverses at regular time intervals and has alternately posi-
tive and negative values. Circuits driven by sinusoidal current or voltage
sources are calledac circuits.

We are interested in sinusoids for a number of reasons. First, nature
itself is characteristically sinusoidal. We experience sinusoidal variation
in the motion of a pendulum, the vibration of a string, the ripples on the
ocean surface, the political events of a nation, the economic fluctuations
of the stock market, and the natural response of underdamped second-
order systems, to mention but a few. Second, a sinusoidal signal is easy
to generate and transmit. It is the form of voltage generated throughout
the world and supplied to homes, factories, laboratories, and so on. It is
the dominant form of signal in the communications and electric power
industries. Third, through Fourier analysis, any practical periodic signal
can be represented by a sum of sinusoids. Sinusoids, therefore, play an
important role in the analysis of periodic signals. Lastly, a sinusoid is
easy to handle mathematically. The derivative and integral of a sinusoid
are themselves sinusoids. For these and other reasons, the sinusoid is an
extremely important function in circuit analysis.

A sinusoidal forcing function produces both a natural (or transient)
response and a forced (or steady-state) response, much like the step func-
tion, which we studied in Chapters 7 and 8. The natural response of a
circuit is dictated by the nature of the circuit, while the steady-state re-
sponse always has a form similar to the forcing function. However, the
natural response dies out with time so that only the steady-state response
remains after a long time. When the natural response has become negligi-
bly small compared with the steady-state response, we say that the circuit
is operating at sinusoidal steady state. It is thissinusoidal steady-state
response that is of main interest to us in this chapter.
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We begin with a basic discussion of sinusoids and phasors. We
then introduce the concepts of impedance and admittance. The basic
circuit laws, Kirchhoff’s and Ohm’s, introduced for dc circuits, will be
applied to ac circuits. Finally, we consider applications of ac circuits in
phase-shifters and bridges.

9.2 SINUSOIDS
Consider the sinusoidal voltage

v(t) = Vm sinωt (9.1)

where

Vm = theamplitude of the sinusoid

ω = theangular frequency in radians/s

ωt = theargument of the sinusoid

The sinusoid is shown in Fig. 9.1(a) as a function of its argument and in
Fig. 9.1(b) as a function of time. It is evident that the sinusoid repeats
itself everyT seconds; thus,T is called theperiod of the sinusoid. From
the two plots in Fig. 9.1, we observe thatωT = 2π ,

T = 2π

ω
(9.2)

The fact thatv(t) repeats itself everyT seconds is shown by replacingt
by t + T in Eq. (9.1). We get

v(t + T ) = Vm sinω(t + T ) = Vm sinω

(
t + 2π

ω

)

= Vm sin(ωt + 2π) = Vm sinωt = v(t)

(9.3)

Hence,

v(t + T ) = v(t) (9.4)

that is,v has the same value att + T as it does att andv(t) is said to be
periodic. In general,

A periodic function is one that satisfies f (t) = f (t + nT), for all t and for all
integers n.

0

Vm

–Vm

π 2π 4π vt

(a)

v(t)

0

Vm

–Vm

(b)

v(t)

T
2

T 2T t3π 3T
2

Figure 9.1 A sketch of Vm sinωt : (a) as a function of ωt , (b) as a function of t.
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As mentioned, the period T of the periodic function is the time of one
complete cycle or the number of seconds per cycle. The reciprocal of
this quantity is the number of cycles per second, known as the cyclic
frequency f of the sinusoid. Thus,

f = 1

T
(9.5)

From Eqs. (9.2) and (9.5), it is clear that

ω = 2πf (9.6)

While ω is in radians per second (rad/s), f is in hertz (Hz).The unit of f is named after the German physicist
Heinrich R. Hertz (1857–1894). Let us now consider a more general expression for the sinusoid,

v(t) = Vm sin(ωt + φ) (9.7)

where (ωt + φ) is the argument and φ is the phase. Both argument and
phase can be in radians or degrees.

Let us examine the two sinusoids

v1(t) = Vm sinωt and v2(t) = Vm sin(ωt + φ) (9.8)

shown in Fig. 9.2. The starting point of v2 in Fig. 9.2 occurs first in time.
Therefore, we say that v2 leads v1 by φ or that v1 lags v2 by φ. If φ �= 0,
we also say that v1 and v2 are out of phase. If φ = 0, then v1 and v2 are
said to be in phase; they reach their minima and maxima at exactly the
same time. We can compare v1 and v2 in this manner because they operate
at the same frequency; they do not need to have the same amplitude.

Vm

–Vm

vt
f

v2 = Vm sin(vt + f)

v1 = Vm sin vt

π 2π

Figure 9.2 Two sinusoids with different phases.

A sinusoid can be expressed in either sine or cosine form. When
comparing two sinusoids, it is expedient to express both as either sine or
cosine with positive amplitudes. This is achieved by using the following
trigonometric identities:

sin(A± B) = sinA cosB ± cosA sinB

cos(A± B) = cosA cosB ∓ sinA sinB
(9.9)
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With these identities, it is easy to show that

sin(ωt ± 180◦) = − sinωt

cos(ωt ± 180◦) = − cosωt

sin(ωt ± 90◦) = ± cosωt

cos(ωt ± 90◦) = ∓ sinωt

(9.10)

Using these relationships, we can transform a sinusoid from sine form to
cosine form or vice versa.

A graphical approach may be used to relate or compare sinusoids
as an alternative to using the trigonometric identities in Eqs. (9.9) and
(9.10). Consider the set of axes shown in Fig. 9.3(a). The horizontal
axis represents the magnitude of cosine, while the vertical axis (pointing
down) denotes the magnitude of sine. Angles are measured positively
counterclockwise from the horizontal, as usual in polar coordinates. This
graphical technique can be used to relate two sinusoids. For example, we
see in Fig. 9.3(a) that subtracting 90◦ from the argument of cosωt gives
sinωt , or cos(ωt−90◦) = sinωt . Similarly, adding 180◦ to the argument
of sinωt gives − sinωt , or sin(ωt − 180◦) = − sinωt , as shown in Fig.
9.3(b).

–90°

180°

+ sin vt 

+ sin vt 

+ cos vt 

+ cos vt 

(a)

(b)

Figure 9.3 A graphical means
of relating cosine and sine:
(a) cos(ωt − 90◦) = sinωt ,
(b) sin(ωt + 180◦) = − sinωt.

The graphical technique can also be used to add two sinusoids of
the same frequency when one is in sine form and the other is in cosine
form. To add A cosωt and B sinωt , we note that A is the magnitude
of cosωt while B is the magnitude of sinωt , as shown in Fig. 9.4(a).
The magnitude and argument of the resultant sinusoid in cosine form is
readily obtained from the triangle. Thus,

A cosωt + B sinωt = C cos(ωt − θ) (9.11)

where

C =
√
A2 + B2, θ = tan−1 B

A
(9.12)

For example, we may add 3 cosωt and −4 sinωt as shown in Fig. 9.4(b)
and obtain

3 cosωt − 4 sinωt = 5 cos(ωt + 53.1◦) (9.13)

A

C

B

–u

sin vt 

cos vt 

(a)

sin vt 

cos vt 0

53.1°

+3

–4

5

(b)

Figure 9.4 (a) AddingA cosωt and B sinωt, (b) adding 3 cosωt and −4 sinωt .
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Compared with the trigonometric identities in Eqs. (9.9) and (9.10),
the graphical approach eliminates memorization. However, we must not
confuse the sine and cosine axes with the axes for complex numbers to
be discussed in the next section. Something else to note in Figs. 9.3 and
9.4 is that although the natural tendency is to have the vertical axis point
up, the positive direction of the sine function is down in the present case.

E X A M P L E 9 . 1

Find the amplitude, phase, period, and frequency of the sinusoid

v(t) = 12 cos(50t + 10◦)
Solution:

The amplitude is Vm = 12 V.

The phase is φ = 10◦.

The angular frequency is ω = 50 rad/s.

The period T = 2π

ω
= 2π

50
= 0.1257 s.

The frequency is f = 1

T
= 7.958 Hz.

P R A C T I C E P R O B L E M 9 . 1

Given the sinusoid 5 sin(4πt − 60◦), calculate its amplitude, phase, an-
gular frequency, period, and frequency.

Answer: 5, −60◦, 12.57 rad/s, 0.5 s, 2 Hz.

E X A M P L E 9 . 2

Calculate the phase angle between v1 = −10 cos(ωt + 50◦) and v2 =
12 sin(ωt − 10◦). State which sinusoid is leading.

Solution:

Let us calculate the phase in three ways. The first two methods use trigo-
nometric identities, while the third method uses the graphical approach.

METHOD 1 In order to compare v1 and v2, we must express them in the
same form. If we express them in cosine form with positive amplitudes,

v1 = −10 cos(ωt + 50◦) = 10 cos(ωt + 50◦ − 180◦)
v1 = 10 cos(ωt − 130◦) or v1 = 10 cos(ωt + 230◦) (9.2.1)

and

v2 = 12 sin(ωt − 10◦) = 12 cos(ωt − 10◦ − 90◦)
v2 = 12 cos(ωt − 100◦) (9.2.2)

It can be deduced from Eqs. (9.2.1) and (9.2.2) that the phase difference
between v1 and v2 is 30◦. We can write v2 as
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v2 = 12 cos(ωt − 130◦ + 30◦) or v2 = 12 cos(ωt + 260◦) (9.2.3)

Comparing Eqs. (9.2.1) and (9.2.3) shows clearly that v2 leads v1 by 30◦.

METHOD 2 Alternatively, we may express v1 in sine form:

v1 = −10 cos(ωt + 50◦) = 10 sin(ωt + 50◦ − 90◦)
= 10 sin(ωt − 40◦) = 10 sin(ωt − 10◦ − 30◦)

But v2 = 12 sin(ωt − 10◦). Comparing the two shows that v1 lags v2 by
30◦. This is the same as saying that v2 leads v1 by 30◦.

50°

10°v1

v2

sin vt 

cos vt 

Figure 9.5 For Example 9.2.

METHOD 3 We may regard v1 as simply −10 cosωt with a phase shift
of +50◦. Hence, v1 is as shown in Fig. 9.5. Similarly, v2 is 12 sinωt with
a phase shift of −10◦, as shown in Fig. 9.5. It is easy to see from Fig. 9.5
that v2 leads v1 by 30◦, that is, 90◦ − 50◦ − 10◦.

P R A C T I C E P R O B L E M 9 . 2

Find the phase angle between

i1 = −4 sin(377t + 25◦) and i2 = 5 cos(377t − 40◦)

Does i1 lead or lag i2?

Answer: 155◦, i1 leads i2.

9.3 PHASORS
Sinusoids are easily expressed in terms of phasors, which are more con-
venient to work with than sine and cosine functions.

A phasor is a complex number that represents the amplitude and phase
of a sinusoid.

Phasors provide a simple means of analyzing linear circuits excited by
sinusoidal sources; solutions of such circuits would be intractable other-
wise. The notion of solving ac circuits using phasors was first introduced
by Charles Steinmetz in 1893. Before we completely define phasors and
apply them to circuit analysis, we need to be thoroughly familiar with
complex numbers.

Charles Proteus Steinmetz (1865–1923) was a
German-Austrian mathematician and electrical
engineer.

Appendix B presents a short tutorial on complex
numbers.

A complex number z can be written in rectangular form as

z = x + jy (9.14a)

where j = √−1; x is the real part of z; y is the imaginary part of z.
In this context, the variables x and y do not represent a location as in
two-dimensional vector analysis but rather the real and imaginary parts
of z in the complex plane. Nevertheless, we note that there are some
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resemblances between manipulating complex numbers and manipulating
two-dimensional vectors.

The complex number z can also be written in polar or exponential
form as

z = r φ = rejφ (9.14b)

where r is the magnitude of z, and φ is the phase of z. We notice that z
can be represented in three ways:

z = x + jy Rectangular form

z = r φ Polar form

z = rejφ Exponential form

(9.15)

The relationship between the rectangular form and the polar form
is shown in Fig. 9.6, where the x axis represents the real part and the y
axis represents the imaginary part of a complex number. Given x and y,
we can get r and φ as

r =
√
x2 + y2, φ = tan−1 y

x
(9.16a)

On the other hand, if we know r and φ, we can obtain x and y as

x = r cosφ, y = r sinφ (9.16b)

Thus, z may be written as

z = x + jy = r φ = r(cosφ + j sinφ) (9.17)

0

2j

j

–2j

–j

z

yr

x
Real axis

Imaginary axis

f

Figure 9.6 Representation of a
complex number z = x + jy = r φ.

Addition and subtraction of complex numbers are better performed
in rectangular form; multiplication and division are better done in polar
form. Given the complex numbers

z = x + jy = r φ, z1 = x1 + jy1 = r1 φ1

z2 = x2 + jy2 = r2 φ2

the following operations are important.
Addition:

z1 + z2 = (x1 + x2)+ j (y1 + y2) (9.18a)

Subtraction:

z1 − z2 = (x1 − x2)+ j (y1 − y2) (9.18b)

Multiplication:

z1z2 = r1r2 φ1 + φ2 (9.18c)

Division:
z1

z2
= r1

r2
φ1 − φ2 (9.18d)

Reciprocal:

1

z
= 1

r
− φ (9.18e)

Square Root:
√
z = √

r φ/2 (9.18f)
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Complex Conjugate:

z∗ = x − jy = r − φ = re−jφ (9.18g)

Note that from Eq. (9.18e),

1

j
= −j (9.18h)

These are the basic properties of complex numbers we need. Other prop-
erties of complex numbers can be found in Appendix B.

The idea of phasor representation is based on Euler’s identity. In
general,

e±jφ = cosφ ± j sinφ (9.19)

which shows that we may regard cosφ and sinφ as the real and imaginary
parts of ejφ ; we may write

cosφ = Re(ejφ) (9.20a)

sinφ = Im(ejφ) (9.20b)

where Re and Im stand for the real part of and the imaginary part of.
Given a sinusoid v(t) = Vm cos(ωt + φ), we use Eq. (9.20a) to express
v(t) as

v(t) = Vm cos(ωt + φ) = Re(Vme
j(ωt+φ)) (9.21)

or

v(t) = Re(Vme
jφejωt ) (9.22)

Thus,

v(t) = Re(Vejωt ) (9.23)

where

V = Vme
jφ = Vm φ (9.24)

V is thus the phasor representation of the sinusoid v(t), as we said earlier.
In other words, a phasor is a complex representation of the magnitude
and phase of a sinusoid. Either Eq. (9.20a) or Eq. (9.20b) can be used to
develop the phasor, but the standard convention is to use Eq. (9.20a).

A phasor may be regarded as a mathematical
equivalent of a sinusoid with the time depen-
dence dropped.

If we use sine for the phasor instead of cosine,
then v(t) = Vm sin (ωt + φ) = Im (Vme j(ωt + φ))
and the corresponding phasor is the same as that
in Eq. (9.24).

One way of looking at Eqs. (9.23) and (9.24) is to consider the plot
of the sinor Vejωt = Vme

j(ωt+φ) on the complex plane. As time increases,
the sinor rotates on a circle of radius Vm at an angular velocity ω in the
counterclockwise direction, as shown in Fig. 9.7(a). In other words, the
entire complex plane is rotating at an angular velocity of ω. We may
regard v(t) as the projection of the sinor Vejωt on the real axis, as shown
in Fig. 9.7(b). The value of the sinor at time t = 0 is the phasor V of
the sinusoid v(t). The sinor may be regarded as a rotating phasor. Thus,
whenever a sinusoid is expressed as a phasor, the term ejωt is implicitly
present. It is therefore important, when dealing with phasors, to keep
in mind the frequency ω of the phasor; otherwise we can make serious
mistakes.
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Rotation at v rad ⁄s

at t = to
at t = 0

f

Vm

Im

Re 0 to t

Vm

v(t) = Re(Ve jvt )

(a) (b)

Figure 9.7 Representation of Vejωt : (a) sinor rotating counterclockwise, (b) its
projection on the real axis, as a function of time.

Equation (9.23) states that to obtain the sinusoid corresponding to
a given phasor V, multiply the phasor by the time factor ejωt and take
the real part. As a complex quantity, a phasor may be expressed in
rectangular form, polar form, or exponential form. Since a phasor has
magnitude and phase (“direction” ), it behaves as a vector and is printed
in boldface. For example, phasors V = Vm φ and I = Im − θ are
graphically represented in Fig. 9.8. Such a graphical representation of
phasors is known as a phasor diagram.

We use lightface italic letters such as z to repre-
sent complex numbers but boldface letters such
as V to represent phasors, because phasors are
vectorlike quantities.

Lagging direction

Leading direction

Real axis

Imaginary axis

Vm

Im

v

v

V

I

–u

f

Figure 9.8 A phasor diagram showing V = Vm φ and I = Im − θ .

Equations (9.21) through (9.23) reveal that to get the phasor corre-
sponding to a sinusoid, we first express the sinusoid in the cosine form
so that the sinusoid can be written as the real part of a complex number.
Then we take out the time factor ejωt , andwhatever is left is the pha-
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sor corresponding to the sinusoid. By suppressing the time factor, we
transform the sinusoid from the time domain to the phasor domain. This
transformation is summarized as follows:

v(t) = Vm cos(ωt + φ)
(Time-domain
representation)

⇐⇒ V = Vm φ
(Phasor-domain
representation)

(9.25)

Given a sinusoidv(t) = Vm cos(ωt + φ), we obtain the correspond-
ing phasor as V = Vm φ. Equation (9.25) is also demonstrated in Table
9.1, where the sine function is considered in addition to the cosine func-
tion. From Eq. (9.25), we see that to get the phasor representation of a
sinusoid, we express it in cosine form and take the magnitude and phase.
Given a phasor, we obtain the time-domain representation as the cosine
function with the same magnitude as the phasor and the argument as
ωt plus the phase of the phasor. The idea of expressing information in
alternate domains is fundamental to all areas of engineering.

TABLE 9.1 Sinusoid-phasor transformation.

Time-domain representation Phasor-domain representation

Vm cos(ωt + φ) Vm φ

Vm sin(ωt + φ) Vm φ − 90◦

Im cos(ωt + θ) Im θ

Im sin(ωt + θ) Im θ − 90◦

Note that in Eq. (9.25) the frequency (or time) factor ejωt is sup-
pressed, and the frequency is not explicitly shown in the phasor-domain
representation because ω is constant. However, the response depends on
ω. For this reason, the phasor domain is also known as the frequency
domain.

From Eqs. (9.23) and (9.24), v(t) = Re(Vejωt ) = Vm cos (ωt+φ),
so that

dv

dt
= −ωVm sin(ωt + φ) = ωVm cos(ωt + φ + 90◦)

= Re(ωVmejωtejφej90◦
) = Re(jωVejωt )

(9.26)

This shows that the derivative v(t) is transformed to the phasor domain
as jωV

dv

dt
(Time domain)

⇐⇒ jωV
(Phasor domain)

(9.27)

Similarly, the integral of v(t) is transformed to the phasor domain as
V/jω ∫

v dt

(Time domain)

⇐⇒ V
jω

(Phasor domain)

(9.28)

Differentiating a sinusoid is equivalent to multi-
plying its corresponding phasor by jω.

Integrating a sinusoid is equivalent to dividing its
corresponding phasor by jω.
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Equation (9.27) allows the replacement of a derivative with respect
to time with multiplication of jω in the phasor domain, whereas Eq.
(9.28) allows the replacement of an integral with respect to time with
division by jω in the phasor domain. Equations (9.27) and (9.28) are
useful in finding the steady-state solution, which does not require knowing
the initial values of the variable involved. This is one of the important
applications of phasors.

Besides time differentiation and integration, another important use
of phasors is found in summing sinusoids of the same frequency. This is
best illustrated with an example, and Example 9.6 provides one.

Adding sinusoids of the same frequency is equiv-
alent to adding their corresponding phasors.

The differences between v(t) and V should be emphasized:

1. v(t) is the instantaneous or time-domain representation, while
V is the frequency or phasor-domain representation.

2. v(t) is time dependent, while V is not. (This fact is often
forgotten by students.)

3. v(t) is always real with no complex term, while V is generally
complex.

Finally, we should bear in mind that phasor analysis applies only when
frequency is constant; it applies in manipulating two or more sinusoidal
signals only if they are of the same frequency.

E X A M P L E 9 . 3

Evaluate these complex numbers:

(a) (40 50◦ + 20 − 30◦)1/2

(b)
10 − 30◦ + (3 − j4)

(2 + j4)(3 − j5)∗

Solution:

(a) Using polar to rectangular transformation,

40 50◦ = 40(cos 50◦ + j sin 50◦) = 25.71 + j30.64

20 − 30◦ = 20[cos(−30◦)+ j sin(−30◦)] = 17.32 − j10

Adding them up gives

40 50◦ + 20 − 30◦ = 43.03 + j20.64 = 47.72 25.63◦

Taking the square root of this,

(40 50◦ + 20 − 30◦)1/2 = 6.91 12.81◦

(b) Using polar-rectangular transformation, addition, multiplication, and
division,

10 − 30◦ + (3 − j4)

(2 + j4)(3 − j5)∗
= 8.66 − j5 + (3 − j4)

(2 + j4)(3 + j5)

= 11.66 − j9

−14 + j22
= 14.73 − 37.66◦

26.08 122.47◦

= 0.565 − 160.31◦
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P R A C T I C E P R O B L E M 9 . 3

Evaluate the following complex numbers:

(a) [(5 + j2)(−1 + j4)− 5 60◦]∗

(b)
10 + j5 + 3 40◦

−3 + j4
+ 10 30◦

Answer: (a) −15.5 − j13.67, (b) 8.293 + j2.2.

E X A M P L E 9 . 4

Transform these sinusoids to phasors:

(a) v = −4 sin(30t + 50◦)
(b) i = 6 cos(50t − 40◦)
Solution:

(a) Since − sinA = cos(A+ 90◦),
v = −4 sin(30t + 50◦) = 4 cos(30t + 50◦ + 90◦)

= 4 cos(30t + 140◦)
The phasor form of v is

V = 4 140◦

(b) i = 6 cos(50t − 40◦) has the phasor

I = 6 − 40◦

P R A C T I C E P R O B L E M 9 . 4

Express these sinusoids as phasors:

(a) v = −7 cos(2t + 40◦)
(b) i = 4 sin(10t + 10◦)
Answer: (a) V = 7 220◦, (b) I = 4 − 80◦.

E X A M P L E 9 . 5

Find the sinusoids represented by these phasors:

(a) V = j8e−j20◦

(b) I = −3 + j4

Solution:

(a) Since j = 1 90◦,

V = j8 − 20◦ = (1 90◦)(8 − 20◦)

= 8 90◦ − 20◦ = 8 70◦ V

Converting this to the time domain gives

v(t) = 8 cos(ωt + 70◦) V

(b) I = −3 + j4 = 5 126.87◦. Transforming this to the time domain
gives

i(t) = 5 cos(ωt + 126.87◦) A
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P R A C T I C E P R O B L E M 9 . 5

Find the sinusoids corresponding to these phasors:

(a) V = −10 30◦

(b) I = j (5 − j12)

Answer: (a) v(t) = 10 cos(ωt+210◦), (b) i(t) = 13 cos(ωt+22.62◦).

E X A M P L E 9 . 6

Given i1(t) = 4 cos(ωt + 30◦) and i2(t) = 5 sin(ωt − 20◦), find their
sum.

Solution:

Here is an important use of phasors—for summing sinusoids of the same
frequency. Current i1(t) is in the standard form. Its phasor is

I1 = 4 30◦

We need to express i2(t) in cosine form. The rule for converting sine to
cosine is to subtract 90◦. Hence,

i2 = 5 cos(ωt − 20◦ − 90◦) = 5 cos(ωt − 110◦)

and its phasor is

I2 = 5 − 110◦

If we let i = i1 + i2, then

I = I1 + I2 = 4 30◦ + 5 − 110◦

= 3.464 + j2 − 1.71 − j4.698 = 1.754 − j2.698

= 3.218 − 56.97◦ A

Transforming this to the time domain, we get

i(t) = 3.218 cos(ωt − 56.97◦) A

Of course, we can find i1 + i2 using Eqs. (9.9), but that is the hard way.

P R A C T I C E P R O B L E M 9 . 6

If v1 = −10 sin(ωt + 30◦) and v2 = 20 cos(ωt − 45◦), find V = v1 + v2.

Answer: v(t) = 10.66 cos(ωt − 30.95◦).

E X A M P L E 9 . 7

Using the phasor approach, determine the current i(t) in a circuit de-
scribed by the integrodifferential equation

4i + 8
∫
i dt − 3

di

dt
= 50 cos(2t + 75◦)
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Solution:

We transform each term in the equation from time domain to phasor
domain. Keeping Eqs. (9.27) and (9.28) in mind, we obtain the phasor
form of the given equation as

4I + 8I
jω

− 3jωI = 50 75◦

But ω = 2, so

I(4 − j4 − j6) = 50 75◦

I = 50 75◦

4 − j10
= 50 75◦

10.77 − 68.2◦
= 4.642 143.2◦ A

Converting this to the time domain,

i(t) = 4.642 cos(2t + 143.2◦) A

Keep in mind that this is only the steady-state solution, and it does not
require knowing the initial values.

P R A C T I C E P R O B L E M 9 . 7

Find the voltage v(t) in a circuit described by the integrodifferential equa-
tion

2
dv

dt
+ 5v + 10

∫
v dt = 20 cos(5t − 30◦)

using the phasor approach.

Answer: v(t) = 2.12 cos(5t − 88◦).

9.4 PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS
Now that we know how to represent a voltage or current in the phasor or
frequency domain, one may legitimately ask how we apply this to circuits
involving the passive elements R, L, and C. What we need to do is to
transform the voltage-current relationship from the time domain to the
frequency domain for each element. Again, we will assume the passive
sign convention.

We begin with the resistor. If the current through a resistor R is
i = Im cos(ωt + φ), the voltage across it is given by Ohm’s law as

v = iR = RIm cos(ωt + φ) (9.29)

The phasor form of this voltage is

V = RIm φ (9.30)

But the phasor representation of the current is I = Im φ. Hence,

V = RI (9.31)
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showing that the voltage-current relation for the resistor in the phasor
domain continues to be Ohm’s law, as in the time domain. Figure 9.9
illustrates the voltage-current relations of a resistor. We should note from
Eq. (9.31) that voltage and current are in phase, as illustrated in the phasor
diagram in Fig. 9.10.

(a)

i

v

+

−

R

v = iR

(b)

I

V

+

−

R

V = IR

Figure 9.9 Voltage-current
relations for a resistor in the:
(a) time domain, (b) frequency
domain.

I

f

V

0 Re

Im

Figure 9.10 Phasor diagram for the
resistor.

For the inductor L, assume the current through it is i =
Im cos(ωt + φ). The voltage across the inductor is

v = L
di

dt
= −ωLIm sin(ωt + φ) (9.32)

Recall from Eq. (9.10) that − sinA = cos(A + 90◦). We can write the
voltage as

v = ωLIm cos(ωt + φ + 90◦) (9.33)

which transforms to the phasor

V = ωLIme
j(φ+90◦) = ωLIme

jφej90◦ = ωLIm φej90◦
(9.34)

But Im φ = I, and from Eq. (9.19), ej90◦ = j . Thus,

V = jωLI (9.35)

showing that the voltage has a magnitude ofωLIm and a phase of φ+90◦.
The voltage and current are 90◦ out of phase. Specifically, the current
lags the voltage by 90◦. Figure 9.11 shows the voltage-current relations
for the inductor. Figure 9.12 shows the phasor diagram.

Although it is equally correct to say that the in-
ductor voltage leads the current by 90◦, con-
vention gives the current phase relative to the
voltage.

i

v

+

−

L

v = L di
dt

(a)

I

V

+

−

L

V = jvLI 

(b)

Figure 9.11 Voltage-current
relations for an inductor in the:
(a) time domain, (b) frequency
domain.

For the capacitor C, assume the voltage across it is v =
Vm cos(ωt + φ). The current through the capacitor is

i = C
dv

dt
(9.36)

By following the same steps as we took for the inductor or by applying
Eq. (9.27) on Eq. (9.36), we obtain

I = jωCV �⇒ V = I
jωC

(9.37)

showing that the current and voltage are 90◦ out of phase. To be specific,
the current leads the voltage by 90◦. Figure 9.13 shows the voltage-current

v

Re

Im

V
I

0

f

Figure 9.12 Phasor diagram for the
inductor; I lags V.

i

v

+

−

C

(a)

i = C dv
dt

I

V

+

−

C

(b)

I = jvCV 

Figure 9.13 Voltage-current
relations for a capacitor in the:
(a) time domain, (b) frequency
domain.



CHAPTER 9 Sinusoids and Phasors 369

relations for the capacitor; Fig. 9.14 gives the phasor diagram. Table 9.2
summarizes the time-domain and phasor-domain representations of the
circuit elements. v

Re

Im

I
V

0

f

Figure 9.14 Phasor diagram for the capa-
citor; I leads V.

TABLE 9.2 Summary of voltage-current
relationships.

Element Time domain Frequency domain

R v = Ri V = RI

L v = L
di

dt
V = jωLI

C i = C
dv

dt
V = I

jωC

E X A M P L E 9 . 8

The voltage v = 12 cos(60t + 45◦) is applied to a 0.1-H inductor. Find
the steady-state current through the inductor.

Solution:

For the inductor, V = jωLI, where ω = 60 rad/s and V = 12 45◦ V.
Hence

I = V
jωL

= 12 45◦

j60 × 0.1
= 12 45◦

6 90◦
= 2 − 45◦ A

Converting this to the time domain,

i(t) = 2 cos(60t − 45◦) A

P R A C T I C E P R O B L E M 9 . 8

If voltage v = 6 cos(100t−30◦) is applied to a 50µF capacitor, calculate
the current through the capacitor.

Answer: 30 cos(100t + 60◦) mA.

9.5 IMPEDANCE AND ADMITTANCE
In the preceding section, we obtained the voltage-current relations for the
three passive elements as

V = RI, V = jωLI, V = I
jωC

(9.38)

These equations may be written in terms of the ratio of the phasor voltage
to the phasor current as

V
I

= R,
V
I

= jωL,
V
I

= 1

jωC
(9.39)

From these three expressions, we obtain Ohm’s law in phasor form for
any type of element as
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Z = V
I

or V = ZI (9.40)

where Z is a frequency-dependent quantity known as impedance, mea-
sured in ohms.

The impedance Z of a circuit is the ratio of the phasor voltage V to the phasor
current I, measured in ohms (�).

The impedance represents the opposition which the circuit exhibits to the
flow of sinusoidal current. Although the impedance is the ratio of two
phasors, it is not a phasor, because it does not correspond to a sinusoidally
varying quantity.

The impedances of resistors, inductors, and capacitors can be read-
ily obtained from Eq. (9.39). Table 9.3 summarizes their impedances and
admittance. From the table we notice that ZL = jωL and ZC = −j/ωC.
Consider two extreme cases of angular frequency. When ω = 0 (i.e., for
dc sources), ZL = 0 and ZC → ∞, confirming what we already know—
that the inductor acts like a short circuit, while the capacitor acts like an
open circuit. When ω → ∞ (i.e., for high frequencies), ZL → ∞ and
ZC = 0, indicating that the inductor is an open circuit to high frequencies,
while the capacitor is a short circuit. Figure 9.15 illustrates this.

TABLE 9.3 Impedances and
admittances of passive elements.

Element Impedance Admittance

R Z = R Y = 1

R

L Z = jωL Y = 1

jωL

C Z = 1

jωC
Y = jωC

Short circuit at dc

Open circuit at
high frequencies

(a)

Open circuit at dc

Short circuit at
high frequencies

(b)

L

C

Figure 9.15 Equivalent circuits at dc and
high frequencies: (a) inductor, (b) capacitor.

As a complex quantity, the impedance may be expressed in rectan-
gular form as

Z = R + jX (9.41)

where R = Re Z is the resistance and X = Im Z is the reactance. The
reactance X may be positive or negative. We say that the impedance is
inductive when X is positive or capacitive when X is negative. Thus,
impedance Z = R + jX is said to be inductive or lagging since current
lags voltage, while impedance Z = R − jX is capacitive or leading
because current leads voltage. The impedance, resistance, and reactance
are all measured in ohms. The impedance may also be expressed in polar
form as

Z = |Z| θ (9.42)

Comparing Eqs. (9.41) and (9.42), we infer that

Z = R + jX = |Z| θ (9.43)

where

|Z| =
√
R2 +X2, θ = tan−1 X

R
(9.44)

and

R = |Z| cos θ, X = |Z| sin θ (9.45)

It is sometimes convenient to work with the reciprocal of impedance,
known as admittance.
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The admittance Y is the reciprocal of impedance, measured in siemens (S).

The admittance Y of an element (or a circuit) is the ratio of the phasor
current through it to the phasor voltage across it, or

Y = 1

Z
= I

V
(9.46)

The admittances of resistors, inductors, and capacitors can be obtained
from Eq. (9.39). They are also summarized in Table 9.3.

As a complex quantity, we may write Y as

Y = G+ jB (9.47)

whereG = Re Y is called the conductance andB = Im Y is called the sus-
ceptance. Admittance, conductance, and susceptance are all expressed
in the unit of siemens (or mhos). From Eqs. (9.41) and (9.47),

G+ jB = 1

R + jX (9.48)

By rationalization,

G+ jB = 1

R + jX · R − jX
R − jX = R − jX

R2 +X2
(9.49)

Equating the real and imaginary parts gives

G = R

R2 +X2
, B = − X

R2 +X2
(9.50)

showing that G �= 1/R as it is in resistive circuits. Of course, if X = 0,
then G = 1/R.

E X A M P L E 9 . 9

Find v(t) and i(t) in the circuit shown in Fig. 9.16.

+
−

i

+

−

5 Ω

v0.1 Fvs = 10 cos 4t

Figure 9.16 For Example 9.9.

Solution:

From the voltage source 10 cos 4t , ω = 4,

Vs = 10 0◦ V

The impedance is

Z = 5 + 1

jωC
= 5 + 1

j4 × 0.1
= 5 − j2.5 �

Hence the current

I = Vs
Z

= 10 0◦

5 − j2.5
= 10(5 + j2.5)

52 + 2.52

= 1.6 + j0.8 = 1.789 26.57◦ A
(9.9.1)

The voltage across the capacitor is
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V = IZC = I
jωC

= 1.789 26.57◦

j4 × 0.1

= 1.789 26.57◦

0.4 90◦
= 4.47 − 63.43◦ V

(9.9.2)

Converting I and V in Eqs. (9.9.1) and (9.9.2) to the time domain, we get

i(t) = 1.789 cos(4t + 26.57◦) A

v(t) = 4.47 cos(4t − 63.43◦) V

Notice that i(t) leads v(t) by 90◦ as expected.

P R A C T I C E P R O B L E M 9 . 9

Refer to Fig. 9.17. Determine v(t) and i(t).

+
−

i 4 Ω

v0.2 Hvs = 5 sin 10t

+

−

Figure 9.17 For Practice Prob. 9.9.

Answer: 2.236 sin(10t + 63.43◦) V, 1.118 sin(10t − 26.57◦) A.

†9.6 KIRCHHOFF’S LAWS IN THE FREQUENCY DOMAIN
We cannot do circuit analysis in the frequency domain without Kirch-
hoff’s current and voltage laws. Therefore, we need to express them in
the frequency domain.

For KVL, let v1, v2, . . . , vn be the voltages around a closed loop.
Then

v1 + v2 + · · · + vn = 0 (9.51)

In the sinusoidal steady state, each voltage may be written in cosine form,
so that Eq. (9.51) becomes

Vm1 cos(ωt + θ1) + Vm2 cos(ωt + θ2)

+ · · · + Vmn cos(ωt + θn) = 0
(9.52)

This can be written as

Re(Vm1e
jθ1ejωt )+ Re(Vm2e

jθ2ejωt )+ · · · + Re(Vmne
jθnejωt ) = 0

or

Re[(Vm1e
jθ1 + Vm2e

jθ2 + · · · + Vmnejθn)ejωt ] = 0 (9.53)

If we let Vk = Vmke
jθk , then

Re[(V1 + V2 + · · · + Vn)ejωt ] = 0 (9.54)

Since ejωt �= 0,

V1 + V2 + · · · + Vn = 0 (9.55)

indicating that Kirchhoff’s voltage law holds for phasors.
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By following a similar procedure, we can show that Kirchhoff’s
current law holds for phasors. If we let i1, i2, . . . , in be the current
leaving or entering a closed surface in a network at time t , then

i1 + i2 + · · · + in = 0 (9.56)

If I1, I2, . . . , In are the phasor forms of the sinusoids i1, i2, . . . , in, then

I1 + I2 + · · · + In = 0 (9.57)

which is Kirchhoff’s current law in the frequency domain.
Once we have shown that both KVL and KCL hold in the frequency

domain, it is easy to do many things, such as impedance combination,
nodal and mesh analyses, superposition, and source transformation.

9.7 IMPEDANCE COMBINATIONS
Consider the N series-connected impedances shown in Fig. 9.18. The
same current I flows through the impedances. Applying KVL around the
loop gives

V = V1 + V2 + · · · + VN = I(Z1 + Z2 + · · · + ZN) (9.58)

The equivalent impedance at the input terminals is

Zeq = V
I

= Z1 + Z2 + · · · + ZN

or

Zeq = Z1 + Z2 + · · · + ZN (9.59)

showing that the total or equivalent impedance of series-connected imped-
ances is the sum of the individual impedances. This is similar to the series
connection of resistances.

+ − + − + −

+

−

I Z1

Zeq

Z2 ZN

V1

V

V2 VN

Figure 9.18 N impedances in series.

+

−

+ −

I

+

−

Z1

V1

Z2V2V

Figure 9.19 Voltage division.

IfN = 2, as shown in Fig. 9.19, the current through the impedances
is

I = V
Z1 + Z2

(9.60)

Since V1 = Z1I and V2 = Z2I, then

V1 = Z1

Z1 + Z2
V, V2 = Z2

Z1 + Z2
V (9.61)

which is the voltage-division relationship.



374 PART 2 AC Circuits

In the same manner, we can obtain the equivalent impedance or
admittance of the N parallel-connected impedances shown in Fig. 9.20.
The voltage across each impedance is the same. Applying KCL at the
top node,

I = I1 + I2 + · · · + IN = V
(

1

Z1
+ 1

Z2
+ · · · + 1

ZN

)
(9.62)

The equivalent impedance is

1

Zeq
= I

V
= 1

Z1
+ 1

Z2
+ · · · + 1

ZN
(9.63)

and the equivalent admittance is

Yeq = Y1 + Y2 + · · · + YN (9.64)

This indicates that the equivalent admittance of a parallel connection of
admittances is the sum of the individual admittances.

I

+

−

I1 I2 IN

VI Z1 Z2 ZN

Zeq

Figure 9.20 N impedances in parallel.

When N = 2, as shown in Fig. 9.21, the equivalent impedance
becomes

Zeq = 1

Yeq
= 1

Y1 + Y2
= 1

1/Z1 + 1/Z2
= Z1Z2

Z1 + Z2
(9.65)

Also, since

V = IZeq = I1Z1 = I2Z2

the currents in the impedances are

I1 = Z2

Z1 + Z2
I, I2 = Z1

Z1 + Z2
I (9.66)

which is the current-division principle.

I1 I2+

−

I Z1 Z2V

Figure 9.21 Current division.

The delta-to-wye and wye-to-delta transformations that we applied
to resistive circuits are also valid for impedances. With reference to Fig.
9.22, the conversion formulas are as follows.
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a b

c

n

Z1

Zb

Zc

Za

Z2

Z3

Figure 9.22 Superimposed Y and ' networks.

Y -' Conversion:

Za = Z1Z2 + Z2Z3 + Z3Z1

Z1

Zb = Z1Z2 + Z2Z3 + Z3Z1

Z2

Zc = Z1Z2 + Z2Z3 + Z3Z1

Z3

(9.67)

'-Y Conversion:

Z1 = ZbZc
Za + Zb + Zc

Z2 = ZcZa
Za + Zb + Zc

Z3 = ZaZb
Za + Zb + Zc

(9.68)

A delta or wye circuit is said to be balanced if it has equal impedances in all
three branches.

When a '-Y circuit is balanced, Eqs. (9.67) and (9.68) become

Z' = 3ZY or ZY = 1

3
Z' (9.69)

where ZY = Z1 = Z2 = Z3 and Z' = Za = Zb = Zc.
As you see in this section, the principles of voltage division, cur-

rent division, circuit reduction, impedance equivalence, and Y -' trans-
formation all apply to ac circuits. Chapter 10 will show that other circuit
techniques—such as superposition, nodal analysis, mesh analysis, source
transformation, the Thevenin theorem, and the Norton theorem—are all
applied to ac circuits in a manner similar to their application in dc circuits.
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E X A M P L E 9 . 1 0

Find the input impedance of the circuit in Fig. 9.23. Assume that the cir-
cuit operates at ω = 50 rad/s.

3 Ω

10 mF

Zin
8 Ω

2 mF 0.2 H

Figure 9.23 For Example 9.10.

Solution:

Let

Z1 = Impedance of the 2-mF capacitor

Z2 = Impedance of the 3-� resistor in series with the 10-mF
capacitor

Z3 = Impedance of the 0.2-H inductor in series with the 8-�
resistor

Then

Z1 = 1

jωC
= 1

j50 × 2 × 10−3
= −j10 �

Z2 = 3 + 1

jωC
= 3 + 1

j50 × 10 × 10−3
= (3 − j2) �

Z3 = 8 + jωL = 8 + j50 × 0.2 = (8 + j10) �

The input impedance is

Zin = Z1 + Z2 ‖ Z3 = −j10 + (3 − j2)(8 + j10)

11 + j8

= −j10 + (44 + j14)(11 − j8)

112 + 82
= −j10 + 3.22 − j1.07 �

Thus,

Zin = 3.22 − j11.07 �

P R A C T I C E P R O B L E M 9 . 1 0

Determine the input impedance of the circuit in Fig. 9.24 at ω =
10 rad/s.

20 Ω

4 mF

2 mF

Zin
50 Ω

2 H

Figure 9.24 For Practice Prob. 9.10.

Answer: 32.38 − j73.76 �.

E X A M P L E 9 . 1 1

Determine vo(t) in the circuit in Fig. 9.25.

+
−

+

−

60 Ω

10 mF vo20 cos(4t − 15°) 5 H

Figure 9.25 For Example 9.11.

Solution:

To do the analysis in the frequency domain, we must first transform the
time-domain circuit in Fig. 9.25 to the phasor-domain equivalent in Fig.
9.26. The transformation produces
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vs = 20 cos(4t − 15◦) �⇒ Vs = 20 − 15◦ V, ω = 4

10 mF �⇒ 1

jωC
= 1

j4 × 10 × 10−3

= −j25 �

5 H �⇒ jωL = j4 × 5 = j20 �

Let

Z1 = Impedance of the 60-� resistor

Z2 = Impedance of the parallel combination of the 10-mF
capacitor and the 5-H inductor

Then Z1 = 60 � and

Z2 = −j25 ‖ j20 = −j25 × j20

−j25 + j20
= j100 �

By the voltage-division principle,

Vo = Z2

Z1 + Z2
Vs = j100

60 + j100
(20 − 15◦)

= (0.8575 30.96◦)(20 − 15◦) = 17.15 15.96◦ V.

We convert this to the time domain and obtain

vo(t) = 17.15 cos(4t + 15.96◦)V

+
−

+

−
−j25 Ω j20 Ω

60 Ω

20  −15° Vo

Figure 9.26 The frequency-domain
equivalent of the circuit in Fig. 9.25.

P R A C T I C E P R O B L E M 9 . 1 1

Calculate vo in the circuit in Fig. 9.27.

+
−

+

−
10 Ω vo

0.5 H

F10 cos (10t + 75°)
1
20

Figure 9.27 For Practice Prob. 9.11.

Answer: vo(t) = 7.071 cos(10t − 60◦) V.

E X A M P L E 9 . 1 2

Find current I in the circuit in Fig. 9.28.

+
−

12 Ω 8 Ω

8 Ω

j4 Ω

j6 Ω

−j4 Ω

−j3 Ω

2 Ω

50   0°

I

a

b
c

Figure 9.28 For Example 9.12.
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Solution:

The delta network connected to nodes a, b, and c can be converted to the
Y network of Fig. 9.29. We obtain the Y impedances as follows using
Eq. (9.68):

Zan = j4(2 − j4)

j4 + 2 − j4 + 8
= 4(4 + j2)

10
= (1.6 + j0.8) �

Zbn = j4(8)

10
= j3.2 �, Zcn = 8(2 − j4)

10
= (1.6 − j3.2) �

The total impedance at the source terminals is

Z = 12 + Zan + (Zbn − j3) ‖ (Zcn + j6 + 8)

= 12 + 1.6 + j0.8 + (j0.2) ‖ (9.6 + j2.8)

= 13.6 + j0.8 + j0.2(9.6 + j2.8)

9.6 + j3

= 13.6 + j1 = 13.64 4.204◦ �

The desired current is

I = V
Z

= 50 0◦

13.64 4.204◦
= 3.666 − 4.204◦ A

Zcn

+
−

I

Zan Zcn

50   0°

12 Ω

8 Ω

j6 Ω
−j3 Ω

cba

n

Zbn

Figure 9.29 The circuit in Fig. 9.28 after delta-to-wye transformation.

P R A C T I C E P R O B L E M 9 . 1 2

Find I in the circuit in Fig. 9.30.

+
−

I

−j2 Ω

−j3 Ω

j5 Ω

j4 Ω

5 Ω
10 Ω

8 Ω
30   0° V

Figure 9.30 For Practice Prob. 9.12.

Answer: 6.364 3.802◦ A.
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†9.8 APPLICATIONS
In Chapters 7 and 8, we saw certain uses of RC, RL, and RLC circuits
in dc applications. These circuits also have ac applications; among them
are coupling circuits, phase-shifting circuits, filters, resonant circuits, ac
bridge circuits, and transformers. This list of applications is inexhaustive.
We will consider some of them later. It will suffice here to observe two
simple ones: RC phase-shifting circuits, and ac bridge circuits.

9 . 8 . 1 Pha se - Sh i f t e r s
A phase-shifting circuit is often employed to correct an undesirable phase
shift already present in a circuit or to produce special desired effects. An
RC circuit is suitable for this purpose because its capacitor causes the
circuit current to lead the applied voltage. Two commonly used RC
circuits are shown in Fig. 9.31. (RL circuits or any reactive circuits
could also serve the same purpose.)

(a)

I

+

−

+

−
VoVi R

C

(b)

I

+

−

VoVi

+

−

R

C

Figure 9.31 Series RC
shift circuits: (a) leading
output, (b) lagging output.

In Fig. 9.31(a), the circuit current I leads the applied voltage Vi by
some phase angle θ , where 0 < θ < 90◦, depending on the values of R
and C. If XC = −1/ωC, then the total impedance is Z = R+ jXC , and
the phase shift is given by

θ = tan−1 XC

R
(9.70)

This shows that the amount of phase shift depends on the values of R,
C, and the operating frequency. Since the output voltage Vo across the
resistor is in phase with the current, Vo leads (positive phase shift) Vi as
shown in Fig. 9.32(a).

vo

t

vi

(a)

t

vi
vo

(b)

u
Phase shift

u
Phase shift

Figure 9.32 Phase shift in RC circuits: (a) leading output, (b) lagging output.

In Fig. 9.31(b), the output is taken across the capacitor. The current
I leads the input voltage Vi by θ , but the output voltage vo(t) across the
capacitor lags (negative phase shift) the input voltage vi(t) as illustrated
in Fig. 9.32(b).

We should keep in mind that the simple RC circuits in Fig. 9.31
also act as voltage dividers. Therefore, as the phase shift θ approaches
90◦, the output voltage Vo approaches zero. For this reason, these simple
RC circuits are used only when small amounts of phase shift are required.
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If it is desired to have phase shifts greater than 60◦, simple RC networks
are cascaded, thereby providing a total phase shift equal to the sum of
the individual phase shifts. In practice, the phase shifts due to the stages
are not equal, because the succeeding stages load down the earlier stages
unless op amps are used to separate the stages.

E X A M P L E 9 . 1 3

Design an RC circuit to provide a phase of 90◦ leading.

+

−

+

−

20 Ω 20 ΩVi

−j20 Ω −j20 Ω

Vo

Z

V1

Figure 9.33 An RC phase shift circuit with
90◦ leading phase shift; for Example 9.13.

Solution:

If we select circuit components of equal ohmic value, say R = |XC | =
20 �, at a particular frequency, according to Eq. (9.70), the phase shift
is exactly 45◦. By cascading two similar RC circuits in Fig. 9.31(a), we
obtain the circuit in Fig. 9.33, providing a positive or leading phase shift
of 90◦, as we shall soon show. Using the series-parallel combination
technique, Z in Fig. 9.33 is obtained as

Z = 20 ‖ (20 − j20) = 20(20 − j20)

40 − j20
= 12 − j4 � (9.13.1)

Using voltage division,

V1 = Z
Z − j20

Vi = 12 − j4

12 − j24
Vi =

√
2

3
45◦Vi (9.13.2)

and

Vo = 20

20 − j20
V1 =

√
2

2
45◦V1 (9.13.3)

Substituting Eq. (9.13.2) into Eq. (9.13.3) yields

Vo =
(√

2

2
45◦

)(√
2

3
45◦Vi

)
= 1

3
90◦Vi

Thus, the output leads the input by 90◦ but its magnitude is only about
33 percent of the input.

P R A C T I C E P R O B L E M 9 . 1 3

Design an RC circuit to provide a 90◦ lagging phase shift. If a voltage
of 10 V is applied, what is the output voltage?

Answer: Figure 9.34 shows a typical design; 3.33 V.
+

−

+

−

10 Ω 10 Ω

−j10 Ω −j10 Ω VoVi

Figure 9.34 For Practice Prob. 9.13.

E X A M P L E 9 . 1 4

For the RL circuit shown in Fig. 9.35(a), calculate the amount of phase
shift produced at 2 kHz.
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Solution:

At 2 kHz, we transform the 10-mH and 5-mH inductances to the corre-
sponding impedances.

10 mH �⇒ XL = ωL = 2π × 2 × 103 × 10 × 10−3

= 40π = 125.7 �

5 mH �⇒ XL = ωL = 2π × 2 × 103 × 5 × 10−3

= 20π = 62.83 �

Consider the circuit in Fig. 9.35(b). The impedance Z is the parallel
combination of j125.7 � and 100 + j62.83 �. Hence,

Z = j125.7 ‖ (100 + j62.83)

= j125.7(100 + j62.83)

100 + j188.5
= 69.56 60.1◦ �

(9.14.1)

Using voltage division,

V1 = Z
Z + 150

Vi = 69.56 60.1◦

184.7 + j60.3
Vi

= 0.3582 42.02◦ Vi

(9.14.2)

and

Vo = j62.832

100 + j62.832
V1 = 0.532 57.86◦ V1 (9.14.3)

Combining Eqs. (9.14.2) and (9.14.3),

Vo = (0.532 57.86◦)(0.3582 42.02◦) Vi = 0.1906 100◦ Vi

showing that the output is about 19 percent of the input in magnitude but
leading the input by 100◦. If the circuit is terminated by a load, the load
will affect the phase shift.

150 Ω 100 Ω

10 mH 5 mH

(a)

150 Ω 100 Ω

(b)

+

−

+

−

Z

Vi

V1

Voj125.7 Ω j62.83 Ω

Figure 9.35 For Example 9.14.

P R A C T I C E P R O B L E M 9 . 1 4

Refer to the RL circuit in Fig. 9.36. If 1 V is applied, find the magnitude
and the phase shift produced at 5 kHz. Specify whether the phase shift
is leading or lagging.

10 Ω 50 Ω

+

−

+

−

Vi Vo

1 mH 2 mH

Figure 9.36 For Practice Prob. 9.14.

Answer: 0.172, 120.4◦, lagging.

9 . 8 . 2 AC Br i d ge s
An ac bridge circuit is used in measuring the inductance L of an inductor
or the capacitanceC of a capacitor. It is similar in form to the Wheatstone
bridge for measuring an unknown resistance (discussed in Section 4.10)
and follows the same principle. To measure L and C, however, an ac
source is needed as well as an ac meter instead of the galvanometer. The
ac meter may be a sensitive ac ammeter or voltmeter.
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Consider the general ac bridge circuit displayed in Fig. 9.37. The
bridge is balanced when no current flows through the meter. This means
that V1 = V2. Applying the voltage division principle,

V1 = Z2

Z1 + Z2
Vs = V2 = Zx

Z3 + Zx
Vs (9.71)

Thus,
Z2

Z1 + Z2
= Zx

Z3 + Zx
�⇒ Z2Z3 = Z1Zx (9.72)

or

Zx = Z3

Z1
Z2 (9.73)

This is the balanced equation for the ac bridge and is similar to Eq. (4.30)
for the resistance bridge except that the R’s are replaced by Z’s.

AC
meter

+

−

+

−

≈Vs

Z1 Z3

Z2 V1 V2 Zx

Figure 9.37 A general ac bridge.

Specific ac bridges for measuring L and C are shown in Fig. 9.38,
where Lx and Cx are the unknown inductance and capacitance to be
measured whileLs andCs are a standard inductance and capacitance (the
values of which are known to great precision). In each case, two resistors,
R1 and R2, are varied until the ac meter reads zero. Then the bridge is
balanced. From Eq. (9.73), we obtain

Lx = R2

R1
Ls (9.74)

and

Cx = R1

R2
Cs (9.75)

Notice that the balancing of the ac bridges in Fig. 9.38 does not depend on
the frequency f of the ac source, since f does not appear in the relation-
ships in Eqs. (9.74) and (9.75).

AC
meter

≈

R1 R2

Ls Lx

(a)

AC
meter

≈

R1 R2

Cs Cx

(b)

Figure 9.38 Specific ac bridges: (a) for measuring L, (b) for measuring C.

E X A M P L E 9 . 1 5

The ac bridge circuit of Fig. 9.37 balances when Z1 is a 1-k� resistor,
Z2 is a 4.2-k� resistor, Z3 is a parallel combination of a 1.5-M� resistor
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and a 12-pF capacitor, and f = 2 kHz. Find: (a) the series components
that make up Zx , and (b) the parallel components that make up Zx .

Solution:

From Eq. (9.73),

Zx = Z3

Z1
Z2 (9.15.1)

where Zx = Rx + jXx ,
Z1 = 1000 �, Z2 = 4200 � (9.15.2)

and

Z3 = R3 ‖ 1

jωC3
=

R3

jωC3

R3 + 1/jωC3
= R3

1 + jωR3C3

Since R3 = 1.5 M� and C3 = 12 pF,

Z3 = 1.5 × 106

1 + j2π × 2 × 103 × 1.5 × 106 × 12 × 10−12
= 1.5 × 106

1 + j0.2262
or

Z3 = 1.427 − j0.3228 M� (9.15.3)

(a) Assuming that Zx is made up of series components, we substitute Eqs.
(9.15.2) and (9.15.3) in Eq. (9.15.1) and obtain

Rx + jXx = 4200

1000
(1.427 − j0.3228)× 106

= (5.993 − j1.356)M�

Equating the real and imaginary parts yields Rx = 5.993 M� and a
capacitive reactance

Xx = 1

ωC
= 1.356 × 106

or

C = 1

ωXx
= 1

2π × 2 × 103 × 1.356 × 106
= 58.69 pF

(b) If Zx is made up of parallel components, we notice that Z3 is also a
parallel combination. Hence, Eq. (9.15.1) becomes

Zx = 4200

1000
R3

∥∥∥∥ 1

jωC3
= 4.2R3

∥∥∥∥ 1

jωC3
= 4.2Z3 (9.15.4)

This simply means that the unknown impedance Zx is 4.2 times Z3.
Since Z3 consists of R3 and X3 = 1/ωC3, there are many ways we can
get 4.2Z3. Therefore, there is no unique answer to the problem. If we
suppose that 4.2 = 3 × 1.4 and we decide to multiply R3 by 1.4 while
multiplying X3 by 3, then the answer is

Rx = 1.4R3 = 2.1 M�

and

Xx = 1

ωCx
= 3X3 = 3

ωC3
�⇒ Cx = 1

3
C3 = 4 pF
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Alternatively, we may decide to multiply R3 by 3 while multiplying Xx
by 1.4 and obtain Rx = 4.5 M� and Cx = C3/1.4 = 8.571 pF. Of
course, there are several other possibilities. In a situation like this when
there is no unique solution, care must be taken to select reasonably sized
component values whenever possible.

P R A C T I C E P R O B L E M 9 . 1 5

In the ac bridge circuit of Fig. 9.37, suppose that balance is achieved
when Z1 is a 4.8-k� resistor, Z2 is a 10-� resistor in series with a
0.25-µH inductor, Z3 is a 12-k� resistor, and f = 6 MHz. Determine
the series components that make up Zx .

Answer: A 25-� resistor in series with a 0.625-µH inductor.

9.9 SUMMARY
1. A sinusoid is a signal in the form of the sine or cosine function. It

has the general form

v(t) = Vm cos(ωt + φ)
where Vm is the amplitude, ω = 2πf is the angular frequency,
(ωt + φ) is the argument, and φ is the phase.

2. A phasor is a complex quantity that represents both the magnitude
and the phase of a sinusoid. Given the sinusoid
v(t) = Vm cos(ωt + φ), its phasor V is

V = Vm φ

3. In ac circuits, voltage and current phasors always have a fixed
relation to one another at any moment of time. If v(t) =
Vm cos(ωt + φv) represents the voltage through an element and
i(t) = Im cos(ωt + φi) represents the current through the element,
then φi = φv if the element is a resistor, φi leads φv by 90◦ if the
element is a capacitor, and φi lags φv by 90◦ if the element is an
inductor.

4. The impedance Z of a circuit is the ratio of the phasor voltage across
it to the phasor current through it:

Z = V
I

= R(ω)+ jX(ω)
The admittance Y is the reciprocal of impedance:

Z = 1

Y
= G(ω)+ jB(ω)

Impedances are combined in series or in parallel the same way as
resistances in series or parallel; that is, impedances in series add
while admittances in parallel add.

5. For a resistor Z = R, for an inductor Z = jX = jωL, and for a
capacitor Z = −jX = 1/jωC.

6. Basic circuit laws (Ohm’s and Kirchhoff’s) apply to ac circuits in the
same manner as they do for dc circuits; that is,
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V = ZI∑
Ik = 0 (KCL)∑

Vk = 0 (KVL)

7. The techniques of voltage/current division, series/parallel combina-
tion of impedance/admittance, circuit reduction, and Y -' trans-
formation all apply to ac circuit analysis.

8. AC circuits are applied in phase-shifters and bridges.

R E V I EW QU E S T I ON S

9.1 Which of the following is not a right way to express
the sinusoid A cosωt?
(a) A cos 2πf t (b) A cos(2πt/T )
(c) A cosω(t − T ) (d) A sin(ωt − 90◦)

9.2 A function that repeats itself after fixed intervals is
said to be:
(a) a phasor (b) harmonic
(c) periodic (d) reactive

9.3 Which of these frequencies has the shorter period?
(a) 1 krad/s (b) 1 kHz

9.4 If v1 = 30 sin(ωt + 10◦) and v2 = 20 sin(ωt + 50◦),
which of these statements are true?
(a) v1 leads v2 (b) v2 leads v1

(c) v2 lags v1 (d) v1 lags v2

(e) v1 and v2 are in phase

9.5 The voltage across an inductor leads the current
through it by 90◦.
(a) True (b) False

9.6 The imaginary part of impedance is called:
(a) resistance (b) admittance
(c) susceptance (d) conductance
(e) reactance

9.7 The impedance of a capacitor increases with
increasing frequency.
(a) True (b) False

9.8 At what frequency will the output voltage vo(t) in
Fig. 9.39 be equal to the input voltage v(t)?
(a) 0 rad/s (b) 1 rad/s (c) 4 rad/s
(d) ∞ rad/s (e) none of the above

+
−

+

−

1 Ω

Hv(t) vo(t)1
4

Figure 9.39 For Review Question 9.8.

9.9 A series RC circuit has VR = 12 V and VC = 5 V.
The supply voltage is:
(a) −7 V (b) 7 V (c) 13 V (d) 17 V

9.10 A series RCL circuit has R = 30 �,XC = −50 �,
and XL = 90 �. The impedance of the circuit is:
(a) 30 + j140 � (b) 30 + j40 �
(c) 30 − j40 � (d) −30 − j40 �
(e) −30 + j40 �

Answers: 9.1d, 9.2c, 9.3b, 9.4b,d, 9.5a, 9.6e, 9.7b, 9.8d, 9.9c, 9.10b.

P RO B L E M S

Section 9.2 Sinusoids

9.1 In a linear circuit, the voltage source is

vs = 12 sin(103t + 24◦) V

(a) What is the angular frequency of the voltage?
(b) What is the frequency of the source?
(c) Find the period of the voltage.

(d) Express vs in cosine form.
(e) Determine vs at t = 2.5 ms.

9.2 A current source in a linear circuit has

is = 8 cos(500πt − 25◦) A

(a) What is the amplitude of the current?
(b) What is the angular frequency?
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(c) Find the frequency of the current.
(d) Calculate is at t = 2 ms.

9.3 Express the following functions in cosine form:
(a) 4 sin(ωt − 30◦) (b) −2 sin 6t
(c) −10 sin(ωt + 20◦)

9.4 (a) Express v = 8 cos(7t + 15◦) in sine form.
(b) Convert i = −10 sin(3t − 85◦) to cosine form.

9.5 Given v1 = 20 sin(ωt + 60◦) and v2 =
60 cos(ωt − 10◦), determine the phase angle
between the two sinusoids and which one lags the
other.

9.6 For the following pairs of sinusoids, determine
which one leads and by how much.
(a) v(t) = 10 cos(4t − 60◦) and

i(t) = 4 sin(4t + 50◦)
(b) v1(t) = 4 cos(377t + 10◦) and

v2(t) = −20 cos 377t
(c) x(t) = 13 cos 2t + 5 sin 2t and

y(t) = 15 cos(2t − 11.8◦)

Section 9.3 Phasors

9.7 If f (φ) = cosφ + j sinφ, show that f (φ) = ejφ .

9.8 Calculate these complex numbers and express your
results in rectangular form:

(a)
15 45◦

3 − j4
+ j2

(b)
8 − 20◦

(2 + j)(3 − j4)
+ 10

−5 + j12

(c) 10 + (8 50◦)(5 − j12)

9.9 Evaluate the following complex numbers and
express your results in rectangular form:

(a) 2 + 3 + j4

5 − j8
(b) 4 − 10◦ + 1 − j2

3 6◦

(c)
8 10◦ + 6 − 20◦

9 80◦ − 4 50◦

9.10 Given the complex numbers z1 = −3 + j4 and
z2 = 12 + j5, find:

(a) z1z2 (b)
z1

z∗2
(c)

z1 + z2

z1 − z2

9.11 Let X = 8 40◦ and Y = 10 − 30◦. Evaluate the
following quantities and express your results in
polar form.
(a) (X + Y)X∗ (b) (X − Y)∗ (c) (X + Y)/X

9.12 Evaluate these determinants:

(a)

∣∣∣∣10 + j6
−5

2 − j3
−1 + j

∣∣∣∣

(b)

∣∣∣∣∣
20 − 30◦

16 0◦

−4 − 10◦

3 45◦

∣∣∣∣∣
(c)

∣∣∣∣∣∣
1 − j
j

1

−j
1
j

0
−j

1 + j

∣∣∣∣∣∣
9.13 Transform the following sinusoids to phasors:

(a) −10 cos(4t + 75◦) (b) 5 sin(20t − 10◦)
(c) 4 cos 2t + 3 sin 2t

9.14 Express the sum of the following sinusoidal signals
in the form of A cos(ωt + θ) with A > 0 and
0 < θ < 360◦.
(a) 8 cos(5t − 30◦)+ 6 cos 5t
(b) 20 cos(120πt + 45◦)− 30 sin(120πt + 20◦)
(c) 4 sin 8t + 3 sin(8t − 10◦)

9.15 Obtain the sinusoids corresponding to each of the
following phasors:
(a) V1 = 60 15◦, ω = 1
(b) V2 = 6 + j8, ω = 40
(c) I1 = 2.8e−jπ/3, ω = 377
(d) I2 = −0.5 − j1.2, ω = 103

9.16 Using phasors, find:
(a) 3 cos(20t + 10◦)− 5 cos(20t − 30◦)
(b) 40 sin 50t + 30 cos(50t − 45◦)
(c) 20 sin 400t + 10 cos(400t + 60◦)

− 5 sin(400t − 20◦)

9.17 Find a single sinusoid corresponding to each of
these phasors:
(a) V = 40 − 60◦

(b) V = −30 10◦ + 50 60◦

(c) I = j6e−j10◦
(d) I = 2

j
+ 10 − 45◦

9.18 Find v(t) in the following integrodifferential
equations using the phasor approach:

(a) v(t)+
∫
v dt = 10 cos t

(b)
dv

dt
+ 5v(t)+ 4

∫
v dt = 20 sin(4t + 10◦)

9.19 Using phasors, determine i(t) in the following
equations:

(a) 2
di

dt
+ 3i(t) = 4 cos(2t − 45◦)

(b) 10
∫
i dt + di

dt
+ 6i(t) = 5 cos(5t + 22◦)

9.20 The loop equation for a series RLC circuit gives

di

dt
+ 2i +

∫ t

−∞
i dt = cos 2t

Assuming that the value of the integral at t = −∞ is
zero, find i(t) using the phasor method.
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9.21 A parallel RLC circuit has the node equation

dv

dt
+ 50v + 100

∫
v dt = 110 cos(377t − 10◦)

Determine v(t) using the phasor method. You may
assume that the value of the integral at t = −∞ is
zero.

Section 9.4 Phasor Relationships for Circuit
Elements

9.22 Determine the current that flows through an 8-�
resistor connected to a voltage source
vs = 110 cos 377t V.

9.23 What is the instantaneous voltage across a 2-µF
capacitor when the current through it is
i = 4 sin(106t + 25◦) A?

9.24 The voltage across a 4-mH inductor is
v = 60 cos(500t − 65◦) V. Find the instantaneous
current through it.

9.25 A current source of i(t) = 10 sin(377t + 30◦) A is
applied to a single-element load. The resulting
voltage across the element is v(t) =
−65 cos(377t + 120◦) V. What type of element is
this? Calculate its value.

9.26 Two elements are connected in series as shown in
Fig. 9.40. If i = 12 cos(2t − 30◦) A, find the
element values.

+
−

i

180 cos(2t + 10°) V

Figure 9.40 For Prob. 9.26.

9.27 A series RL circuit is connected to a 110-V ac
source. If the voltage across the resistor is 85 V, find
the voltage across the inductor.

9.28 What value of ω will cause the forced response vo in
Fig. 9.41 to be zero?

+
−

2 Ω

+

−

5 mF

vo
50 cos vt V 

20 mH

Figure 9.41 For Prob. 9.28.

Section 9.5 Impedance and Admittance

9.29 If vs = 5 cos 2t V in the circuit of Fig. 9.42,
find vo.

+
−

+

−

2 Ω

vo

0.25 F

vs 1 H

Figure 9.42 For Prob. 9.29.

9.30 Find ix when is = 2 sin 5t A is supplied to the
circuit in Fig. 9.43.

2 Ω 1 His

ix

0.2 F

Figure 9.43 For Prob. 9.30.

9.31 Find i(t) and v(t) in each of the circuits of Fig. 9.44.

+

−
v

i

4 Ω  F10 cos(3t + 45°) A

(a)

i

4 Ω
8 Ω

F

50 cos 4t V +
− +

−
3 H

(b)

v1
12

1
6

Figure 9.44 For Prob. 9.31.

9.32 Calculate i1(t) and i2(t) in the circuit of Fig. 9.45 if
the source frequency is 60 Hz.

+
−

8 Ω

40   0° V j5 Ω −j10 Ω

i1 i2

Figure 9.45 For Prob. 9.32.
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9.33 In the circuit of Fig. 9.46, find io when:
(a) ω = 1 rad/s (b) ω = 5 rad/s
(c) ω = 10 rad/s

+
− 2 Ω4 cos vt V 0.05 F

io 1 H

Figure 9.46 For Prob. 9.33.

9.34 Find v(t) in the RLC circuit of Fig. 9.47.

+
−

+

−

1 Ω

1 Ω

1 H

1 F v10 cos t V

Figure 9.47 For Prob. 9.34.

9.35 Calculate vo(t) in the circuit in Fig. 9.48.

+
−

+

−

30 Ω

vo(t)

50 Ω

0.1 H60 sin 200t V
50 mF

Figure 9.48 For Prob. 9.35.

9.36 Determine io(t) in the RLC circuit of Fig. 9.49.

io

1 Ω4 cos 2t A

1 F

1 H

Figure 9.49 For Prob. 9.36.

9.37 Calculate i(t) in the circuit of Fig. 9.50.

+
− 3 Ω10 mH

5 mF

6 cos 200t V 4 Ω

5 Ωi

Figure 9.50 For Prob. 9.37.

9.38 Find current Io in the network of Fig. 9.51.

2 Ω

2 Ω

Io

−j2 Ω

j4 Ω

−j2 Ω5   0° A

Figure 9.51 For Prob. 9.38.

9.39 If is = 5 cos(10t + 40◦) A in the circuit in Fig. 9.52,
find io.

0.2 H 0.1 F

4 Ω 3 Ω

io

is

Figure 9.52 For Prob. 9.39.

9.40 Find vs(t) in the circuit of Fig. 9.53 if the current ix
through the 1-� resistor is 0.5 sin 200t A.

+
−

1 Ω2 Ω

vs j2 Ω −j1 Ω

ix

Figure 9.53 For Prob. 9.40.

9.41 If the voltage vo across the 2-� resistor in the circuit
of Fig. 9.54 is 10 cos 2t V, obtain is .

+

−
vo

0.1 F

1 Ω 2 Ωis

0.5 H

Figure 9.54 For Prob. 9.41.
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9.42 If Vo = 8 30◦ V in the circuit of Fig. 9.55,
find Is .

+

−
5 Ω10 Ω Vo

−j5 Ω

j5 ΩIs

Figure 9.55 For Prob. 9.42.

9.43 In the circuit of Fig. 9.56, find Vs if Io = 2 0◦ A.

+ −
Io

1 Ω2 Ω

Vs

j2 Ωj4 Ω

−j2 Ω −j1 Ω

Figure 9.56 For Prob. 9.43.

9.44 Find Z in the network of Fig. 9.57, given that
Vo = 4 0◦ V.

+
−

+

−

Z
12 Ω

Vo20  −90° V j8 Ω−j4 Ω

Figure 9.57 For Prob. 9.44.

Section 9.7 Impedance Combinations

9.45 At ω = 50 rad/s, determine Zin for each of the
circuits in Fig. 9.58.

10 Ω

20 Ω

0.4 H

0.2 H
Zin

1 mF

(b)

1 Ω 1 Ω

10 mH 10 mF

Zin

(a)

Figure 9.58 For Prob. 9.45.

9.46 Calculate Zeq for the circuit in Fig. 9.59.

1 Ω

2 Ω6 Ω

Zeq
j4 Ω

−j2 Ω

Figure 9.59 For Prob. 9.46.

9.47 Find Zeq in the circuit of Fig. 9.60.

Zeq 1 − j Ω

1 + j2 Ω

j5 Ω

1 + j3 Ω

Figure 9.60 For Prob. 9.47.

9.48 For the circuit in Fig. 9.61, find the input impedance
Zin at 10 krad/s.

+
−

+ −v

2v

50 Ω 2 mH

Zin

1 mF

Figure 9.61 For Prob. 9.48.

9.49 Determine I and ZT for the circuit in Fig. 9.62.

+
−

2 Ω

3 Ω

4 Ω

ZT

120   10° V

j4 Ω

−j6 Ω

I

Figure 9.62 For Prob. 9.49.
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9.50 For the circuit in Fig. 9.63, calculate ZT and Vab.

+
−

20 Ω

+ −

ZT

Vab

60   90° V

j10 Ω

−j5 Ω 40 Ω

a b

Figure 9.63 For Prob. 9.50.

9.51 At ω = 103 rad/s, find the input admittance of each
of the circuits in Fig. 9.64.

Yin

(a)

20 mH 12.5 mF

60 Ω 60 Ω

Yin

(b)

30 Ω 10 mH

20 mF

60 Ω

40 Ω

Figure 9.64 For Prob. 9.51.

9.52 Determine Yeq for the circuit in Fig. 9.65.

Yeq
3 Ω5 Ω

j1 Ω−j2 Ω

−j4 Ω

Figure 9.65 For Prob. 9.52.

9.53 Find the equivalent admittance Yeq of the circuit in
Fig. 9.66.

2 S

4 S

1 S

j5 S j1 S

−j3 S −j2 S

Figure 9.66 For Prob. 9.53.

9.54 Find the equivalent impedance of the circuit in Fig.
9.67.

10 Ω

Zeq

j15 Ω

−j5 Ω

−j10 Ω

2 Ω

5 Ω

8 Ω

Figure 9.67 For Prob. 9.54.

9.55 Obtain the equivalent impedance of the circuit in
Fig. 9.68.

Zeq1 Ω j2 Ω

j4 Ω

−j2 Ω

−j Ω 2 Ω

Figure 9.68 For Prob. 9.55.

9.56 Calculate the value of Zab in the network of Fig.
9.69.

20 Ω

20 Ω

j6 Ω −j9 Ω

10 Ω

−j9 Ω

−j9 Ω

j6 Ω

j6 Ω
a

b

Figure 9.69 For Prob. 9.56.

9.57 Determine the equivalent impedance of the circuit in
Fig. 9.70.

2 Ω 4 Ω

j6 Ω j8 Ω j8 Ω j12 Ω

−j4 Ω

−j6 Ω
a

b

Figure 9.70 For Prob. 9.57.
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Section 9.8 Applications

9.58 Design an RL circuit to provide a 90◦ leading phase
shift.

9.59 Design a circuit that will transform a sinusoidal
input to a cosinusoidal output.

9.60 Refer to the RC circuit in Fig. 9.71.
(a) Calculate the phase shift at 2 MHz.
(b) Find the frequency where the phase shift is 45◦.

+

−

+

−

5 Ω

20 nF VoVi

Figure 9.71 For Prob. 9.60.

9.61 (a) Calculate the phase shift of the circuit in Fig.
9.72.

(b) State whether the phase shift is leading or
lagging (output with respect to input).

(c) Determine the magnitude of the output when the
input is 120 V.

+

−

+

−

20 Ω 40 Ω 30 Ω

Voj10 Ω j30 Ω j60 ΩVi

Figure 9.72 For Prob. 9.61.

9.62 Consider the phase-shifting circuit in Fig. 9.73. Let
Vi = 120 V operating at 60 Hz. Find:
(a) Vo when R is maximum
(b) Vo when R is minimum
(c) the value of R that will produce a phase shift

of 45◦

+

−

+

−

50 Ω

200 mH vovi

0 < R < 100 Ω

Figure 9.73 For Prob. 9.62.

9.63 The ac bridge in Fig. 9.37 is balanced when
R1 = 400 �,R2 = 600 �,R3 = 1.2 k�, and
C2 = 0.3 µF. Find Rx and Cx .

9.64 A capacitance bridge balances when R1 = 100 �,
R2 = 2 k�, and Cs = 40 µF. What is Cx , the
capacitance of the capacitor under test?

9.65 An inductive bridge balances when R1 = 1.2 k�,
R2 = 500 �, and Ls = 250 mH. What is the value
of Lx , the inductance of the inductor under test?

9.66 The ac bridge shown in Fig. 9.74 is known as a
Maxwell bridge and is used for accurate
measurement of inductance and resistance of a coil
in terms of a standard capacitance Cs . Show that
when the bridge is balanced,

Lx = R2R3Cs and Rx = R2

R1
R3

Find Lx and Rx for R1 = 40 k�, R2 = 1.6 k�,
R3 = 4 k�, and Cs = 0.45 µF.

AC
meter

R3

Lx

Rx

R2

R1

Cs

Figure 9.74 Maxwell bridge; for Prob. 9.66.

9.67 The ac bridge circuit of Fig. 9.75 is called a Wien
bridge. It is used for measuring the frequency of a
source. Show that when the bridge is balanced,

f = 1

2π
√
R2R4C2C4

AC
meter

R3

R2

R1

C4

C2

R4

Figure 9.75 Wein bridge; for Prob. 9.67.
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COM P R E H EN S I V E P RO B L E M S

9.68 The circuit shown in Fig. 9.76 is used in a television
receiver. What is the total impedance of this circuit?

240 Ω j95 Ω −j84 Ω

Figure 9.76 For Prob. 9.68.

9.69 The network in Fig. 9.77 is part of the schematic
describing an industrial electronic sensing device.
What is the total impedance of the circuit at 2 kHz?

50 Ω 10 mH

2 mF 80 Ω
100 Ω

Figure 9.77 For Prob. 9.69.

9.70 A series audio circuit is shown in Fig. 9.78.
(a) What is the impedance of the circuit?
(b) If the frequency were halved, what would be the

impedance of the circuit?

250 Hz ≈

j30 Ω 120 Ω

−j20 Ω

−j20 Ω

Figure 9.78 For Prob. 9.70.

9.71 An industrial load is modeled as a series
combination of a capacitance and a resistance as
shown in Fig. 9.79. Calculate the value of an
inductance L across the series combination so that
the net impedance is resistive at a frequency of
5 MHz.

200 Ω

50 nF

L

Figure 9.79 For Prob. 9.71.

9.72 An industrial coil is modeled as a series
combination of an inductance L and resistance R, as

shown in Fig. 9.80. Since an ac voltmeter measures
only the magnitude of a sinusoid, the following
measurements are taken at 60 Hz when the circuit
operates in the steady state:

|Vs | = 145 V, |V1| = 50 V, |Vo| = 110 V

Use these measurements to determine the values of
L and R.

80 Ω

+

−

+ −V1

Vs
+
− Vo

R

L

Coil

Figure 9.80 For Prob. 9.72.

9.73 Figure 9.81 shows a parallel combination of an
inductance and a resistance. If it is desired to
connect a capacitor in series with the parallel
combination such that the net impedance is resistive
at 10 MHz, what is the required value of C?

300 Ω 20 mH

C

Figure 9.81 For Prob. 9.73.

9.74 A power transmission system is modeled as shown
in Fig. 9.82. Given the source voltage
Vs = 115 0◦ V, source impedance
Zs = 1 + j0.5 �, line impedance
Z. = 0.4 + j0.3 �, and load impedance
ZL = 23.2 + j18.9 �, find the load current IL.

+
−vs

Z�Zs

Z�

ZL

IL

Source Transmission line Load

Figure 9.82 For Prob. 9.74.
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C H A P T E R

SINUSOIDAL STEADY-STATE ANALYSIS

1 0

An expert problem solver must be endowed with two incompatible quan-
tities, a restless imagination and a patient pertinacity.

—Howard W. Eves

Enhancing Your Career
Career in Software Engineering Software engineering is
that aspect of engineering that deals with the practical ap-
plication of scientific knowledge in the design, construction,
and validation of computer programs and the associated doc-
umentation required to develop, operate, and maintain them.
It is a branch of electrical engineering that is becoming in-
creasingly important as more and more disciplines require
one form of software package or another to perform rou-
tine tasks and as programmable microelectronic systems are
used in more and more applications.

The role of a software engineer should not be con-
fused with that of a computer scientist; the software engi-
neer is a practitioner, not a theoretician. A software engineer
should have good computer-programming skill and be famil-
iar with programming languages, in particular C++, which
is becoming increasingly popular. Because hardware and
software are closely interlinked, it is essential that a soft-
ware engineer have a thorough understanding of hardware
design. Most important, the software engineer should have
some specialized knowledge of the area in which the soft-
ware development skill is to be applied.

All in all, the field of software engineering offers
a great career to those who enjoy programming and devel-
oping software packages. The higher rewards will go to
those having the best preparation, with the most interesting
and challenging opportunities going to those with graduate
education.

Output of a modeling software.
(Courtesy of National Instruments.)
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10.1 INTRODUCTION
In Chapter 9, we learned that the forced or steady-state response of cir-
cuits to sinusoidal inputs can be obtained by using phasors. We also know
that Ohm’s and Kirchhoff’s laws are applicable to ac circuits. In this
chapter, we want to see how nodal analysis, mesh analysis, Thevenin’s
theorem, Norton’s theorem, superposition, and source transformations
are applied in analyzing ac circuits. Since these techniques were already
introduced for dc circuits, our major effort here will be to illustrate with
examples.

Analyzing ac circuits usually requires three steps.

S t e p s t o A n a l y z e a c C i r c u i t s :
1. Transform the circuit to the phasor or frequency domain.

2. Solve the problem using circuit techniques (nodal analysis, mesh
analysis, superposition, etc.).

3. Transform the resulting phasor to the time domain.

Step 1 is not necessary if the problem is specified in the frequency domain.
In step 2, the analysis is performed in the same manner as dc circuit
analysis except that complex numbers are involved. Having read Chapter
9, we are adept at handling step 3.Frequency-domain analysis of an ac circuit via

phasors is much easier than analysis of the cir-
cuit in the time domain.

Toward the end of the chapter, we learn how to applyPSpice in
solving ac circuit problems. We finally apply ac circuit analysis to two
practical ac circuits: oscillators and ac transistor circuits.

10.2 NODAL ANALYSIS
The basis of nodal analysis is Kirchhoff’s current law. Since KCL is valid
for phasors, as demonstrated in Section 9.6, we can analyze ac circuits
by nodal analysis. The following examples illustrate this.

E X A M P L E 1 0 . 1

Find ix in the circuit of Fig. 10.1 using nodal analysis.

0.5 H0.1 F

1 H10 Ω

2ix

ix

+
−20 cos 4t V       

Figure 10.1 For Example 10.1.

Solution:

We first convert the circuit to the frequency domain:
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20 cos 4t �⇒ 20 0◦, ω = 4 rad/s

1 H �⇒ jωL = j4

0.5 H �⇒ jωL = j2

0.1 F �⇒ 1

jωC
= −j2.5

Thus, the frequency-domain equivalent circuit is as shown in Fig. 10.2.

–j2.5 Ω j2 Ω

j4 Ω10 Ω

2Ix

Ix

+
−

V1 V2

20   0° V

Figure 10.2 Frequency-domain equivalent of the circuit in Fig. 10.1.

Applying KCL at node 1,

20 − V1

10
= V1

−j2.5
+ V1 − V2

j4
or

(1 + j1.5)V1 + j2.5V2 = 20 (10.1.1)

At node 2,

2Ix + V1 − V2

j4
= V2

j2

But Ix = V1/−j2.5. Substituting this gives

2V1

−j2.5
+ V1 − V2

j4
= V2

j2

By simplifying, we get

11V1 + 15V2 = 0 (10.1.2)

Equations (10.1.1) and (10.1.2) can be put in matrix form as[
1 + j1.5 j2.5

11 15

] [
V1

V2

]
=
[

20
0

]
We obtain the determinants as

 =
∣∣∣∣1 + j1.5 j2.5

11 15

∣∣∣∣ = 15 − j5

1 =
∣∣∣∣20 j2.5

0 15

∣∣∣∣ = 300, 2 =
∣∣∣∣1 + j1.5 20

11 0

∣∣∣∣ = −220

V1 = 1


= 300

15 − j5
= 18.97 18.43◦ V

V2 = 2


= −220

15 − j5
= 13.91 198.3◦ V
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The current Ix is given by

Ix = V1

−j2.5
= 18.97 18.43◦

2.5 − 90◦
= 7.59 108.4◦ A

Transforming this to the time domain,

ix = 7.59 cos(4t + 108.4◦) A

P R A C T I C E P R O B L E M 1 0 . 1

Using nodal analysis, find v1 and v2 in the circuit of Fig. 10.3.

4 Ω

2 Ω 3vxvx 2 H

0.2 F
v1 v2

+
−

+

−
10 sin 2t A

Figure 10.3 For Practice Prob. 10.1.

Answer: v1(t) = 20.96 sin(2t + 58◦) V,
v2(t) = 44.11 sin(2t + 41◦) V.

E X A M P L E 1 0 . 2

Compute V1 and V2 in the circuit of Fig. 10.4.

4 Ω

12 Ω

1 2V1 V2

–j3 Ω j6 Ω

+ −
10   45° V

3   0° A

Figure 10.4 For Example 10.2.

Solution:

Nodes 1 and 2 form a supernode as shown in Fig. 10.5. Applying KCL
at the supernode gives

3 = V1

−j3
+ V2

j6
+ V2

12
or

36 = j4V1 + (1 − j2)V2 (10.2.1)

But a voltage source is connected between nodes 1 and 2, so that
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–j3 Ω j6 Ω 12 Ω3 A

Supernode
V1 V2

Figure 10.5 A supernode in the circuit of Fig. 10.4.

V1 = V2 + 10 45◦ (10.2.2)

Substituting Eq. (10.2.2) in Eq. (10.2.1) results in

36 − 40 135◦ = (1 + j2)V2 �⇒ V2 = 31.41 − 87.18◦ V

From Eq. (10.2.2),

V1 = V2 + 10 45◦ = 25.78 − 70.48◦ V

P R A C T I C E P R O B L E M 1 0 . 2

Calculate V1 and V2 in the circuit shown in Fig. 10.6.

4 Ω

2 Ωj4 Ω –j1 Ω

+ −

+
−

V1 V2

15   0° V

20   60° V

Figure 10.6 For Practice Prob. 10.2.

Answer: V1 = 19.36 69.67◦ V, V2 = 3.376 165.7◦ V.

10.3 MESH ANALYSIS
Kirchhoff’s voltage law (KVL) forms the basis of mesh analysis. The
validity of KVL for ac circuits was shown in Section 9.6 and is illustrated
in the following examples.

E X A M P L E 1 0 . 3

Determine current Io in the circuit of Fig. 10.7 using mesh analysis.

Solution:

Applying KVL to mesh 1, we obtain

(8 + j10 − j2)I1 − (−j2)I2 − j10I3 = 0 (10.3.1)
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4 Ω

8 Ω –j2 Ω

–j2 Ω

j10 Ω
+
−

Io

I2

I3

I1

5   0° A

20   90° V

Figure 10.7 For Example 10.3.

For mesh 2,

(4 − j2 − j2)I2 − (−j2)I1 − (−j2)I3 + 20 90◦ = 0 (10.3.2)

For mesh 3, I3 = 5. Substituting this in Eqs. (10.3.1) and (10.3.2), we
get

(8 + j8)I1 + j2I2 = j50 (10.3.3)

j2I1 + (4 − j4)I2 = −j20 − j10 (10.3.4)

Equations (10.3.3) and (10.3.4) can be put in matrix form as[
8 + j8 j2
j2 4 − j4

] [
I1

I2

]
=
[
j50

−j30

]

from which we obtain the determinants

 =
∣∣∣∣8 + j8 j2

j2 4 − j4

∣∣∣∣ = 32(1 + j)(1 − j) + 4 = 68

2 =
∣∣∣∣8 + j8 j50

j2 −j30

∣∣∣∣ = 340 − j240 = 416.17 − 35.22◦

I2 = 2


= 416.17 − 35.22◦

68
= 6.12 − 35.22◦ A

The desired current is

Io = −I2 = 6.12 144.78◦ A

P R A C T I C E P R O B L E M 1 0 . 3

Find Io in Fig. 10.8 using mesh analysis.

8 Ω
j4 Ω

–j2 Ω 6 Ω

+
−

Io

2   0° A

10   30° V

Figure 10.8 For Practice Prob. 10.3.

Answer: 1.194 65.45◦ A.
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E X A M P L E 1 0 . 4

Solve for Vo in the circuit in Fig. 10.9 using mesh analysis.

8 Ω

6 Ω

–j2 Ω

–j4 Ω
j5 Ω

4   0˚ A

+
− Vo

+

−
3   0° A10   0° V

Figure 10.9 For Example 10.4.

Solution:

As shown in Fig. 10.10, meshes 3 and 4 form a supermesh due to the
current source between the meshes. For mesh 1, KVL gives

−10 + (8 − j2)I1 − (−j2)I2 − 8I3 = 0

or

(8 − j2)I1 + j2I2 − 8I3 = 10 (10.4.1)

For mesh 2,

I2 = −3 (10.4.2)

For the supermesh,

(8 − j4)I3 − 8I1 + (6 + j5)I4 − j5I2 = 0 (10.4.3)

Due to the current source between meshes 3 and 4, at node A,

I4 = I3 + 4 (10.4.4)

Combining Eqs. (10.4.1) and (10.4.2),

(8 − j2)I1 − 8I3 = 10 + j6 (10.4.5)

Combining Eqs. (10.4.2) to (10.4.4),

−8I1 + (14 + j)I3 = −24 − j35 (10.4.6)

8 Ω

6 Ω

–j2 Ω

–j4 Ω

j5 Ω

10 V 3 A

4 A

A

+
−

+

− I2

I3

I3 I4

I4

I1

Supermesh

Vo

Figure 10.10 Analysis of the circuit in Fig. 10.9.
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From Eqs. (10.4.5) and (10.4.6), we obtain the matrix equation[
8 − j2 −8

−8 14 + j

] [
I1

I3

]
=
[

10 + j6
−24 − j35

]

We obtain the following determinants

 =
∣∣∣∣8 − j2 −8

−8 14 + j

∣∣∣∣ = 112 + j8 − j28 + 2 − 64 = 50 − j20

1 =
∣∣∣∣ 10 + j6 −8
−24 − j35 14 + j

∣∣∣∣ = 140 + j10 + j84 − 6 − 192 − j280

= −58 − j186

Current I1 is obtained as

I1 = 1


= −58 − j186

50 − j20
= 3.618 274.5◦ A

The required voltage Vo is

Vo = −j2(I1 − I2) = −j2(3.618 274.5◦ + 3)

= −7.2134 − j6.568 = 9.756 222.32◦ V

P R A C T I C E P R O B L E M 1 0 . 4

Calculate current Io in the circuit of Fig. 10.11.

j8 Ω

–j6 Ω

–j4 Ω

5 Ω

10 Ω Io

+
−50   0° V

2   0° A

Figure 10.11 For Practice Prob. 10.4.

Answer: 5.075 5.943◦ A.

10.4 SUPERPOSITION THEOREM
Since ac circuits are linear, the superposition theorem applies to ac circuits
the same way it applies to dc circuits. The theorem becomes important
if the circuit has sources operating at different frequencies. In this case,
since the impedances depend on frequency, we must have a different
frequency-domain circuit for each frequency. The total response must
be obtained by adding the individual responses in the time domain. It is
incorrect to try to add the responses in the phasor or frequency domain.
Why? Because the exponential factor ejωt is implicit in sinusoidal analy-
sis, and that factor would change for every angular frequency ω. It would
therefore not make sense to add responses at different frequencies in the
phasor domain. Thus, when a circuit has sources operating at different
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frequencies, one must add the responses due to the individual frequencies
in the time domain.

E X A M P L E 1 0 . 5

Use the superposition theorem to find Io in the circuit in Fig. 10.7.

Solution:

Let

Io = I′
o + I′′

o (10.5.1)

where I′
o and I′′

o are due to the voltage and current sources, respectively.
To find I′

o, consider the circuit in Fig. 10.12(a). If we let Z be the parallel
combination of −j2 and 8 + j10, then

Z = −j2(8 + j10)

−2j + 8 + j10
= 0.25 − j2.25

and current I′
o is

I′
o = j20

4 − j2 + Z
= j20

4.25 − j4.25
or

I′
o = −2.353 + j2.353 (10.5.2)

4 Ω

8 Ω –j2 Ω

–j2 Ω
j10 Ω

j20 V+
−

I'o

(a)

(b)

4 Ω

8 Ω –j2 Ω

–j2 Ω
j10 Ω

5 A
I''o

I2

I3

I1

Figure 10.12 Solution of Example 10.5.

To get I′′
o , consider the circuit in Fig. 10.12(b). For mesh 1,

(8 + j8)I1 − j10I3 + j2I2 = 0 (10.5.3)

For mesh 2,

(4 − j4)I2 + j2I1 + j2I3 = 0 (10.5.4)

For mesh 3,

I3 = 5 (10.5.5)

From Eqs. (10.5.4) and (10.5.5),

(4 − j4)I2 + j2I1 + j10 = 0

Expressing I1 in terms of I2 gives

I1 = (2 + j2)I2 − 5 (10.5.6)

Substituting Eqs. (10.5.5) and (10.5.6) into Eq. (10.5.3), we get

(8 + j8)[(2 + j2)I2 − 5] − j50 + j2I2 = 0

or

I2 = 90 − j40

34
= 2.647 − j1.176

Current I′′
o is obtained as

I′′
o = −I2 = −2.647 + j1.176 (10.5.7)

From Eqs. (10.5.2) and (10.5.7), we write

Io = I′
o + I′′

o = −5 + j3.529 = 6.12 144.78◦ A
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which agrees with what we got in Example 10.3. It should be noted
that applying the superposition theorem is not the best way to solve this
problem. It seems that we have made the problem twice as hard as
the original one by using superposition. However, in Example 10.6,
superposition is clearly the easiest approach.

P R A C T I C E P R O B L E M 1 0 . 5

Find current Io in the circuit of Fig. 10.8 using the superposition theorem.

Answer: 1.194 65.45◦ A.

E X A M P L E 1 0 . 6

Find vo in the circuit in Fig. 10.13 using the superposition theorem.

2 H 1 Ω 4 Ω

0.1 F 5 V+
−

+
−10 cos 2t V 2 sin 5t A

−+ vo

Figure 10.13 For Example 10.6.

Solution:

Since the circuit operates at three different frequencies (ω = 0 for the
dc voltage source), one way to obtain a solution is to use superposition,
which breaks the problem into single-frequency problems. So we let

vo = v1 + v2 + v3 (10.6.1)

where v1 is due to the 5-V dc voltage source, v2 is due to the 10 cos 2t V
voltage source, and v3 is due to the 2 sin 5t A current source.

To find v1, we set to zero all sources except the 5-V dc source. We
recall that at steady state, a capacitor is an open circuit to dc while an
inductor is a short circuit to dc. There is an alternative way of looking at
this. Since ω = 0, jωL = 0, 1/jωC = ∞. Either way, the equivalent
circuit is as shown in Fig. 10.14(a). By voltage division,

−v1 = 1

1 + 4
(5) = 1 V (10.6.2)

To find v2, we set to zero both the 5-V source and the 2 sin 5t current
source and transform the circuit to the frequency domain.

10 cos 2t �⇒ 10 0◦, ω = 2 rad/s

2 H �⇒ jωL = j4 �

0.1 F �⇒ 1

jωC
= −j5 �
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The equivalent circuit is now as shown in Fig. 10.14(b). Let

Z = −j5 ‖ 4 = −j5 × 4

4 − j5
= 2.439 − j1.951

By voltage division,

V2 = 1

1 + j4 + Z
(10 0◦ ) = 10

3.439 + j2.049
= 2.498 − 30.79◦

In the time domain,

v2 = 2.498 cos(2t − 30.79◦) (10.6.3)

1 Ω 4 Ω

5 V+
−

−+ v1

(a) (b) (c)

1 Ωj4 Ω

–j5 Ω

4 Ω

+
−

1 Ω

4 Ω–j2 Ωj10 Ω

I1

10   0° V 2   –90° A

+ −V2
+ −V3

Figure 10.14 Solution of Example 10.6: (a) setting all sources to zero except the 5-V dc source, (b) setting all sources to zero except the ac
voltage source, (c) setting all sources to zero except the ac current source.

To obtain v3, we set the voltage sources to zero and transform what
is left to the frequency domain.

2 sin 5t �⇒ 2 − 90◦ , ω = 5 rad/s

2 H �⇒ jωL = j10 �

0.1 F �⇒ 1

jωC
= −j2 �

The equivalent circuit is in Fig. 10.14(c). Let

Z1 = −j2 ‖ 4 = −j2 × 4

4 − j2
= 0.8 − j1.6 �

By current division,

I1 = j10

j10 + 1 + Z1
(2 − 90◦) A

V3 = I1 × 1 = j10

1.8 + j8.4
(−j2) = 2.328 − 77.91◦ V

In the time domain,

v3 = 2.33 cos(5t − 80◦) = 2.33 sin(5t + 10◦) V (10.6.4)

Substituting Eqs. (10.6.2) to (10.6.4) into Eq. (10.6.1), we have

vo(t) = −1 + 2.498 cos(2t − 30.79◦) + 2.33 sin(5t + 10◦) V

P R A C T I C E P R O B L E M 1 0 . 6

Calculate vo in the circuit of Fig. 10.15 using the superposition theorem.
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8 Ω

0.2 F 1 H+
−30 sin 5t V 2 cos 10t A

+

−
vo

Figure 10.15 For Practice Prob. 10.6.

Answer: 4.631 sin(5t − 81.12◦) + 1.051 cos(10t − 86.24◦) V.

10.5 SOURCE TRANSFORMATION
As Fig. 10.16 shows, source transformation in the frequency domain
involves transforming a voltage source in series with an impedance to a
current source in parallel with an impedance, or vice versa. As we go
from one source type to another, we must keep the following relationship
in mind:

Vs = ZsIs ⇐⇒ Is = Vs

Zs

(10.1)

a

b

Vs

Vs = ZsIs

Z s

Z s
+
−

a

b

Is

Is = Zs

Vs

Figure 10.16 Source transformation.

E X A M P L E 1 0 . 7

Calculate Vx in the circuit of Fig. 10.17 using the method of source trans-
formation.

5 Ω

j4 Ω

–j13 Ω

3 Ω

10 Ω

4 Ω

+
−

+

−
Vx2 0   –90° V

Figure 10.17 For Example 10.7.
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Solution:

We transform the voltage source to a current source and obtain the circuit
in Fig. 10.18(a), where

Is = 20 − 90◦

5
= 4 − 90◦ = −j4 A

The parallel combination of 5-� resistance and (3+j4) impedance gives

Z1 = 5(3 + j4)

8 + j4
= 2.5 + j1.25 �

Converting the current source to a voltage source yields the circuit in Fig.
10.18(b), where

Vs = IsZ1 = −j4(2.5 + j1.25) = 5 − j10 V

By voltage division,

Vx = 10

10 + 2.5 + j1.25 + 4 − j13
(5 − j10) = 5.519 − 28◦ V

5 Ω
j4 Ω

–j13 Ω

3 Ω

10 Ω

4 Ω

+

−

+

−
V xIs = –j4 Α

–j13 Ω

10 Ω

4 Ω2.5 Ω j1.25 Ω

VxVs = 5 – j10 V +
−

(a) (b)

Figure 10.18 Solution of the circuit in Fig. 10.17.

P R A C T I C E P R O B L E M 1 0 . 7

Find Io in the circuit of Fig. 10.19 using the concept of source transfor-
mation.

–j3 Ω

j5 Ω

j1 Ω2 Ω

Io

–j2 Ω

4   90°  Α
4 Ω

1 Ω

Figure 10.19 For Practice Prob. 10.7.

Answer: 3.288 99.46◦ A.
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10.6 THEVENIN AND NORTON EQUIVALENT CIRCUITS
Thevenin’s and Norton’s theorems are applied to ac circuits in the same
way as they are to dc circuits. The only additional effort arises from the
need to manipulate complex numbers. The frequency-domain version of
a Thevenin equivalent circuit is depicted in Fig. 10.20, where a linear
circuit is replaced by a voltage source in series with an impedance. The
Norton equivalent circuit is illustrated in Fig. 10.21, where a linear circuit
is replaced by a current source in parallel with an impedance. Keep in
mind that the two equivalent circuits are related as

VTh = ZN IN, ZTh = ZN (10.2)

just as in source transformation. VTh is the open-circuit voltage while IN
is the short-circuit current.

a

b

ZTh

a

b

VTh
Linear
circuit

+
−

Figure 10.20 Thevenin equivalent.

a

b

ZN

a

b

IN

Linear
circuit

Figure 10.21 Norton equivalent.

If the circuit has sources operating at different frequencies (see
Example 10.6, for example), the Thevenin or Norton equivalent circuit
must be determined at each frequency. This leads to entirely different
equivalent circuits, one for each frequency, not one equivalent circuit
with equivalent sources and equivalent impedances.

E X A M P L E 1 0 . 8

Obtain the Thevenin equivalent at terminalsa-b of the circuit in Fig. 10.22.

4 Ω

d

a b

f

ce

–j6 Ω

j12 Ω8 Ω

+
− a b120   75° V

Figure 10.22 For Example 10.8.

Solution:

We find ZTh by setting the voltage source to zero. As shown in Fig.
10.23(a), the 8-� resistance is now in parallel with the −j6 reactance, so
that their combination gives

Z1 = −j6 ‖ 8 = −j6 × 8

8 − j6
= 2.88 − j3.84 �

Similarly, the 4-� resistance is in parallel with the j12 reactance, and
their combination gives

Z2 = 4 ‖ j12 = j12 × 4

4 + j12
= 3.6 + j1.2 �
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4 Ω8 Ω –j6 Ω j12 Ω

ZTh

VTh

a

e c

f,d f,d

b

(a)
(b)

8 Ω

4 Ω

j12 Ω

–j6 Ω

+
−

I2I1

d

e
a b

c

f

−+
120   75° V

Figure 10.23 Solution of the circuit in Fig. 10.22: (a) finding ZTh, (b) finding VTh.

The Thevenin impedance is the series combination of Z1 and Z2; that is,

ZTh = Z1 + Z2 = 6.48 − j2.64 �

To find VTh, consider the circuit in Fig. 10.23(b). Currents I1 and
I2 are obtained as

I1 = 120 75◦

8 − j6
A, I2 = 120 75◦

4 + j12
A

Applying KVL around loop bcdeab in Fig. 10.23(b) gives

VTh − 4I2 + (−j6)I1 = 0

or

VTh = 4I2 + j6I1 = 480 75◦

4 + j12
+ 720 75◦ + 90◦

8 − j6

= 37.95 3.43◦ + 72 201.87◦

= −28.936 − j24.55 = 37.95 220.31◦ V

P R A C T I C E P R O B L E M 1 0 . 8

Find the Thevenin equivalent at terminals a-b of the circuit in Fig. 10.24.

–j4 Ω

j2 Ω6 Ω

10 Ω+
−

a b

30   20° V

Figure 10.24 For Practice Prob. 10.8.

Answer: ZTh = 12.4 − j3.2 �,VTh = 18.97 − 51.57◦ V.
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E X A M P L E 1 0 . 9

Find the Thevenin equivalent of the circuit in Fig. 10.25 as seen from ter-
minals a-b.

–j4 Ω

j3 Ω4 Ω

2 Ω

a

b

Io

0.5 Io15   0° A

Figure 10.25 For Example 10.9.

Solution:

To find VTh, we apply KCL at node 1 in Fig. 10.26(a).

15 = Io + 0.5Io �⇒ Io = 10 A

Applying KVL to the loop on the right-hand side in Fig. 10.26(a), we
obtain

−Io(2 − j4) + 0.5Io(4 + j3) + VTh = 0

or

VTh = 10(2 − j4) − 5(4 + j3) = −j55

Thus, the Thevenin voltage is

VTh = 55 − 90◦ V

4 + j3 Ω

2 – j4 Ω

a

b

Io

0.5Io

0.5Io VTh15 A

+

−

21
4 + j3 Ω

2 – j4 Ω

a

b

Vs Is

0.5Io

Io

Is = 3   0° A

(a) (b)

+

−

Vs

Figure 10.26 Solution of the problem in Fig. 10.25: (a) finding VTh, (b) finding ZTh.

To obtain ZTh, we remove the independent source. Due to the
presence of the dependent current source, we connect a 3-A current source
(3 is an arbitrary value chosen for convenience here, a number divisible
by the sum of currents leaving the node) to terminals a-b as shown in Fig.
10.26(b). At the node, KCL gives

3 = Io + 0.5Io �⇒ Io = 2 A

Applying KVL to the outer loop in Fig. 10.26(b) gives

Vs = Io(4 + j3 + 2 − j4) = 2(6 − j)
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The Thevenin impedance is

ZTh = Vs

Is
= 2(6 − j)

3
= 4 − j0.6667 �

P R A C T I C E P R O B L E M 1 0 . 9

Determine the Thevenin equivalent of the circuit in Fig. 10.27 as seen from
the terminals a-b.

–j2 Ω

j4 Ω8 Ω

4 Ω

a

b

0.2Vo
5   0° A

−+ Vo

Figure 10.27 For Practice Prob. 10.9.

Answer: ZTh = 12.166 136.3◦ �,VTh = 7.35 72.9◦ V.

E X A M P L E 1 0 . 1 0

Obtain current Io in Fig. 10.28 using Norton’s theorem.

3   0° A

40   90° V

8 Ω
5 Ω

20 Ω

10 Ω

–j2 Ω

j4 Ω
j15 Ω+

−

Io

a

b

Figure 10.28 For Example 10.10.

Solution:

Our first objective is to find the Norton equivalent at terminals a-b. ZN

is found in the same way as ZTh. We set the sources to zero as shown
in Fig. 10.29(a). As evident from the figure, the (8 − j2) and (10 + j4)
impedances are short-circuited, so that

ZN = 5 �

To get IN , we short-circuit terminals a-b as in Fig. 10.29(b) and
apply mesh analysis. Notice that meshes 2 and 3 form a supermesh
because of the current source linking them. For mesh 1,

−j40 + (18 + j2)I1 − (8 − j2)I2 − (10 + j4)I3 = 0 (10.10.1)

For the supermesh,

(13 − j2)I2 + (10 + j4)I3 − (18 + j2)I1 = 0 (10.10.2)
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3

8

5

10–j2

j4
j40 +

−

IN

I3

I2

I3I2

I1

a

b
(b)

5
20

j15

3 + j8

Io

(c)

8

5

10

–j2

j4

ZN

(a)

Figure 10.29 Solution of the circuit in Fig. 10.28: (a) finding ZN , (b) finding VN , (c) calculating Io.

At node a, due to the current source between meshes 2 and 3,

I3 = I2 + 3 (10.10.3)

Adding Eqs. (10.10.1) and (10.10.2) gives

−j40 + 5I2 = 0 �⇒ I2 = j8

From Eq. (10.10.3),

I3 = I2 + 3 = 3 + j8

The Norton current is

IN = I3 = (3 + j8) A

Figure 10.29(c) shows the Norton equivalent circuit along with the imped-
ance at terminals a-b. By current division,

Io = 5

5 + 20 + j15
IN = 3 + j8

5 + j3
= 1.465 38.48◦ A

P R A C T I C E P R O B L E M 1 0 . 1 0

Determine the Norton equivalent of the circuit in Fig. 10.30 as seen from
terminals a-b. Use the equivalent to find Io.

j2 Ω

a

b

Io

–j3 Ω

–j5 Ω

+
−

8 Ω

4 Ω

1 Ω

10 Ω
20   0° V 4   –90° A

Figure 10.30 For Practice Prob. 10.10.

Answer: ZN = 3.176 + j0.706 �, IN = 8.396 − 32.68◦ A,
Io = 1.971 − 2.101◦ A.
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10.7 OP AMP AC CIRCUITS
The three steps stated in Section 10.1 also apply to op amp circuits, as
long as the op amp is operating in the linear region. As usual, we will
assume ideal op amps. (See Section 5.2.) As discussed in Chapter 5, the
key to analyzing op amp circuits is to keep two important properties of
an ideal op amp in mind:

1. No current enters either of its input terminals.

2. The voltage across its input terminals is zero.

The following examples will illustrate these ideas.

E X A M P L E 1 0 . 1 1

Determine vo(t) for the op amp circuit in Fig. 10.31(a) if vs =
3 cos 1000t V.

+

−

+
−

Vo

Vo

V1

–j5 kΩ

–j10 kΩ
10 kΩ 10 kΩ

20 kΩ

3   0° V 
+

−

+
−vs

vo

10 kΩ 10 kΩ
0.1 mF

0.2 mF

20 kΩ

1 2

0 V

(a) (b)

Figure 10.31 For Example 10.11: (a) the original circuit in the time domain, (b) its frequency-domain equivalent.

Solution:

We first transform the circuit to the frequency domain, as shown in Fig.
10.31(b), where Vs = 3 0◦, ω = 1000 rad/s. Applying KCL at node 1,
we obtain

3 0◦ − V1

10
= V1

−j5
+ V1 − 0

10
+ V1 − Vo

20
or

6 = (5 + j4)V1 − Vo (10.11.1)

At node 2, KCL gives
V1 − 0

10
= 0 − Vo

−j10
which leads to

V1 = −jVo (10.11.2)

Substituting Eq. (10.11.2) into Eq. (10.11.1) yields

6 = −j (5 + j4)Vo − Vo = (3 − j5)Vo

Vo = 6

3 − j5
= 1.029 59.04◦

Hence,

vo(t) = 1.029 cos(1000t + 59.04◦) V
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P R A C T I C E P R O B L E M 1 0 . 1 1

Find vo and io in the op amp circuit of Fig. 10.32. Let vs =
2 cos 5000t V.

+

−+
−vs

vo

10 kΩ

20 kΩ

20 nF

10 nF
io

Figure 10.32 For Practice Prob. 10.11.

Answer: 0.667 sin 5000t V, 66.67 sin 5000t µA.

E X A M P L E 1 0 . 1 2

Compute the closed-loop gain and phase shift for the circuit in Fig. 10.33.
Assume that R1 = R2 = 10 k�, C1 = 2 µF, C2 = 1 µF, and ω =
200 rad/s.

+

−

+
−vs vo

R1
R2

C2

C1

+

−

Figure 10.33 For Example 10.12.

Solution:

The feedback and input impedances are calculated as

Zf = R2

∥∥∥∥ 1

jωC2
= R2

1 + jωR2C2

Zi = R1 + 1

jωC1
= 1 + jωR1C1

jωC1

Since the circuit in Fig. 10.33 is an inverting amplifier, the closed-loop
gain is given by

G = Vo

Vs

= −Zf

Zi

= jωC1R2

(1 + jωR1C1)(1 + jωR2C2)

Substituting the given values of R1, R2, C1, C2, and ω, we obtain

G = j4

(1 + j4)(1 + j2)
= 0.434 − 49.4◦

Thus the closed-loop gain is 0.434 and the phase shift is −49.4◦.

P R A C T I C E P R O B L E M 1 0 . 1 2

Obtain the closed-loop gain and phase shift for the circuit in Fig. 10.34.
Let R = 10 k�, C = 1 µF, and ω = 1000 rad/s.

+

−
+
−vs

vo

R R

C

Figure 10.34 For Practice Prob. 10.12.

Answer: 1.015, −5.599◦.
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10.8 AC ANALYSIS USING PSPICE
PSpice affords a big relief from the tedious task of manipulating complex
numbers in ac circuit analysis. The procedure for using PSpice for ac
analysis is quite similar to that required for dc analysis. The reader should
read Section D.5 in Appendix D for a review of PSpice concepts for ac
analysis. AC circuit analysis is done in the phasor or frequency domain,
and all sources must have the same frequency. Although AC analysis with
PSpice involves using AC Sweep, our analysis in this chapter requires a
single frequency f = ω/2π . The output file of PSpice contains voltage
and current phasors. If necessary, the impedances can be calculated using
the voltages and currents in the output file.

E X A M P L E 1 0 . 1 3

Obtain vo and io in the circuit of Fig. 10.35 using PSpice.

2 mF

50 mH4 kΩ

2 kΩ

io

0.5io
+
−8 sin(1000t + 50°) V vo

+

−

Figure 10.35 For Example 10.13.

Solution:

We first convert the sine function to cosine.

8 sin(1000t + 50◦) = 8 cos(1000t + 50◦ − 90◦) = 8 cos(1000t − 40◦)

The frequency f is obtained from ω as

f = ω

2π
= 1000

2π
= 159.155 Hz

The schematic for the circuit is shown in Fig. 10.36. Notice the current-
controlled current source F1 is connected such that its current flows from

ACMAG=8
ACPHASE=-40

AC=ok
MAG=ok
PHASE=ok

AC=yes
MAG=yes
PHASE=ok

V

R1

C1 2u

L1

F1

4k

IPRINT

50mH

GAIN=0.5 2kR2

0

2 3

+
−

Figure 10.36 The schematic of the circuit in Fig. 10.35.
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node 0 to node 3 in conformity with the original circuit in Fig. 10.35. Since
we only want the magnitude and phase of vo and io, we set the attributes
of IPRINT AND VPRINT1 each to AC = yes, MAG = yes, PHASE = yes.
As a single-frequency analysis, we select Analysis/Setup/AC Sweep and
enter Total Pts = 1, Start Freq = 159.155, and Final Freq = 159.155. Af-
ter saving the schematic, we simulate it by selecting Analysis/Simulate.
The output file includes the source frequency in addition to the attributes
checked for the pseudocomponents IPRINT and VPRINT1,

FREQ IM(V_PRINT3) IP(V_PRINT3)
1.592E+02 3.264E-03 -3.743E+01

FREQ VM(3) VP(3)
1.592E+02 1.550E+00 -9.518E+01

From this output file, we obtain

Vo = 1.55 − 95.18◦ V, Io = 3.264 − 37.43◦ mA

which are the phasors for

vo = 1.55 cos(1000t − 95.18◦) = 1.55 sin(1000t − 5.18◦) V

and

io = 3.264 cos(1000t − 37.43◦) mA

P R A C T I C E P R O B L E M 1 0 . 1 3

Use PSpice to obtain vo and io in the circuit of Fig. 10.37.

1 mF

2 H2 kΩ

3 kΩ

1 kΩ

io

2vo

+
−10 cos 3000t A vo

+

−

+
−

Figure 10.37 For Practice Prob. 10.13.

Answer: 0.2682 cos(3000t−154.6◦)V, 0.544 cos(3000t−55.12◦)mA.

E X A M P L E 1 0 . 1 4

Find V1 and V2 in the circuit of Fig. 10.38.

Solution:

The circuit in Fig. 10.35 is in the time domain, whereas the one in Fig.
10.38 is in the frequency domain. Since we are not given a particular
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2 Ω 2 ΩV1 V2

–j1 Ω

–j2

j2 Ω

–j1 Ω1 Ω3   0° A 18   30° V+
−

j2 Ω

0.2Vx

−

+

Vx

Figure 10.38 For Example 10.14.

frequency and PSpice requires one, we select any frequency consistent
with the given impedances. For example, if we select ω = 1 rad/s, the
corresponding frequency is f = ω/2π = 0.159155 Hz. We obtain the
values of the capacitance (C = 1/ωXC) and inductances (L = XL/ω).
Making these changes results in the schematic in Fig. 10.39. To ease
wiring, we have exchanged the positions of the voltage-controlled cur-
rent source G1 and the 2 + j2 � impedance. Notice that the current of
G1 flows from node 1 to node 3, while the controlling voltage is across
the capacitor c2, as required in Fig. 10.38. The attributes of pseudocom-
ponents VPRINT1 are set as shown. As a single-frequency analysis, we
select Analysis/Setup/AC Sweep and enter Total Pts = 1, Start Freq =
0.159155, and Final Freq = 0.159155. After saving the schematic, we
select Analysis/Simulate to simulate the circuit. When this is done, the
output file includes

FREQ VM(1) VP(1)
1.592E-01 2.708E+00 -5.673E+01

FREQ VM(3) VP(3)
1.592E-01 4.468E+00 -1.026E+02

AC=3

AC

R1I1

R2 L1

L2 R3

C1

C3G1 V1C21

2

3 4
5

0.5

2

2H

2H 2

1

1
1

AC=ok
MAG=ok
PHASE=ok

AC=ok
MAG=ok
PHASE=yes

ACMAG=18
ACPHASE=30

0

GAIN=0.2

+ −
+
−−

−

Figure 10.39 Schematic for the circuit in Fig. 10.38.
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from which we obtain

V1 = 2.708 − 56.73◦ V, V2 = 4.468 − 102.6◦ V

P R A C T I C E P R O B L E M 1 0 . 1 4

Obtain Vx and Ix in the circuit depicted in Fig. 10.40.

1 Ω 1 ΩVx

Ix

4Ix–j1 Ω

j2 Ω

2 Ω4   60° A

12   0° V

j2 Ω
–j0.25

+ −

+
−

Figure 10.40 For Practice Prob. 10.14.

Answer: 13.02 − 76.08◦ V, 8.234 − 4.516◦ A.

†10.9 APPLICATIONS
The concepts learned in this chapter will be applied in later chapters to
calculate electric power and determine frequency response. The concepts
are also used in analyzing coupled circuits, three-phase circuits, ac tran-
sistor circuits, filters, oscillators, and other ac circuits. In this section, we
apply the concepts to develop two practical ac circuits: the capacitance
multiplier and the sine wave oscillators.

10 . 9 . 1 Capac i t a n ce Mu l t i p l i e r
The op amp circuit in Fig. 10.41 is known as a capacitance multiplier,
for reasons that will become obvious. Such a circuit is used in integrated-
circuit technology to produce a multiple of a small physical capacitance
C when a large capacitance is needed. The circuit in Fig. 10.41 can be
used to multiply capacitance values by a factor up to 1000. For example,
a 10-pF capacitor can be made to behave like a 100-nF capacitor.

In Fig. 10.41, the first op amp operates as a voltage follower, while
the second one is an inverting amplifier. The voltage follower isolates
the capacitance formed by the circuit from the loading imposed by the
inverting amplifier. Since no current enters the input terminals of the op
amp, the input current Ii flows through the feedback capacitor. Hence, at
node 1,

Ii = Vi − Vo

1/jωC
= jωC(Vi − Vo) (10.3)
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+

−

R1

A1

R2

+

−
Vo

Ii

Zi

Vi

A2

C

0 V

2

1

+

−
Vi

Figure 10.41 Capacitance multiplier.

Applying KCL at node 2 gives

Vi − 0

R1
= 0 − Vo

R2

or

Vo = −R2

R1
Vi (10.4)

Substituting Eq. (10.4) into (10.3) gives

Ii = jωC

(
1 + R2

R1

)
Vi

or

Ii
Vi

= jω

(
1 + R2

R1

)
C (10.5)

The input impedance is

Zi = Vi

Ii
= 1

jωCeq
(10.6)

where

Ceq =
(

1 + R2

R1

)
C (10.7)

Thus, by a proper selection of the values of R1 and R2, the op amp
circuit in Fig. 10.41 can be made to produce an effective capacitance
between the input terminal and ground, which is a multiple of the physical
capacitance C. The size of the effective capacitance is practically limited
by the inverted output voltage limitation. Thus, the larger the capacitance
multiplication, the smaller is the allowable input voltage to prevent the
op amps from reaching saturation.

A similar op amp circuit can be designed to simulate inductance.
(See Prob. 10.69.) There is also an op amp circuit configuration to create
a resistance multiplier.

E X A M P L E 1 0 . 1 5

CalculateCeq in Fig. 10.41 whenR1 = 10 k�,R2 = 1 M�, andC = 1 nF.
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Solution:

From Eq. (10.7)

Ceq =
(

1 + R2

R1

)
C =

(
1 + 1 × 106

10 × 103

)
1 nF = 101 nF

P R A C T I C E P R O B L E M 1 0 . 1 5

Determine the equivalent capacitance of the op amp circuit in Fig. 10.41
if R1 = 10 k�, R2 = 10 M�, and C = 10 nF.

Answer: 10 µF.

10 . 9 . 2 Osc i l l a t o r s
We know that dc is produced by batteries. But how do we produce ac?
One way is using oscillators, which are circuits that convert dc to ac.

An oscillator is a circuit that produces an ac waveform as output
when powered by a dc input.

The only external source an oscillator needs is the dc power supply.
Ironically, the dc power supply is usually obtained by converting the ac
supplied by the electric utility company to dc. Having gone through the
trouble of conversion, one may wonder why we need to use the oscillator
to convert the dc to ac again. The problem is that the ac supplied by the
utility company operates at a preset frequency of 60 Hz in the United
States (50 Hz in some other nations), whereas many applications such
as electronic circuits, communication systems, and microwave devices
require internally generated frequencies that range from 0 to 10 GHz or
higher. Oscillators are used for generating these frequencies.

This corresponds to ω = 2π f = 377 rad/s.

In order for sine wave oscillators to sustain oscillations, they must
meet the Barkhausen criteria:

1. The overall gain of the oscillator must be unity or greater.
Therefore, losses must be compensated for by an amplifying
device.

2. The overall phase shift (from input to output and back to the
input) must be zero.

Three common types of sine wave oscillators are phase-shift, twin T ,
and Wien-bridge oscillators. Here we consider only the Wien-bridge
oscillator.

+

−

Rf

Rg

R1

R2

C1

C2

+

−
v2

+

−
vo

Positive feedback path
to create oscillations

Negative feedback
path to control gain

Figure 10.42 Wien-bridge oscillator.

The Wien-bridge oscillator is widely used for generating sinusoids
in the frequency range below 1 MHz. It is anRC op amp circuit with only
a few components, easily tunable and easy to design. As shown in Fig.
10.42, the oscillator essentially consists of a noninverting amplifier with
two feedback paths: the positive feedback path to the noninverting input
creates oscillations, while the negative feedback path to the inverting
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input controls the gain. If we define the impedances of the RC series and
parallel combinations as Zs and Zp, then

Zs = R1 + 1

jωC1
= R1 − j

ωC1
(10.8)

Zp = R2 ‖ 1

jωC2
= R2

1 + jωR2C2
(10.9)

The feedback ratio is

V2

Vo

= Zp

Zs + Zp

(10.10)

Substituting Eqs. (10.8) and (10.9) into Eq. (10.10) gives

V2

Vo

= R2

R2 +
(
R1 − j

ωC1

)
(1 + jωR2C2)

= ωR2C1

ω(R2C1 + R1C1 + R2C2) + j (ω2R1C1R2C2 − 1)

(10.11)

To satisfy the second Barkhausen criterion, V2 must be in phase with Vo,
which implies that the ratio in Eq. (10.11) must be purely real. Hence,
the imaginary part must be zero. Setting the imaginary part equal to zero
gives the oscillation frequency ωo as

ω2
oR1C1R2C2 − 1 = 0

or

ωo = 1√
R1R2C1C2

(10.12)

In most practical applications, R1 = R2 = R and C1 = C2 = C, so that

ωo = 1

RC
= 2πfo (10.13)

or

fo = 1

2πRC
(10.14)

Substituting Eq. (10.13) and R1 = R2 = R, C1 = C2 = C into Eq.
(10.11) yields

V2

Vo

= 1

3
(10.15)

Thus in order to satisfy the first Barkhausen criterion, the op amp must
compensate by providing a gain of 3 or greater so that the overall gain is
at least 1 or unity. We recall that for a noninverting amplifier,

Vo

V2
= 1 + Rf

Rg

= 3 (10.16)

or

Rf = 2Rg (10.17)
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Due to the inherent delay caused by the op amp, Wien-bridge oscil-
lators are limited to operating in the frequency range of 1 MHz or less.

E X A M P L E 1 0 . 1 6

Design a Wien-bridge circuit to oscillate at 100 kHz.

Solution:

Using Eq. (10.14), we obtain the time constant of the circuit as

RC = 1

2πfo
= 1

2π × 100 × 103
= 1.59 × 10−6 (10.16.1)

If we select R = 10 k�, then we can select C = 159 pF to satisfy Eq.
(10.16.1). Since the gain must be 3, Rf /Rg = 2. We could select Rf =
20 k� while Rg = 10 k�.

P R A C T I C E P R O B L E M 1 0 . 1 6

In the Wien-bridge oscillator circuit in Fig. 10.42, let R1 = R2 = 2.5 k�,
C1 = C2 = 1 nF. Determine the frequency fo of the oscillator.

Answer: 63.66 kHz.

10.10 SUMMARY
1. We apply nodal and mesh analysis to ac circuits by applying KCL

and KVL to the phasor form of the circuits.

2. In solving for the steady-state response of a circuit that has indepen-
dent sources with different frequencies, each independent source
must be considered separately. The most natural approach to analyz-
ing such circuits is to apply the superposition theorem. A separate
phasor circuit for each frequency must be solved independently, and
the corresponding response should be obtained in the time domain.
The overall response is the sum of the time-domain responses of all
the individual phasor circuits.

3. The concept of source transformation is also applicable in the fre-
quency domain.

4. The Thevenin equivalent of an ac circuit consists of a voltage source
VTh in series with the Thevenin impedance ZTh.

5. The Norton equivalent of an ac circuit consists of a current source IN
in parallel with the Norton impedance ZN (= ZTh).

6. PSpice is a simple and powerful tool for solving ac circuit problems.
It relieves us of the tedious task of working with the complex num-
bers involved in steady-state analysis.

7. The capacitance multiplier and the ac oscillator provide two typical
applications for the concepts presented in this chapter. A capacitance
multiplier is an op amp circuit used in producing a multiple of a
physical capacitance. An oscillator is a device that uses a dc input to
generate an ac output.
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R E V I EW QU E S T I ON S

10.1 The voltage Vo across the capacitor in Fig. 10.43 is:
(a) 5 0◦ V (b) 7.071 45◦ V

(c) 7.071 − 45◦ V (d) 5 − 45◦ V

1 Ω

+
− Vo

+

−
–j1 Ω10   0° V

Figure 10.43 For Review Question 10.1.

10.2 The value of the current Io in the circuit in Fig.
10.44 is:
(a) 4 0◦ A (b) 2.4 − 90◦ A

(c) 0.6 0◦ A (d) −1 A

j8 Ω –j2 Ω3   0° A

Io

Figure 10.44 For Review Question 10.2.

10.3 Using nodal analysis, the value of Vo in the circuit
of Fig. 10.45 is:
(a) −24 V (b) −8 V
(c) 8 V (d) 24 V

–j3 Ωj6 Ω 4   90° A

Vo

Figure 10.45 For Review Question 10.3.

10.4 In the circuit of Fig. 10.46, current i(t) is:
(a) 10 cos t A (b) 10 sin t A (c) 5 cos t A
(d) 5 sin t A (e) 4.472 cos(t − 63.43◦) A

1 H 1 F

+
− 1 Ω10 cos t V i(t)

Figure 10.46 For Review Question 10.4.

10.5 Refer to the circuit in Fig. 10.47 and observe that the
two sources do not have the same frequency. The
current ix(t) can be obtained by:
(a) source transformation
(b) the superposition theorem
(c) PSpice

1 F+
−

+
−sin 2t  V sin 10t  V

1 H 1 Ω

ix

Figure 10.47 For Review Question 10.5.

10.6 For the circuit in Fig. 10.48, the Thevenin
impedance at terminals a-b is:
(a) 1 � (b) 0.5 − j0.5 �

(c) 0.5 + j0.5 � (d) 1 + j2 �

(e) 1 − j2 �

1 Ω 1 H

+
− 1 F

a

b

5 cos t  V

Figure 10.48 For Review Questions 10.6 and 10.7.

10.7 In the circuit of Fig. 10.48, the Thevenin voltage at
terminals a-b is:
(a) 3.535 − 45◦ V (b) 3.535 45◦ V

(c) 7.071 − 45◦ V (d) 7.071 45◦ V

10.8 Refer to the circuit in Fig. 10.49. The Norton
equivalent impedance at terminals a-b is:
(a) −j4 � (b) −j2 �

(c) j2 � (d) j4 �

–j2 Ω

j4 Ω+
−

a

b

6   0° V

Figure 10.49 For Review Questions 10.8 and 10.9.
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10.9 The Norton current at terminals a-b in the circuit of
Fig. 10.49 is:
(a) 1 0◦ A (b) 1.5 − 90◦ A

(c) 1.5 90◦ A (d) 3 90◦ A

10.10 PSpice can handle a circuit with two independent
sources of different frequencies.
(a) True (b) False

Answers: 10.1c, 10.2a, 10.3d, 10.4a, 10.5b, 10.6c, 10.7a, 10.8a,
10.9d, 10.10b.

P RO B L E M S

Section 10.2 Nodal Analysis

10.1 Find vo in the circuit in Fig. 10.50.

1 F+
−

+
−

1 H3 Ω

vo10 cos(t – 45°) V 5 sin(t + 30°) V
+

−

Figure 10.50 For Prob. 10.1.

10.2 For the circuit depicted in Fig. 10.51 below,
determine io.

10.3 Determine vo in the circuit of Fig. 10.52.

+
−

2 H4 Ω

vo16 sin 4t V 2 cos 4t A
+

−
1 Ω 6 Ω

F1
12

Figure 10.52 For Prob. 10.3.

10.4 Compute vo(t) in the circuit of Fig. 10.53.

+
−

1 H 0.25 F

1 Ω0.5ix vo

+

−
16 sin (4t – 10°)  V

ix

Figure 10.53 For Prob. 10.4.

10.5 Use nodal analysis to find vo in the circuit of Fig.
10.54.

+
−

10 mH50 mF20 Ω

20 Ω 30 Ω10 cos 103t V

io

4io vo

+

−

Figure 10.54 For Prob. 10.5.

10.6 Using nodal analysis, find io(t) in the circuit in Fig.
10.55.

0.02 F+
− 1 H

10 Ω

20 sin (10t – 4) V 4 cos (10t – 3) A

io

Figure 10.51 For Prob. 10.2.
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0.5 F+
−

1 H

2 H

2 Ω

0.25 F

8 sin (2t + 30°) V cos 2t A

io

Figure 10.55 For Prob. 10.6.

10.7 By nodal analysis, find io in the circuit in Fig. 10.56.

10 Ω

20 Ω 50 mF 10 mH20 sin1000t A

2io

io

Figure 10.56 For Prob. 10.7.

10.8 Calculate the voltage at nodes 1 and 2 in the circuit
of Fig. 10.57 using nodal analysis.

10 Ω

1 2

–j2 Ω –j5 Ωj2 Ω

j4 Ω

20   30° A

Figure 10.57 For Prob. 10.8.

10.9 Solve for the current I in the circuit of Fig. 10.58
using nodal analysis.

2 Ω

4 Ω–j2 Ω

j1 Ω

2I

5   0° A

20   –90° V +
−

I

Figure 10.58 For Prob. 10.9.

10.10 Using nodal analysis, find V1 and V2 in the circuit
of Fig. 10.59.

20 Ω

10 Ω

j2 A 1 + j A

–j5 Ω

j10 Ω

V1 V2

Figure 10.59 For Prob. 10.10.

10.11 By nodal analysis, obtain current Io in the circuit in
Fig. 10.60.

3 Ω

2 Ω
1 Ωj4 Ω

–j2 Ω

+
−100   20° V

Io

Figure 10.60 For Prob. 10.11.

10.12 Use nodal analysis to obtain Vo in the circuit of Fig.
10.61 below.

8 Ω

2 Ω –j1 Ω –j2 Ω

j6 Ω 4 Ω j5 Ω

2Vx Vo
4   45° A

+

−
Vx

+

−

Figure 10.61 For Prob. 10.12.
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10.13 Obtain Vo in Fig. 10.62 using nodal analysis.

4 Ω

2 Ω –j4 Ω

j2 Ω

Vo 0.2Vo

+

−

+ −

12   0° V

Figure 10.62 For Prob. 10.13.

10.14 Refer to Fig. 10.63. If vs(t) = Vm sinωt and
vo(t) = A sin(ωt + φ), derive the expressions for A
and φ.

+
− vo(t)vs(t)

+

−
L

R

C

Figure 10.63 For Prob. 10.14.

10.15 For each of the circuits in Fig. 10.64, find Vo/Vi for
ω = 0, ω → ∞, and ω2 = 1/LC.

Vo

+

−

Vo

+

−

Vi

+

−

Vi

+

−

C

R R CL

L

(b)(a)

Figure 10.64 For Prob. 10.15.

10.16 For the circuit in Fig. 10.65, determine Vo/Vs .

+
−Vs Vo

+

−L

R1

R2

C

Figure 10.65 For Prob. 10.16.

Section 10.3 Mesh Analysis

10.17 Obtain the mesh currents I1 and I2 in the circuit of
Fig. 10.66.

+
−Vs L

R

C2

C1

I2I1

Figure 10.66 For Prob. 10.17.

10.18 Solve for io in Fig. 10.67 using mesh analysis.

+
−

+
−

2 H

0.25 F

4 Ω

10 cos 2t V 6 sin 2t V

io

Figure 10.67 For Prob. 10.18.

10.19 Rework Prob. 10.5 using mesh analysis.

10.20 Using mesh analysis, find I1 and I2 in the circuit of
Fig. 10.68.

+
−

+
−I2I1

j10 Ω

–j20 Ω

40 Ω

50   0° V40   30° V

Figure 10.68 For Prob. 10.20.

10.21 By using mesh analysis, find I1 and I2 in the circuit
depicted in Fig. 10.69.

I2I1

j4 Ω

j2 Ω

j1 Ω

–j6 Ω

3 Ω

2 Ω

30   20° V

3 Ω

+ −

Figure 10.69 For Prob. 10.21.
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10.22 Repeat Prob. 10.11 using mesh analysis.

10.23 Use mesh analysis to determine current Io in the
circuit of Fig. 10.70 below.

10.24 Determine Vo and Io in the circuit of Fig. 10.71
using mesh analysis.

j4 Ω

Io

3Vo –j2 Ω4   –30° A 2 Ω +
−Vo

+

−

Figure 10.71 For Prob. 10.24.

10.25 Compute I in Prob. 10.9 using mesh analysis.

10.26 Use mesh analysis to find Io in Fig. 10.28 (for
Example 10.10).

10.27 Calculate Io in Fig. 10.30 (for Practice Prob. 10.10)
using mesh analysis.

10.28 Compute Vo in the circuit of Fig. 10.72 using mesh
analysis.

–j3 Ω

2 Ω

j4 Ω

+
−2 Ω

2 Ω
12   0° V

2   0° A

4   90° A Vo

+

−

Figure 10.72 For Prob. 10.28.

10.29 Using mesh analysis, obtain Io in the circuit shown
in Fig. 10.73.

–j4 Ωj2 Ω
2 Ω

1 Ω 1 Ω

Io

+
− 10   90° V

4  0° A

2   0° A

Figure 10.73 For Prob. 10.29.

Section 10.4 Superposition Theorem

10.30 Find io in the circuit shown in Fig. 10.74 using
superposition.

4 Ω

+
−

+
−

2 Ω

8 V1 H10 cos 4t V

io

Figure 10.74 For Prob. 10.30.

10.31 Using the superposition principle, find ix in the
circuit of Fig. 10.75.

+
−

3 Ω

4 H 10 cos(2t – 60°) V5 cos(2t + 10°) A

ix
F1

8

Figure 10.75 For Prob. 10.31.

10.32 Rework Prob. 10.2 using the superposition theorem.

10.33 Solve for vo(t) in the circuit of Fig. 10.76 using the
superposition principle.

–j40 Ω –j40 Ω

j60 Ω80 Ω 20 ΩIo

+
−

+
−100   120° V 60   –30° V

Figure 10.70 For Prob. 10.23.
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+
−

+
−

6 Ω 2 H

10 V12 cos 3t V 4 sin 2t A
+

−
voF1

12

Figure 10.76 For Prob. 10.33.

10.34 Determine io in the circuit of Fig. 10.77.

+
−

1 Ω 2 H24 V

2 cos 3t2 Ω 4 Ω

+−
io

10 sin(3t – 30°) V

F1
6

Figure 10.77 For Prob. 10.34.

10.35 Find io in the circuit in Fig. 10.78 using
superposition.

80 Ω

60 Ω

40 mH

20 mF

24 V

100 Ω

+
−

+
−50 cos 2000t V

2 sin 4000t A

io

Figure 10.78 For Prob. 10.35.

Section 10.5 Source Transformation

10.36 Using source transformation, find i in the circuit of
Fig. 10.79.

3 Ω

5 Ω
5 mH

1 mF

8 sin(200t + 30°) A

i

Figure 10.79 For Prob. 10.36.

10.37 Use source transformation to find vo in the circuit in
Fig. 10.80.

20 Ω

80 Ω

0.4 mH

0.2 mF+
−5 cos 105t V vo

+

−

Figure 10.80 For Prob. 10.37.

10.38 Solve Prob. 10.20 using source transformation.

10.39 Use the method of source transformation to find Ix
in the circuit of Fig. 10.81.

+
−

2 Ω j4 Ω –j2 Ω

–j3 Ω

6 Ω 4 Ω

Ix

60   0° V 5   90° A

Figure 10.81 For Prob. 10.39.

10.40 Use the concept of source transformation to find Vo

in the circuit of Fig. 10.82.

+
−

4 Ω j4 Ω–j3 Ω

–j2 Ωj2 Ω 2 Ω20   0° V Vo

+

−

Figure 10.82 For Prob. 10.40.

Section 10.6 Thevenin and Norton Equivalent
Circuits

10.41 Find the Thevenin and Norton equivalent circuits at
terminals a-b for each of the circuits in Fig. 10.83.
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–j10 Ω

j20 Ω 10 Ω
a

b

50   30° V +
−

a

b

4   0° A

–j5 Ω

j10 Ω8 Ω

(b)

(a)

Figure 10.83 For Prob. 10.41.

10.42 For each of the circuits in Fig. 10.84, obtain
Thevenin and Norton equivalent circuits at terminals
a-b.

–j5 Ω

j4 Ω
6 Ω

30 Ω

a

b

2   0° A

a

b

120   45° V

–j2 Ω

j10 Ω

60 Ω

(b)

(a)

+
−

Figure 10.84 For Prob. 10.42.

10.43 Find the Thevenin and Norton equivalent circuits for
the circuit shown in Fig. 10.85.

j20 Ω

5 Ω 2 Ω

60   120° V +
−

–j10 Ω

Figure 10.85 For Prob. 10.43.

10.44 For the circuit depicted in Fig. 10.86, find the
Thevenin equivalent circuit at terminals a-b.

a

b

5   45° A j10 Ω
8 Ω

–j6 Ω

Figure 10.86 For Prob. 10.44.

10.45 Repeat Prob. 10.1 using Thevenin’s theorem.

10.46 Find the Thevenin equivalent of the circuit in Fig.
10.87 as seen from:
(a) terminals a-b (b) terminals c-d

10 Ω
a

b

4   0° A20   0° V

–j4 Ω

j5 Ω 4 Ω+
−

c d

Figure 10.87 For Prob. 10.46.

10.47 Solve Prob. 10.3 using Thevenin’s theorem.

10.48 Using Thevenin’s theorem, find vo in the circuit in
Fig. 10.88.

2 H4 Ω

2 Ω vo

io

3io

+
−12 cos t V

+

−
F1

4 F1
8

Figure 10.88 For Prob. 10.48.

10.49 Obtain the Norton equivalent of the circuit depicted
in Fig. 10.89 at terminals a-b.

a

b

5 mF

10 H 2 kΩ4 cos(200t + 30°) V

Figure 10.89 For Prob. 10.49.
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10.50 For the circuit shown in Fig. 10.90, find the Norton
equivalent circuit at terminals a-b.

60 Ω 40 Ω

–j30 Ωj80 Ω

a b3   60° A

Figure 10.90 For Prob. 10.50.

10.51 Compute io in Fig. 10.91 using Norton’s theorem.

2 Ω

4 H

5 cos 2t V

+ −
io

F1
4 F1

2

Figure 10.91 For Prob. 10.51.

10.52 At terminals a-b, obtain Thevenin and Norton
equivalent circuits for the network depicted in Fig.
10.92. Take ω = 10 rad/s.

a

b

10 mF

10 Ω2 sin vt V 

12 cos vt
+−

vo 2vo

+

−
H1

2

Figure 10.92 For Prob. 10.52.

Section 10.7 Op Amp AC Circuits

10.53 For the differentiator shown in Fig. 10.93, obtain
Vo/Vs . Find vo(t) when vs(t) = Vm sinωt and
ω = 1/RC.

+
−vs vo

R

C

+

−

+
−

Figure 10.93 For Prob. 10.53.

10.54 The circuit in Fig. 10.94 is an integrator with a
feedback resistor. Calculate vo(t) if
vs = 2 cos 4 × 104t V.

+
−vs vo

+

−

10 nF

100 kΩ

50 kΩ

+
−

Figure 10.94 For Prob. 10.54.

10.55 Compute io(t) in the op amp circuit in Fig. 10.95 if
vs = 4 cos 104t V.

+
−vs

50 kΩ

1 nF
100 kΩ

io

+
−

Figure 10.95 For Prob. 10.55.

10.56 If the input impedance is defined as Zin = Vs/Is ,
find the input impedance of the op amp circuit in
Fig. 10.96 when R1 = 10 k�, R2 = 20 k�,
C1 = 10 nF, C2 = 20 nF, and ω = 5000 rad/s.

Vs C2

C1

R1 R2
Is

Zin

Vo

+
−

+
−

Figure 10.96 For Prob. 10.56.

10.57 Evaluate the voltage gain Av = Vo/Vs in the op
amp circuit of Fig. 10.97. Find Av at ω = 0,
ω → ∞, ω = 1/R1C1, and ω = 1/R2C2.

+
−Vs Vo

+

−

C1R1

C2R2

+
−

Figure 10.97 For Prob. 10.57.
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10.58 In the op amp circuit of Fig. 10.98, find the
closed-loop gain and phase shift if C1 = C2 = 1 nF,
R1 = R2 = 100 k�, R3 = 20 k�, R4 = 40 k�, and
ω = 2000 rad/s.

vs vo

C1

R1

R2
+
−

C2

R4

R3

+

−

+
−

Figure 10.98 For Prob. 10.58.

10.59 Compute the closed-loop gain Vo/Vs for the op amp
circuit of Fig. 10.99.

+

−

+
−vs

vo

+

−

C1

R1

R3 C2 R2

Figure 10.99 For Prob. 10.59.

10.60 Determine vo(t) in the op amp circuit in Fig. 10.100
below.

10.61 For the op amp circuit in Fig. 10.101, obtain vo(t).

vo
+
−

10 kΩ

20 kΩ

40 kΩ
0.1 mF

0.2 mF

+
−

+
−

+

−

5 cos 103t V

Figure 10.101 For Prob. 10.61.

10.62 Obtain vo(t) for the op amp circuit in Fig. 10.102 if
vs = 4 cos(1000t − 60◦) V.

vo
vs +

−

10 kΩ

50 kΩ

20 kΩ 0.2 mF

0.1 mF

+
−

+
−

+

−

Figure 10.102 For Prob. 10.62.

Section 10.8 AC Analysis Using PSpice

10.63 Use PSpice to solve Example 10.10.

10.64 Solve Prob. 10.13 using PSpice.

vo

+
−

10 kΩ

20 kΩ

20 kΩ

40 kΩ10 kΩ0.25 mF

0.5 mF

+
−

2 sin 400t V

Figure 10.100 For Prob. 10.60.
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10.65 Obtain Vo in the circuit of Fig. 10.103 using PSpice.

1 Ω

j4 Ω
–j2 Ω

2 Ω
+

−
Vx

2Vx
+

−
Vo

3   0° A

Figure 10.103 For Prob. 10.65.

10.66 Use PSpice to find V1,V2, and V3 in the network of
Fig. 10.104.

+
−

8 Ω

j10 Ω j10 Ω

–j4 Ω –j4 Ω

V1 V3V2

60   30° V 4   0° A

Figure 10.104 For Prob. 10.66.

10.67 Determine V1,V2, and V3 in the circuit of Fig.
10.105 using PSpice.

8 Ω

j10 Ω

1 Ω2 Ω

j6 Ω –j2 Ω

–j4 Ω
V1 V3V2

4   0° A 2   0° A

Figure 10.105 For Prob. 10.67.

10.68 Use PSpice to find vo and io in the circuit of Fig.
10.106 below.

Section 10.9 Applications

10.69 The op amp circuit in Fig. 10.107 is called an
inductance simulator. Show that the input
impedance is given by

Zin = Vin

Iin
= jωLeq

where

Leq = R1R3R4

R2
C

Vin

I in

+
−

+
−

R1 R2 R3
C R4

+
−

Figure 10.107 For Prob. 10.69.

10.70 Figure 10.108 shows a Wien-bridge network. Show
that the frequency at which the phase shift between
the input and output signals is zero is f = 1

2πRC,
and that the necessary gain is Av = Vo/Vi = 3 at
that frequency.

Vi
+
−

R
R1

R2R

C

C

+ −Vo

Figure 10.108 For Prob. 10.70.

10.71 Consider the oscillator in Fig. 10.109.
(a) Determine the oscillation frequency.

20 mF

25 mF

2 H4 Ω

10 Ω vo0.5vo

io

4io
+
−6 cos 4t V

+

−

+
−

Figure 10.106 For Prob. 10.68.
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(b) Obtain the minimum value of R for which
oscillation takes place.

+
−

R

10 kΩ

20 kΩ

80 kΩ

0.4 mH 2 nF

Figure 10.109 For Prob. 10.71.

10.72 The oscillator circuit in Fig. 10.110 uses an ideal op
amp.
(a) Calculate the minimum value of Ro that will

cause oscillation to occur.
(b) Find the frequency of oscillation.

+
−

10 kΩ

100 kΩ

1 MΩ

10 mH 2 nF

Ro

Figure 10.110 For Prob. 10.72.

10.73 Figure 10.111 shows a Colpitts oscillator. Show
that the oscillation frequency is

fo = 1

2π
√
LCT

where CT = C1C2/(C1 + C2). Assume Ri � XC2 .

+
−

Rf

Ri

C2 C1

L

Vo

Figure 10.111 A Colpitts oscillator; for Prob. 10.73.

(Hint: Set the imaginary part of the impedance in
the feedback circuit equal to zero.)

10.74 Design a Colpitts oscillator that will operate at
50 kHz.

10.75 Figure 10.112 shows a Hartley oscillator. Show that
the frequency of oscillation is

fo = 1

2π
√
C(L1 + L2)

+
−

Rf

Ri

L2 L1

C

Vo

Figure 10.112 A Hartley oscillator; for Prob. 10.75.

10.76 Refer to the oscillator in Fig. 10.113.
(a) Show that

V2

Vo

= 1

3 + j (ωL/R − R/ωL)

(b) Determine the oscillation frequency fo.
(c) Obtain the relationship between R1 and R2 in

order for oscillation to occur.

+
−

R L

RL

R1

R2

Vo

V2

Figure 10.113 For Prob. 10.76.
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C H A P T E R

AC POWER ANALYSIS

1 1

An engineer is an unordinary person who can do for one dollar what any
ordinary person can do for two dollars.

—Anonymous

Enhancing Your Career
Career in Power Systems The discovery of the principle
of an ac generator by Michael Faraday in 1831 was a major
breakthrough in engineering; it provided a convenient way
of generating the electric power that is needed in every elec-
tronic, electrical, or electromechanical device we use now.

Electric power is obtained by converting energy from
sources such as fossil fuels (gas, oil, and coal), nuclear
fuel (uranium), hydro energy (water falling through a head),
geothermal energy (hot water, steam), wind energy, tidal en-
ergy, and biomass energy (wastes). These various ways of
generating electric power are studied in detail in the field of
power engineering, which has become an indispensable sub-
discipline of electrical engineering. An electrical engineer
should be familiar with the analysis, generation, transmis-
sion, distribution, and cost of electric power.

The electric power industry is a very large employer
of electrical engineers. The industry includes thousands of
electric utility systems ranging from large, interconnected
systems serving large regional areas to small power
companies serving individual communities or factories.
Due to the complexity of the power industry, there are
numerous electrical engineering jobs in different areas of
the industry: power plant (generation), transmission and
distribution, maintenance, research, data acquisition and
flow control, and management. Since electric power is used
everywhere, electric utility companies are everywhere, of-
fering exciting training and steady employment for men and
women in thousands of communities throughout the world.

A pole-type transformer with a low-voltage, three-wire distribution
system. Source: W. N. Alerich, Electricity, 3rd ed. Albany, NY:
Delmar Publishers, 1981, p. 152. (Courtesy of General Electric.)
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11.1 INTRODUCTION
Our effort in ac circuit analysis so far has been focused mainly on cal-
culating voltage and current. Our major concern in this chapter is power
analysis.

Power analysis is of paramount importance. Power is the most
important quantity in electric utilities, electronic, and communication
systems, because such systems involve transmission of power from one
point to another. Also, every industrial and household electrical device—
every fan, motor, lamp, pressing iron, TV, personal computer—has a
power rating that indicates how much power the equipment requires;
exceeding the power rating can do permanent damage to an appliance.
The most common form of electric power is 50- or 60-Hz ac power. The
choice of ac over dc allowed high-voltage power transmission from the
power generating plant to the consumer.

We will begin by defining and derivinginstantaneous power and
average power. We will then introduce other power concepts. As practi-
cal applications of these concepts, we will discuss how power is measured
and reconsider how electric utility companies charge their customers.

11.2 INSTANTANEOUS AND AVERAGE POWER
As mentioned in Chapter 2, theinstantaneous power p(t) absorbed by an
element is the product of the instantaneous voltagev(t)across the element
and the instantaneous currenti(t) through it. Assuming the passive sign
convention,

p(t) = v(t)i(t) (11.1)

The instantaneous power is the power at any instant of time. It is the rate
at which an element absorbs energy.We can also think of the instantaneous power

as the power absorbed by the element at a spe-
cific instant of time. Instantaneous quantities are
denoted by lowercase letters.

Sinusoidal
source

Passive 
linear
network

i(t)

+

−
v (t)

Figure 11.1 Sinusoidal source and passive
linear circuit.

Consider the general case of instantaneous power absorbed by an
arbitrary combination of circuit elements under sinusoidal excitation, as
shown in Fig. 11.1. Let the voltage and current at the terminals of the
circuit be

v(t) = Vm cos(ωt + θv) (11.2a)

i(t) = Im cos(ωt + θi) (11.2b)

whereVm and Im are the amplitudes (or peak values), and θv and θi are the
phase angles of the voltage and current, respectively. The instantaneous
power absorbed by the circuit is

p(t) = v(t)i(t) = VmIm cos(ωt + θv) cos(ωt + θi) (11.3)

We apply the trigonometric identity

cosA cosB = 1

2
[cos(A− B)+ cos(A+ B)] (11.4)

and express Eq. (11.3) as

p(t) = 1

2
VmIm cos(θv − θi)+ 1

2
VmIm cos(2ωt + θv + θi) (11.5)
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This shows us that the instantaneous power has two parts. The first part is
constant or time independent. Its value depends on the phase difference
between the voltage and the current. The second part is a sinusoidal
function whose frequency is 2ω, which is twice the angular frequency of
the voltage or current.

A sketch of p(t) in Eq. (11.5) is shown in Fig. 11.2, where T =
2π/ω is the period of voltage or current. We observe thatp(t) is periodic,
p(t) = p(t + T0), and has a period of T0 = T/2, since its frequency
is twice that of voltage or current. We also observe that p(t) is positive
for some part of each cycle and negative for the rest of the cycle. When
p(t) is positive, power is absorbed by the circuit. When p(t) is negative,
power is absorbed by the source; that is, power is transferred from the
circuit to the source. This is possible because of the storage elements
(capacitors and inductors) in the circuit.

0

VmIm cos(uv − ui)

VmIm

p(t)

T
2

T t

1
2

1
2

Figure 11.2 The instantaneous power p(t) entering a circuit.

The instantaneous power changes with time and is therefore difficult
to measure. The average power is more convenient to measure. In fact,
the wattmeter, the instrument for measuring power, responds to average
power.

The average power is the average of the instantaneous power over one period.

Thus, the average power is given by

P = 1

T

∫ T

0
p(t) dt (11.6)

Although Eq. (11.6) shows the averaging done over T , we would get the
same result if we performed the integration over the actual period of p(t)
which is T0 = T/2.

Substituting p(t) in Eq. (11.5) into Eq. (11.6) gives

P = 1

T

∫ T

0

1

2
VmIm cos(θv − θi) dt

+ 1

T

∫ T

0

1

2
VmIm cos(2ωt + θv + θi) dt
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= 1

2
VmIm cos(θv − θi) 1

T

∫ T

0
dt

+ 1

2
VmIm

1

T

∫ T

0
cos(2ωt + θv + θi) dt (11.7)

The first integrand is constant, and the average of a constant is the same
constant. The second integrand is a sinusoid. We know that the average of
a sinusoid over its period is zero because the area under the sinusoid during
a positive half-cycle is canceled by the area under it during the following
negative half-cycle. Thus, the second term in Eq. (11.7) vanishes and the
average power becomes

P = 1

2
VmIm cos(θv − θi) (11.8)

Since cos(θv − θi) = cos(θi − θv), what is important is the difference in
the phases of the voltage and current.

Note that p(t) is time-varying while P does not depend on time.
To find the instantaneous power, we must necessarily have v(t) and i(t)
in the time domain. But we can find the average power when voltage
and current are expressed in the time domain, as in Eq. (11.2), or when
they are expressed in the frequency domain. The phasor forms of v(t)
and i(t) in Eq. (11.2) are V = Vm θv and I = Im θi, respectively. P is
calculated using Eq. (11.8) or using phasors V and I. To use phasors, we
notice that

1

2
VI∗ = 1

2
VmIm θv − θi

= 1

2
VmIm [cos(θv − θi)+ j sin(θv − θi)]

(11.9)

We recognize the real part of this expression as the average power P
according to Eq. (11.8). Thus,

P = 1

2
Re
[
VI∗] = 1

2
VmIm cos(θv − θi) (11.10)

Consider two special cases of Eq. (11.10). When θv = θi , the
voltage and current are in phase. This implies a purely resistive circuit
or resistive load R, and

P = 1

2
VmIm = 1

2
I 2
mR = 1

2
|I|2R (11.11)

where |I|2 = I × I∗. Equation (11.11) shows that a purely resistive
circuit absorbs power at all times. When θv − θi = ±90◦, we have a
purely reactive circuit, and

P = 1

2
VmIm cos 90◦ = 0 (11.12)
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showing that a purely reactive circuit absorbs no average power. In sum-
mary,

A resistive load (R) absorbs power at all times, while a reactive load (L or C)
absorbs zero average power.

E X A M P L E 1 1 . 1

Given that

v(t) = 120 cos(377t+45◦) V and i(t) = 10 cos(377t−10◦) A

find the instantaneous power and the average power absorbed by the
passive linear network of Fig. 11.1.

Solution:

The instantaneous power is given by

p = vi = 1200 cos(377t + 45◦) cos(377t − 10◦)

Applying the trigonometric identity

cosA cosB = 1

2
[cos(A+ B)+ cos(A− B)]

gives

p = 600[cos(754t + 35◦)+ cos 55◦]

or

p(t) = 344.2 + 600 cos(754t + 35◦)W

The average power is

P = 1

2
VmIm cos(θv − θi) = 1

2
120(10) cos[45◦ − (−10◦)]

= 600 cos 55◦ = 344.2 W

which is the constant part of p(t) above.

P R A C T I C E P R O B L E M 1 1 . 1

Calculate the instantaneous power and average power absorbed by the
passive linear network of Fig. 11.1 if

v(t) = 80 cos(10t + 20◦) V and i(t) = 15 sin(10t + 60◦) A

Answer: 385.7 + 600 cos(20t − 10◦)W, 385.7 W.

E X A M P L E 1 1 . 2

Calculate the average power absorbed by an impedance Z = 30 − j70�
when a voltage V = 120 0◦ is applied across it.
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Solution:

The current through the impedance is

I = V
Z

= 120 0◦

30 − j70
= 120 0◦

76.16 − 66.8◦
= 1.576 66.8◦ A

The average power is

P = 1

2
VmIm cos(θv − θi) = 1

2
(120)(1.576) cos(0 − 66.8◦) = 37.24 W

P R A C T I C E P R O B L E M 1 1 . 2

A current I = 10 30◦ flows through an impedance Z = 20 − 22◦ �.
Find the average power delivered to the impedance.

Answer: 927.2 W.

E X A M P L E 1 1 . 3

For the circuit shown in Fig. 11.3, find the average power supplied by the
source and the average power absorbed by the resistor.

4 Ω

+
−

I

−j2 Ω5   30° V

Figure 11.3 For Example 11.3.

Solution:

The current I is given by

I = 5 30◦

4 − j2
= 5 30◦

4.472 − 26.57◦
= 1.118 56.57◦ A

The average power supplied by the voltage source is

P = 1

2
(5)(1.118) cos(30◦ − 56.57◦) = 2.5 W

The current through the resistor is

I = IR = 1.118 56.57◦ A

and the voltage across it is

VR = 4IR = 4.472 56.57◦ V

The average power absorbed by the resistor is

P = 1

2
(4.472)(1.118) = 2.5 W

which is the same as the average power supplied. Zero average power is
absorbed by the capacitor.

P R A C T I C E P R O B L E M 1 1 . 3

In the circuit of Fig. 11.4, calculate the average power absorbed by the
resistor and inductor. Find the average power supplied by the voltage
source.

3 Ω

+
− j1 Ω8   45° V

Figure 11.4 For Practice Prob. 11.3.

Answer: 9.6 W, 0 W, 9.6 W.
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E X A M P L E 1 1 . 4

Determine the power generated by each source and the average power ab-
sorbed by each passive element in the circuit of Fig. 11.5(a).

20 Ω

+
−j10 Ω

−j5 Ω

4   0° Α 60   30° V1 3 5

42

(a)

20 Ω

+
−j10 Ω

−j5 Ω

4   0° Α 60   30° V

(b)

+

−

+ −
V2

V1
I1 I2

Figure 11.5 For Example 11.4.

Solution:

We apply mesh analysis as shown in Fig. 11.5(b). For mesh 1,

I1 = 4 A

For mesh 2,

(j10 − j5)I2 − j10I1 + 60 30◦ = 0, I1 = 4 A

or
j5I2 = −60 30◦ + j40 	⇒ I2 = −12 − 60◦ + 8

= 10.58 79.1◦ A

For the voltage source, the current flowing from it is I2 = 10.58 79.1◦ A
and the voltage across it is 60 30◦ V, so that the average power is

P5 = 1

2
(60)(10.58) cos(30◦ − 79.1◦) = 207.8 W

Following the passive sign convention (see Fig. 1.8), this average power
is absorbed by the source, in view of the direction of I2 and the polarity
of the voltage source. That is, the circuit is delivering average power to
the voltage source.

For the current source, the current through it is I1 = 4 0◦ and the
voltage across it is

V1 = 20I1 + j10(I1 − I2) = 80 + j10(4 − 2 − j10.39)

= 183.9 + j20 = 184.984 6.21◦ V

The average power supplied by the current source is

P1 = −1

2
(184.984)(4) cos(6.21◦ − 0) = −367.8 W

It is negative according to the passive sign convention, meaning that the
current source is supplying power to the circuit.

For the resistor, the current through it is I1 = 4 0◦ and the voltage
across it is 20I1 = 80 0◦, so that the power absorbed by the resistor is

P2 = 1

2
(80)(4) = 160 W
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For the capacitor, the current through it is I2 = 10.58 79.1◦ and the
voltage across it is −j5I2 = (5 − 90◦)(10.58 79.1◦) =
52.9 79.1◦ − 90◦. The average power absorbed by the capacitor is

P4 = 1

2
(52.9)(10.58) cos(−90◦) = 0

For the inductor, the current through it is I1 − I2 = 2 − j10.39 =
10.58 − 79.1◦. The voltage across it is j10(I1 − I2) =
105.8 − 79.1◦ + 90◦. Hence, the average power absorbed by the in-
ductor is

P3 = 1

2
(105.8)(10.58) cos 90◦ = 0

Notice that the inductor and the capacitor absorb zero average power
and that the total power supplied by the current source equals the power
absorbed by the resistor and the voltage source, or

P1 + P2 + P3 + P4 + P5 = −367.8 + 160 + 0 + 0 + 207.8 = 0

indicating that power is conserved.

P R A C T I C E P R O B L E M 1 1 . 4

Calculate the average power absorbed by each of the five elements in the
circuit of Fig. 11.6.

8 Ω

+
−

+
− −j2 Ω

j4 Ω

40   0° V 20   90° V

Figure 11.6 For Practice Prob. 11.4.

Answer: 40-V Voltage source: −100 W; resistor: 100 W; others: 0 W.

11.3 MAXIMUM AVERAGE POWER TRANSFER
In Section 4.8 we solved the problem of maximizing the power deliv-
ered by a power-supplying resistive network to a load RL. Represent-
ing the circuit by its Thevenin equivalent, we proved that the maximum
power would be delivered to the load if the load resistance is equal to the
Thevenin resistance RL = RTh. We now extend that result to ac circuits.

Consider the circuit in Fig. 11.7, where an ac circuit is connected
to a load ZL and is represented by its Thevenin equivalent. The load
is usually represented by an impedance, which may model an electric
motor, an antenna, a TV, and so forth. In rectangular form, the Thevenin
impedance ZTh and the load impedance ZL are

ZTh = RTh + jXTh (11.13a)

ZL = RL + jXL (11.13b)
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The current through the load is

I = VTh

ZTh + ZL
= VTh

(RTh + jXTh)+ (RL + jXL) (11.14)

From Eq. (11.11), the average power delivered to the load is

P = 1

2
|I|2RL = |VTh|2RL/2

(RTh + RL)2 + (XTh +XL)2 (11.15)

Our objective is to adjust the load parameters RL and XL so that P is
maximum. To do this we set ∂P/∂RL and ∂P/∂XL equal to zero. From
Eq. (11.15), we obtain

∂P

∂XL
= − |VTh|2RL(XTh +XL)

[(RTh + RL)2 + (XTh +XL)2]2
(11.16a)

∂P

∂RL
= |VTh|2[(RTh + RL)2 + (XTh +XL)2 − 2RL(RTh + RL)]

2[(RTh + RL)2 + (XTh +XL)2]2
(11.16b)

Setting ∂P/∂XL to zero gives

XL = −XTh (11.17)

and setting ∂P/∂RL to zero results in

RL =
√
R2

Th + (XTh +XL)2 (11.18)

Combining Eqs. (11.17) and (11.18) leads to the conclusion that for max-
imum average power transfer, ZL must be selected so that XL = −XTh

and RL = RTh, i.e.,

ZL = RL + jXL = RTh − jXTh = Z∗
Th (11.19)

I

ZL

(a)

VTh

ZTh

(b)

ZL
+
−

Linear 
circuit

Figure 11.7 Finding the
maximum average power transfer:
(a) circuit with a load, (b) the
Thevenin equivalent.

When ZL =Z*
Th, we say that the load is matched

to the source.

For maximum average power transfer, the load impedance ZL must be equal to the
complex conjugate of the Thevenin impedance ZTh.

This result is known as the maximum average power transfer theorem for
the sinusoidal steady state. Setting RL = RTh and XL = −XTh in Eq.
(11.15) gives us the maximum average power as

Pmax = |VTh|2
8RTh

(11.20)

In a situation in which the load is purely real, the condition for
maximum power transfer is obtained from Eq. (11.18) by settingXL = 0;
that is,

RL =
√
R2

Th +X2
Th = |ZTh| (11.21)

This means that for maximum average power transfer to a purely resistive
load, the load impedance (or resistance) is equal to the magnitude of the
Thevenin impedance.
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E X A M P L E 1 1 . 5

Determine the load impedance ZL that maximizes the average power
drawn from the circuit of Fig. 11.8. What is the maximum average power?

4 Ω

8 Ω+
−

−j6 Ω

j5 Ω

10   0° V ZL

Figure 11.8 For Example 11.5.

Solution:

First we obtain the Thevenin equivalent at the load terminals. To get ZTh,
consider the circuit shown in Fig. 11.9(a). We find

ZTh = j5 + 4 ‖ (8 − j6) = j5 + 4(8 − j6)

4 + 8 − j6
= 2.933 + j4.467 �

To find VTh, consider the circuit in Fig. 11.8(b). By voltage division,

VTh = 8 − j6

4 + 8 − j6
(10) = 7.454 − 10.3◦ V

The load impedance draws the maximum power from the circuit when

ZL = Z∗
Th = 2.933 − j4.467 �

According to Eq. (11.20), the maximum average power is

Pmax = |VTh|2
8RTh

= (7.454)2

8(2.933)
= 2.368 W

4 Ω

8 Ω

−j6 Ω

j5 Ω

10 V
ZTh

(a)

4 Ω

8 Ω

−j6 Ω

j5 Ω

VTh

(b)

+

−

+
−

Figure 11.9 Finding the Thevenin equivalent of the circuit in Fig. 11.8.

P R A C T I C E P R O B L E M 1 1 . 5

For the circuit shown in Fig. 11.10, find the load impedance ZL that ab-
sorbs the maximum average power. Calculate that maximum average
power.

5 Ω8 Ω

−j4 Ω j10 Ω

ZL2 A

Figure 11.10 For Practice Prob. 11.5.

Answer: 3.415 − j0.7317 �, 1.429 W.

E X A M P L E 1 1 . 6

In the circuit in Fig. 11.11, find the value of RL that will absorb the max-
imum average power. Calculate that power.
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Solution:

We first find the Thevenin equivalent at the terminals of RL.

ZTh = (40 − j30) ‖ j20 = j20(40 − j30)

j20 + 40 − j30
= 9.412 + j22.35 �

By voltage division,

VTh = j20

j20 + 40 − j30
(150 30◦) = 72.76 134◦ V

The value of RL that will absorb the maximum average power is

RL = |ZTh| =
√

9.4122 + 22.352 = 24.25 �

The current through the load is

I = VTh

ZTh + RL = 72.76 134◦

33.39 + j22.35
= 1.8 100.2◦ A

The maximum average power absorbed by RL is

Pmax = 1

2
|I|2RL = 1

2
(1.8)2(24.25) = 39.29 W

40 Ω

+
− j20 Ω

−j30 Ω

150   30° V RL

Figure 11.11 For Example 11.6.

P R A C T I C E P R O B L E M 1 1 . 6

In Fig. 11.12, the resistor RL is adjusted until it absorbs the maximum
average power. Calculate RL and the maximum average power absorbed
by it.

80 Ω

+
− 90 Ω

j60 Ω

120   60° V RL−j30 Ω

Figure 11.12 For Practice Prob. 11.6.

Answer: 30 �, 9.883 W.

11.4 EFFECTIVE OR RMS VALUE
The idea of effective value arises from the need to measure the effec-
tiveness of a voltage or current source in delivering power to a resistive
load.

The effective value of a periodic current is the dc current that delivers the same
average power to a resistor as the periodic current.
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In Fig. 11.13, the circuit in (a) is ac while that of (b) is dc. Our objective
is to find Ieff that will transfer the same power to resistorR as the sinusoid
i. The average power absorbed by the resistor in the ac circuit is

P = 1

T

∫ T

0
i2R dt = R

T

∫ T

0
i2 dt (11.22)

while the power absorbed by the resistor in the dc circuit is

P = I 2
effR (11.23)

Equating the expressions in Eqs. (11.22) and (11.23) and solving for Ieff ,
we obtain

Ieff =
√

1

T

∫ T

0
i2 dt (11.24)

The effective value of the voltage is found in the same way as current;
that is,

Veff =
√

1

T

∫ T

0
v2 dt (11.25)

This indicates that the effective value is the (square) root of the mean (or
average) of the square of the periodic signal. Thus, the effective value is
often known as the root-mean-square value, or rms value for short; and
we write

Ieff = Irms, Veff = Vrms (11.26)

For any periodic function x(t) in general, the rms value is given by

Xrms =
√

1

T

∫ T

0
x2 dt (11.27)

R+
−

i(t)

v(t)

(a)

R

Ieff

Veff

(b)

+

−

Figure 11.13 Finding the
effective current: (a) ac circuit,
(b) dc circuit.

The effective value of a periodic signal is its root mean square (rms) value.

Equation 11.27 states that to find the rms value of x(t), we first find
its square x2 and then find the mean of that, or

1

T

∫ T

0
x2 dt

and then the square root (√ ) of that mean. The rms value of a
constant is the constant itself. For the sinusoid i(t) = Im cosωt , the
effective or rms value is

Irms =
√

1

T

∫ T

0
I 2
m cos2 ωt dt

=
√
I 2
m

T

∫ T

0

1

2
(1 + cos 2ωt) dt = Im√

2

(11.28)
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Similarly, for v(t) = Vm cosωt ,

Vrms = Vm√
2

(11.29)

Keep in mind that Eqs. (11.28) and (11.29) are only valid for sinusoidal
signals.

The average power in Eq. (11.8) can be written in terms of the rms
values.

P = 1

2
VmIm cos(θv − θi) = Vm√

2

Im√
2

cos(θv − θi)

= VrmsIrms cos(θv − θi)
(11.30)

Similarly, the average power absorbed by a resistor R in Eq. (11.11) can
be written as

P = I 2
rmsR = V 2

rms

R
(11.31)

When a sinusoidal voltage or current is specified, it is often in terms
of its maximum (or peak) value or its rms value, since its average value
is zero. The power industries specify phasor magnitudes in terms of their
rms values rather than peak values. For instance, the 110 V available at
every household is the rms value of the voltage from the power company.
It is convenient in power analysis to express voltage and current in their
rms values. Also, analog voltmeters and ammeters are designed to read
directly the rms value of voltage and current, respectively.

E X A M P L E 1 1 . 7

Determine the rms value of the current waveform in Fig. 11.14. If the
current is passed through a 2-� resistor, find the average power absorbed
by the resistor.

0
t

10

−10

i(t)

2 4 6 8 10

Figure 11.14 For Example 11.7.

Solution:

The period of the waveform is T = 4. Over a period, we can write the
current waveform as

i(t) =
{

5t, 0 < t < 2
−10, 2 < t < 4

The rms value is

Irms =
√

1

T

∫ T

0
i2 dt =

√
1

4

[∫ 2

0
(5t)2 dt +

∫ 4

2
(−10)2 dt

]

=
√√√√1

4

[
25
t3

3

∣∣∣∣
2

0

+ 100t

∣∣∣∣
4

2

]
=
√

1

4

(
200

3
+ 200

)
= 8.165 A

The power absorbed by a 2-� resistor is

P = I 2
rmsR = (8.165)2(2) = 133.3 W
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P R A C T I C E P R O B L E M 1 1 . 7

Find the rms value of the current waveform of Fig. 11.15. If the current
flows through a 9-� resistor, calculate the average power absorbed by the
resistor.

2 310 4 5 6 t

4

i(t)

Figure 11.15 For Practice Prob. 11.7.

Answer: 2.309 A, 48 W.

E X A M P L E 1 1 . 8

The waveform shown in Fig. 11.16 is a half-wave rectified sine wave.
Find the rms value and the amount of average power dissipated in a 10-�
resistor.

0 t

10

v(t)

p 2p 3p

Figure 11.16 For Example 11.8.

Solution:

The period of the voltage waveform is T = 2π, and

v(t) =
{

10 sin t, 0 < t < π
0, π < t < 2π

The rms value is obtained as

V 2
rms = 1

T

∫ T

0
v2(t) dt = 1

2π

[∫ π

0
(10 sin t)2 dt +

∫ 2π

π

02 dt

]

But sin2 t = 1
2 (1 − cos 2t). Hence

V 2
rms = 1

2π

∫ π

0

100

2
(1 − cos 2t) dt = 50

2π

(
t − sin 2t

2

)∣∣∣∣
π

0

= 50

2π

(
π − 1

2
sin 2π − 0

)
= 25, Vrms = 5 V

The average power absorbed is

P = V 2
rms

R
= 52

10
= 2.5 W

P R A C T I C E P R O B L E M 1 1 . 8

Find the rms value of the full-wave rectified sine wave in Fig. 11.17. Cal-
culate the average power dissipated in a 6-� resistor.

0 t

8

v(t)

p 2p 3p

Figure 11.17 For Practice Prob. 11.8.

Answer: 5.657 V, 5.334 W.
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11.5 APPARENT POWER AND POWER FACTOR
In Section 11.2 we see that if the voltage and current at the terminals of
a circuit are

v(t) = Vm cos(ωt + θv) and i(t) = Im cos(ωt + θi) (11.32)

or, in phasor form, V = Vm θv and I = Im θi , the average power is

P = 1

2
VmIm cos(θv − θi) (11.33)

In Section 11.4, we saw that

P = VrmsIrms cos(θv − θi) = S cos(θv − θi) (11.34)

We have added a new term to the equation:

S = VrmsIrms (11.35)

The average power is a product of two terms. The product VrmsIrms is
known as the apparent power S. The factor cos(θv − θi) is called the
power factor (pf).

The apparent power (in VA) is the product of the rms values of voltage and current.

The apparent power is so called because it seems apparent that the power
should be the voltage-current product, by analogy with dc resistive cir-
cuits. It is measured in volt-amperes or VA to distinguish it from the
average or real power, which is measured in watts. The power factor is
dimensionless, since it is the ratio of the average power to the apparent
power,

pf = P

S
= cos(θv − θi) (11.36)

The angle θv − θi is called the power factor angle, since it is the
angle whose cosine is the power factor. The power factor angle is equal
to the angle of the load impedance if V is the voltage across the load and
I is the current through it. This is evident from the fact that

Z = V
I

= Vm θv

Im θi

= Vm

Im
θv − θi (11.37)

Alternatively, since

Vrms = V√
2

= Vrms θv (11.38a)

and

Irms = I√
2

= Irms θi (11.38b)

the impedance is

Z = V
I

= Vrms

Irms
= Vrms

Irms
θv − θi (11.39)
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The power factor is the cosine of the phase difference between voltage and current.
It is also the cosine of the angle of the load impedance.

From Eq. (11.36), the power factor may also be
regarded as the ratio of the real power dissipated
in the load to the apparent power of the load.

From Eq. (11.36), the power factor may be seen as that factor by which the
apparent power must be multiplied to obtain the real or average power.
The value of pf ranges between zero and unity. For a purely resistive
load, the voltage and current are in phase, so that θv − θi = 0 and pf
= 1. This implies that the apparent power is equal to the average power.
For a purely reactive load, θv − θi = ±90◦ and pf = 0. In this case the
average power is zero. In between these two extreme cases, pf is said
to be leading or lagging. Leading power factor means that current leads
voltage, which implies a capacitive load. Lagging power factor means
that current lags voltage, implying an inductive load. Power factor affects
the electric bills consumers pay the electric utility companies, as we will
see in Section 11.9.2.

E X A M P L E 1 1 . 9

A series-connected load draws a current i(t) = 4 cos(100πt + 10◦) A
when the applied voltage is v(t) = 120 cos(100πt − 20◦) V. Find the
apparent power and the power factor of the load. Determine the element
values that form the series-connected load.

Solution:

The apparent power is

S = VrmsIrms = 120√
2

4√
2

= 240 VA

The power factor is

pf = cos(θv − θi) = cos(−20◦ − 10◦) = 0.866 (leading)

The pf is leading because the current leads the voltage. The pf may also
be obtained from the load impedance.

Z = V
I

= 120 − 20◦

4 10◦
= 30 − 30◦ = 25.98 − j15 �

pf = cos(−30◦) = 0.866 (leading)
The load impedance Z can be modeled by a 25.98-� resistor in series
with a capacitor with

XC = −15 = − 1

ωC
or

C = 1

15ω
= 1

15 × 100π
= 212.2 µF

P R A C T I C E P R O B L E M 1 1 . 9

Obtain the power factor and the apparent power of a load whose imped-
ance is Z = 60 + j40 � when the applied voltage is v(t) =
150 cos(377t + 10◦) V.

Answer: 0.832 lagging, 156 VA.
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E X A M P L E 1 1 . 1 0

Determine the power factor of the entire circuit of Fig. 11.18 as seen by
the source. Calculate the average power delivered by the source.

6 Ω

4 Ω+
−30   0° V rms −j2 Ω

Figure 11.18 For Example 11.10.

Solution:

The total impedance is

Z = 6 + 4 ‖ (−j2) = 6 + −j2 × 4

4 − j2
= 6.8 − j1.6 = 7 − 13.24 �

The power factor is

pf = cos(−13.24) = 0.9734 (leading)

since the impedance is capacitive. The rms value of the current is

Irms = Vrms

Z
= 30 0◦

7 − 13.24◦
= 4.286 13.24◦ A

The average power supplied by the source is

P = VrmsIrms pf = (30)(4.286)0.9734 = 125 W

or

P = I 2
rmsR = (4.286)2(6.8) = 125 W

where R is the resistive part of Z.

P R A C T I C E P R O B L E M 1 1 . 1 0

Calculate the power factor of the entire circuit of Fig. 11.19 as seen by
the source. What is the average power supplied by the source?

10 Ω

+
−

8 Ω

j4 Ω −j6 Ω40   0° V rms

Figure 11.19 For Practice Prob. 11.10.

Answer: 0.936 lagging, 118 W.

11.6 COMPLEX POWER
Considerable effort has been expended over the years to express power
relations as simply as possible. Power engineers have coined the term
complex power, which they use to find the total effect of parallel loads.
Complex power is important in power analysis because it contains all the
information pertaining to the power absorbed by a given load.

V

I

+

−

Load
Z

Figure 11.20 The
voltage and current
phasors associated
with a load.

Consider the ac load in Fig. 11.20. Given the phasor form V =
Vm θv and I = Im θi of voltage v(t) and current i(t), the complex
power S absorbed by the ac load is the product of the voltage and the
complex conjugate of the current, or

S = 1

2
VI∗ (11.40)

assuming the passive sign convention (see Fig. 11.20). In terms of the
rms values,

S = VrmsI∗
rms (11.41)
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where

Vrms = V√
2

= Vrms θv (11.42)

and

Irms = I√
2

= Irms θi (11.43)

Thus we may write Eq. (11.41) as

S = VrmsIrms θv − θi
= VrmsIrms cos(θv − θi)+ jVrmsIrms sin(θv − θi)

(11.44)

This equation can also be obtained from Eq. (11.9). We notice from Eq.
(11.44) that the magnitude of the complex power is the apparent power;
hence, the complex power is measured in volt-amperes (VA). Also, we
notice that the angle of the complex power is the power factor angle.

When working with the rms values of currents
or voltages, we may drop the subscript rms if no
confusion will be caused by doing so.

The complex power may be expressed in terms of the load impedance
Z. From Eq. (11.37), the load impedance Z may be written as

Z = V
I

= Vrms

Irms
= Vrms

Irms
θv − θi (11.45)

Thus, Vrms = ZIrms. Substituting this into Eq. (11.41) gives

S = I 2
rmsZ = V 2

rms

Z∗ (11.46)

Since Z = R + jX, Eq. (11.46) becomes

S = I 2
rms(R + jX) = P + jQ (11.47)

where P and Q are the real and imaginary parts of the complex power;
that is,

P = Re(S) = I 2
rmsR (11.48)

Q = Im(S) = I 2
rmsX (11.49)

P is the average or real power and it depends on the load’s resistance
R. Q depends on the load’s reactance X and is called the reactive (or
quadrature) power.

Comparing Eq. (11.44) with Eq. (11.47), we notice that

P = VrmsIrms cos(θv − θi), Q = VrmsIrms sin(θv − θi) (11.50)

The real power P is the average power in watts delivered to a load; it
is the only useful power. It is the actual power dissipated by the load.
The reactive power Q is a measure of the energy exchange between the
source and the reactive part of the load. The unit ofQ is the volt-ampere
reactive (VAR) to distinguish it from the real power, whose unit is the watt.
We know from Chapter 6 that energy storage elements neither dissipate
nor supply power, but exchange power back and forth with the rest of
the network. In the same way, the reactive power is being transferred
back and forth between the load and the source. It represents a lossless
interchange between the load and the source. Notice that:
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1. Q = 0 for resistive loads (unity pf).

2. Q < 0 for capacitive loads (leading pf).

3. Q > 0 for inductive loads (lagging pf).

Thus,

Complex power (in VA) is the product of the rms voltage phasor and the
complex conjugate of the rms current phasor. As a complex quantity, its

real part is real power P and its imaginary part is reactive power Q.

Introducing the complex power enables us to obtain the real and reactive
powers directly from voltage and current phasors.

Complex Power = S = P + jQ = 1

2
VI∗

= VrmsIrms θv − θi
Apparent Power = S = |S| = VrmsIrms =

√
P 2 +Q2

Real Power = P = Re(S) = S cos(θv − θi)
Reactive Power = Q = Im(S) = S sin(θv − θi)

Power Factor = P

S
= cos(θv − θi)

(11.51)

This shows how the complex power contains all the relevant power in-
formation in a given load. S contains all power information of a load. The

real part of S is the real power P; its imaginary
part is the reactive power Q; its magnitude is the
apparent power S; and the cosine of its phase
angle is the power factor pf.

It is a standard practice to represent S, P , and Q in the form of
a triangle, known as the power triangle, shown in Fig. 11.21(a). This
is similar to the impedance triangle showing the relationship between
Z, R, and X, illustrated in Fig. 11.21(b). The power triangle has four
items—the apparent/complex power, real power, reactive power, and the
power factor angle. Given two of these items, the other two can easily
be obtained from the triangle. As shown in Fig. 11.22, when S lies in the
first quadrant, we have an inductive load and a lagging pf. When S lies
in the fourth quadrant, the load is capacitive and the pf is leading. It is
also possible for the complex power to lie in the second or third quadrant.
This requires that the load impedance have a negative resistance, which
is possible with active circuits.

P Re

Im

S

S

+Q (lagging pf)

−Q (leading pf)

uv − ui

uv − ui

Figure 11.22 Power triangle.

S Q

P

u

(a)

|Z | X

R

u

(b)

Figure 11.21 (a) Power triangle,
(b) impedance triangle.
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E X A M P L E 1 1 . 1 1

The voltage across a load is v(t) = 60 cos(ωt − 10◦) V and the cur-
rent through the element in the direction of the voltage drop is i(t) =
1.5 cos(ωt + 50◦) A. Find: (a) the complex and apparent powers, (b) the
real and reactive powers, and (c) the power factor and the load impedance.

Solution:

(a) For the rms values of the voltage and current, we write

Vrms = 60√
2

− 10◦, Irms = 1.5√
2

+ 50◦

The complex power is

S = VrmsI∗
rms =

(
60√

2
− 10◦

)(
1.5√

2
− 50◦

)
= 45 − 60◦ VA

The apparent power is

S = |S| = 45 VA

(b) We can express the complex power in rectangular form as

S = 45 − 60◦ = 45[cos(−60◦)+ j sin(−60◦)] = 22.5 − j38.97

Since S = P + jQ, the real power is

P = 22.5 W

while the reactive power is

Q = −38.97 VAR

(c) The power factor is

pf = cos(−60◦) = 0.5 (leading)

It is leading, because the reactive power is negative. The load impedance
is

Z = V
I

= 60 − 10◦

1.5 + 50◦
= 40 − 60◦ �

which is a capacitive impedance.

P R A C T I C E P R O B L E M 1 1 . 1 1

For a load, Vrms = 110 85◦ V, Irms = 0.4 15◦ A. Determine: (a) the
complex and apparent powers, (b) the real and reactive powers, and (c)
the power factor and the load impedance.

Answer: (a) 44 70◦ VA, 44 VA, (b) 15.05 W, 41.35 VAR,
(c) 0.342 lagging, 94.06 + j258.4 �.

E X A M P L E 1 1 . 1 2

A load Z draws 12 kVA at a power factor of 0.856 lagging from a 120-V
rms sinusoidal source. Calculate: (a) the average and reactive powers
delivered to the load, (b) the peak current, and (c) the load impedance.
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Solution:

(a) Given that pf = cos θ = 0.856, we obtain the power angle as θ =
cos−1 0.856 = 31.13◦. If the apparent power is S = 12,000 VA, then the
average or real power is

P = S cos θ = 12,000 × 0.856 = 10.272 kW

while the reactive power is

Q = S sin θ = 12,000 × 0.517 = 6.204 kVA

(b) Since the pf is lagging, the complex power is

S = P + jQ = 10.272 + j6.204 kVA

From S = VrmsI∗
rms, we obtain

I∗
rms = S

Vrms
= 10,272 + j6204

120 0◦
= 85.6 + j51.7 A = 100 31.13◦ A

Thus Irms = 100 − 31.13◦ and the peak current is

Im =
√

2Irms =
√

2(100) = 141.4 A

(c) The load impedance

Z = Vrms

Irms
= 120 0◦

100 − 31.13◦
= 1.2 31.13◦ �

which is an inductive impedance.

P R A C T I C E P R O B L E M 1 1 . 1 2

A sinusoidal source supplies 10 kVA reactive power to load Z =
250 − 75◦ �. Determine: (a) the power factor, (b) the apparent power
delivered to the load, and (c) the peak voltage.

Answer: (a) 0.2588 leading, (b) −10.35 kVAR, (c) 2.275 kV.

†11.7 CONSERVATION OF AC POWER

In fact, we already saw in Examples 11.3 and 11.4
that average power is conserved in ac circuits.

The principle of conservation of power applies to ac circuits as well as to
dc circuits (see Section 1.5).

To see this, consider the circuit in Fig. 11.23(a), where two load
impedances Z1 and Z2 are connected in parallel across an ac source V.
KCL gives

I = I1 + I2 (11.52)

The complex power supplied by the source is

S = 1

2
VI∗ = 1

2
V(I∗

1 + I∗
2) = 1

2
VI∗

1 + 1

2
VI∗

2 = S1 + S2 (11.53)

where S1 and S2 denote the complex powers delivered to loads Z1 and
Z2, respectively.
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(a) (b)

I

V Z2Z1

Z2Z1

+
−

I1 I2

I

V +
−

+ −V1
+ −V2

Figure 11.23 An ac voltage source supplied loads connected in:
(a) parallel, (b) series.

If the loads are connected in series with the voltage source, as shown
in Fig. 11.23(b), KVL yields

V = V1 + V2 (11.54)

The complex power supplied by the source is

S = 1

2
VI∗ = 1

2
(V1 + V2)I∗ = 1

2
V1I∗ + 1

2
V2I∗ = S1 + S2 (11.55)

where S1 and S2 denote the complex powers delivered to loads Z1 and
Z2, respectively.

We conclude from Eqs. (11.53) and (11.55) that whether the loads
are connected in series or in parallel (or in general), the total power
supplied by the source equals the total power delivered to the load. Thus,
in general, for a source connected to N loads,

S = S1 + S1 + · · · + SN (11.56)

This means that the total complex power in a network is the sum of the
complex powers of the individual components. (This is also true of real
power and reactive power, but not true of apparent power.) This expresses
the principle of conservation of ac power:In fact, all forms of ac power are conserved: in-

stantaneous, real, reactive, and complex.

The complex, real, and reactive powers of the sources equal the respective sums
of the complex, real, and reactive powers of the individual loads.

From this we imply that the real (or reactive) power flow from sources in
a network equals the real (or reactive) power flow into the other elements
in the network.

E X A M P L E 1 1 . 1 3

Figure 11.24 shows a load being fed by a voltage source through a trans-
mission line. The impedance of the line is represented by the (4 + j2) �
impedance and a return path. Find the real power and reactive power
absorbed by: (a) the source, (b) the line, and (c) the load.



CHAPTER 11 AC Power Analysis 455

4 Ω

+
−

j2 Ω

220   0° V rms

−j10 Ω

15 Ω

I

Source Line Load

Figure 11.24 For Example 11.13.

Solution:

The total impedance is

Z = (4 + j2)+ (15 − j10) = 19 − j8 = 20.62 − 22.83◦ �

The current through the circuit is

I = Vs
Z

= 220 0◦

20.62 − 22.83◦
= 10.67 22.83◦ A rms

(a) For the source, the complex power is

Ss = VsI∗ = (220 0◦)(10.67 − 22.83◦)

= 2347.4 − 22.83◦ = (2163.5 − j910.8) VA

From this, we obtain the real power as 2163.5 W and the reactive power
as 910.8 VAR (leading).
(b) For the line, the voltage is

Vline = (4 + j2)I = (4.472 26.57◦)(10.67 22.83◦)

= 47.72 49.4◦ V rms

The complex power absorbed by the line is

Sline = VlineI∗ = (47.72 49.4◦)(10.67 − 22.83◦)

= 509.2 26.57◦ = 455.4 + j227.7 VA

or

Sline = |I|2Zline = (10.67)2(4 + j2) = 455.4 + j227.7 VA

That is, the real power is 455.4 W and the reactive power is 227.76 VAR
(lagging).
(c) For the load, the voltage is

VL = (15 − j10)I = (18.03 − 33.7◦)(10.67 22.83◦)

= 192.38 − 10.87◦ V rms

The complex power absorbed by the load is

SL = VLI∗ = (192.38 − 10.87◦)(10.67 − 22.83◦)

= 2053 − 33.7◦ = (1708 − j1139) VA
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The real power is 1708 W and the reactive power is 1139 VAR (leading).
Note that Ss = Sline + SL, as expected. We have used the rms values of
voltages and currents.

P R A C T I C E P R O B L E M 1 1 . 1 3

In the circuit in Fig. 11.25, the 60-� resistor absorbs an average power
of 240 W. Find V and the complex power of each branch of the circuit.
What is the overall complex power of the circuit?

20 Ω

30 Ω
+
−

−j10 Ω

j20 Ω

V 

60 Ω

Figure 11.25 For Practice Prob. 11.13.

Answer: 240.67 21.45◦ V (rms); the 20-� resistor: 656 VA; the
(30 − j10) � impedance: 480 − j160 VA; the (60 + j20) � impedance:
240 + j80 VA; overall: 1376 − j80 VA.

E X A M P L E 1 1 . 1 4

In the circuit of Fig. 11.26, Z1 = 60 − 30◦ � and Z2 = 40 45◦ �.
Calculate the total: (a) apparent power, (b) real power, (c) reactive power,
and (d) pf.

It

Z2Z1
+
−

I1 I2

120   10° V rms

Figure 11.26 For Example 11.14.

Solution:

The current through Z1 is

I1 = V
Z1

= 120 10◦

60 − 30◦
= 2 40◦ A rms

while the current through Z2 is

I2 = V
Z2

= 120 10◦

40 45◦
= 3 − 35◦ A rms

The complex powers absorbed by the impedances are

S1 = V 2
rms

Z∗
1

= (120)2

60 30◦
= 240 − 30◦ = 207.85 − j120 VA

S2 = V 2
rms

Z∗
2

= (120)2

40 − 45◦
= 360 45◦ = 254.6 + j254.6 VA

The total complex power is

St = S1 + S2 = 462.4 + j134.6 VA

(a) The total apparent power is

|St | = √
462.42 + 134.62 = 481.6 VA.

(b) The total real power is
Pt = Re(St ) = 462.4 W or Pt = P1 + P2.

(c) The total reactive power is
Qt = Im(St ) = 134.6 VAR orQt = Q1 +Q2.

(d) The pf = Pt/|St | = 462.4/481.6 = 0.96 (lagging).



CHAPTER 11 AC Power Analysis 457

We may cross check the result by finding the complex power Ss supplied
by the source.

It = I1 + I2 = (1.532 + j1.286)+ (2.457 − j1.721)

= 4 − j0.435 = 4.024 − 6.21◦ A rms

Ss = VI∗
t = (120 10◦)(4.024 6.21◦)

= 482.88 16.21◦ = 463 + j135 VA

which is the same as before.

P R A C T I C E P R O B L E M 1 1 . 1 4

Two loads connected in parallel are respectively 2 kW at a pf of 0.75 lead-
ing and 4 kW at a pf of 0.95 lagging. Calculate the pf of the two loads.
Find the complex power supplied by the source.

Answer: 0.9972 (leading), 6 − j0.4495 kVA.

11.8 POWER FACTOR CORRECTION
Most domestic loads (such as washing machines, air conditioners, and
refrigerators) and industrial loads (such as induction motors) are inductive
and operate at a low lagging power factor. Although the inductive nature
of the load cannot be changed, we can increase its power factor.

The process of increasing the power factor without altering the voltage or current
to the original load is known as power factor correction.

Alternatively, power factor correction may be
viewed as the addition of a reactive element (usu-
ally a capacitor) in parallel with the load in order
to make the power factor closer to unity.

An inductive load is modeled as a series combi-
nation of an inductor and a resistor.

Since most loads are inductive, as shown in Fig. 11.27(a), a load’s
power factor is improved or corrected by deliberately installing a capacitor
in parallel with the load, as shown in Fig. 11.27(b). The effect of adding
the capacitor can be illustrated using either the power triangle or the
phasor diagram of the currents involved. Figure 11.28 shows the latter,
where it is assumed that the circuit in Fig. 11.27(a) has a power factor of
cos θ1, while the one in Fig. 11.27(b) has a power factor of cos θ2. It is

V

+

−

(a)

IL

Inductive
load

V

+

−

(b)

IL IC

Inductive
load

C

I

Figure 11.27 Power factor correction: (a) original inductive load,
(b) inductive load with improved power factor.

V

IC

IC

IL

I
u1

u2

Figure 11.28 Phasor diagram showing the
effect of adding a capacitor in parallel with
the inductive load.
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evident from Fig. 11.28 that adding the capacitor has caused the phase
angle between the supplied voltage and current to reduce from θ1 to θ2,
thereby increasing the power factor. We also notice from the magnitudes
of the vectors in Fig. 11.28 that with the same supplied voltage, the circuit
in Fig. 11.27(a) draws larger current IL than the current I drawn by the
circuit in Fig. 11.27(b). Power companies charge more for larger currents,
because they result in increased power losses (by a squared factor, since
P = I 2

LR). Therefore, it is beneficial to both the power company and the
consumer that every effort is made to minimize current level or keep the
power factor as close to unity as possible. By choosing a suitable size for
the capacitor, the current can be made to be completely in phase with the
voltage, implying unity power factor.

S1

S2

QC

Q2

Q1

u1
u2

P

Figure 11.29 Power triangle illustrating power
factor correction.

We can look at the power factor correction from another perspective.
Consider the power triangle in Fig. 11.29. If the original inductive load
has apparent power S1, then

P = S1 cos θ1, Q1 = S1 sin θ1 = P tan θ1 (11.57)

If we desire to increase the power factor from cos θ1 to cos θ2 without
altering the real power (i.e., P = S2 cos θ2), then the new reactive power
is

Q2 = P tan θ2 (11.58)

The reduction in the reactive power is caused by the shunt capacitor, that
is,

QC = Q1 −Q2 = P(tan θ1 − tan θ2) (11.59)

But from Eq. (11.49), QC = V 2
rms/XC = ωCV 2

rms. The value of the
required shunt capacitance C is determined as

C = QC

ωV 2
rms

= P(tan θ1 − tan θ2)

ωV 2
rms

(11.60)

Note that the real power P dissipated by the load is not affected by the
power factor correction because the average power due to the capacitance
is zero.

Although the most common situation in practice is that of an in-
ductive load, it is also possible that the load is capacitive, that is, the load
is operating at a leading power factor. In this case, an inductor should
be connected across the load for power factor correction. The required
shunt inductance L can be calculated from

QL = V 2
rms

XL
= V 2

rms

ωL
	⇒ L = V 2

rms

ωQL
(11.61)

where QL = Q1 −Q2, the difference between the new and old reactive
powers.

E X A M P L E 1 1 . 1 5

When connected to a 120-V (rms), 60-Hz power line, a load absorbs 4 kW
at a lagging power factor of 0.8. Find the value of capacitance necessary
to raise the pf to 0.95.
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Solution:

If the pf = 0.8, then

cos θ1 = 0.8 	⇒ θ1 = 36.87◦

where θ1 is the phase difference between voltage and current. We obtain
the apparent power from the real power and the pf as

S1 = P

cos θ1
= 4000

0.8
= 5000 VA

The reactive power is

Q1 = S1 sin θ = 5000 sin 36.87 = 3000 VAR

When the pf is raised to 0.95,

cos θ2 = 0.95 	⇒ θ2 = 18.19◦

The real power P has not changed. But the apparent power has changed;
its new value is

S2 = P

cos θ2
= 4000

0.95
= 4210.5 VA

The new reactive power is

Q2 = S2 sin θ2 = 1314.4 VAR

The difference between the new and old reactive powers is due to the
parallel addition of the capacitor to the load. The reactive power due to
the capacitor is

QC = Q1 −Q2 = 3000 − 1314.4 = 1685.6 VAR

and

C = QC

ωV 2
rms

= 1685.6

2π × 60 × 1202
= 310.5 µF

P R A C T I C E P R O B L E M 1 1 . 1 5

Find the value of parallel capacitance needed to correct a load of
140 kVAR at 0.85 lagging pf to unity pf. Assume that the load is supplied
by a 110-V (rms), 60-Hz line.

Answer: 30.69 mF.

Reactive power is measured by an instrument
called the varmeter. The varmeter is often con-
nected to the load in the same way as the
wattmeter.

†11.9 APPLICATIONS
In this section, we consider two important application areas: how power
is measured and how electric utility companies determine the cost of
electricity consumption.

1 1 . 9 . 1 P o w e r M e a s u r e m e n t
The average power absorbed by a load is measured by an instrument
called the wattmeter.
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The wattmeter is the instrument for measuring the average power.

Figure 11.30 shows a wattmeter that consists essentially of two
coils: the current coil and the voltage coil. A current coil with very
low impedance (ideally zero) is connected in series with the load (Fig.
11.31) and responds to the load current. The voltage coil with very high
impedance (ideally infinite) is connected in parallel with the load as shown
in Fig. 11.31 and responds to the load voltage. The current coil acts like
a short circuit because of its low impedance; the voltage coil behaves like
an open circuit because of its high impedance. As a result, the presence
of the wattmeter does not disturb the circuit or have an effect on the power
measurement.

Some wattmeters do not have coils; the watt-
meter considered here is the electromagnetic
type.

i

+

−
v

R

±

±

Figure 11.30 A wattmeter.

ii

+

−
v

Current coil

Voltage coil

±

±

ZL

Figure 11.31 The wattmeter connected to the load.

When the two coils are energized, the mechanical inertia of the
moving system produces a deflection angle that is proportional to the
average value of the product v(t)i(t). If the current and voltage of the
load are v(t) = Vm cos(ωt + θv) and i(t) = Im cos(ωt + θi), their corre-
sponding rms phasors are

Vrms = Vm√
2
θv and Irms = Im√

2
θi (11.62)

and the wattmeter measures the average power given by

P = |Vrms||Irms| cos(θv − θi) = 1

2
VmIm cos(θv − θi) (11.63)

As shown in Fig. 11.31, each wattmeter coil has two terminals
with one marked ±. To ensure upscale deflection, the ± terminal of the
current coil is toward the source, while the ± terminal of the voltage coil
is connected to the same line as the current coil. Reversing both coil
connections still results in upscale deflection. However, reversing one
coil and not the other results in downscale deflection and no wattmeter
reading.
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E X A M P L E 1 1 . 1 6

Find the wattmeter reading of the circuit in Fig. 11.32.

±

±

+
−

12 Ω

150   0° V rms

j10 Ω

−j6 Ω

8 Ω

Figure 11.32 For Example 11.16.

Solution:

In Fig. 11.32, the wattmeter reads the average power absorbed by the
(8 − j6) � impedance because the current coil is in series with the
impedance while the voltage coil is in parallel with it. The current through
the circuit is

I = 150 0◦

(12 + j10)+ (8 − j6)
= 150

20 + j4
A rms

The voltage across the (8 − j6) � impedance is

V = I(8 − j6) = 150(8 − j6)

20 + j4
V rms

The complex power is

S = VI∗ = 150(8 − j6)

20 + j4
· 150

20 − j4
= 1502(8 − j6)

202 + 42

= 423.7 − j324.6 VA

The wattmeter reads

P = Re(S) = 432.7 W

P R A C T I C E P R O B L E M 1 1 . 1 6

For the circuit in Fig. 11.33, find the wattmeter reading.

±

±

+
−

4 Ω

120   30° V rms j9 Ω

−j2 Ω

12 Ω

Figure 11.33 For Practice Prob. 11.16.

Answer: 1437 W.
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1 1 . 9 . 2 E l e c t r i c i t y C o n s u m p t i o n C o s t
In Section 1.7, we considered a simplified model of the way the cost of
electricity consumption is determined. But the concept of power factor
was not included in the calculations. Now we consider the importance of
power factor in electricity consumption cost.

Loads with low power factors are costly to serve because they re-
quire large currents, as explained in Section 11.8. The ideal situation
would be to draw minimum current from a supply so that S = P ,Q = 0,
and pf = 1. A load with nonzeroQmeans that energy flows forth and back
between the load and the source, giving rise to additional power losses.
In view of this, power companies often encourage their customers to have
power factors as close to unity as possible and penalize some customers
who do not improve their load power factors.

Utility companies divide their customers into categories: as resi-
dential (domestic), commercial, and industrial, or as small power, medium
power, and large power. They have different rate structures for each
category. The amount of energy consumed in units of kilowatt-hours
(kWh) is measured using a kilowatt-hour meter installed at the customer’s
premises.

Although utility companies use different methods for charging cus-
tomers, the tariff or charge to a consumer is often two-part. The first part
is fixed and corresponds to the cost of generation, transmission, and dis-
tribution of electricity to meet the load requirements of the consumers.
This part of the tariff is generally expressed as a certain price per kW of
maximum demand. Or it may instead be based on kVA of maximum de-
mand, to account for the power factor (pf) of the consumer. A pf penalty
charge may be imposed on the consumer whereby a certain percentage of
kW or kVA maximum demand is charged for every 0.01 fall in pf below
a prescribed value, say 0.85 or 0.9. On the other hand, a pf credit may be
given for every 0.01 that the pf exceeds the prescribed value.

The second part is proportional to the energy consumed in kWh; it
may be in graded form, for example, the first 100 kWh at 16 cents/kWh,
the next 200 kWh at 10 cents/kWh and so forth. Thus, the bill is deter-
mined based on the following equation:

Total Cost = Fixed Cost + Cost of Energy (11.64)

E X A M P L E 1 1 . 1 7

A manufacturing industry consumes 200 MWh in one month. If the
maximum demand is 1600 kW, calculate the electricity bill based on the
following two-part rate:

Demand charge: $5.00 per month per kW of billing demand.

Energy charge: 8 cents per kWh for the first 50,000 kWh, 5 cents
per kWh for the remaining energy.

Solution:

The demand charge is

$5.00 × 1600 = $8000 (11.17.1)

The energy charge for the first 50,000 kWh is
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$0.08 × 50,000 = $4000 (11.17.2)

The remaining energy is 200,000 kWh − 50,000 kWh = 150,000 kWh,
and the corresponding energy charge is

$0.05 × 150,000 = $7500 (11.17.3)

Adding Eqs. (11.17.1) to (11.17.3) gives

Total bill for the month = $8000 + $4000 + $7500 = $19,500

It may appear that the cost of electricity is too high. But this is often a
small fraction of the overall cost of production of the goods manufactured
or the selling price of the finished product.

P R A C T I C E P R O B L E M 1 1 . 1 7

The monthly reading of a paper mill’s meter is as follows:

Maximum demand: 32,000 kW

Energy consumed: 500 MWh

Using the two-part rate in Example 11.17, calculate the monthly bill for
the paper mill.

Answer: $186,500.

E X A M P L E 1 1 . 1 8

A 300-kW load supplied at 13 kV (rms) operates 520 hours a month at
80 percent power factor. Calculate the average cost per month based on
this simplified tariff:

Energy charge: 6 cents per kWh

Power-factor penalty: 0.1 percent of energy charge for every 0.01
that pf falls below 0.85.

Power-factor credit: 0.1 percent of energy charge for every 0.01
that pf exceeds 0.85.

Solution:

The energy consumed is

W = 300 kW × 520 h = 156,000 kWh

The operating power factor pf = 80% = 0.8 is 5 × 0.01 below the
prescribed power factor of 0.85. Since there is 0.1 percent energy charge
for every 0.01, there is a power-factor penalty charge of 0.5 percent. This
amounts to an energy charge of

%W = 156,000 × 5 × 0.1

100
= 780 kWh

The total energy is
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Wt = W +%W = 156,000 + 780 = 156,780 kWh

The cost per month is given by

Cost = 6 cents ×Wt = $0.06 × 156,780 = $9406.80

P R A C T I C E P R O B L E M 1 1 . 1 8

An 800-kW induction furnace at 0.88 power factor operates 20 hours per
day for 26 days in a month. Determine the electricity bill per month based
on the tariff in Example 11.16.

Answer: $24,885.12.

11.10 SUMMARY
1. The instantaneous power absorbed by an element is the product of

the element’s terminal voltage and the current through the element:
p = vi.

2. Average or real power P (in watts) is the average of instantaneous
power p:

P = 1

T

∫ T

0
p dt

If v(t) = Vm cos(ωt + θv) and i(t) = Im cos(ωt + θi), then Vrms =
Vm/

√
2, Irms = Im/

√
2, and

P = 1

2
VmIm cos(θv − θi) = VrmsIrms cos(θv − θi)

Inductors and capacitors absorb no average power, while the aver-
age power absorbed by a resistor is 1/2 I 2

mR = I 2
rmsR.

3. Maximum average power is transferred to a load when the load
impedance is the complex conjugate of the Thevenin impedance as
seen from the load terminals, ZL = Z∗

Th.

4. The effective value of a periodic signal x(t) is its root-mean-square
(rms) value.

Xeff = Xrms =
√

1

T

∫ T

0
x2 dt

For a sinusoid, the effective or rms value is its amplitude divided by√
2.

5. The power factor is the cosine of the phase difference between volt-
age and current:

pf = cos(θv − θi)
It is also the cosine of the angle of the load impedance or the ratio
of real power to apparent power. The pf is lagging if the current
lags voltage (inductive load) and is leading when the current leads
voltage (capacitive load).
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6. Apparent power S (in VA) is the product of the rms values of volt-
age and current:

S = VrmsIrms

It is also given by S = |S| =
√
P 2 +Q2, whereQ is reactive

power.

7. Reactive power (in VAR) is:

Q = 1

2
VmIm sin(θv − θi) = VrmsIrms sin(θv − θi)

8. Complex power S (in VA) is the product of the rms voltage phasor
and the complex conjugate of the rms current phasor. It is also the
complex sum of real power P and reactive powerQ.

S = VrmsI∗
rms = VrmsIrms θv − θi = P + jQ

Also,

S = I 2
rmsZ = V 2

rms

Z∗

9. The total complex power in a network is the sum of the complex
powers of the individual components. Total real power and reactive
power are also, respectively, the sums of the individual real powers
and the reactive powers, but the total apparent power is not calcu-
lated by the process.

10. Power factor correction is necessary for economic reasons; it is the
process of improving the power factor of a load by reducing the
overall reactive power.

11. The wattmeter is the instrument for measuring the average power.
Energy consumed is measured with a kilowatt-hour meter.

R E V I E W Q U E S T I O N S

11.1 The average power absorbed by an inductor is zero.
(a) True (b) False

11.2 The Thevenin impedance of a network seen from the
load terminals is 80 + j55 �. For maximum power
transfer, the load impedance must be:
(a) −80 + j55 � (b) −80 − j55 �
(c) 80 − j55 � (d) 80 + j55 �

11.3 The amplitude of the voltage available in the 60-Hz,
120-V power outlet in your home is:
(a) 110 V (b) 120 V
(c) 170 V (d) 210 V

11.4 If the load impedance is 20 − j20, the power factor
is
(a) − 45◦ (b) 0 (c) 1
(d) 0.7071 (e) none of these

11.5 A quantity that contains all the power information in
a given load is the
(a) power factor (b) apparent power
(c) average power (d) reactive power
(e) complex power

11.6 Reactive power is measured in:
(a) watts (b) VA
(c) VAR (d) none of these

11.7 In the power triangle shown in Fig. 11.34(a), the
reactive power is:
(a) 1000 VAR leading (b) 1000 VAR lagging
(c) 866 VAR leading (d) 866 VAR lagging
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(a) (b)

60°

500 W

30°

1000 VAR

Figure 11.34 For Review Questions 11.7 and 11.8.

11.8 For the power triangle in Fig. 11.34(b), the apparent
power is:

(a) 2000 VA (b) 1000 VAR
(c) 866 VAR (d) 500 VAR

11.9 A source is connected to three loads Z1, Z2, and Z3

in parallel. Which of these is not true?
(a) P = P1 + P2 + P3 (b) Q = Q1 +Q2 +Q3

(c) S = S1 + S2 + S3 (d) S = S1 + S2 + S3

11.10 The instrument for measuring average power is the:
(a) voltmeter (b) ammeter
(c) wattmeter (d) varmeter
(e) kilowatt-hour meter

Answers: 11.1a, 11.2c, 11.3c, 11.4d, 11.5e, 11.6c, 11.7d, 11.8a,
11.9c, 11.10c.

P R O B L E M S

Section 11.2 Instantaneous and Average Power

11.1 If v(t) = 160 cos 50tV and i(t) =
−20 sin(50t − 30◦) A, calculate the instantaneous
power and the average power.

11.2 At t = 2 s, find the instantaneous power on each of
the elements in the circuit of Fig. 11.35.

+
−30 cos 500t A 0.3 H

20 mF

200 Ω

Figure 11.35 For Prob. 11.2.

11.3 Refer to the circuit depicted in Fig. 11.36. Find the
average power absorbed by each element.

4 Ω

+
−

2 Ω

1 H 0.25 F10 cos(2t + 30°) V

Figure 11.36 For Prob. 11.3.

11.4 Given the circuit in Fig. 11.37, find the average
power absorbed by each of the elements.

20 Ω

+
−

10 Ω

j5 Ω−j10 Ω50   0° V

Figure 11.37 For Prob. 11.4.

11.5 Compute the average power absorbed by the 4-�
resistor in the circuit of Fig. 11.38.

4 Ωj2 Ω

−j1 Ω

2 Ω
+ −

+ −Vo

4   60° Α

4Vo

Figure 11.38 For Prob. 11.5.

11.6 Given the circuit of Fig. 11.39, find the average
power absorbed by the 10-� resistor.

+
− 10 Ω+

−

Io

8   20° V 0.1Vo

4 Ω

j5 Ω

−j5 Ω

8Io

+

−
Vo

Figure 11.39 For Prob. 11.6.
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11.7 In the circuit of Fig. 11.40, determine the average
power absorbed by the 40-� resistor.

Io

6   0° A j10 Ω 0.5Io 40 Ω

−j20 Ω

Figure 11.40 For Prob. 11.7.

11.8 Calculate the average power absorbed by each
resistor in the op amp circuit of Fig. 11.41 if the rms
value of vs is 2 V.

+
−

6 kΩ

2 kΩ

+
−vs 10 kΩ

Figure 11.41 For Prob. 11.8.

11.9 In the op amp circuit in Fig. 11.42, find the total
average power absorbed by the resistors.

+
−

R

R

RVo cos vt V 

+
−

+
−

Figure 11.42 For Prob. 11.9.

11.10 For the network in Fig. 11.43, assume that the port
impedance is

Zab = R√
1 + ω2R2C2

− tan−1 ωRC

Find the average power consumed by the network
when R = 10 k�,C = 200 nF, and i =
2 sin(377t + 22◦) mA.

v

i

+

−

Linear 
network

a

b

Figure 11.43 For Prob. 11.10.

Section 11.3 Maximum Average Power
Transfer

11.11 For each of the circuits in Fig. 11.44, determine the
value of load Z for maximum power transfer and the
maximum average power transferred.

−j2 Ω8 Ω 4   0° ΑZ

(a)

+
−

−j3 Ω

j2 Ω
4 Ω

5 Ω

10   30° V

Z

(b)

Figure 11.44 For Prob. 11.11.

11.12 For the circuit in Fig. 11.45, find:
(a) the value of the load impedance that absorbs the

maximum average power
(b) the value of the maximum average power

absorbed

−j40 Ω

j100 Ω

80 Ω3   20° Α Load

Figure 11.45 For Prob. 11.12.

11.13 In the circuit of Fig. 11.46, find the value of ZL that
will absorb the maximum power and the value of the
maximum power.

j1 Ω

1 Ω −j1 Ω

12   0° V ZL
+
−

+

−
Vo 2Vo

Figure 11.46 For Prob. 11.13.
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11.14 Calculate the value of ZL in the circuit of Fig. 11.47
in order for ZL to receive maximum average power.
What is the maximum average power received by Z?

−j10 Ω

j20 Ω

30 Ω

40 Ω

5   90° A
ZL

Figure 11.47 For Prob. 11.14.

11.15 Find the value of ZL in the circuit of Fig. 11.48 for
maximum power transfer.

40 Ω

40 Ω −j10 Ω

j20 Ω

+
−

80 Ω

60   0° V

5   0° A ZL

Figure 11.48 For Prob. 11.15.

11.16 The variable resistor R in the circuit of Fig. 11.49 is
adjusted until it absorbs the maximum average
power. Find R and the maximum average power
absorbed.

j1 Ω

−j2 Ω3 Ω

6 Ω4   0° A R

Figure 11.49 For Prob. 11.16.

11.17 The load resistance RL in Fig. 11.50 is adjusted until
it absorbs the maximum average power. Calculate
the value of RL and the maximum average power.

−j10 Ω−j10 Ω+
−

Io

120   0° V

40 Ω

j20 Ω

4Io

RL

+ −

Figure 11.50 For Prob. 11.17.

11.18 Assuming that the load impedance is to be purely
resistive, what load should be connected to terminals

a-b of the circuits in Fig. 11.51 so that the maximum
power is transferred to the load?

100 Ω

40 Ω

−j10 Ω

j30 Ω

50 Ω+
−120   60° V 2    90° A

a

b

Figure 11.51 For Prob. 11.18.

Section 11.4 Effective or RMS Value

11.19 Find the rms value of the periodic signal in Fig.
11.52.

20 4 6 8 t

15

5

v(t)

Figure 11.52 For Prob. 11.19.

11.20 Determine the rms value of the waveform in Fig.
11.53.

1
0

2 3 4 t

5

−5

v(t)

Figure 11.53 For Prob. 11.20.

11.21 Find the effective value of the voltage waveform in
Fig. 11.54.

20 4 6 8 10 t

5

10

v(t)

Figure 11.54 For Prob. 11.21.

11.22 Calculate the rms value of the current waveform of
Fig. 11.55.
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50 10 15 20 25 t

5

i(t)

Figure 11.55 For Prob. 11.22.

11.23 Find the rms value of the voltage waveform of Fig.
11.56 as well as the average power absorbed by a
2-� resistor when the voltage is applied across the
resistor.

20 5 7 10 12 t

8

v(t)

Figure 11.56 For Prob. 11.23.

11.24 Calculate the effective value of the current
waveform in Fig. 11.57 and the average power
delivered to a 12-� resistor when the current runs
through the resistor.

5
0

15 25 t

10

−10

i(t)

10 20 30

Figure 11.57 For Prob. 11.24.

11.25 Compute the rms value of the waveform depicted in
Fig. 11.58.

2−1

0
4 6 8 10 t

2

v(t)

Figure 11.58 For Prob. 11.25.

11.26 Obtain the rms value of the current waveform shown
in Fig. 11.59.

10 2 3 4 5 t

10

i(t)

10t2

Figure 11.59 For Prob. 11.26.

11.27 Determine the effective value of the periodic
waveform in Fig. 11.60.

10 2 3 4 5 t

10

i(t)

Figure 11.60 For Prob. 11.27.

11.28 One cycle of a periodic voltage waveform is depicted
in Fig. 11.61. Find the effective value of the voltage.

10 2 3 4 65 t

10

20

30

v(t)

Figure 11.61 For Prob. 11.28.

Section 11.5 Apparent Power and Power
Factor

11.29 A relay coil is connected to a 210-V, 50-Hz supply.
If it has a resistance of 30 � and an inductance of
0.5 H, calculate the apparent power and the power
factor.

11.30 A certain load comprises 12 − j8 � in parallel with
j4 �. Determine the overall power factor.

11.31 Obtain the power factor for each of the circuits in
Fig. 11.62. Specify each power factor as leading or
lagging.
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−j2 Ω

j2 Ω j1 Ω

−j1 Ω

1 Ω

−j2 Ω

(a)

4 Ω

(b)

j5 Ω4 Ω

Figure 11.62 For Prob. 11.31.

Section 11.6 Complex Power

11.32 A load draws 5 kVAR at a power factor of 0.86
(leading) from a 220-V rms source. Calculate the
peak current and the apparent power supplied to the
load.

11.33 For the following voltage and current phasors,
calculate the complex power, apparent power, real
power, and reactive power. Specify whether the pf is
leading or lagging.
(a) V = 220 30◦ V rms, I = 0.5 60◦ A rms

(b) V = 250 − 10◦ V rms,

I = 6.2 − 25◦ A rms

(c) V = 120 0◦ V rms, I = 2.4 − 15◦ A rms

(d) V = 160 45◦ V rms, I = 8.5 90◦ A rms

11.34 For each of the following cases, find the complex
power, the average power, and the reactive power:
(a) v(t) = 112 cos(ωt + 10◦) V,
i(t) = 4 cos(ωt − 50◦) A

(b) v(t) = 160 cos 377t V,
i(t) = 4 cos(377t + 45◦) A

(c) V = 80 60◦ V rms, Z = 50 30◦ �

(d) I = 10 60◦ V rms, Z = 100 45◦ �

11.35 Determine the complex power for the following
cases:
(a) P = 269 W,Q = 150 VAR (capacitive)
(b) Q = 2000 VAR, pf = 0.9 (leading)
(c) S = 600 VA,Q = 450 VAR (inductive)

(d) Vrms = 220 V, P = 1 kW,
|Z| = 40 � (inductive)

11.36 Find the complex power for the following cases:
(a) P = 4 kW, pf = 0.86 (lagging)
(b) S = 2 kVA, P = 1.6 kW (capacitive)
(c) Vrms = 208 20◦ V, Irms = 6.5 − 50◦ A

(d) Vrms = 120 30◦ V,Z = 40 + j60 �

11.37 Obtain the overall impedance for the following
cases:
(a) P = 1000 W, pf = 0.8 (leading),
Vrms = 220 V

(b) P = 1500 W,Q = 2000 VAR (inductive),
Irms = 12 A

(c) S = 4500 60◦ VA, V = 120 45◦ V

11.38 For the entire circuit in Fig. 11.63, calculate:
(a) the power factor
(b) the average power delivered by the source
(c) the reactive power
(d) the apparent power
(e) the complex power

2 Ω

10 Ω

+
−

−j5 Ω j6 Ω

8 Ω

16   45° V

Figure 11.63 For Prob. 11.38.

Section 11.7 Conservation of AC Power

11.39 For the network in Fig. 11.64, find the complex
power absorbed by each element.

4 Ω
+
−

−j3 Ω

j5 Ω8  −20° V

Figure 11.64 For Prob. 11.39.

11.40 Find the complex power absorbed by each of the
five elements in the circuit of Fig. 11.65.

+
−

+
−20 Ω40   0° V rms

j10 Ω−j20 Ω

50   90° V rms

Figure 11.65 For Prob. 11.40.

11.41 Obtain the complex power delivered by the source in
the circuit of Fig. 11.66.
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−j2 Ω

j4 Ω

5 Ω

3 Ω

2   30° Α 6 Ω

Figure 11.66 For Prob. 11.41.

11.42 For the circuit in Fig. 11.67, find the average,
reactive, and complex power delivered by the
dependent voltage source.

4 Ω

1 Ω

−j1 Ω

j2 Ω24   0° V

2 Ω

+
− 2Vo

+

−
Vo

Figure 11.67 For Prob. 11.42.

11.43 Obtain the complex power delivered to the 10-k�
resistor in Fig. 11.68 below.

11.44 Calculate the reactive power in the inductor and
capacitor in the circuit of Fig. 11.69.

−j20 Ω

j30 Ω50 Ω

240   0° V 4   0° A 40 Ω+
−

Figure 11.69 For Prob. 11.44.

11.45 For the circuit in Fig. 11.70, find Vo and the input
power factor.

6   0° A rms

+

−

Vo
20 kW

0.8 pf lagging
16 kW

0.9 pf lagging

Figure 11.70 For Prob. 11.45.

11.46 Given the circuit in Fig. 11.71, find Io and the
overall complex power supplied.

100   90° V 2 kVA
0.707 pf leading

1.2 kW
0.8 kVAR (cap)

4 kW
0.9 pf lagging

Io

+
−

Figure 11.71 For Prob. 11.46.

11.47 For the circuit in Fig. 11.72, find Vs .

Vs

+

−

120 V rms
10 W

0.9 pf lagging
15 W

0.8 pf leading

0.2 Ω 0.3 Ωj0.04 Ω j0.15 Ω

+
−

Figure 11.72 For Prob. 11.47.

11.48 Find Io in the circuit of Fig. 11.73 on the bottom of
the next page.

11.49 In the op amp circuit of Fig. 11.74, vs =
4 cos 104t V. Find the average power delivered to the
50-k� resistor.

+
−

100 kΩ

+
−vs 50 kΩ1 nF

Figure 11.74 For Prob. 11.49.

11.50 Obtain the average power absorbed by the 6-k�
resistor in the op amp circuit in Fig. 11.75.

+
− 10 kΩ

Io

0.2    0° V rms

500 Ω −j3 kΩ j1 kΩ

20Io 4 kΩ

Figure 11.68 For Prob. 11.43.
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+
−

4 kΩ j3 kΩ

−j2 kΩ

j4 kΩ

+
− 6 kΩ

2 kΩ

4   45° V

Figure 11.75 For Prob. 11.50.

11.51 Calculate the complex power delivered to each
resistor and capacitor in the op amp circuit of Fig.
11.76. Let vs = 2 cos 103t V.

+
−

10 kΩ

+
− 40 kΩ

20 kΩ

vs 0.1 mF

0.2 mF

Figure 11.76 For Prob. 11.51.

11.52 Compute the complex power supplied by the current
source in the series RLC circuit in Fig. 11.77.

LR

Io cos vt C

Figure 11.77 For Prob. 11.52.

Section 11.8 Power Factor Correction

11.53 Refer to the circuit shown in Fig. 11.78.
(a) What is the power factor?

(b) What is the average power dissipated?
(c) What is the value of the capacitance that will

give a unity power factor when connected to the
load?

Z = 10 + j12 Ω+
− C

120 V
60 Hz

Figure 11.78 For Prob. 11.53.

11.54 An 880-VA, 220-V, 50-Hz load has a power factor of
0.8 lagging. What value of parallel capacitance will
correct the load power factor to unity?

11.55 An 40-kW induction motor, with a lagging power
factor of 0.76, is supplied by a 120-V rms 60-Hz
sinusoidal voltage source. Find the capacitance
needed in parallel with the motor to raise the power
factor to:
(a) 0.9 lagging (b) 1.0.

11.56 A 240-V rms 60-Hz supply serves a load that is
10 kW (resistive), 15 kVAR (capacitive), and
22 kVAR (inductive). Find:
(a) the apparent power
(b) the current drawn from the supply
(c) the kVAR rating and capacitance required to

improve the power factor to 0.96 lagging
(d) the current drawn from the supply under the new

power-factor conditions

11.57 A 120-V rms 60-Hz source supplies two loads
connected in parallel, as shown in Fig. 11.79.
(a) Find the power factor of the parallel

combination.
(b) Calculate the value of the capacitance connected

in parallel that will raise the power factor to
unity.

220   0° V 
12 kW

0.866 pf leading
20 kVAR

0.6 pf lagging
16 kW

0.85 pf lagging

Io

+
−

Figure 11.73 For Prob. 11.48.
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Load 1
24 kW
pf = 0.8
lagging

Load 2
40 kW
pf = 0.95
lagging

Figure 11.79 For Prob. 11.57.

11.58 Consider the power system shown in Fig. 11.80.
Calculate:
(a) the total complex power
(b) the power factor
(c) the capacitance necessary to establish a unity

power factor

+

−
240 V rms, 50 Hz

80 − j50 Ω

120 + j70 Ω

60 + j0 

Figure 11.80 For Prob. 11.58.

Section 11.9 Applications

11.59 Obtain the wattmeter reading of the circuit in Fig.
11.81 below.

11.60 What is the reading of the wattmeter in the network
of Fig. 11.82?

6 Ω 4 H

15 Ω0.1 F
+
− 120 cos 2t V

±

±

Figure 11.82 For Prob. 11.60.

11.61 Find the wattmeter reading of the circuit shown in
Fig. 11.83 below.

11.62 The circuit of Fig. 11.84 portrays a wattmeter
connected into an ac network.
(a) Find the load current.
(b) Calculate the wattmeter reading.

ZL = 6.4 Ω
pf = 0.825

+
−110 V

WM

Figure 11.84 For Prob. 11.62.

11.63 The kilowatthour-meter of a home is read once a
month. For a particular month, the previous and
present readings are as follows:

Previous reading: 3246 kWh
Present reading: 4017 kWh
Calculate the electricity bill for that month

based on the following residential rate schedule:

4 Ω −j3 Ω

j2 Ω 8 Ω+
−12    0° V 3   30° A

±

±

Figure 11.81 For Prob. 11.59.

10 Ω

4 Ω+
−

5 Ω 1 H

 20 cos 4t V

±

±

F1
12

Figure 11.83 For Prob. 11.61.
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Minimum monthly charge—$12.00
First 100 kWh per month at 16 cents/kWh
Next 200 kWh per month at 10 cents/kWh
Over 300 kWh per month at 6 cents/kWh

11.64 A consumer has an annual consumption of
1200 MWh with a maximum demand of 2.4 MVA.

The maximum demand charge is $30 per kVA per
annum, and the energy charge per kWh is 4 cents.
(a) Determine the annual cost of energy.
(b) Calculate the charge per kWh with a flat-rate

tariff if the revenue to the utility company is to
remain the same as for the two-part tariff.

C O M P R E H E N S I V E P R O B L E M S

11.65 A transmitter delivers maximum power to an
antenna when the antenna is adjusted to represent a
load of 75-� resistance in series with an inductance
of 4 µH. If the transmitter operates at 4.12 MHz,
find its internal impedance.

11.66 In a TV transmitter, a series circuit has an
impedance of 3 k� and a total current of 50 mA. If
the voltage across the resistor is 80 V, what is the
power factor of the circuit?

11.67 A certain electronic circuit is connected to a 110-V
ac line. The root-mean-square value of the current
drawn is 2 A, with a phase angle of 55◦.
(a) Find the true power drawn by the circuit.
(b) Calculate the apparent power.

11.68 An industrial heater has a nameplate which reads:
210 V 60 Hz 12 kVA 0.78 pf lagging
Determine:
(a) the apparent and the complex power
(b) the impedance of the heater

11.69∗ A 2000-kW turbine-generator of 0.85 power factor
operates at the rated load. An additional load of
300 kW at 0.8 power factor is added. What kVAR of
capacitors is required to operate the turbine
-generator but keep it from being overloaded?

11.70 The nameplate of an electric motor has the
following information:

Line voltage: 220 V rms
Line current: 15 A rms
Line frequency: 60 Hz
Power: 2700 W

Determine the power factor (lagging) of the motor.
Find the value of the capacitance C that must be
connected across the motor to raise the pf to unity.

11.71 As shown in Fig. 11.85, a 550-V feeder line supplies
an industrial plant consisting of a motor drawing
60 kW at 0.75 pf (inductive), a capacitor with a
rating of 20 kVAR, and lighting drawing 20 kW.
(a) Calculate the total reactive power and apparent

power absorbed by the plant.

*An asterisk indicates a challenging problem.

(b) Determine the overall pf.
(c) Find the current in the feeder line.

60 kW
pf = 0.75

550 V 20 kVAR 10 kW+
−

Figure 11.85 For Prob. 11.71.

11.72 A factory has the following four major loads:
• A motor rated at 5 hp, 0.8 pf lagging

(1 hp = 0.7457 kW).
• A heater rated at 1.2 kW, 1.0 pf.
• Ten 120-W lightbulbs.
• A synchronous motor rated at 1.6 kVA, 0.6 pf

leading.
(a) Calculate the total real and reactive power.
(b) Find the overall power factor.

11.73 A 1-MVA substation operates at full load at 0.7
power factor. It is desired to improve the power
factor to 0.95 by installing capacitors. Assume that
new substation and distribution facilities cost $120
per kVA installed, and capacitors cost $30 per kVA
installed.
(a) Calculate the cost of capacitors needed.
(b) Find the savings in substation capacity released.
(c) Are capacitors economical for releasing the

amount of substation capacity?

11.74 A coupling capacitor is used to block dc current
from an amplifier as shown in Fig. 11.86(a). The
amplifier and the capacitor act as the source, while
the speaker is the load as in Fig. 11.86(b).
(a) At what frequency is maximum power

transferred to the speaker?
(b) If Vs = 4.6 V rms, how much power is delivered

to the speaker at that frequency?
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10 Ω 40 nF

80 mH

4 Ω
vs

Amplifier

Vin Speaker
Coupling capacitor

Amplifier Speaker

(a)

(b)

Figure 11.86 For Prob. 11.74.

11.75 A power amplifier has an output impedance of
40 + j8 �. It produces a no-load output voltage of
146 V at 300 Hz.

(a) Determine the impedance of the load that
achieves maximum power transfer.

(b) Calculate the load power under this matching
condition.

11.76 A power transmission system is modeled as shown
in Fig. 11.87. If Vs = 240 0◦ rms, find the average
power absorbed by the load.

0.1 Ω

0.1 Ω

j1 Ω

j1 Ω

+
−

j1 Ω

100 Ω
Vs

Source Line Load

Figure 11.87 For Prob. 11.76.
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C H A P T E R

THREE-PHASE CIRCUITS

1 2

Society is never prepared to receive any invention. Every new thing is
resisted, and it takes years for the inventor to get people to listen to him
and years more before it can be introduced.

—Thomas Alva Edison

Historical Profiles
Thomas Alva Edison (1847–1931) was perhaps the greatest American inventor. He
patented 1093 inventions, including such history-making inventions as the incandescent
electric bulb, the phonograph, and the first commercial motion pictures.

Born in Milan, Ohio, the youngest of seven children, Edison received only three
months of formal education because he hated school. He was home-schooled by his
mother and quickly began to read on his own. In 1868, Edison read one of Faraday’s
books and found his calling. He moved to Menlo Park, New Jersey, in 1876, where he
managed a well-staffed research laboratory. Most of his inventions came out of this lab-
oratory. His laboratory served as a model for modern research organizations. Because
of his diverse interests and the overwhelming number of his inventions and patents,
Edison began to establish manufacturing companies for making the devices he invented.
He designed the first electric power station to supply electric light. Formal electri-
cal engineering education began in the mid-1880s with Edison as a role model and leader.

Nikola Tesla (1856–1943) was a Croatian-American engineer whose inventions—
among them the induction motor and the first polyphase ac power system—greatly
influenced the settlement of the ac versus dc debate in favor of ac. He was also re-
sponsible for the adoption of 60 Hz as the standard for ac power systems in the United
States.

Born in Austria-Hungary (now Croatia), to a clergyman, Tesla had an incredible
memory and a keen affinity for mathematics. He moved to the United States in 1884
and first worked for Thomas Edison. At that time, the country was in the “battle of the
currents” with George Westinghouse (1846–1914) promoting ac and Thomas Edison
rigidly leading the dc forces. Tesla left Edison and joined Westinghouse because of
his interest in ac. Through Westinghouse, Tesla gained the reputation and acceptance
of his polyphase ac generation, transmission, and distribution system. He held 700
patents in his lifetime. His other inventions include high-voltage apparatus (the tesla
coil) and a wireless transmission system. The unit of magnetic flux density, the tesla,
was named in honor of him.
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12.1 INTRODUCTION
So far in this text, we have dealt with single-phase circuits. A single-
phase ac power system consists of a generator connected through a pair
of wires (a transmission line) to a load. Figure 12.1(a) depicts a single-
phase two-wire system, whereVp is the magnitude of the source voltage
andφ is the phase. What is more common in practice is a single-phase
three-wire system, shown in Fig. 12.1(b). It contains two identical sources
(equal magnitude and the same phase) which are connected to two loads
by two outer wires and the neutral. For example, the normal household
system is a single-phase three-wire system because the terminal voltages
have the same magnitude and the same phase. Such a system allows the
connection of both 120-V and 240-V appliances.

Historical note: Thomas Edison invented a three-
wire system, using three wires instead of four.

ZLVp
+
−

(a)

f

ZL1Vp

a A

n N

b B

+
−

(b)

f

ZL2Vp
+
−f

Figure 12.1 Single-phase systems: (a) two-wire type, (b) three-wire type.

Circuits or systems in which the ac sources operate at the same
frequency but different phases are known as polyphase. Figure 12.2 shows
a two-phase three-wire system, and Fig. 12.3 shows a three-phase four-
wire system. As distinct from a single-phase system, a two-phase system
is produced by a generator consisting of two coils placed perpendicular
to each other so that the voltage generated by one lags the other by 90◦.
By the same token, a three-phase system is produced by a generator
consisting of three sources having the same amplitude and frequency but
out of phase with each other by 120◦. Since the three-phase system is by
far the most prevalent and most economical polyphase system, discussion
in this chapter is mainly on three-phase systems.

ZL1

Vp

a A

n N

b B

+
−

ZL2
+
−−90°

Vp 0°

Figure 12.2 Two-phase three-wire system.

ZL1a A

b B

c C

n N

Vp 0°

− +

ZL2
Vp −120°

Vp +120°

− +

ZL3

− +

Figure 12.3 Three-phase four-wire system.

Three-phase systems are important for at least three reasons. First,
nearly all electric power is generated and distributed in three-phase, at
the operating frequency of 60 Hz (or ω = 377 rad/s) in the United States
or 50 Hz (or ω = 314 rad/s) in some other parts of the world. When one-
phase or two-phase inputs are required, they are taken from the three-
phase system rather than generated independently. Even when more
than three phases are needed—such as in the aluminum industry, where
48 phases are required for melting purposes—they can be provided by
manipulating the three phases supplied. Second, the instantaneous power
in a three-phase system can be constant (not pulsating), as we will see
in Section 12.7. This results in uniform power transmission and less
vibration of three-phase machines. Third, for the same amount of power,
the three-phase system is more economical than the single-phase. The
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amount of wire required for a three-phase system is less than that required
for an equivalent single-phase system.

We begin with a discussion of balanced three-phase voltages. Then
we analyze each of the four possible configurations of balanced three-
phase systems. We also discuss the analysis of unbalanced three-phase
systems. We learn how to use PSpice for Windows to analyze a balanced
or unbalanced three-phase system. Finally, we apply the concepts devel-
oped in this chapter to three-phase power measurement and residential
electrical wiring.

12.2 BALANCED THREE-PHASE VOLTAGES
Three-phase voltages are often produced with a three-phase ac generator
(or alternator) whose cross-sectional view is shown in Fig. 12.4. The gen-
erator basically consists of a rotating magnet (called the rotor) surrounded
by a stationary winding (called the stator). Three separate windings or
coils with terminals a-a′, b-b′, and c-c′ are physically placed 120◦ apart
around the stator. Terminals a and a′, for example, stand for one of the
ends of coils going into and the other end coming out of the page. As the
rotor rotates, its magnetic field “cuts” the flux from the three coils and
induces voltages in the coils. Because the coils are placed 120◦ apart,
the induced voltages in the coils are equal in magnitude but out of phase
by 120◦ (Fig. 12.5). Since each coil can be regarded as a single-phase
generator by itself, the three-phase generator can supply power to both
single-phase and three-phase loads.

Stator

Three-
phase
output

a

b

c

n

c

N

S

b′

c′

ba

a′

Rotor

Figure 12.4 A three-phase generator.

0
120°

Van

vt

Vbn Vcn

240°

Figure 12.5 The generated voltages are 120◦
apart from each other.

A typical three-phase system consists of three voltage sources con-
nected to loads by three or four wires (or transmission lines). (Three-
phase current sources are very scarce.) A three-phase system is equiv-
alent to three single-phase circuits. The voltage sources can be either
wye-connected as shown in Fig. 12.6(a) or delta-connected as in Fig.
12.6(b).

Let us consider the wye-connected voltages in Fig. 12.6(a) for now.
The voltages Van, Vbn, and Vcn are respectively between lines a, b, and
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+
−

+
−

+
−

(a)

a

Van

VbnVcn

Vca Vab

Vbc

n

b

c

+
−

+
−

(b)

a

b

c

− +

Figure 12.6 Three-phase voltage sources: (a) Y-connected source,
(b) 	-connected source.

c, and the neutral line n. These voltages are called phase voltages. If the
voltage sources have the same amplitude and frequency ω and are out of
phase with each other by 120◦, the voltages are said to be balanced. This
implies that

Van + Vbn + Vcn = 0 (12.1)

|Van| = |Vbn| = |Vcn| (12.2)

Thus,

Balanced phase voltages are equal in magnitude and are out
of phase with each other by 120◦.

120°

Vcn

Van

Vbn

120°

−120°

(a)

120°

Vbn

Van

Vcn

120°

−120°

(b)

v

v

Figure 12.7 Phase sequences:
(a) abc or positive sequence,
(b) acb or negative sequence.

As a common tradition in power systems, volt-
age and current in this chapter are in rms values
unless otherwise stated.

Since the three-phase voltages are 120◦ out of phase with each other,
there are two possible combinations. One possibility is shown in Fig.
12.7(a) and expressed mathematically as

Van = Vp 0◦

Vbn = Vp − 120◦

Vcn = Vp − 240◦ = Vp + 120◦
(12.3)

where Vp is the effective or rms value. This is known as the abc sequence
or positive sequence. In this phase sequence, Van leads Vbn, which in
turn leads Vcn. This sequence is produced when the rotor in Fig. 12.4
rotates counterclockwise. The other possibility is shown in Fig. 12.7(b)
and is given by

Van = Vp 0◦

Vcn = Vp − 120◦

Vbn = Vp − 240◦ = Vp + 120◦
(12.4)

This is called the acb sequence or negative sequence. For this phase
sequence, Van leads Vcn, which in turn leads Vbn. The acb sequence is
produced when the rotor in Fig. 12.4 rotates in the clockwise direction.
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It is easy to show that the voltages in Eqs. (12.3) or (12.4) satisfy Eqs.
(12.1) and (12.2). For example, from Eq. (12.3),

Van + Vbn + Vcn = Vp 0◦ + Vp − 120◦ + Vp + 120◦

= Vp(1.0 − 0.5 − j0.866 − 0.5 + j0.866)

= 0

(12.5)

The phase sequence is the time order in which the voltages pass through
their respective maximum values.

The phase sequence may also be regarded as the
order in which the phase voltages reach their
peak (or maximum) values with respect to time.

The phase sequence is determined by the order in which the phasors pass
through a fixed point in the phase diagram. Reminder: As time increases, each phasor (or

sinor) rotates at an angular velocity ω.In Fig. 12.7(a), as the phasors rotate in the counterclockwise direc-
tion with frequencyω, they pass through the horizontal axis in a sequence
abcabca . . . . Thus, the sequence is abc or bca or cab. Similarly, for the
phasors in Fig. 12.7(b), as they rotate in the counterclockwise direction,
they pass the horizontal axis in a sequence acbacba . . . . This describes
the acb sequence. The phase sequence is important in three-phase power
distribution. It determines the direction of the rotation of a motor con-
nected to the power source, for example.

Like the generator connections, a three-phase load can be either
wye-connected or delta-connected, depending on the end application.
Figure 12.8(a) shows a wye-connected load, and Fig. 12.8(b) shows a
delta-connected load. The neutral line in Fig. 12.8(a) may or may not
be there, depending on whether the system is four- or three-wire. (And,
of course, a neutral connection is topologically impossible for a delta
connection.) A wye- or delta-connected load is said to be unbalanced if
the phase impedances are not equal in magnitude or phase.

a

b

n

c

(a)

Z2

Z1

Z3

a

b

c

(b)

ZbZc

Zb

Figure 12.8 Two possible three-
phase load configurations:
(a) a Y-connected load,
(b) a 	-connected load

A balanced load is one in which the phase impedances
are equal in magnitude and in phase.

Reminder: A Y-connected load consists of three
impedances connected to a neutral node, while a
	-connected load consists of three impedances
connected around a loop. The load is balanced
when the three impedances are equal in either
case.

For a balanced wye-connected load,

Z1 = Z2 = Z3 = ZY (12.6)

where ZY is the load impedance per phase. For a balanced delta-connected
load,

Za = Zb = Zc = Z	 (12.7)

where Z	 is the load impedance per phase in this case. We recall from
Eq. (9.69) that

Z	 = 3ZY or ZY = 1

3
Z	 (12.8)

so we know that a wye-connected load can be transformed into a delta-
connected load, or vice versa, using Eq. (12.8).

Since both the three-phase source and the three-phase load can be
either wye- or delta-connected, we have four possible connections:
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• Y-Y connection (i.e., Y-connected source with a Y-connected
load).

• Y-	 connection.

• 	-	 connection.

• 	-Y connection.

In subsequent sections, we will consider each of these possible configu-
rations.

It is appropriate to mention here that a balanced delta-connected
load is more common than a balanced wye-connected load. This is due
to the ease with which loads may be added or removed from each phase
of a delta-connected load. This is very difficult with a wye-connected
load because the neutral may not be accessible. On the other hand, delta-
connected sources are not common in practice because of the circulating
current that will result in the delta-mesh if the three-phase voltages are
slightly unbalanced.

E X A M P L E 1 2 . 1

Determine the phase sequence of the set of voltages

van = 200 cos(ωt + 10◦)
vbn = 200 cos(ωt − 230◦), vcn = 200 cos(ωt − 110◦)

Solution:

The voltages can be expressed in phasor form as

Van = 200 10◦, Vbn = 200 − 230◦ , Vcn = 200 − 110◦

We notice that Van leads Vcn by 120◦ and Vcn in turn leads Vbn by 120◦.
Hence, we have an acb sequence.

P R A C T I C E P R O B L E M 1 2 . 1

Given that Vbn = 110 30◦, find Van and Vcn, assuming a positive (abc)
sequence.

Answer: 110 150◦, 110 − 90◦.

12.3 BALANCED WYE-WYE CONNECTION
We begin with the Y-Y system, because any balanced three-phase system
can be reduced to an equivalent Y-Y system. Therefore, analysis of this
system should be regarded as the key to solving all balanced three-phase
systems.

A balanced Y-Y system is a three-phase system with a balanced Y-connected
source and a balanced Y-connected load.

Consider the balanced four-wire Y-Y system of Fig. 12.9, where
a Y-connected load is connected to a Y-connected source. We assume a



CHAPTER 12 Three-Phase Circuits 483

balanced load so that load impedances are equal. Although the impedance
ZY is the total load impedance per phase, it may also be regarded as the
sum of the source impedance Zs , line impedance Z�, and load impedance
ZL for each phase, since these impedances are in series. As illustrated in
Fig. 12.9, Zs denotes the internal impedance of the phase winding of the
generator; Z� is the impedance of the line joining a phase of the source
with a phase of the load; ZL is the impedance of each phase of the load;
and Zn is the impedance of the neutral line. Thus, in general

ZY = Zs + Z� + ZL (12.9)

Zs and Z� are often very small compared with ZL, so one can assume
that ZY = ZL if no source or line impedance is given. In any event,
by lumping the impedances together, the Y-Y system in Fig. 12.9 can be
simplified to that shown in Fig. 12.10.

+
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Zl

Zl

Zl

Zn

Zs

Zs Zs

ZL

ZLZL

Van

Vcn Vbn

A

N

BCb

n

c

a

+
−

+
−

Figure 12.9 A balanced Y-Y system, showing the
source, line, and load impedances.

+
− ZY

ZYZY

Van

Vcn Vbn

A
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Figure 12.10 Balanced Y-Y connection.

Assuming the positive sequence, the phase voltages (or line-to-
neutral voltages) are

Van = Vp 0◦

Vbn = Vp − 120◦, Vcn = Vp + 120◦ (12.10)

The line-to-line voltages or simply line voltages Vab, Vbc, and Vca are
related to the phase voltages. For example,

Vab = Van + Vnb = Van − Vbn = Vp 0◦ − Vp − 120◦

= Vp

(
1 + 1

2
+ j

√
3

2

)
=

√
3Vp 30◦ (12.11a)

Similarly, we can obtain

Vbc = Vbn − Vcn =
√

3Vp − 90◦ (12.11b)

Vca = Vcn − Van =
√

3Vp − 210◦ (12.11c)
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Thus, the magnitude of the line voltages VL is
√

3 times the magnitude
of the phase voltages Vp, or

VL =
√

3Vp (12.12)

where

Vp = |Van| = |Vbn| = |Vcn| (12.13)

and

VL = |Vab| = |Vbc| = |Vca| (12.14)

Also the line voltages lead their corresponding phase voltages by 30◦.
Figure 12.11(a) illustrates this. Figure 12.11(a) also shows how to deter-
mine Vab from the phase voltages, while Fig. 12.11(b) shows the same
for the three line voltages. Notice that Vab leads Vbc by 120◦, and Vbc

leads Vca by 120◦, so that the line voltages sum up to zero as do the phase
voltages.

(a)

30°

Vcn

Vnb Vab = Van + Vnb

Van

Vbn

(b)

Vca Vcn Vab

Van

Vbc

Vbn

Figure 12.11 Phasor diagrams illustrating
the relationship between line voltages and
phase voltages.

Applying KVL to each phase in Fig. 12.10, we obtain the line cur-
rents as

Ia = Van

ZY

, Ib = Vbn

ZY

= Van − 120◦

ZY

= Ia − 120◦

Ic = Vcn

ZY

= Van − 240◦

ZY

= Ia − 240◦
(12.15)

We can readily infer that the line currents add up to zero,

Ia + Ib + Ic = 0 (12.16)

so that

In = −(Ia + Ib + Ic) = 0 (12.17a)

or

VnN = ZnIn = 0 (12.17b)

that is, the voltage across the neutral wire is zero. The neutral line can
thus be removed without affecting the system. In fact, in long distance
power transmission, conductors in multiples of three are used with the
earth itself acting as the neutral conductor. Power systems designed in
this way are well grounded at all critical points to ensure safety.

While the line current is the current in each line, the phase current
is the current in each phase of the source or load. In the Y-Y system, the
line current is the same as the phase current. We will use single subscripts
for line currents because it is natural and conventional to assume that line
currents flow from the source to the load.

ZYVan
+
−

a A

n N

Ia

Figure 12.12 A single-phase
equivalent circuit.

An alternative way of analyzing a balanced Y-Y system is to do so
on a “per phase” basis. We look at one phase, say phase a, and analyze the
single-phase equivalent circuit in Fig. 12.12. The single-phase analysis
yields the line current Ia as

Ia = Van

ZY

(12.18)
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From Ia , we use the phase sequence to obtain other line currents. Thus,
as long as the system is balanced, we need only analyze one phase. We
may do this even if the neutral line is absent, as in the three-wire system.

E X A M P L E 1 2 . 2

Calculate the line currents in the three-wire Y-Y system of Fig. 12.13.

+
−

5 – j2Ω

10 + j8Ω

10 + j8Ω

A

B
c

b

a

5 – j2Ω 10 + j8Ω

C5 – j2Ω

110   −120° V110   −240° V

110  0° V

+
−

+
−

Figure 12.13 Three-wire Y-Y system; for Example 12.2.

Solution:

The three-phase circuit in Fig. 12.13 is balanced; we may replace it with
its single-phase equivalent circuit such as in Fig. 12.12. We obtain Ia
from the single-phase analysis as

Ia = Van

ZY

where ZY = (5 − j2)+ (10 + j8) = 15 + j6 = 16.155 21.8◦. Hence,

Ia = 110 0◦

16.155 21.8◦
= 6.81 − 21.8◦ A

Since the source voltages in Fig. 12.13 are in positive sequence and the
line currents are also in positive sequence,

Ib = Ia − 120◦ = 6.81 − 141.8◦ A

Ic = Ia − 240◦ = 6.81 − 261.8◦ A = 6.81 98.2◦ A

P R A C T I C E P R O B L E M 1 2 . 2

A Y-connected balanced three-phase generator with an impedance of
0.4+ j0.3� per phase is connected to a Y-connected balanced load with
an impedance of 24 + j19 � per phase. The line joining the generator
and the load has an impedance of 0.6 + j0.7 � per phase. Assuming
a positive sequence for the source voltages and that Van = 120 30◦ V,
find: (a) the line voltages, (b) the line currents.
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Answer: (a) 207.85 60◦ V, 207.85 − 60◦ V, 207.85 − 180◦ V,
(b) 3.75 − 8.66◦ A, 3.75 − 128.66◦ A, 3.75 − 248.66◦ A.

12.4 BALANCED WYE-DELTA CONNECTION

A balanced Y-∆ system consists of a balanced Y-connected source
feeding a balanced 	-connected load.

This is perhaps the most practical three-phase
system, as the three-phase sources are usually Y-
connected while the three-phase loads are usu-
ally 	-connected.

The balanced Y-delta system is shown in Fig. 12.14, where the
source is wye-connected and the load is	-connected. There is, of course,
no neutral connection from source to load for this case. Assuming the
positive sequence, the phase voltages are again

Van = Vp 0◦

Vbn = Vp − 120◦, Vcn = Vp + 120◦ (12.19)

As shown in Section 12.3, the line voltages are

Vab = √
3Vp 30◦ = VAB, Vbc = √

3Vp − 90◦ = VBC

Vca = √
3Vp − 210◦ = VCA

(12.20)

showing that the line voltages are equal to the voltages across the load
impedances for this system configuration. From these voltages, we can
obtain the phase currents as

IAB = VAB

Z	

, IBC = VBC

Z	

, ICA = VCA

Z	

(12.21)

These currents have the same magnitude but are out of phase with each
other by 120◦.
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Figure 12.14 Balanced Y-	 connection.
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Another way to get these phase currents is to apply KVL. For ex-
ample, applying KVL around loop aABbna gives

−Van + Z	IAB + Vbn = 0

or

IAB = Van − Vbn

Z	

= Vab

Z	

= VAB

Z	

(12.22)

which is the same as Eq. (12.21). This is the more general way of finding
the phase currents.

The line currents are obtained from the phase currents by applying
KCL at nodes A, B, and C. Thus,

Ia = IAB − ICA, Ib = IBC − IAB, Ic = ICA − IBC (12.23)

Since ICA = IAB − 240◦,

Ia = IAB − ICA = IAB(1 − 1 − 240◦)

= IAB(1 + 0.5 − j0.866) = IAB
√

3 − 30◦ (12.24)

showing that the magnitude IL of the line current is
√

3 times the magni-
tude Ip of the phase current, or

IL =
√

3Ip (12.25)

where

IL = |Ia| = |Ib| = |Ic| (12.26)

and

Ip = |IAB | = |IBC | = |ICA| (12.27)

Also, the line currents lag the corresponding phase currents by 30◦, as-
suming the positive sequence. Figure 12.15 is a phasor diagram illustrat-
ing the relationship between the phase and line currents.

30°

30°

30°

ICA

IAB

Ib IBC

Ia

Ic

Figure 12.15 Phasor diagram
illustrating the relationship between
phase and line currents.

An alternative way of analyzing the Y-	 circuit is to transform the
	-connected load to an equivalent Y-connected load. Using the 	-Y
transformation formula in Eq. (9.69),

ZY = Z	

3
(12.28)

After this transformation, we now have a Y-Y system as in Fig. 12.10.
The three-phase Y-	 system in Fig. 12.14 can be replaced by the single-
phase equivalent circuit in Fig. 12.16. This allows us to calculate only
the line currents. The phase currents are obtained using Eq. (12.25) and
utilizing the fact that each of the phase currents leads the corresponding
line current by 30◦.

Van
+
−

Ia

Z∆
3

Figure 12.16 A single-phase equivalent
circuit of a balanced Y-	 circuit.

E X A M P L E 1 2 . 3

A balanced abc-sequence Y-connected source with Van = 100 10◦ V
is connected to a 	-connected balanced load (8 + j4) � per phase. Cal-
culate the phase and line currents.
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Solution:

This can be solved in two ways.

M E T H O D 1 The load impedance is

Z	 = 8 + j4 = 8.944 26.57◦ �

If the phase voltage Van = 100 10◦, then the line voltage is

Vab = Van

√
3 30◦ = 100

√
3 10◦ + 30◦ = VAB

or

VAB = 173.2 40◦ V

The phase currents are

IAB = VAB

Z	

= 173.2 40◦

8.944 26.57◦
= 19.36 13.43◦ A

IBC = IAB − 120◦ = 19.36 − 106.57◦ A

ICA = IAB + 120◦ = 19.36 133.43◦ A

The line currents are

Ia = IAB
√

3 − 30◦ =
√

3(19.36) 13.43◦ − 30◦

= 33.53 − 16.57◦ A

Ib = Ia − 120◦ = 33.53 − 136.57◦ A

Ic = Ia + 120◦ = 33.53 103.43◦ A

M E T H O D 2 Alternatively, using single-phase analysis,

Ia = Van

Z	/3
= 100 10◦

2.981 26.57◦
= 33.54 − 16.57◦ A

as above. Other line currents are obtained using the abc phase sequence.

P R A C T I C E P R O B L E M 1 2 . 3

One line voltage of a balanced Y-connected source is VAB =
180 − 20◦ V. If the source is connected to a 	-connected load of

20 40◦ �, find the phase and line currents. Assume the abc sequence.

Answer: 9 − 60◦, 9 − 180◦, 9 60◦, 15.59 − 90◦,

15.59 − 210◦, 15.59 30◦ A.

12.5 BALANCED DELTA-DELTA CONNECTION

A balanced ∆-∆ system is one in which both the balanced source
and balanced load are 	-connected.
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The source as well as the load may be delta-connected as shown
in Fig. 12.17. Our goal is to obtain the phase and line currents as usual.
Assuming a positive sequence, the phase voltages for a delta-connected
source are

Vab = Vp 0◦

Vbc = Vp − 120◦, Vca = Vp + 120◦ (12.29)

The line voltages are the same as the phase voltages. From Fig. 12.17,
assuming there is no line impedances, the phase voltages of the delta-
connected source are equal to the voltages across the impedances; that
is,

Vab = VAB, Vbc = VBC, Vca = VCA (12.30)

Hence, the phase currents are

IAB = VAB

Z	
= Vab

Z	
, IBC = VBC

Z	
= Vbc

Z	

ICA = VCA

Z	
= Vca

Z	

(12.31)

Since the load is delta-connected just as in the previous section, some
of the formulas derived there apply here. The line currents are obtained
from the phase currents by applying KCL at nodes A, B, and C, as we
did in the previous section:

Ia = IAB − ICA, Ib = IBC − IAB, Ic = ICA − IBC (12.32)

Also, as shown in the last section, each line current lags the corresponding
phase current by 30◦; the magnitude IL of the line current is

√
3 times

the magnitude Ip of the phase current,

IL =
√

3Ip (12.33)
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Z∆

Z∆
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Figure 12.17 A balanced 	-	 connection.

An alternative way of analyzing the 	-	 circuit is to convert both
the source and the load to their Y equivalents. We already know that
ZY = Z	/3. To convert a 	-connected source to a Y-connected source,
see the next section.
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E X A M P L E 1 2 . 4

A balanced 	-connected load having an impedance 20 − j15 � is con-
nected to a 	-connected, positive-sequence generator having Vab =
330 0◦ V. Calculate the phase currents of the load and the line currents.

Solution:

The load impedance per phase is

Z	 = 20 − j15 = 25 − 36.87◦ �

The phase currents are

IAB = VAB

Z	

= 330 0◦

25 − 36.87
= 13.2 36.87◦ A

IBC = IAB − 120◦ = 13.2 − 83.13◦ A

ICA = IAB + 120◦ = 13.2 156.87◦ A

For a delta load, the line current always lags the corresponding phase
current by 30◦ and has a magnitude

√
3 times that of the phase current.

Hence, the line currents are

Ia = IAB
√

3 − 30◦ = (13.2 36.87◦)(
√

3 − 30◦)

= 22.86 6.87◦ A

Ib = Ia − 120◦ = 22.86 − 113.13◦ A

Ic = Ia + 120◦ = 22.86 126.87◦ A

P R A C T I C E P R O B L E M 1 2 . 4

A positive-sequence, balanced 	-connected source supplies a balanced
	-connected load. If the impedance per phase of the load is 18 + j12 �
and Ia = 22.5 35◦ A, find IAB and VAB .

Answer: 13 65◦ A, 281.2 98.69◦ V.

12.6 BALANCED DELTA-WYE CONNECTION

A balanced ∆-Y system consists of a balanced 	-connected
source feeding a balanced Y-connected load.

Consider the 	-Y circuit in Fig. 12.18. Again, assuming the abc
sequence, the phase voltages of a delta-connected source are

Vab = Vp 0◦, Vbc = Vp − 120◦

Vca = Vp + 120◦ (12.34)

These are also the line voltages as well as the phase voltages.



CHAPTER 12 Three-Phase Circuits 491
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Figure 12.18 A balanced 	-Y connection.

We can obtain the line currents in many ways. One way is to apply
KVL to loop aANBba in Fig. 12.18, writing

−Vab + ZY Ia − ZY Ib = 0

or

ZY (Ia − Ib) = Vab = Vp 0◦

Thus,

Ia − Ib = Vp 0◦

ZY

(12.35)

But Ib lags Ia by 120◦, since we assumed the abc sequence; that is,
Ib = Ia − 120◦. Hence,

Ia − Ib = Ia(1 − 1 − 120◦)

= Ia

(
1 + 1

2
+ j

√
3

2

)
= Ia

√
3 30◦ (12.36)

Substituting Eq. (12.36) into Eq. (12.35) gives

Ia = Vp/
√

3 − 30◦

ZY

(12.37)

From this, we obtain the other line currents Ib and Ic using the positive
phase sequence, i.e., Ib = Ia − 120◦, Ic = Ia + 120◦. The phase
currents are equal to the line currents.
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− +

+
−

+
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Figure 12.19 Transforming a 	-connected
source to an equivalent Y-connected source.

Another way to obtain the line currents is to replace the delta-
connected source with its equivalent wye-connected source, as shown in
Fig. 12.19. In Section 12.3, we found that the line-to-line voltages of
a wye-connected source lead their corresponding phase voltages by 30◦.
Therefore, we obtain each phase voltage of the equivalent wye-connected
source by dividing the corresponding line voltage of the delta-connected
source by

√
3 and shifting its phase by −30◦. Thus, the equivalent wye-

connected source has the phase voltages

Van = Vp√
3

− 30◦

Vbn = Vp√
3

− 150◦, Vcn = Vp√
3

+ 90◦
(12.38)
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If the delta-connected source has source impedance Zs per phase, the
equivalent wye-connected source will have a source impedance of Zs/3
per phase, according to Eq. (9.69).

Once the source is transformed to wye, the circuit becomes a wye-
wye system. Therefore, we can use the equivalent single-phase circuit
shown in Fig. 12.20, from which the line current for phase a is

Ia = Vp/
√

3 − 30◦

ZY

(12.39)

which is the same as Eq. (12.37).

ZY
+
−

Ia

Vp   −30°

√3

Figure 12.20 The single-phase equivalent
circuit.

Alternatively, we may transform the wye-connected load to an
equivalent delta-connected load. This results in a delta-delta system,
which can be analyzed as in Section 12.5. Note that

VAN = IaZY = Vp√
3

− 30◦ (12.40)

VBN = VAN − 120◦, VCN = VAN + 120◦

As stated earlier, the delta-connected load is more desirable than
the wye-connected load. It is easier to alter the loads in any one phase of
the delta-connected loads, as the individual loads are connected directly
across the lines. However, the delta-connected source is hardly used in
practice, because any slight imbalance in the phase voltages will result in
unwanted circulating currents.

Table 12.1 presents a summary of the formulas for phase currents
and voltages and line currents and voltages for the four connections.
Students are advised not to memorize the formulas but to understand
how they are derived. The formulas can always be obtained by directly
applying KCL and KVL to the appropriate three-phase circuits.

TABLE 12.1 Summary of phase and line voltages/currents for
balanced three-phase systems1.

Connection Phase voltages/currents Line voltages/currents

Y-Y Van = Vp 0◦ Vab = √
3Vp 30◦

Vbn = Vp − 120◦ Vbc = Vab − 120◦

Vcn = Vp + 120◦ Vca = Vab + 120◦

Same as line currents Ia = Van/ZY

Ib = Ia − 120◦

Ic = Ia + 120◦

Y-	 Van = Vp 0◦ Vab = VAB = √
3Vp 30◦

Vbn = Vp − 120◦ Vbc = VBC = Vab − 120◦

Vcn = Vp + 120◦ Vca = VCA = Vab + 120◦

IAB = VAB/Z	 Ia = IAB
√

3 − 30◦

IBC = VBC/Z	 Ib = Ia − 120◦

ICA = VCA/Z	 Ic = Ia + 120◦

1Positive or abc sequence is assumed.
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TABLE 12.1 (continued)

Connection Phase voltages/currents Line voltages/currents

	-	 Vab = Vp 0◦ Same as phase voltages

Vbc = Vp − 120◦

Vca = Vp + 120◦

IAB = Vab/Z	 Ia = IAB
√

3 − 30◦

IBC = Vbc/Z	 Ib = Ia − 120◦

ICA = Vca/Z	 Ic = Ia + 120◦

	-Y Vab = Vp 0◦ Same as phase voltages

Vbc = Vp − 120◦

Vca = Vp + 120◦

Same as line currents Ia = Vp − 30◦
√

3ZY

Ib = Ia − 120◦

Ic = Ia + 120◦

E X A M P L E 1 2 . 5

A balanced Y-connected load with a phase resistance of 40 � and a reac-
tance of 25 � is supplied by a balanced, positive sequence 	-connected
source with a line voltage of 210 V. Calculate the phase currents. Use
Vab as reference.

Solution:

The load impedance is

ZY = 40 + j25 = 47.17 32◦ �

and the source voltage is

Vab = 210 0◦ V

When the 	-connected source is transformed to a Y-connected source,

Van = Vab√
3

− 30◦ = 121.2 − 30◦ V

The line currents are

Ia = Van

ZY

= 121.2 − 30◦

47.12 32◦
= 2.57 − 62◦ A

Ib = Ia − 120◦ = 2.57 − 182◦ A

Ic = Ia 120◦ = 2.57 58◦ A

which are the same as the phase currents.
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P R A C T I C E P R O B L E M 1 2 . 5

In a balanced 	-Y circuit, Vab = 240 15◦ and ZY = (12 + j15) �.
Calculate the line currents.

Answer: 7.21 − 66.34◦, 7.21 − 186.34◦, 7.21 53.66◦ A.

12.7 POWER IN A BALANCED SYSTEM
Let us now consider the power in a balanced three-phase system. We
begin by examining the instantaneous power absorbed by the load. This
requires that the analysis be done in the time domain. For a Y-connected
load, the phase voltages are

vAN =
√

2Vp cosωt, vBN =
√

2Vp cos(ωt − 120◦)

vCN =
√

2Vp cos(ωt + 120◦)
(12.41)

where the factor
√

2 is necessary because Vp has been defined as the rms
value of the phase voltage. If ZY = Z θ , the phase currents lag behind
their corresponding phase voltages by θ . Thus,

ia =
√

2Ip cos(ωt − θ), ib =
√

2Ip cos(ωt − θ − 120◦)

ic =
√

2Ip cos(ωt − θ + 120◦)
(12.42)

where Ip is the rms value of the phase current. The total instantaneous
power in the load is the sum of the instantaneous powers in the three
phases; that is,

p = pa + pb + pc = vANia + vBNib + vCNic

= 2VpIp[cosωt cos(ωt − θ)

+ cos(ωt − 120◦) cos(ωt − θ − 120◦)
+ cos(ωt + 120◦) cos(ωt − θ + 120◦)]

(12.43)

Applying the trigonometric identity

cosA cosB = 1

2
[cos(A+ B)+ cos(A− B)] (12.44)

gives

p = VpIp[3 cos θ + cos(2ωt − θ)+ cos(2ωt − θ − 240◦)
+ cos(2ωt − θ + 240◦)]

= VpIp[3 cos θ + cosα + cosα cos 240◦ + sinα sin 240◦

+ cosα cos 240◦ − sinα sin 240◦]

where α = 2ωt − θ

= VpIp

[
3 cos θ + cosα + 2

(
−1

2

)
cosα

]
= 3VpIp cos θ

(12.45)

Thus the total instantaneous power in a balanced three-phase system is
constant—it does not change with time as the instantaneous power of each
phase does. This result is true whether the load is Y- or 	-connected.
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This is one important reason for using a three-phase system to generate
and distribute power. We will look into another reason a little later.

Since the total instantaneous power is independent of time, the
average power per phase Pp for either the 	-connected load or the Y-
connected load is p/3, or

Pp = VpIp cos θ (12.46)

and the reactive power per phase is

Qp = VpIp sin θ (12.47)

The apparent power per phase is

Sp = VpIp (12.48)

The complex power per phase is

Sp = Pp + jQp = VpI∗
p (12.49)

where Vp and Ip are the phase voltage and phase current with magnitudes
Vp and Ip, respectively. The total average power is the sum of the average
powers in the phases:

P = Pa + Pb + Pc = 3Pp = 3VpIp cos θ =
√

3VLIL cos θ (12.50)

For a Y-connected load, IL = Ip but VL = √
3Vp, whereas for a 	-

connected load, IL = √
3Ip but VL = Vp. Thus, Eq. (12.50) applies for

both Y-connected and 	-connected loads. Similarly, the total reactive
power is

Q = 3VpIp sin θ = 3Qp =
√

3VLIL sin θ (12.51)

and the total complex power is

S = 3Sp = 3VpI∗
p = 3I 2

pZp = 3V 2
p

Z∗
p

(12.52)

where Zp = Zp θ is the load impedance per phase. (Zp could be ZY or
Z	.) Alternatively, we may write Eq. (12.52) as

S = P + jQ =
√

3VLIL θ (12.53)

Remember that Vp, Ip, VL, and IL are all rms values and that θ is the
angle of the load impedance or the angle between the phase voltage and
the phase current.

A second major advantage of three-phase systems for power dis-
tribution is that the three-phase system uses a lesser amount of wire than
the single-phase system for the same line voltage VL and the same ab-
sorbed power PL. We will compare these cases and assume in both that
the wires are of the same material (e.g., copper with resistivity ρ), of the
same length �, and that the loads are resistive (i.e., unity power factor).
For the two-wire single-phase system in Fig. 12.21(a), IL = PL/VL, so
the power loss in the two wires is

Ploss = 2I 2
LR = 2R

P 2
L

V 2
L

(12.54)
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Figure 12.21 Comparing the power loss in (a) a single-phase system, and (b) a three-phase system.

For the three-wire three-phase system in Fig. 12.21(b), I ′
L = |Ia| = |Ib| =

|Ic| = PL/
√

3VL from Eq. (12.50). The power loss in the three wires is

P ′
loss = 3(I ′

L)
2R′ = 3R′ P

2
L

3V 2
L

= R′P
2
L

V 2
L

(12.55)

Equations (12.54) and (12.55) show that for the same total power delivered
PL and same line voltage VL,

Ploss

P ′
loss

= 2R

R′ (12.56)

But from Chapter 2, R = ρ�/πr2 and R′ = ρ�/πr ′2, where r and r ′ are
the radii of the wires. Thus,

Ploss

P ′
loss

= 2r ′2

r2
(12.57)

If the same power loss is tolerated in both systems, then r2 = 2r ′2. The
ratio of material required is determined by the number of wires and their
volumes, so

Material for single-phase

Material for three-phase
= 2(πr2�)

3(πr ′2�)
= 2r2

3r ′2

= 2

3
(2) = 1.333

(12.58)

since r2 = 2r ′2. Equation (12.58) shows that the single-phase system uses
33 percent more material than the three-phase system or that the three-
phase system uses only 75 percent of the material used in the equivalent
single-phase system. In other words, considerably less material is needed
to deliver the same power with a three-phase system than is required for
a single-phase system.

E X A M P L E 1 2 . 6

Refer to the circuit in Fig. 12.13 (in Example 12.2). Determine the total
average power, reactive power, and complex power at the source and at
the load.
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Solution:

It is sufficient to consider one phase, as the system is balanced. For phase
a,

Vp = 110 0◦ V and Ip = 6.81 − 21.8◦ A

Thus, at the source, the complex power supplied is

Ss = −3VpI∗
p = 3(110 0◦)(6.81 21.8◦)

= −2247 21.8◦ = −(2087 + j834.6) VA

The real or average power supplied is −2087 W and the reactive power
is −834.6 VAR.

At the load, the complex power absorbed is

SL = 3|Ip|2Zp

where Zp = 10 + j8 = 12.81 38.66◦ and Ip = Ia = 6.81 − 21.8◦.
Hence

SL = 3(6.81)212.81 38.66◦ = 1782 38.66

= (1392 + j1113) VA

The real power absorbed is 1391.7 W and the reactive power absorbed is
1113.3 VAR. The difference between the two complex powers is absorbed
by the line impedance (5 − j2) �. To show that this is the case, we find
the complex power absorbed by the line as

S� = 3|Ip|2Z� = 3(6.81)2(5 − j2) = 695.6 − j278.3 VA

which is the difference between Ss and SL, that is, Ss + S� + SL = 0, as
expected.

P R A C T I C E P R O B L E M 1 2 . 6

For the Y-Y circuit in Practice Prob. 12.2, calculate the complex power
at the source and at the load.

Answer: (1054 + j843.3) VA, (1012 + j801.6) VA.

E X A M P L E 1 2 . 7

A three-phase motor can be regarded as a balanced Y-load. A three-phase
motor draws 5.6 kW when the line voltage is 220 V and the line current
is 18.2 A. Determine the power factor of the motor.

Solution:

The apparent power is

S =
√

3VLIL =
√

3(220)(18.2) = 6935.13 VA

Since the real power is

P = S cos θ = 5600 W
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the power factor is

pf = cos θ = P

S
= 5600

6935.13
= 0.8075

P R A C T I C E P R O B L E M 1 2 . 7

Calculate the line current required for a 30-kW three-phase motor having
a power factor of 0.85 lagging if it is connected to a balanced source with
a line voltage of 440 V.

Answer: 50.94 A.

E X A M P L E 1 2 . 8

Two balanced loads are connected to a 240-kV rms 60-Hz line, as shown
in Fig. 12.22(a). Load 1 draws 30 kW at a power factor of 0.6 lagging,
while load 2 draws 45 kVAR at a power factor of 0.8 lagging. Assuming
the abc sequence, determine: (a) the complex, real, and reactive powers
absorbed by the combined load, (b) the line currents, and (c) the kVAR
rating of the three capacitors 	-connected in parallel with the load that
will raise the power factor to 0.9 lagging and the capacitance of each
capacitor.

(a)

C

C

C

Balanced
load 1

Balanced
load 2

(b)

Combined
load

Figure 12.22 For Example 12.8: (a) The
original balanced loads, (b) the combined load
with improved power factor.

Solution:

(a) For load 1, given thatP1 = 30 kW and cos θ1 = 0.6, then sin θ1 = 0.8.
Hence,

S1 = P1

cos θ1
= 30 kW

0.6
= 50 kVA

and Q1 = S1 sin θ1 = 50(0.8) = 40 kVAR. Thus, the complex power
due to load 1 is

S1 = P1 + jQ1 = 30 + j40 kVA (12.8.1)

For load 2, if Q2 = 45 kVAR and cos θ2 = 0.8, then sin θ2 = 0.6. We
find

S2 = Q2

sin θ2
= 45 kVA

0.6
= 75 kVA

and P2 = S2 cos θ2 = 75(0.8) = 60 kW. Therefore the complex power
due to load 2 is

S2 = P2 + jQ2 = 60 + j45 kVA (12.8.2)

From Eqs. (12.8.1) and (12.8.2), the total complex power absorbed by
the load is

S = S1 + S2 = 90 + j85 kVA = 123.8 43.36◦ kVA (12.8.3)

which has a power factor of cos 43.36◦ = 0.727 lagging. The real power
is then 90 kW, while the reactive power is 85 kVAR.
(b) Since S = √

3VLIL, the line current is

IL = S√
3VL

(12.8.4)
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We apply this to each load, keeping in mind that for both loads, VL = 240
kV. For load 1,

IL1 = 50,000√
3 240,000

= 120.28 mA

Since the power factor is lagging, the line current lags the line voltage by
θ1 = cos−1 0.6 = 53.13◦. Thus,

Ia1 = 120.28 − 53.13◦

For load 2,

IL2 = 75,000√
3 240,000

= 180.42 mA

and the line current lags the line voltage by θ2 = cos−1 0.8 = 36.87◦.
Hence,

Ia2 = 180.42 − 36.87◦

The total line current is

Ia = Ia1 + Ia2 = 120.28 − 53.13◦ + 180.42 − 36.87◦

= (72.168 − j96.224)+ (144.336 − j108.252)

= 216.5 − j204.472 = 297.8 − 43.36◦ mA

Alternatively, we could obtain the current from the total complex
power using Eq. (12.8.4) as

IL = 123,800√
3 240,000

= 297.82 mA

and

Ia = 297.82 − 43.36◦ mA

which is the same as before. The other line currents, Ib2 and Ica , can be
obtained according to theabc sequence (i.e., Ib = 297.82 −163.36◦ mA
and Ic = 297.82 76.64◦ mA).
(c) We can find the reactive power needed to bring the power factor to 0.9
lagging using Eq. (11.59),

QC = P(tan θold − tan θnew)

where P = 90 kW, θold = 43.36◦, and θnew = cos−1 0.9 = 25.84◦.
Hence,

QC = 90,000(tan 43.36◦ − tan 25.04◦) = 41.4 kVAR

This reactive power is for the three capacitors. For each capacitor, the
rating Q′

C = 13.8 kVAR. From Eq. (11.60), the required capacitance is

C = Q′
C

ωV 2
rms

Since the capacitors are 	-connected as shown in Fig. 12.22(b), Vrms in
the above formula is the line-to-line or line voltage, which is 240 kV.
Thus,

C = 13,800

(2π60)(240,000)2
= 635.5 pF
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P R A C T I C E P R O B L E M 1 2 . 8

Assume that the two balanced loads in Fig. 12.22(a) are supplied by an
840-V rms 60-Hz line. Load 1 is Y-connected with 30+j40� per phase,
while load 2 is a balanced three-phase motor drawing 48 kW at a power
factor of 0.8 lagging. Assuming the abc sequence, calculate: (a) the
complex power absorbed by the combined load, (b) the kVAR rating of
each of the three capacitors	-connected in parallel with the load to raise
the power factor to unity, and (c) the current drawn from the supply at
unity power factor condition.

Answer: (a) 56.47 + j47.29 kVA, (b) 15.7 kVAR, (c) 38.813 A.

†12.8 UNBALANCED THREE-PHASE SYSTEMS
This chapter would be incomplete without mentioning unbalanced three-
phase systems. An unbalanced system is caused by two possible situa-
tions: (1) the source voltages are not equal in magnitude and/or differ
in phase by angles that are unequal, or (2) load impedances are unequal.
Thus,

An unbalanced system is due to unbalanced voltage sources or an unbalanced load.

To simplify analysis, we will assume balanced source voltages, but an
unbalanced load.

A special technique for handling unbalanced
three-phase systems is the method of symmet-
rical components, which is beyond the scope of
this text.

Unbalanced three-phase systems are solved by direct application
of mesh and nodal analysis. Figure 12.23 shows an example of an unbal-
anced three-phase system that consists of balanced source voltages (not
shown in the figure) and an unbalanced Y-connected load (shown in the
figure). Since the load is unbalanced, ZA, ZB , and ZC are not equal. The
line currents are determined by Ohm’s law as

Ia = VAN

ZA

, Ib = VBN

ZB

, Ic = VCN

ZC

(12.59)

This set of unbalanced line currents produces current in the neutral line,
which is not zero as in a balanced system. Applying KCL at node N
gives the neutral line current as

In = −(Ia + Ib + Ic) (12.60)

ZA

ZCZB

A

N

C

B

Ia

In

Ib

Ic

VAN

VBN

VCN

Figure 12.23 Unbalanced three-phase
Y-connected load.

In a three-wire system where the neutral line is absent, we can still
find the line currents Ia, Ib, and Ic using mesh analysis. At node N ,
KCL must be satisfied so that Ia + Ib + Ic = 0 in this case. The same
could be done for a 	-Y, Y-	, or 	-	 three-wire system. As mentioned
earlier, in long distance power transmission, conductors in multiples of
three (multiple three-wire systems) are used, with the earth itself acting
as the neutral conductor.
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To calculate power in an unbalanced three-phase system requires
that we find the power in each phase using Eqs. (12.46) to (12.49). The
total power is not simply three times the power in one phase but the sum
of the powers in the three phases.

E X A M P L E 1 2 . 9

The unbalanced Y-load of Fig. 12.23 has balanced voltages of 100 V and
the acb sequence. Calculate the line currents and the neutral current.
Take ZA = 15 �, ZB = 10 + j5 �, ZC = 6 − j8 �.

Solution:

Using Eq. (12.59), the line currents are

Ia = 100 0◦

15
= 6.67 0◦ A

Ib = 100 120◦

10 + j5
= 100 120◦

11.18 26.56◦
= 8.94 93.44◦ A

Ic = 100 − 120◦

6 − j8
= 100 − 120◦

10 − 53.13◦
= 10 − 66.87◦ A

Using Eq. (12.60), the current in the neutral line is

In = −(Ia + Ib + Ic) = −(6.67 − 0.54 + j8.92 + 3.93 − j9.2)

= −10.06 + j0.28 = 10.06 178.4◦ A

P R A C T I C E P R O B L E M 1 2 . 9

The unbalanced 	-load of Fig. 12.24 is supplied by balanced voltages
of 200 V in the positive sequence. Find the line currents. Take Vab as
reference.

16 Ω

8 Ω

j6 Ω

10 Ω

–j5 Ω

A

C
B

Ia

Ib

Ic

Figure 12.24 Unbalanced 	-load; for
Practice Prob. 12.9.

Answer: 18.05 − 41.06◦, 29.15 220.2◦, 31.87 74.27◦ A.

E X A M P L E 1 2 . 1 0

For the unbalanced circuit in Fig. 12.25, find: (a) the line currents,
(b) the total complex power absorbed by the load, and (c) the total complex
power supplied by the source.

Solution:

(a) We use mesh analysis to find the required currents. For mesh 1,

120 − 120◦ − 120 0◦ + (10 + j5)I1 − 10I2 = 0
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Figure 12.25 For Example 12.10.

or

(10 + j5)I1 − 10I2 = 120
√

3 30◦ (12.10.1)

For mesh 2,

120 120◦ − 120 − 120◦ + (10 − j10)I2 − 10I1 = 0

or

−10I1 + (10 − j10)I2 = 120
√

3 − 90◦ (12.10.2)

Equations (12.10.1) and (12.10.2) form a matrix equation:

[
10 + j5 −10

−10 10 − j10

] [
I1

I2

]
=
[

120
√

3 30◦

120
√

3 − 90◦

]

The determinants are


 =
∣∣∣∣∣10 + j5 −10

−10 10 − j10

∣∣∣∣∣ = 50 − j50 = 70.71 − 45◦


1 =
∣∣∣∣∣

120
√

3 30◦ −10

120
√

3 − 90◦ 10 − j10

∣∣∣∣∣ = 207.85(13.66 − j13.66)

= 4015 − 45◦


2 =
∣∣∣∣∣
10 + j5 120

√
3 30◦

−10 120
√

3 − 90◦

∣∣∣∣∣ = 207.85(13.66 − j5)

= 3023 − 20.1◦
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The mesh currents are

I1 = 
1


 = 4015.23 − 45◦

70.71 − 45◦
= 56.78 A

I2 = 
2


 = 3023.4 − 20.1◦

70.71 − 45◦
= 42.75 24.9◦ A

The line currents are

Ia = I1 = 56.78 A, Ic = −I2 = 42.75 − 155.1◦ A

Ib = I2 − I1 = 38.78 + j18 − 56.78 = 25.46 135◦ A

(b) We can now calculate the complex power absorbed by the load. For
phase A,

SA = |Ia|2ZA = (56.78)2(j5) = j16,120 VA

For phase B,

SB = |Ib|2ZB = (25.46)2(10) = 6480 VA

For phase C,

SC = |Ic|2ZC = (42.75)2(−j10) = −j18,276 VA

The total complex power absorbed by the load is

SL = SA + SB + SC = 6480 − j2156 VA

(c) We check the result above by finding the power supplied by the source.
For the voltage source in phase a,

Sa = −VanI∗
a = −(120 0◦)(56.78) = −6813.6 VA

For the source in phase b,

Sb = −VbnI∗
b = −(120 − 120◦)(25.46 − 135◦)

= −3055.2 105◦ = 790 − j2951.1 VA

For the source in phase c,

Sc = −VbnI∗
c = −(120 120◦)(42.75 155.1◦)

= −5130 275.1◦ = −456.03 + j5109.7 VA

The total complex power supplied by the three-phase source is

Ss = Sa + Sb + Sc = −6480 + j2156 VA

showing that Ss + SL = 0 and confirming the conservation principle of
ac power.

P R A C T I C E P R O B L E M 1 2 . 1 0

Find the line currents in the unbalanced three-phase circuit of Fig. 12.26
and the real power absorbed by the load.
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j10 Ω

−j5 Ω

C
b B

c

a

220   −0° rms V

220  120° rms V

+− + −

− +

220   −120° rms V

Figure 12.26 For Practice Prob. 12.10.

Answer: 64 80.1◦, 38.1 − 60◦, 42.5 225◦ A, 4.84 kW.

12.9 PSPICE FOR THREE-PHASE CIRCUITS
PSpice can be used to analyze three-phase balanced or unbalanced circuits
in the same way it is used to analyze single-phase ac circuits. However,
a delta-connected source presents two major problems to PSpice. First, a
delta-connected source is a loop of voltage sources—which PSpice does
not like. To avoid this problem, we insert a resistor of negligible resistance
(say, 1 µ� per phase) into each phase of the delta-connected source.
Second, the delta-connected source does not provide a convenient node
for the ground node, which is necessary to run PSpice. This problem can
be eliminated by inserting balanced wye-connected large resistors (say,
1 M� per phase) in the delta-connected source so that the neutral node of
the wye-connected resistors serves as the ground node 0. Example 12.12
will illustrate this.

E X A M P L E 1 2 . 1 1

For the balanced Y-	 circuit in Fig. 12.27, use PSpice to find the line cur-
rent IaA, the phase voltage VAB , and the phase current IAC . Assume that
the source frequency is 60 Hz.

100 0° V
a

n

A

C

B

100 Ω
100 Ω

1 Ω

0.2 H

0.2 H

100 Ω

0.2 H

− +

100 −120° V
b 1 Ω

− +

100 120° V
c 1 Ω

− +

Figure 12.27 For Example 12.10.



CHAPTER 12 Three-Phase Circuits 505

Solution:

The schematic is shown in Fig. 12.28. The pseudocomponents IPRINT
are inserted in the appropriate lines to obtain IaA and IAC , while VPRINT2
is inserted between nodes A and B to print differential voltage VAB . We
set the attributes of IPRINT and VPRINT2 each to AC = yes, MAG = yes,
PHASE = yes, to print only the magnitude and phase of the currents and
voltages. As a single-frequency analysis, we select Analysis/Setup/AC
Sweep and enter Total Pts = 1, Start Freq = 60, and Final Freq = 60.
Once the circuit is saved, it is simulated by selecting Analysis/Simulate.
The output file includes the following:

FREQ V(A,B) VP(A,B)
6.000E+01 1.699E+02 3.081E+01

FREQ IM(V_PRINT2) IP(V_PRINT2)
6.000E+01 2.350E+00 -3.620E+01

FREQ IM(V_PRINT3) IP(V_PRINT3)
6.000E+01 1.357E+00 -6.620E+01

From this, we obtain

IaA = 2.35 − 36.2◦ A

VAB = 169.9 30.81◦ V, IAC = 1.357 − 66.2◦ A

A

B

C

R4
R6

100

0.2H L1

AC = yes
MAG = yes
PHASE = yes

AC = yes
MAG = yes
PHASE = yes

AC = yes
MAG = yes
PHASE = yesACMAG = 100 V

ACPHASE = 0

1

IPRINT

IPRINT

ACMAG = 100
ACPHASE = −120

1

R2

R1

V2

V1

ACMAG = 100 V
ACPHASE = 120

1

R3

V3

R5 100

0.2H
0.2H

L3
L2

100

− +
− +

− +

0

Figure 12.28 Schematic for the circuit in Fig. 12.27.

P R A C T I C E P R O B L E M 1 2 . 1 1

Refer to the balanced Y-Y circuit of Fig. 12.29. Use PSpice to find the
line current IbB and the phase voltage VAN . Take f = 100 Hz.
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120 60° V
a

n

A

C

N

10 Ω

2 Ω

10 mH

− +

120 −60° V
b 2 Ω

− +

120 180° V
c 2 Ω

1.6 mH

1.6 mH

1.6 mH
− +

10 Ω 10 mH

10 Ω

10 mH

B

Figure 12.29 For Practice Prob. 12.11.

Answer: 100.9 60.87◦ V, 8.547 − 91.27◦ A.

E X A M P L E 1 2 . 1 2

Consider the unbalanced 	-	 circuit in Fig. 12.30. Use PSpice to find
the generator current Iab, the line current IbB , and the phase current IBC .

208 130° V

208 −110° V

208 10° V

A

Bb

Cc

a

50 Ω

2 Ω

j30 Ω

j5 Ω

−j40 Ω
2 Ω j5 Ω

2 Ω j5 Ω

+
−

+
−

+
−

Figure 12.30 For Example 12.12.

Solution:

As mentioned above, we avoid the loop of voltage sources by inserting a
1-µ� series resistor in the delta-connected source. To provide a ground
node 0, we insert balanced wye-connected resistors (1 M� per phase)
in the delta-connected source, as shown in the schematic in Fig. 12.31.
Three IPRINT pseudocomponents with their attributes are inserted to be
able to get the required currents Iab, IbB , and IBC . Since the operating
frequency is not given and the inductances and capacitances should be
specified instead of impedances, we assume ω = 1 rad/s so that f =
1/2π = 0.159155 Hz. Thus,
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L = XL

ω
and C = 1

ωXC

We select Analysis/Setup/AC Sweep and enter Total Pts = 1, Start
Freq = 0.159155, and Final Freq = 0.159155. Once the schematic
is saved, we select Analysis/Simulate to simulate the circuit. The output
file includes:

FREQ IM(V_PRINT1) IP(V_PRINT1)
1.592E-01 9.106E+00 1.685E+02

FREQ IM(V_PRINT2) IP(V_PRINT2)
1.592E-01 5.959E+00 2.821E+00

FREQ IM(V_PRINT3) IP(V_PRINT3)
1.592E-01 5.500E+00 -7.532E+00

from which we get

Iab = 5.96 2.82◦ A

IbB = 9.106 168.5◦ A, IBC = 5.5 − 7.53◦ A

IPRINT

ACMAG = 208V
ACPHASE = 130

ACMAG = 208V
ACPHASE = -110

V1
V2

30H L4

25m C1

R1

2

1Meg

R8

L1

5H

R2

2

L2

5H

R3

2

L3

5H

R5 1Meg

R4 1u

R6 1Meg

R7 1u

R9 1u

−
+

−
+

ACMAG = 208V
ACPHASE = 110

V3

−
+

IPRINT

R10 50

AC = yes
MAG = yes
PHASE = yes

AC = yes
MAG = yes
PHASE = yes

AC = yes
MAG = yes
PHASE = yes

IPRINT

0

Figure 12.31 Schematic for the circuit in Fig. 12.30.

P R A C T I C E P R O B L E M 1 2 . 1 2

For the unbalanced circuit in Fig. 12.32, use PSpice to find the generator
current Ica , the line current IcC , and the phase current IAB .
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220 90° V

220 −150° V

220 −30° V

A

Bb

Cc

a

10 Ω

j10 Ω

10 Ω

+
−

+
−

+
−

10 Ω

−j10 Ω

Figure 12.32 For Practice Prob. 12.12.

Answer: 24.68 − 90◦ A, 15.56 105◦ A, 37.24 83.79◦ A.

†12.10 APPLICATIONS
Both wye and delta source connections have important practical applica-
tions. The wye source connection is used for long distance transmission
of electric power, where resistive losses (I 2R) should be minimal. This
is due to the fact that the wye connection gives a line voltage that is

√
3

greater than the delta connection; hence, for the same power, the line
current is

√
3 smaller. The delta source connection is used when three

single-phase circuits are desired from a three-phase source. This conver-
sion from three-phase to single-phase is required in residential wiring, be-
cause household lighting and appliances use single-phase power. Three-
phase power is used in industrial wiring where a large power is required.
In some applications, it is immaterial whether the load is wye- or delta-
connected. For example, both connections are satisfactory with induction
motors. In fact, some manufacturers connect a motor in delta for 220 V
and in wye for 440 V so that one line of motors can be readily adapted to
two different voltages.

Here we consider two practical applications of those concepts cov-
ered in this chapter: power measurement in three-phase circuits and res-
idential wiring.

Three-phase 
load (wye 
or delta, 
balanced or 
unbalanced)

W1

a

b

c

W3

±

±

W2
±

±

±

±

o

Figure 12.33 Three-wattmeter method for
measuring three-phase power.

1 2 . 1 0 . 1 T h r e e - P h a s e P o w e r M e a s u r e m e n t
Section 11.9 presented the wattmeter as the instrument for measuring the
average (or real) power in single-phase circuits. A single wattmeter can
also measure the average power in a three-phase system that is balanced,
so that P1 = P2 = P3; the total power is three times the reading of that
one wattmeter. However, two or three single-phase wattmeters are neces-
sary to measure power if the system is unbalanced. The three-wattmeter
method of power measurement, shown in Fig. 12.33, will work regardless
of whether the load is balanced or unbalanced, wye- or delta-connected.
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The three-wattmeter method is well suited for power measurement in a
three-phase system where the power factor is constantly changing. The
total average power is the algebraic sum of the three wattmeter readings,

PT = P1 + P2 + P3 (12.61)

where P1, P2, and P3 correspond to the readings of wattmeters W1, W2,
andW3, respectively. Notice that the common or reference point o in Fig.
12.33 is selected arbitrarily. If the load is wye-connected, point o can be
connected to the neutral point n. For a delta-connected load, point o can
be connected to any point. If point o is connected to point b, for example,
the voltage coil in wattmeter W2 reads zero and P2 = 0, indicating that
wattmeter W2 is not necessary. Thus, two wattmeters are sufficient to
measure the total power.

The two-wattmeter method is the most commonly used method for
three-phase power measurement. The two wattmeters must be properly
connected to any two phases, as shown typically in Fig. 12.34. Notice
that the current coil of each wattmeter measures the line current, while the
respective voltage coil is connected between the line and the third line and
measures the line voltage. Also notice that the ± terminal of the voltage
coil is connected to the line to which the corresponding current coil is
connected. Although the individual wattmeters no longer read the power
taken by any particular phase, the algebraic sum of the two wattmeter
readings equals the total average power absorbed by the load, regardless of
whether it is wye- or delta-connected, balanced or unbalanced. The total
real power is equal to the algebraic sum of the two wattmeter readings,

PT = P1 + P2 (12.62)

We will show here that the method works for a balanced three-phase
system.

Three-phase 
load (wye 
or delta, 
balanced or 
unbalanced)

W1

a

b

c

W2

±

±

±

±

Figure 12.34 Two-wattmeter method for
measuring three-phase power.

Consider the balanced, wye-connected load in Fig. 12.35. Our
objective is to apply the two-wattmeter method to find the average power
absorbed by the load. Assume the source is in the abc sequence and the
load impedance ZY = ZY θ . Due to the load impedance, each voltage
coil leads its current coil by θ , so that the power factor is cos θ . We recall
that each line voltage leads the corresponding phase voltage by 30◦. Thus,
the total phase difference between the phase current Ia and line voltage

W1

a

b

c

W2

± ±

±±

Ib

Ic

Ia

ZY ZY

ZY

+

−
Vab

−

+

Vcb

Figure 12.35 Two-wattmeter method applied to a balanced wye load.
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Vab is θ + 30◦, and the average power read by wattmeter W1 is

P1 = Re[VabI∗
a] = VabIa cos(θ + 30◦) = VLIL cos(θ + 30◦) (12.63)

Similarly, we can show that the average power read by wattmeter 2 is

P2 = Re[VcbI∗
c ] = VcbIc cos(θ − 30◦) = VLIL cos(θ − 30◦) (12.64)

We now use the trigonometric identities

cos(A+ B) = cosA cosB − sinA sinB

cos(A− B) = cosA cosB + sinA sinB
(12.65)

to find the sum and the difference of the two wattmeter readings in Eqs.
(12.63) and (12.64):

P1 + P2 = VLIL[cos(θ + 30◦)+ cos(θ − 30◦)]
= VlIL(cos θ cos 30◦ − sin θ sin 30◦

+ cos θ cos 30◦ + sin θ sin 30◦)

= VLIL2 cos 30◦ cos θ =
√

3VLIL cos θ

(12.66)

since 2 cos 30◦ = √
3. Comparing Eq. (12.66) with Eq. (12.50) shows

that the sum of the wattmeter readings gives the total average power,

PT = P1 + P2 (12.67)

Similarly,

P1 − P2 = VLIL[cos(θ + 30◦)− cos(θ − 30◦)]
= VlIL(cos θ cos 30◦ − sin θ sin 30◦

− cos θ cos 30◦ − sin θ sin 30◦)
= −VLIL2 sin 30◦ sin θ

P2 − P1 = VLIL sin θ

(12.68)

since 2 sin 30◦ = 1. Comparing Eq. (12.68) with Eq. (12.51) shows that
the difference of the wattmeter readings is proportional to the total reactive
power, or

QT =
√

3(P2 − P1) (12.69)

From Eqs. (12.67) and (12.69), the total apparent power can be obtained
as

ST =
√
P 2
T +Q2

T (12.70)

Dividing Eq. (12.69) by Eq. (12.67) gives the tangent of the power factor
angle as

tan θ = QT

PT
=

√
3
P2 − P1

P2 + P1
(12.71)

from which we can obtain the power factor as pf = cos θ. Thus, the two-
wattmeter method not only provides the total real and reactive powers, it
can also be used to compute the power factor. From Eqs. (12.67), (12.69),
and (12.71), we conclude that:
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1. If P2 = P1, the load is resistive.

2. If P2 > P1, the load is inductive.

3. If P2 < P1, the load is capacitive.

Although these results are derived from a balanced wye-connected load,
they are equally valid for a balanced delta-connected load. However,
the two-wattmeter method cannot be used for power measurement in a
three-phase four-wire system unless the current through the neutral line
is zero. We use the three-wattmeter method to measure the real power in
a three-phase four-wire system.

E X A M P L E 1 2 . 1 3

Three wattmeters W1, W2, and W3 are connected, respectively, to phases
a, b, and c to measure the total power absorbed by the unbalanced wye-
connected load in Example 12.9 (see Fig. 12.23). (a) Predict the wattmeter
readings. (b) Find the total power absorbed.

Solution:

Part of the problem is already solved in Example 12.9. Assume that the
wattmeters are properly connected as in Fig. 12.36.

−

+

VCN

−

+

VAN

−

+

VBN

W3

Ia

Ib

Ic

In

W1

A

N

C
B

W2
j5 Ω

−j8 Ω

10 Ω 6 Ω

15 Ω

Figure 12.36 For Example 12.13.

(a) From Example 12.9,

VAN = 100 0◦, VBN = 100 120◦, VCN = 100 − 120◦ V

while

Ia = 6.67 0◦, Ib = 8.94 93.44◦, Ic = 10 − 66.87◦ A

We calculate the wattmeter readings as follows:

P1 = Re(VAN I∗
a) = VANIa cos(θVAN

− θIa )

= 100 × 6.67 × cos(0◦ − 0◦) = 667 W

P2 = Re(VBN I∗
b) = VBNIb cos(θVBN

− θIb )

= 100 × 8.94 × cos(120◦ − 93.44◦) = 800 W

P3 = Re(VCN I∗
c ) = VCNIc cos(θVCN

− θIc )

= 100 × 10 × cos(−120◦ + 66.87◦) = 600 W
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(b) The total power absorbed is

PT = P1 + P2 + P3 = 667 + 800 + 600 = 2067 W

We can find the power absorbed by the resistors in Fig. 12.36 and use that
to check or confirm this result.

PT = |Ia|2(15)+ |Ib|2(10)+ |Ic|2(6)
= 6.672(15)+ 8.942(10)+ 102(6)

= 667 + 800 + 600 = 2067 W

which is exactly the same thing.

P R A C T I C E P R O B L E M 1 2 . 1 3

Repeat Example 12.13 for the network in Fig. 12.24 (see Practice Prob.
12.9). Hint: Connect the reference point o in Fig. 12.33 to point B.

Answer: (a) 2961 W, 0 W, 4339 W, (b) 7300 W.

E X A M P L E 1 2 . 1 4

The two-wattmeter method produces wattmeter readings P1 = 1560 W
and P2 = 2100 W when connected to a delta-connected load. If the line
voltage is 220 V, calculate: (a) the per-phase average power, (b) the per-
phase reactive power, (c) the power factor, and (d) the phase impedance.

Solution:

We can apply the given results to the delta-connected load.
(a) The total real or average power is

PT = P1 + P2 = 1560 + 2100 = 3660 W

The per-phase average power is then

Pp = 1

3
PT = 1220 W

(b) The total reactive power is

QT =
√

3(P2 − P1) =
√

3(2100 − 1560) = 935.3 VAR

so that the per-phase reactive power is

Qp = 1

3
QT = 311.77 VAR

(c) The power angle is

θ = tan−1 QT

PT
= tan−1 935.3

3660
= 14.33◦

Hence, the power factor is

cos θ = 0.9689 (leading)

It is a leading pf because QT is positive or P2 > P1.
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(c) The phase impedance is Zp = Zp θ . We know that θ is the same as
the pf angle; that is, θ = 14.57◦.

Zp = Vp

Ip

We recall that for a delta-connected load, Vp = VL = 220 V. From Eq.
(12.46),

Pp = VpIp cos θ ⇒ Ip = 1220

220 × 0.9689
= 5.723 A

Hence,

Zp = Vp

Ip
= 220

5.723
= 38.44 �

and

Zp = 38.44 14.33◦ �

P R A C T I C E P R O B L E M 1 2 . 1 4

Let the line voltage VL = 208 V and the wattmeter readings of the bal-
anced system in Fig. 12.35 be P1 = −560 W and P2 = 800 W. Deter-
mine:

(a) the total average power

(b) the total reactive power

(c) the power factor

(d) the phase impedance

Is the impedance inductive or capacitive?

Answer: (a) 240 W, (b) 2355.6 VAR, (c) 0.1014, (d) 18.25 84.18◦ �,
inductive.

E X A M P L E 1 2 . 1 5

The three-phase balanced load in Fig. 12.35 has impedance per phase of
ZY = 8 + j6 �. If the load is connected to 208-V lines, predict the read-
ings of the wattmeters W1 and W2. Find PT and QT .

Solution:

The impedance per phase is

ZY = 8 + j6 = 10 36.87◦ �

so that the pf angle is 36.87◦. Since the line voltage VL = 208 V, the line
current is

IL = Vp

|ZY | = 208/
√

3

10
= 12 A
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Then

P1 = VLIL cos(θ + 30◦) = 208 × 12 × cos(36.87◦ + 30◦)

= 980.48 W

P2 = VLIL cos(θ − 30◦) = 208 × 12 × cos(36.87◦ − 30◦)

= 2478.1 W

Thus, wattmeter 1 reads 980.48 W, while wattmeter 2 reads 2478.1 W.
Since P2 > P1, the load is inductive. This is evident from the load ZY

itself. Next,

PT = P1 + P2 = 3.4586 kW

and

QT =
√

3(P2 − P1) =
√

3(1497.6) VAR = 2.594 kVAR

P R A C T I C E P R O B L E M 1 2 . 1 5

If the load in Fig. 12.35 is delta-connected with impedance per phase of
Zp = 30−j40� and VL = 440 V, predict the readings of the wattmeters
W1 and W2. Calculate PT and QT .

Answer: 6.166 kW, 0.8021 kW, 6.968 kW, −9.291 kVAR.

1 2 . 1 0 . 2 R e s i d e n t i a l W i r i n g
In the United States, most household lighting and appliances operate
on 120-V, 60-Hz, single-phase alternating current. (The electricity may
also be supplied at 110, 115, or 117 V, depending on the location.) The
local power company supplies the house with a three-wire ac system.
Typically, as in Fig. 12.37, the line voltage of, say, 12,000 V is stepped
down to 120/240 V with a transformer (more details on transformers
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Ground

Wall of
house

Circuit
# 1

120 V

Circuit
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# 3
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Fuse Fuses

Switch

Watt-hour meter

Step-down
transformer

Figure 12.37 A 120/240 household power system.
(Source: A. Marcus and C. M. Thomson, Electricity for Technicians,
2nd ed. [Englewood Cliffs, NJ: Prentice Hall, 1975], p. 324.)
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in the next chapter). The three wires coming from the transformer are
typically colored red (hot), black (hot), and white (neutral). As shown in
Fig. 12.38, the two 120-V voltages are opposite in phase and hence add up
to zero. That is, VW = 0 0◦, VB = 120 0◦, VR = 120 180◦ = −VB .

VBR = VB − VR = VB − (−VB) = 2VB = 240 0◦ (12.72)

Since most appliances are designed to operate with 120 V, the lighting
and appliances are connected to the 120-V lines, as illustrated in Fig.
12.39 for a room. Notice in Fig. 12.37 that all appliances are connected
in parallel. Heavy appliances that consume large currents, such as air
conditioners, dishwashers, ovens, and laundry machines, are connected
to the 240-V power line.

120 V
lights

120 V
appliance

120 V
lights

120 V
appliance

120 V

120 V
−

+

+

− 240 V
appliance

Black
(hot) B

White
(neutral)

Red (hot)

W

R

Ground

To other houses

Transformer
House

Figure 12.38 Single-phase three-wire residential wiring.
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120 volts
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Switch

Neutral

Figure 12.39 A typical wiring diagram of
a room.
(Source: A. Marcus and C. M.
Thomson, Electricity for Tech-
nicians, 2nd ed. [Englewood
Cliffs, NJ: Prentice Hall, 1975],
p. 325.)

Because of the dangers of electricity, house wiring is carefully reg-
ulated by a code drawn by local ordinances and by the National Electrical
Code (NEC). To avoid trouble, insulation, grounding, fuses, and circuit
breakers are used. Modern wiring codes require a third wire for a sep-
arate ground. The ground wire does not carry power like the neutral
wire but enables appliances to have a separate ground connection. Figure
12.40 shows the connection of the receptacle to a 120-V rms line and to
the ground. As shown in the figure, the neutral line is connected to the
ground (the earth) at many critical locations. Although the ground line

+
−

Fuse or circuit breaker

120 V rms

Hot wire

Receptacle

To other appliances

Neutral wire

Power system
ground

Service
panel ground

Ground wire

Figure 12.40 Connection of a receptacle to the hot line and to the ground.
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seems redundant, grounding is important for many reasons. First, it is re-
quired by NEC. Second, grounding provides a convenient path to ground
for lightning that strikes the power line. Third, grounds minimize the risk
of electric shock. What causes shock is the passage of current from one
part of the body to another. The human body is like a big resistor R. If V
is the potential difference between the body and the ground, the current
through the body is determined by Ohm’s law as

I = V

R
(12.73)

The value of R varies from person to person and depends on whether the
body is wet or dry. How great or how deadly the shock is depends on
the amount of current, the pathway of the current through the body, and
the length of time the body is exposed to the current. Currents less than
1 mA may not be harmful to the body, but currents greater than 10 mA can
cause severe shock. A modern safety device is the ground-fault circuit
interrupter (GFCI), used in outdoor circuits and in bathrooms, where the
risk of electric shock is greatest. It is essentially a circuit breaker that
opens when the sum of the currents iR, iW , and iB through the red, white,
and the black lines is not equal to zero, or iR + iW + iB �= 0.

The best way to avoid electric shock is to follow safety guidelines
concerning electrical systems and appliances. Here are some of them:

• Never assume that an electrical circuit is dead. Always check to
be sure.

• Use safety devices when necessary, and wear suitable clothing
(insulated shoes, gloves, etc.).

• Never use two hands when testing high-voltage circuits, since
the current through one hand to the other hand has a direct path
through your chest and heart.

• Do not touch an electrical appliance when you are wet.
Remember that water conducts electricity.

• Be extremely careful when working with electronic appliances
such as radio and TV because these appliances have large
capacitors in them. The capacitors take time to discharge after
the power is disconnected.

• Always have another person present when working on a wiring
system, just in case of an accident.

12.11 SUMMARY
1. The phase sequence is the order in which the phase voltages of a

three-phase generator occur with respect to time. In an abc
sequence of balanced source voltages, Van leads Vbn by 120◦,
which in turn leads Vcn by 120◦. In an acb sequence of balanced
voltages, Van leads Vcn by 120◦, which in turn leads Vbn by 120◦.

2. A balanced wye- or delta-connected load is one in which the three-
phase impedances are equal.

3. The easiest way to analyze a balanced three-phase circuit is to
transform both the source and the load to a Y-Y system and then
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analyze the single-phase equivalent circuit. Table 12.1 presents a
summary of the formulas for phase currents and voltages and line
currents and voltages for the four possible configurations.

4. The line current IL is the current flowing from the generator to the
load in each transmission line in a three-phase system. The line
voltage VL is the voltage between each pair of lines, excluding the
neutral line if it exists. The phase current Ip is the current flowing
through each phase in a three-phase load. The phase voltage Vp is
the voltage of each phase. For a wye-connected load,

VL =
√

3Vp and IL = Ip

For a delta-connected load,

VL = Vp and IL =
√

3Ip

5. The total instantaneous power in a balanced three-phase system is
constant and equal to the average power.

6. The total complex power absorbed by a balanced three-phase
Y-connected or 	-connected load is

S = P + jQ =
√

3VLIL θ

where θ is the angle of the load impedances.

7. An unbalanced three-phase system can be analyzed using nodal or
mesh analysis.

8. PSpice is used to analyze three-phase circuits in the same way as it
is used for analyzing single-phase circuits.

9. The total real power is measured in three-phase systems using
either the three-wattmeter method or the two-wattmeter method.

10. Residential wiring uses a 120/240-V, single-phase, three-wire
system.

R E V I E W Q U E S T I O N S

12.1 What is the phase sequence of a three-phase motor
for which VAN = 220 − 100◦ V and
VBN = 220 140◦ V?
(a) abc (b) acb

12.2 If in an acb phase sequence, Van = 100 − 20◦,
then Vcn is:
(a) 100 − 140◦ (b) 100 100◦

(c) 100 − 50◦ (d) 100 10◦

12.3 Which of these is not a required condition for a
balanced system:
(a) |Van| = |Vbn| = |Vcn|
(b) Ia + Ib + Ic = 0
(c) Van + Vbn + Vcn = 0

(d) Source voltages are 120◦ out of phase with each
other.

(e) Load impedances for the three phases are equal.

12.4 In a Y-connected load, the line current and phase
current are equal.
(a) True (b) False

12.5 In a 	-connected load, the line current and phase
current are equal.
(a) True (b) False

12.6 In a Y-Y system, a line voltage of 220 V produces a
phase voltage of:
(a) 381 V (b) 311 V (c) 220 V
(d) 156 V (e) 127 V
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12.7 In a 	-	 system, a phase voltage of 100 V produces
a line voltage of:
(a) 58 V (b) 71 V (c) 100 V
(d) 173 V (e) 141 V

12.8 When a Y-connected load is supplied by voltages in
abc phase sequence, the line voltages lag the
corresponding phase voltages by 30◦.
(a) True (b) False

12.9 In a balanced three-phase circuit, the total
instantaneous power is equal to the average power.
(a) True (b) False

12.10 The total power supplied to a balanced 	-load is
found in the same way as for a balanced Y-load.
(a) True (b) False

Answers: 12.1a, 12.2a, 12.3c, 12.4a, 12.5b, 12.6e, 12.7c, 12.8b,
12.9a, 12.10a.

P R O B L E M S 1

Section 12.2 Balanced Three-Phase Voltages

12.1 If Vab = 400 V in a balanced Y-connected
three-phase generator, find the phase voltages,
assuming the phase sequence is:
(a) abc (b) acb

12.2 What is the phase sequence of a balanced
three-phase circuit for which Van = 160 30◦ V and
Vcn = 160 − 90◦ V? Find Vbn.

12.3 Determine the phase sequence of a balanced
three-phase circuit in which Vbn = 208 130◦ V
and Vcn = 208 10◦ V. Obtain Van.

12.4 Assuming the abc sequence, if Vca = 208 20◦ V
in a balanced three-phase circuit, find Vab, Vbc, Van,
and Vbn.

12.5 Given that the line voltages of a three-phase circuit
are

Vab = 420 0◦, Vbc = 420 − 120◦

Vac = 420 120◦ V

find the phase voltages Van, Vbn, and Vcn.

Section 12.3 Balanced Wye-Wye Connection

12.6 For the Y-Y circuit of Fig. 12.41, find the line
currents, the line voltages, and the load voltages.

a A

b B

c C

n N

− +

− +

− +

220   0° V

220    −120° V

220   120° V

10 Ω j5 Ω

10 Ω j5 Ω

10 Ω j5 Ω

Figure 12.41 For Prob. 12.6.

12.7 Obtain the line currents in the three-phase circuit of
Fig. 12.42 below.

+
−

A

Nn

a

440  0° V

440  120° V 440   −120° V+− − +

 6 − j8 Ω  6 − j8 Ω

 6 − j8 Ω

Ia

Ib

Ic

Figure 12.42 For Prob. 12.7.

1Remember that unless stated otherwise, all given voltages and currents are rms values.
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12.8 A balanced Y-connected load with a phase
impedance of 16 + j9 � is connected to a balanced
three-phase source with a line voltage of 220 V.
Calculate the line current IL.

12.9 A balanced Y-Y four-wire system has phase voltages

Van = 120 0◦, Vbn = 120 − 120◦

Vcn = 120 120◦ V

The load impedance per phase is 19 + j13 �, and
the line impedance per phase is 1 + j2 �. Solve for
the line currents and neutral current.

12.10 For the circuit in Fig. 12.43, determine the current in
the neutral line.

+
−

+
−

− +

2 Ω

2 Ω

20 Ω

2 Ω

220   −120° V

220  120° V 10 + j5 Ω

25 − j10 Ω220  0° V

Figure 12.43 For Prob. 12.10.

Section 12.4 Balanced Wye-Delta Connection

12.11 For the three-phase circuit of Fig. 12.44,
IbB = 30 60◦ A and VBC = 220 10◦ V. Find Van,
VAB , IAC , and Z.

+
−

+
−

− +

C

B

A

Z

Z

Z

Vcn

Van Vbn

n
b

a

c

Figure 12.44 For Prob. 12.11.

12.12 Solve for the line currents in the Y-	 circuit of Fig.
12.45. Take Z	 = 60 45◦ �.

Z∆

A

Cc
B

a

+
−

+
−

Ia

Ib

Ic

+
−

n

b

Z∆ Z∆

110   0° V

110    −120° V110   120° V

Figure 12.45 For Prob. 12.12.

12.13 The circuit in Fig. 12.46 is excited by a balanced
three-phase source with a line voltage of 210 V. If
Z� = 1 + j1 �, Z	 = 24 − j30 �, and
ZY = 12 + j5 �, determine the magnitude of the
line current of the combined loads.

a

b

c
Zl

Zl

Zl

Z∆

Z∆

Z∆

ZY

ZY

ZY

Figure 12.46 For Prob. 12.13.

12.14 A balanced delta-connected load has a phase current
IAC = 10 − 30◦ A.

(a) Determine the three line currents assuming that
the circuit operates in the positive phase
sequence.

(b) Calculate the load impedance if the line voltage
is VAB = 110 0◦ V.

12.15 In a wye-delta three-phase circuit, the source is a
balanced, positive phase sequence with
Van = 120 0◦ V. It feeds a balanced load with
Z	 = 9 + j12 � per phase through a balanced line
with Z� = 1 + j0.5 � per phase. Calculate the
phase voltages and currents in the load.
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12.16 If Van = 440 60◦ V in the network of Fig. 12.47,
find the load phase currents IAB , IBC , and ICA.

Three-phase,
Y-connected
generator

(+) phase
sequence

12 Ω

j9 Ω

j9 Ω

12 Ω

12 Ω j9 Ω

a

b

c

A

B
C

Figure 12.47 For Prob. 12.16.

Section 12.5 Balanced Delta-Delta Connection

12.17 For the 	-	 circuit of Fig. 12.48, calculate the
phase and line currents.

+
−

+
−

+
−

30 Ω

30 Ω

173  −120° V

173   0° V

j10 Ω

j10 Ω 30 Ω

j10 Ω

A

B

a

b

c C

173  120° V

Figure 12.48 For Prob. 12.17.

12.18 Refer to the 	-	 circuit in Fig. 12.49. Find the line
and phase currents. Assume that the load impedance
is 12 + j9 � per phase.

A

C
B

Ia

Ib

Ic

+
−+

−

− +

210   0° V 

210   −120° V 

210  120° V 

IBC

IAB

ICA

ZL

ZL

ZL

Figure 12.49 For Prob. 12.18.

12.19 Find the line currents Ia , Ib, and Ic in the three-phase
network of Fig. 12.50 below. Take
Z	 = 12 − j15 �, ZY = 4 + j6 �,
and Z� = 2 �.

12.20 A balanced delta-connected source has phase
voltage Vab = 416 30◦ V and a positive phase
sequence. If this is connected to a balanced
delta-connected load, find the line and phase
currents. Take the load impedance per phase as
60 30◦ � and line impedance per phase as
1 + j1 �.

A

C
B

Ia

Ib

Ic

+
−+

−

− +

208   0° V 

208   −120° V 

208  120° V 

Zl

Zl

Zl

ZY ZY

Z∆ Z∆

Z∆

ZY

Figure 12.50 For Prob. 12.19.
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Section 12.6 Balanced Delta-Wye Connection

12.21 In the circuit of Fig. 12.51, if Vab = 440 10◦,
Vbc = 440 250◦, Vca = 440 130◦ V, find the line
currents.

b

c

a
3 + j2 Ω

3 + j2 Ω 10 − j8 Ω

10 − j8 Ω

10 − j8 Ω
3 + j2 Ω

+
−

+
−

+
−Vca

 Vab

 Vbc

Ib

Ic

Ia

Figure 12.51 For Prob. 12.21.

12.22 For the balanced circuit in Fig. 12.52,
Vab = 125 0◦ V. Find the line currents IaA, IbB ,
and IcC .

N

IbB

IcC

IaA

24 Ω

24 Ω

24 Ω

−j15 Ω

−j15 Ω

−j15 Ω

a

b

c

A

C
B

Three-phase,
∆-connected
generator

(+) phase
sequence

Figure 12.52 For Prob. 12.22.

12.23 In a balanced three-phase 	-Y circuit, the source is
connected in the positive sequence, with
Vab = 220 20◦ V and ZY = 20 + j15 �. Find the
line currents.

12.24 A delta-connected generator supplies a balanced
wye-connected load with an impedance of
30 − 60◦ �. If the line voltages of the generator
have a magnitude of 400 V and are in the positive
phase sequence, find the line current IL and phase
voltage Vp at the load.

Section 12.7 Power in a Balanced System

12.25 A balanced wye-connected load absorbs a total
power of 5 kW at a leading power factor of 0.6 when
connected to a line voltage of 240 V. Find the
impedance of each phase and the total complex
power of the load.

12.26 A balanced wye-connected load absorbs 50 kVA at a
0.6 lagging power factor when the line voltage is
440 V. Find the line current and the phase
impedance.

12.27 A three-phase source delivers 4800 VA to a
wye-connected load with a phase voltage of 208 V
and a power factor of 0.9 lagging. Calculate the
source line current and the source line voltage.

12.28 A balanced wye-connected load with a phase
impedance of 10 − j16 � is connected to a balanced
three-phase generator with a line voltage of 220 V.
Determine the line current and the complex power
absorbed by the load.

12.29 The total power measured in a three-phase system
feeding a balanced wye-connected load is 12 kW at
a power factor of 0.6 leading. If the line voltage is
208 V, calculate the line current IL and the load
impedance ZY .

12.30 Given the circuit in Fig. 12.53 below, find the total
complex power absorbed by the load.

+
−

+
−

− +
1 Ω 9 Ω

9 Ω

9 Ω
110   120° V

j2 Ω

1 Ω j2 Ω

1 Ω j2 Ω

1 Ω j2 Ω

j12 Ω j12 Ω

j12 Ω

110   240° V
110   0° V

Figure 12.53 For Prob. 12.30.
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12.31 Find the real power absorbed by the load in Fig.
12.54.

A

−j6 Ω

j3 Ω

C
b B

c

a

100   −120° V

− +

+
−+

−100  120° V 100  0° V

5 Ω

5 Ω

5 Ω

8 Ω

4 Ω

10 Ω

Figure 12.54 For Prob. 12.31.

12.32 For the three-phase circuit in Fig. 12.55, find the
average power absorbed by the delta-connected load
with Z	 = 21 + j24 �.

1 Ω
− +

1 Ω

1 Ω

j0.5 Ω

j0.5 Ω

j0.5 Ω

100   0° V rms

100   −120° V rms

100   120°  V rms

− +

− +

Z∆

Z∆

Z∆

Figure 12.55 For Prob. 12.32.

12.33 A balanced delta-connected load draws 5 kW at a
power factor of 0.8 lagging. If the three-phase
system has an effective line voltage of 400 V, find
the line current.

12.34 A balanced three-phase generator delivers 7.2 kW to
a wye-connected load with impedance 30 − j40 �
per phase. Find the line current IL and the line
voltage VL.

12.35 Refer to Fig. 12.46. Obtain the complex power
absorbed by the combined loads.

12.36 A three-phase line has an impedance of 1 + j3 �
per phase. The line feeds a balanced
delta-connected load, which absorbs a total complex
power of 12 + j5 kVA. If the line voltage at the load
end has a magnitude of 240 V, calculate the
magnitude of the line voltage at the source end and
the source power factor.

12.37 A balanced wye-connected load is connected to the
generator by a balanced transmission line with an
impedance of 0.5 + j2 � per phase. If the load is
rated at 450 kW, 0.708 power factor lagging, 440-V
line voltage, find the line voltage at the generator.

12.38 A three-phase load consists of three 100-� resistors
that can be wye- or delta-connected. Determine
which connection will absorb the most average

power from a three-phase source with a line voltage
of 110 V. Assume zero line impedance.

12.39 The following three parallel-connected three-phase
loads are fed by a balanced three-phase source.

Load 1: 250 kVA, 0.8 pf lagging
Load 2: 300 kVA, 0.95 pf leading
Load 3: 450 kVA, unity pf

If the line voltage is 13.8 kV, calculate the line
current and the power factor of the source. Assume
that the line impedance is zero.

Section 12.8 Unbalanced Three-Phase Systems

12.40 For the circuit in Fig. 12.56, Za = 6 − j8 �,
Zb = 12 + j9 �, and Zc = 15 �. Find the line
currents Ia , Ib, and Ic.

Ib

Ic

Ia

150   120° V

150   0° V

150   −120° V
+ −

+−

+
−

Zb

Za

Zc

Figure 12.56 For Prob. 12.40.

12.41 A four-wire wye-wye circuit has

Van = 120 120◦, Vbn = 120 0◦

Vcn = 120 − 120◦ V

If the impedances are

ZAN = 20 60◦, ZBN = 30 0◦

Zcn = 40 30◦ �

find the current in the neutral line.

12.42 For the wye-connected load of Fig. 12.57, the line
voltages all have a magnitude of 250 V and are in a
positive phase sequence. Calculate the line currents
and the neutral current.

40   60° Ω Ia

60   −45° Ω Ib

20   0° Ω Ic

In

Figure 12.57 For Prob. 12.42.
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12.43 A delta-connected load whose phase impedances are
ZAB = 50 �, ZBC = −j50 �, and ZCA = j50 � is
fed by a balanced wye-connected three-phase source
with Vp = 100 V. Find the phase currents.

12.44 A balanced three-phase wye-connected generator
with Vp = 220 V supplies an unbalanced
wye-connected load with ZAN = 60 + j80 �,
ZBN = 100 − j120 �, and ZCN = 30 + j40 �.
Find the total complex power absorbed by the load.

12.45 Refer to the unbalanced circuit of Fig. 12.58.
Calculate:
(a) the line currents
(b) the real power absorbed by the load
(c) the total complex power supplied by the source

440   0° V

440   120° V 440    −120° V

+ −

+ −
− +

a

b B

c

A

C

20 Ω

j10 Ω

−j5 Ω

Figure 12.58 For Prob. 12.45.

Section 12.9 PSpice for Three-Phase Circuits

12.46 Solve Prob. 12.10 using PSpice.

12.47 The source in Fig. 12.59 is balanced and exhibits a
positive phase sequence. If f = 60 Hz, use PSpice
to find VAN , VBN , and VCN .

100   0° V + −

+ −
− +

a

b B

c

A

C

40 Ω
n N

0.2 mF

10 mF

Figure 12.59 For Prob. 12.47.

12.48 Use PSpice to determine Io in the single-phase,
three-wire circuit of Fig. 12.60. Let
Z1 = 15 − j10 �, Z2 = 30 + j20 �, and
Z3 = 12 + j5 �.

Z1

Z2

Z3

4 Ω

4 Ω

4 Ω

+
−

+
−

220   0° V

220   0° V

Io

Figure 12.60 For Prob. 12.48.

12.49 Given the circuit in Fig. 12.61, use PSpice to
determine currents IaA and voltage VBN .

a

n

A

C

N

4 Ω
− +

b 4 Ω

c 4 Ω

10 ΩB

j3 Ω j15 Ω

j15 Ωj3 Ω

j3 Ω

−j36 Ω −j36 Ω

240   0° V

240   −120° V

240   120°  V

−j36 Ω

− +

10 Ω j15 Ω

10 Ω

− +

Figure 12.61 For Prob. 12.49.

12.50 The circuit in Fig. 12.62 operates at 60 Hz. Use
PSpice to find the source current Iab and the line
current IbB .

A

Nb

c

a 1 Ω 16 Ω2 mH

2 mH 27 mH

2 mH 133 mF1 Ω

1 Ω

+
−

+
−

+
−

B

C

110   120° V

110   −120° V

110   0° V

Figure 12.62 For Prob. 12.50.

12.51 For the circuit in Fig. 12.54, use PSpice to find the
line currents and the phase currents.

12.52 A balanced three-phase circuit is shown in Fig.
12.63 on the next page. Use PSpice to find the line
currents IaA, IbB , and IcC .

Section 12.10 Applications

12.53 A three-phase, four-wire system operating with a
208-V line voltage is shown in Fig. 12.64. The
source voltages are balanced. The power absorbed
by the resistive wye-connected load is measured by
the three-wattmeter method. Calculate:
(a) the voltage to neutral
(b) the currents I1, I2, I3, and In
(c) the readings of the wattmeters
(d) the total power absorbed by the load
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A

b

c

a 0.6 Ω

0.2 Ω

0.2 Ω

30 Ω

j0.5 Ω

j1 Ω

j1 Ω

−j20 Ω

j0.5 Ω

j0.5 Ω

0.2 Ω

j1 Ω
0.6 Ω

0.6 Ω

30 Ω

−j20 Ω

+
−

+
−

+
−

B

C

240   130° V

240   −110° V

240   10° V

30 Ω

−j20 Ω

Figure 12.63 For Prob. 12.52.

n

I2

In

I3

I1

40 Ω

48 Ω

60 Ω

W1

W2

W3

Figure 12.64 For Prob. 12.53.

12.54∗ As shown in Fig. 12.65, a three-phase four-wire line
with a phase voltage of 120 V supplies a balanced
motor load at 260 kVA at 0.85 pf lagging. The
motor load is connected to the three main lines
marked a, b, and c. In addition, incandescent lamps
(unity pf) are connected as follows: 24 kW from
line a to the neutral, 15 kW from line b to the
neutral, and 9 kW from line a to the neutral.
(a) If three wattmeters are arranged to measure the

power in each line, calculate the reading of each
meter.

(b) Find the current in the neutral line.

*An asterisk indicates a challenging problem.

a

b

c

d

24 kW 15 kW 9 kW

Motor load
260 kVA,

0.85 pf, lagging

Lighting loads

Figure 12.65 For Prob. 12.54.

12.55 Meter readings for a three-phase wye-connected
alternator supplying power to a motor indicate that
the line voltages are 330 V, the line currents are
8.4 A, and the total line power is 4.5 kW. Find:
(a) the load in VA
(b) the load pf
(c) the phase current
(d) the phase voltage

12.56 The two-wattmeter method gives P1 = 1200 W and
P2 = −400 W for a three-phase motor running on a
240-V line. Assume that the motor load is wye-
connected and that it draws a line current of 6 A.
Calculate the pf of the motor and its phase
impedance.
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12.57 In Fig. 12.66, two wattmeters are properly
connected to the unbalanced load supplied by a
balanced source such that Vab = 208 0◦ V with
positive phase sequence.
(a) Determine the reading of each wattmeter.
(b) Calculate the total apparent power absorbed by

the load.

a

b
0 B

c

A

C

10 Ω

12 Ω
20 Ω

j5 Ω

−j10 Ω

W1

W2

Figure 12.66 For Prob. 12.57.

12.58 If wattmeters W1 and W2 are properly connected
respectively between lines a and b and lines b and c
to measure the power absorbed by the
delta-connected load in Fig. 12.44, predict their
readings.

12.59 For the circuit displayed in Fig. 12.67, find the
wattmeter readings.

Z

Z

Z = 10 + j30 Ω

+
−

+
−

240    −60° V

240   −120° V

±
±

±±

W1

W2

Figure 12.67 For Prob. 12.59.

12.60 Predict the wattmeter readings for the circuit in Fig.
12.68.

Z

Z

Z = 60 − j30 Ω

+
−

+
−

208   0° V

208   −60° V

±
±

±±

W1

W2

Figure 12.68 For Prob. 12.60.

12.61 A man has a body resistance of 600 �. How much
current flows through his ungrounded body:
(a) when he touches the terminals of a 12-V

autobattery?
(b) when he sticks his finger into a 120-V light

socket?

12.62 Show that the I 2R losses will be higher for a 120-V
appliance than for a 240-V appliance if both have
the same power rating.

C O M P R E H E N S I V E P R O B L E M S

12.63 A three-phase generator supplied 3.6 kVA at a
power factor of 0.85 lagging. If 2500 W are
delivered to the load and line losses are 80 W per
phase, what are the losses in the generator?

12.64 A three-phase 440-V, 51-kW, 60-kVA inductive load
operates at 60 Hz and is wye-connected. It is
desired to correct the power factor to 0.95 lagging.
What value of capacitor should be placed in parallel
with each load impedance?

12.65 A balanced three-phase generator has an abc phase
sequence with phase voltage Van = 255 0◦ V. The
generator feeds an induction motor which may be
represented by a balanced Y-connected load with an
impedance of 12 + j5 � per phase. Find the line
currents and the load voltages. Assume a line
impedance of 2 � per phase.
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12.66 Three balanced loads are connected to a distribution
line as depicted in Fig. 12.69. The loads are

Transformer: 12 kVA at 0.6 pf lagging
Motor: 16 kVA at 0.8 pf lagging
Unknown load: − − −−

If the line voltage is 220 V, the line current is 120 A,
and the power factor of the combined load is 0.95
lagging, determine the unknown load.

Transformer Motor Unknown Load

Figure 12.69 For Prob. 12.66.

12.67 A professional center is supplied by a balanced
three-phase source. The center has four plants, each
a balanced three-phase load as follows:

Load 1: 150 kVA at 0.8 pf leading
Load 2: 100 kW at unity pf
Load 3: 200 kVA at 0.6 pf lagging
Load 4: 80 kW and 95 kVAR (inductive)

If the line impedance is 0.02 + j0.05 � per phase
and the line voltage at the loads is 480 V, find the
magnitude of the line voltage at the source.

12.68∗ Figure 12.70 displays a three-phase delta-connected
motor load which is connected to a line voltage of
440 V and draws 4 kVA at a power factor of 72
percent lagging. In addition, a single 1.8 kVAR
capacitor is connected between lines a and b, while
a 800-W lighting load is connected between line c
and neutral. Assuming the abc sequence and taking
Van = Vp 0◦, find the magnitude and phase angle
of currents Ia , Ib, Ic, and In.

a

b

c

d

 Motor load
4 kVA,

pf = 72%, lagging

800 W lighting load

Ia

Ib

Ic

In

1.8 kVAR

Figure 12.70 For Prob. 12.68.

12.69 Design a three-phase heater with suitable symmetric
loads using wye-connected pure resistance. Assume
that the heater is supplied by a 240-V line voltage
and is to give 27 kW of heat.

12.70 For the single-phase three-wire system in Fig. 12.71,
find currents IaA, IbB , and InN .

24 − j2 Ω

15 + j4 Ω

1 Ω

1 Ω

1 Ω

+
−

+
−

120   0° V rms

120   0° V rms

a A

n

b B

N

Figure 12.71 For Prob. 12.70.

12.71 Consider the single-phase three-wire system shown
in Fig. 12.72. Find the current in the neutral wire
and the complex power supplied by each source.
Take Vs as a 115 0◦ -V, 60-Hz source.

1 Ω

2 Ω
20 Ω 15 Ω

30 Ω 50 mH

1 Ω

+
−

+
−

 Vs

 Vs

Figure 12.72 For Prob. 12.71.
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C H A P T E R

MAGNETICALLY COUPLED CIRCUITS

1 3

People want success but keep running away from problems, and yet it is
only in tackling problems that success is achieved.

— Josiah J. Bonire

Enhancing Your Career
Career in Electromagnetics Electromagnetics is the
branch of electrical engineering (or physics) that deals with
the analysis and application of electric and magnetic fields.
In electromagnetics, electric circuit analysis is applied at low
frequencies.

The principles of electromagnetics (EM) are applied
in various allied disciplines, such as electric machines,
electromechanical energy conversion, radar meteorology,
remote sensing, satellite communications, bioelectromag-
netics, electromagnetic interference and compatibility, plas-
mas, and fiber optics. EM devices include electric motors
and generators, transformers, electromagnets, magnetic lev-
itation, antennas, radars, microwave ovens, microwave
dishes, superconductors, and electrocardiograms. The de-
sign of these devices requires a thorough knowledge of the
laws and principles of EM.

EM is regarded as one of the more difficult disci-
plines in electrical engineering. One reason is that EM
phenomena are rather abstract. But if one enjoys working
with mathematics and can visualize the invisible, one should
consider being a specialist in EM, since few electrical
engineers specialize in this area. Electrical engineers who
specialize in EM are needed in microwave industries,
radio/TV broadcasting stations, electromagnetic research
laboratories, and several communications industries.

Telemetry receiving station for space satellites. Source: T. J. Mal-
oney, Modern Industrial Electronics, 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1996, p. 718.
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13.1 INTRODUCTION
The circuits we have considered so far may be regarded asconductively
coupled, because one loop affects the neighboring loop through current
conduction. When two loops with or without contacts between them
affect each other through the magnetic field generated by one of them,
they are said to bemagnetically coupled.

The transformer is an electrical device designed on the basis of
the concept of magnetic coupling. It uses magnetically coupled coils to
transfer energy from one circuit to another. Transformers are key circuit
elements. They are used in power systems for stepping up or stepping
down ac voltages or currents. They are used in electronic circuits such as
radio and television receivers for such purposes as impedance matching,
isolating one part of a circuit from another, and again for stepping up or
down ac voltages and currents.

We will begin with the concept of mutual inductance and introduce
the dot convention used for determining the voltage polarities of induc-
tively coupled components. Based on the notion of mutual inductance,
we then introduce the circuit element known as thetransformer. We will
consider the linear transformer, the ideal transformer, the ideal autotrans-
former, and the three-phase transformer. Finally, among their important
applications, we look at transformers as isolating and matching devices
and their use in power distribution.

13.2 MUTUAL INDUCTANCE
When two inductors (or coils) are in a close proximity to each other,
the magnetic flux caused by current in one coil links with the other coil,
thereby inducing voltage in the latter. This phenomenon is known as
mutual inductance.

i(t) v

+

−

f

Figure 13.1 Magnetic flux produced
by a single coil with N turns.

Let us first consider a single inductor, a coil with N turns. When
current i flows through the coil, a magnetic flux φ is produced around it
(Fig. 13.1). According to Faraday’s law, the voltage v induced in the coil
is proportional to the number of turns N and the time rate of change of
the magnetic flux φ; that is,

v = N
dφ

dt
(13.1)

But the flux φ is produced by current i so that any change in φ is caused
by a change in the current. Hence, Eq. (13.1) can be written as

v = N
dφ

di

di

dt
(13.2)

or

v = L
di

dt
(13.3)

which is the voltage-current relationship for the inductor. From Eqs.
(13.2) and (13.3), the inductance L of the inductor is thus given by

L = N
dφ

di
(13.4)
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This inductance is commonly called self-inductance, because it relates
the voltage induced in a coil by a time-varying current in the same coil.

Now consider two coils with self-inductances L1 and L2 that are in
close proximity with each other (Fig. 13.2). Coil 1 has N1 turns, while
coil 2 has N2 turns. For the sake of simplicity, assume that the second
inductor carries no current. The magnetic flux φ1 emanating from coil 1
has two components: one component φ11 links only coil 1, and another
component φ12 links both coils. Hence,

φ1 = φ11 + φ12 (13.5)

Although the two coils are physically separated, they are said to be mag-
netically coupled. Since the entire fluxφ1 links coil 1, the voltage induced
in coil 1 is

v1 = N1
dφ1

dt
(13.6)

Only flux φ12 links coil 2, so the voltage induced in coil 2 is

v2 = N2
dφ12

dt
(13.7)

Again, as the fluxes are caused by the current i1 flowing in coil 1, Eq.
(13.6) can be written as

v1 = N1
dφ1

di1

di1

dt
= L1

di1

dt
(13.8)

where L1 = N1 dφ1/di1 is the self-inductance of coil 1. Similarly, Eq.
(13.7) can be written as

v2 = N2
dφ12

di1

di1

dt
= M21

di1

dt
(13.9)

where

M21 = N2
dφ12

di1
(13.10)

M21 is known as the mutual inductance of coil 2 with respect to coil 1.
Subscript 21 indicates that the inductanceM21 relates the voltage induced
in coil 2 to the current in coil 1. Thus, the open-circuit mutual voltage
(or induced voltage) across coil 2 is

v2 = M21
di1

dt
(13.11)

i1(t) v1

+

−

v2

+

−

f11
f12

L1 L2

N1 turns N2 turns

Figure 13.2 Mutual inductance M21 of
coil 2 with respect to coil 1.

v1

+

−

v2

+

−

i2(t)

f22
f21

L1 L2

N1 turns N2 turns

Figure 13.3 Mutual inductance M12 of
coil 1 with respect to coil 2.

Suppose we now let current i2 flow in coil 2, while coil 1 carries no
current (Fig. 13.3). The magnetic fluxφ2 emanating from coil 2 comprises
flux φ22 that links only coil 2 and flux φ21 that links both coils. Hence,

φ2 = φ21 + φ22 (13.12)

The entire flux φ2 links coil 2, so the voltage induced in coil 2 is

v2 = N2
dφ2

dt
= N2

dφ2

di2

di2

dt
= L2

di2

dt
(13.13)
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where L2 = N2 dφ2/di2 is the self-inductance of coil 2. Since only flux
φ21 links coil 1, the voltage induced in coil 1 is

v1 = N1
dφ21

dt
= N1

dφ21

di2

di2

dt
= M12

di2

dt
(13.14)

where

M12 = N1
dφ21

di2
(13.15)

which is the mutual inductance of coil 1 with respect to coil 2. Thus, the
open-circuit mutual voltage across coil 1 is

v1 = M12
di2

dt
(13.16)

We will see in the next section that M12 and M21 are equal, that is,

M12 = M21 = M (13.17)

and we refer to M as the mutual inductance between the two coils. Like
self-inductanceL, mutual inductanceM is measured in henrys (H). Keep
in mind that mutual coupling only exists when the inductors or coils are
in close proximity, and the circuits are driven by time-varying sources.
We recall that inductors act like short circuits to dc.

From the two cases in Figs. 13.2 and 13.3, we conclude that mutual
inductance results if a voltage is induced by a time-varying current in
another circuit. It is the property of an inductor to produce a voltage in
reaction to a time-varying current in another inductor near it. Thus,

Mutual inductance is the ability of one inductor to induce a voltage
across a neighboring inductor, measured in henrys (H).

Although mutual inductance M is always a positive quantity, the
mutual voltage M di/dt may be negative or positive, just like the self-
induced voltage Ldi/dt . However, unlike the self-induced Ldi/dt,
whose polarity is determined by the reference direction of the current and
the reference polarity of the voltage (according to the passive sign con-
vention), the polarity of mutual voltageM di/dt is not easy to determine,
because four terminals are involved. The choice of the correct polarity for
M di/dt is made by examining the orientation or particular way in which
both coils are physically wound and applying Lenz’s law in conjunction
with the right-hand rule. Since it is inconvenient to show the construction
details of coils on a circuit schematic, we apply the dot convention in cir-
cuit analysis. By this convention, a dot is placed in the circuit at one end
of each of the two magnetically coupled coils to indicate the direction of
the magnetic flux if current enters that dotted terminal of the coil. This is
illustrated in Fig. 13.4. Given a circuit, the dots are already placed beside
the coils so that we need not bother about how to place them. The dots
are used along with the dot convention to determine the polarity of the
mutual voltage. The dot convention is stated as follows:
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i1
f21

f11 f22

f12

v1

+

−

i2

Coil 1 Coil 2

v2

+

−

Figure 13.4 Illustration of the dot convention.

If a current enters the dotted terminal of one coil, the reference
polarity of the mutual voltage in the second coil is positive

at the dotted terminal of the second coil.

Alternatively,

If a current leaves the dotted terminal of one coil, the reference
polarity of the mutual voltage in the second coil is negative

at the dotted terminal of the second coil.

+

−

M
i1

v2 = M
di1
dt

(a)

+

−

M
i1

v2 = –M
di1
dt

v1 = –M
di2
dt

(b)

+

−

M

(c)

(d)

i2

v1 = M
di2
dt

+

−

M
i2

Figure 13.5 Examples
illustrating how to apply the
dot convention.

Thus, the reference polarity of the mutual voltage depends on the refer-
ence direction of the inducing current and the dots on the coupled coils.
Application of the dot convention is illustrated in the four pairs of mu-
tually coupled coils in Fig. 13.5. For the coupled coils in Fig. 13.5(a),
the sign of the mutual voltage v2 is determined by the reference polarity
for v2 and the direction of i1. Since i1 enters the dotted terminal of coil
1 and v2 is positive at the dotted terminal of coil 2, the mutual voltage is
+M di1/dt . For the coils in Fig. 13.5(b), the current i1 enters the dot-
ted terminal of coil 1 and v2 is negative at the dotted terminal of coil 2.
Hence, the mutual voltage is −M di1/dt . The same reasoning applies to
the coils in Fig. 13.5(c) and 13.5(d). Figure 13.6 shows the dot conven-
tion for coupled coils in series. For the coils in Fig. 13.6(a), the total
inductance is

L = L1 + L2 + 2M (Series-aiding connection) (13.18)

For the coil in Fig. 13.6(b),

L = L1 + L2 − 2M (Series-opposing connection) (13.19)

Now that we know how to determine the polarity of the mutual
voltage, we are prepared to analyze circuits involving mutual inductance.
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i i

L1 L2

M

(+)

(a)

i i

L1 L2

M

(−)

(b)

Figure 13.6 Dot convention for coils in series; the sign indicates the polarity of the mutual
voltage: (a) series-aiding connection, (b) series-opposing connection.

As the first example, consider the circuit in Fig. 13.7. Applying KVL to
coil 1 gives

v1 = i1R1 + L1
di1

dt
+M

di2

dt
(13.20a)

For coil 2, KVL gives

v2 = i2R2 + L2
di2

dt
+M

di1

dt
(13.20b)

We can write Eq. (13.20) in the frequency domain as

V1 = (R1 + jωL1)I1 + jωMI2 (13.21a)

V2 = jωMI1 + (R2 + jωL2)I2 (13.21b)

As a second example, consider the circuit in Fig. 13.8. We analyze this
in the frequency domain. Applying KVL to coil 1, we get

V = (Z1 + jωL1)I1 − jωMI2 (13.22a)

For coil 2, KVL yields

0 = −jωMI1 + (ZL + jωL2)I2 (13.22b)

Equations (13.21) and (13.22) are solved in the usual manner to determine
the currents.

v1 v2

R1 R2

+
− L1 L2i1 i2

M

+
−

Figure 13.7 Time-domain analysis of a circuit containing
coupled coils.

V ZL

Z1

+
− jvL1 jvL2I1 I2

jvM

Figure 13.8 Frequency-domain analysis of a circuit
containing coupled coils.

At this introductory level we are not concerned with the determi-
nation of the mutual inductances of the coils and their dot placements.
Like R, L, and C, calculation of M would involve applying the theory
of electromagnetics to the actual physical properties of the coils. In this
text, we assume that the mutual inductance and the dots placement are the
“givens” of the circuit problem, like the circuit components R,L, and C.
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E X A M P L E 1 3 . 1

Calculate the phasor currents I1 and I2 in the circuit of Fig. 13.9.

V 12 Ω

−j4 Ω

+
− j5 Ω j6 ΩI1 I2

j3 Ω

12   0°

Figure 13.9 For Example 13.1.

Solution:

For coil 1, KVL gives

−12 + (−j4 + j5)I1 − j3I2 = 0

or

jI1 − j3I2 = 12 (13.1.1)

For coil 2, KVL gives

−j3I1 + (12 + j6)I2 = 0

or

I1 = (12 + j6)I2

j3
= (2 − j4)I2 (13.1.2)

Substituting this in Eq. (13.1.1), we get

(j2 + 4 − j3)I2 = (4 − j)I2 = 12

or

I2 = 12

4 − j
= 2.91 14.04◦ A (13.1.3)

From Eqs. (13.1.2) and (13.1.3),

I1 = (2 − j4)I2 = (4.472 − 63.43◦)(2.91 14.04◦)

= 13.01 − 49.39◦ A

P R A C T I C E P R O B L E M 1 3 . 1

Determine the voltage Vo in the circuit of Fig. 13.10.

V 10 Ω

4 Ω

+
− j8 Ω j5 ΩI1 I2

j1 Ω

Vo

+

−
6   90°

Figure 13.10 For Practice Prob. 13.1.

Answer: 0.6 − 90◦ V.
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E X A M P L E 1 3 . 2

Calculate the mesh currents in the circuit of Fig. 13.11.

V 5 Ω

4 Ω j8 Ω

+
− j6 Ω

j2 Ω

I1
I2

−j3 Ω

100   0°

Figure 13.11 For Example 13.2.

Solution:

The key to analyzing a magnetically coupled circuit is knowing the po-
larity of the mutual voltage. We need to apply the dot rule. In Fig. 13.11,
suppose coil 1 is the one whose reactance is 6 �, and coil 2 is the one
whose reactance is 8 �. To figure out the polarity of the mutual voltage
in coil 1 due to current I2, we observe that I2 leaves the dotted terminal of
coil 2. Since we are applying KVL in the clockwise direction, it implies
that the mutual voltage is negative, that is, −j2I2.

+

−

j2
I2

V1

(a) V1 = –2jI2

I1 j6 Ω j8 Ω

Coil 1 Coil 2

−

+

j2  Ω
I1

V2

(b) V2 = –2jI1

I2j6 Ω j8 Ω

Coil 1 Coil 2

Figure 13.12 For Example 13.2;
redrawing the relevant portion of the
circuit in Fig. 13.11 to find mutual
voltages by the dot convention.

Alternatively, it might be best to figure out the mutual voltage by
redrawing the relevant portion of the circuit, as shown in Fig. 13.12(a),
where it becomes clear that the mutual voltage is V1 = −2jI2.

Thus, for mesh 1 in Fig. 13.11, KVL gives

−100 + I1(4 − j3 + j6)− j6I2 − j2I2 = 0

or

100 = (4 + j3)I1 − j8I2 (13.2.1)

Similarly, to figure out the mutual voltage in coil 2 due to current I1,
consider the relevant portion of the circuit, as shown in Fig. 13.12(b).
Applying the dot convention gives the mutual voltage as V2 = −2jI1.
Also, current I2 sees the two coupled coils in series in Fig. 13.11; since it
leaves the dotted terminals in both coils, Eq. (13.18) applies. Therefore,
for mesh 2, KVL gives

0 = −2jI1 − j6I1 + (j6 + j8 + j2 × 2 + 5)I2

or

0 = −j8I1 + (5 + j18)I2 (13.2.2)

Putting Eqs. (13.2.1) and (13.2.2) in matrix form, we get[
100

0

]
=
[

4 + j3
−j8

−j8
5 + j18

] [
I1

I2

]
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The determinants are

� =
∣∣∣∣4 + j3 −j8

−j8 5 + j18

∣∣∣∣ = 30 + j87

�1 =
∣∣∣∣100 −j8

0 5 + j18

∣∣∣∣ = 100(5 + j18)

�2 =
∣∣∣∣4 + j3 100

−j8 0

∣∣∣∣ = j800

Thus, we obtain the mesh currents as

I1 = �1

�
= 100(5 + j18)

30 + j87
= 1868.2 74.5◦

92.03 71◦
= 20.3 3.5◦ A

I2 = �2

�
= j800

30 + j87
= 800 90◦

92.03 71◦
= 8.693 19◦ A

P R A C T I C E P R O B L E M 1 3 . 2

Determine the phasor currents I1 and I2 in the circuit of Fig. 13.13.

V

5 Ω j2 Ω

+
− j6 Ω

j3 Ω
I1 I2 −j4 Ω12   60°

Figure 13.13 For Practice Prob. 13.2.

Answer: 2.15 86.56◦, 3.23 86.56◦ A.

13.3 ENERGY IN A COUPLED CIRCUIT
In Chapter 6, we saw that the energy stored in an inductor is given by

w = 1

2
Li2 (13.23)

We now want to determine the energy stored in magnetically coupled
coils.

+

−

M
i1

v1

+

−

v2

i2

L1 L2

Figure 13.14 The circuit
for deriving energy stored in
a coupled circuit.

Consider the circuit in Fig. 13.14. We assume that currents i1 and
i2 are zero initially, so that the energy stored in the coils is zero. If we let
i1 increase from zero to I1 while maintaining i2 = 0, the power in coil 1
is

p1(t) = v1i1 = i1L1
di1

dt
(13.24)

and the energy stored in the circuit is

w1 =
∫
p1 dt = L1

∫ I1

0
i1 di1 = 1

2
L1I

2
1 (13.25)
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If we now maintain i1 = I1 and increase i2 from zero to I2, the mutual
voltage induced in coil 1 isM12 di2/dt , while the mutual voltage induced
in coil 2 is zero, since i1 does not change. The power in the coils is now

p2(t) = i1M12
di2

dt
+ i2v2 = I1M12

di2

dt
+ i2L2

di2

dt
(13.26)

and the energy stored in the circuit is

w2 =
∫
p2 dt = M12I1

∫ I2

0
di2 + L2

∫ I2

0
i2 di2

= M12I1I2 + 1

2
L2I

2
2

(13.27)

The total energy stored in the coils when both i1 and i2 have reached
constant values is

w = w1 + w2 = 1

2
L1I

2
1 + 1

2
L2I

2
2 +M12I1I2 (13.28)

If we reverse the order by which the currents reach their final values, that
is, if we first increase i2 from zero to I2 and later increase i1 from zero to
I1, the total energy stored in the coils is

w = 1

2
L1I

2
1 + 1

2
L2I

2
2 +M21I1I2 (13.29)

Since the total energy stored should be the same regardless of how we
reach the final conditions, comparing Eqs. (13.28) and (13.29) leads us
to conclude that

M12 = M21 = M (13.30a)

and

w = 1

2
L1I

2
1 + 1

2
L2I

2
2 +MI1I2 (13.30b)

This equation was derived based on the assumption that the coil currents
both entered the dotted terminals. If one current enters one dotted terminal
while the other current leaves the other dotted terminal, the mutual voltage
is negative, so that the mutual energyMI1I2 is also negative. In that case,

w = 1

2
L1I

2
1 + 1

2
L2I

2
2 −MI1I2 (13.31)

Also, since I1 and I2 are arbitrary values, they may be replaced by i1 and
i2, which gives the instantaneous energy stored in the circuit the general
expression

w = 1

2
L1i

2
1 + 1

2
L2i

2
2 ±Mi1i2 (13.32)

The positive sign is selected for the mutual term if both currents enter
or leave the dotted terminals of the coils; the negative sign is selected
otherwise.

We will now establish an upper limit for the mutual inductanceM .
The energy stored in the circuit cannot be negative because the circuit is
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passive. This means that the quantity 1/2L1i
2
1 + 1/2L2i

2
2 −Mi1i2 must

be greater than or equal to zero,

1

2
L1i

2
1 + 1

2
L2i

2
2 −Mi1i2 ≥ 0 (13.33)

To complete the square, we both add and subtract the term i1i2
√
L1L2 on

the right-hand side of Eq. (13.33) and obtain

1

2
(i1
√
L1 − i2

√
L2)

2 + i1i2(
√
L1L2 −M) ≥ 0 (13.34)

The squared term is never negative; at its least it is zero. Therefore, the
second term on the right-hand side of Eq. (13.34) must be greater than
zero; that is, √

L1L2 −M ≥ 0

or

M ≤
√
L1L2 (13.35)

Thus, the mutual inductance cannot be greater than the geometric mean
of the self-inductances of the coils. The extent to which the mutual
inductance M approaches the upper limit is specified by the coefficient
of coupling k, given by

k = M√
L1L2

(13.36)

or

M = k
√
L1L2 (13.37)

where 0 ≤ k ≤ 1 or equivalently 0 ≤ M ≤ √
L1L2. The coupling

coefficient is the fraction of the total flux emanating from one coil that
links the other coil. For example, in Fig. 13.2,

k = φ12

φ1
= φ12

φ11 + φ12
(13.38)

and in Fig. 13.3,

k = φ21

φ2
= φ21

φ21 + φ22
(13.39)

If the entire flux produced by one coil links another coil, then k = 1
and we have 100 percent coupling, or the coils are said to be perfectly
coupled. Thus,

The coupling coefficient k is a measure of the magnetic
coupling between two coils; 0 ≤ k ≤ 1.

For k < 0.5, coils are said to be loosely coupled; and for k > 0.5, they
are said to be tightly coupled.

(a) (b)

Air or ferrite core

Figure 13.15 Windings: (a) loosely coupled,
(b) tightly coupled; cutaway view demonstrates
both windings.

We expect k to depend on the closeness of the two coils, their core,
their orientation, and their windings. Figure 13.15 shows loosely coupled
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windings and tightly coupled windings. The air-core transformers used
in radio frequency circuits are loosely coupled, whereas iron-core trans-
formers used in power systems are tightly coupled. The linear transform-
ers discussed in Section 3.4 are mostly air-core; the ideal transformers
discussed in Sections 13.5 and 13.6 are principally iron-core.

E X A M P L E 1 3 . 3

Consider the circuit in Fig. 13.16. Determine the coupling coefficient.
Calculate the energy stored in the coupled inductors at time t = 1 s if
v = 60 cos(4t + 30◦) V.

v

10 Ω

+
− 5 H 4 H

2.5 H

F1
16

Figure 13.16 For Example 13.3.

Solution:

The coupling coefficient is

k = M√
L1L2

= 2.5√
20

= 0.56

indicating that the inductors are tightly coupled. To find the energy stored,
we need to obtain the frequency-domain equivalent of the circuit.

60 cos(4t + 30◦) 
⇒ 60 30◦, ω = 4 rad/s

5 H 
⇒ jωL1 = j20 �

2.5 H 
⇒ jωM = j10 �

4 H 
⇒ jωL2 = j16 �

1

16
F 
⇒ 1

jωC
= −j4 �

The frequency-domain equivalent is shown in Fig. 13.17. We now apply
mesh analysis. For mesh 1,

(10 + j20)I1 + j10I2 = 60 30◦ (13.3.1)

For mesh 2,

j10I1 + (j16 − j4)I2 = 0

or

I1 = −1.2I2 (13.3.2)

Substituting this into Eq. (13.3.1) yields

I2(−12 − j14) = 60 30◦ 
⇒ I2 = 3.254 − 160.6◦ A

and

I1 = −1.2I2 = 3.905 − 19.4◦ A

In the time-domain,

i1 = 3.905 cos(4t − 19.4◦), i2 = 3.254 cos(4t − 199.4◦)

At time t = 1 s, 4t = 4 rad = 229.2◦, and

i1 = 3.905 cos(229.2◦ − 19.4◦) = −3.389 A

i2 = 3.254 cos(229.2◦ + 160.6◦) = 2.824 A
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The total energy stored in the coupled inductors is

w = 1

2
L1i

2
1 + 1

2
L2i

2
2 +Mi1i2

= 1

2
(5)(−3.389)2 + 1

2
(4)(2.824)2 + 2.5(−3.389)(2.824) = 20.73 J

V

10 Ω

+
− j20 Ω j16 ΩI1 I2

j10

−j4 Ω60   30°

Figure 13.17 Frequency-domain equivalent of the circuit in Fig. 13.16.

P R A C T I C E P R O B L E M 1 3 . 3

For the circuit in Fig. 13.18, determine the coupling coefficient and the
energy stored in the coupled inductors at t = 1.5 s.

20 cos 2t V

4 Ω

+
− 2 H 1 H

1 H

2 Ω

F1
8

Figure 13.18 For Practice Prob. 13.3.

Answer: 0.7071, 9.85 J.

13.4 LINEAR TRANSFORMERS
Here we introduce the transformer as a new circuit element. A transformer
is a magnetic device that takes advantage of the phenomenon of mutual
inductance.

A transformer is generally a four-terminal device comprising
two (or more) magnetically coupled coils.

As shown in Fig. 13.19, the coil that is directly connected to the voltage
source is called the primary winding. The coil connected to the load is
called the secondary winding. The resistances R1 and R2 are included
to account for the losses (power dissipation) in the coils. The trans-
former is said to be linear if the coils are wound on a magnetically linear
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material—a material for which the magnetic permeability is constant.
Such materials include air, plastic, Bakelite, and wood. In fact, most ma-
terials are magnetically linear. Linear transformers are sometimes called
air-core transformers, although not all of them are necessarily air-core.
They are used in radio and TV sets. Figure 13.20 portrays different types
of transformers.

A linear transformer may also be regarded as one
whose flux is proportional to the currents in its
windings.

V ZL
+
− L1 L2I1 I2

M
R1 R2

Primary coil Secondary coil

Figure 13.19 A linear transformer.

(b)(a)

Figure 13.20 Different types of transformers: (a) copper wound dry power transformer, (b) audio transformers.
(Courtesy of: (a) Electric Service Co., (b) Jensen Transformers.)

We would like to obtain the input impedance Zin as seen from the
source, because Zin governs the behavior of the primary circuit. Applying
KVL to the two meshes in Fig. 13.19 gives

V = (R1 + jωL1)I1 − jωMI2 (13.40a)

0 = −jωMI1 + (R2 + jωL2 + ZL)I2 (13.40b)
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In Eq. (13.40b), we express I2 in terms of I1 and substitute it into Eq.
(13.40a). We get the input impedance as

Zin = V
I1

= R1 + jωL1 + ω2M2

R2 + jωL2 + ZL

(13.41)

Notice that the input impedance comprises two terms. The first term,
(R1 + jωL1), is the primary impedance. The second term is due to the
coupling between the primary and secondary windings. It is as though this
impedance is reflected to the primary. Thus, it is known as the reflected
impedance ZR , and

ZR = ω2M2

R2 + jωL2 + ZL

(13.42)

It should be noted that the result in Eq. (13.41) or (13.42) is not affected
by the location of the dots on the transformer, because the same result is
produced when M is replaced by −M .

Some authors call this the coupled impedance.

The little bit of experience gained in Sections 13.2 and 13.3 in
analyzing magnetically coupled circuits is enough to convince anyone that
analyzing these circuits is not as easy as circuits in previous chapters. For
this reason, it is sometimes convenient to replace a magnetically coupled
circuit by an equivalent circuit with no magnetic coupling. We want to
replace the linear transformer in Fig. 13.19 by an equivalent T or� circuit,
a circuit that would have no mutual inductance. Ignore the resistances of
the coils and assume that the coils have a common ground as shown in
Fig. 13.21. The assumption of a common ground for the two coils is a
major restriction of the equivalent circuits. A common ground is imposed
on the linear transformer in Fig. 13.21 in view of the necessity of having
a common ground in the equivalent T or � circuit; see Figs. 13.22 and
13.23.

+

−

M
I1

V1

+

−

V2

I2

L1 L2

Figure 13.21 Determining
the equivalent circuit of a
linear transformer.

+

−

I1

V1

+

−
V2

I2

Lc

La Lb

Figure 13.22 An equivalent T circuit.

+

−

I1

V1

+

−
V2

I2

LBLA

LC

Figure 13.23 An equivalent � circuit.

The voltage-current relationships for the primary and secondary
coils give the matrix equation[

V1

V2

]
=
[
jωL1 jωM

jωM jωL2

] [
I1

I2

]
(13.43)

By matrix inversion, this can be written as

[
I1

I2

]
=




L2

jω(L1L2 −M2)

−M
jω(L1L2 −M2)

−M
jω(L1L2 −M2)

L1

jω(L1L2 −M2)



[

V1

V2

]
(13.44)

Our goal is to match Eqs. (13.43) and (13.44) with the corresponding
equations for the T and � networks.

For the T (or Y) network of Fig. 13.22, mesh analysis provides the
terminal equations as[

V1

V2

]
=
[
jω(La + Lc) jωLc

jωLc jω(Lb + Lc)

] [
I1

I2

]
(13.45)

If the circuits in Figs. 13.21 and 13.22 are equivalents, Eqs. (13.43) and
(13.45) must be identical. Equating terms in the impedance matrices of
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Eqs. (13.43) and (13.45) leads to

La = L1 −M, Lb = L2 −M, Lc = M (13.46)

For the � (or �) network in Fig. 13.23, nodal analysis gives the
terminal equations as

[
I1

I2

]
=




1

jωLA
+ 1

jωLC
− 1

jωLC

− 1

jωLC

1

jωLB
+ 1

jωLC



[

V1

V2

]
(13.47)

Equating terms in admittance matrices of Eqs. (13.44) and (13.47), we
obtain

LA = L1L2 −M2

L2 −M
, LB = L1L2 −M2

L1 −M

LC = L1L2 −M2

M

(13.48)

Note that in Figs. 13.23 and 13.24, the inductors are not magnetically
coupled. Also note that changing the locations of the dots in Fig. 13.21
can cause M to become −M . As Example 13.6 illustrates, a negative
value of M is physically unrealizable but the equivalent model is still
mathematically valid.

ZL
+
− j20 Ω j40 ΩI1 I2

j5 Ω
Z1 Z2

V50   60°

Figure 13.24 For Example 13.4.

E X A M P L E 1 3 . 4

In the circuit of Fig. 13.24, calculate the input impedance and current I1.
Take Z1 = 60 − j100 �, Z2 = 30 + j40 �, and ZL = 80 + j60 �.

Solution:

From Eq. (13.41),

Zin = Z1 + j20 + (5)2

j40 + Z2 + ZL

= 60 − j100 + j20 + 25

110 + j140

= 60 − j80 + 0.14 − 51.84◦

= 60.09 − j80.11 = 100.14 − 53.1◦ �
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Thus,

I1 = V
Zin

= 50 60◦

100.14 − 53.1◦
= 0.5 113.1◦ A

P R A C T I C E P R O B L E M 1 3 . 4

Find the input impedance of the circuit of Fig. 13.25 and the current from
the voltage source.

4 Ω

+
− j8 Ω j10 Ω

j3 Ω

j4 Ω

6 Ω

−j6 Ω

V10   0°

Figure 13.25 For Practice Prob. 13.4.

Answer: 8.58 58.05◦ �, 1.165 − 58.05◦ A.

E X A M P L E 1 3 . 5

Determine the T-equivalent circuit of the linear transformer in Fig. 13.26(a).

2 H

(a)

10 H 4 H

a

b

c

d

(b)

a

b

c

d

2 H

8 H 2 H

Figure 13.26 For Example 13.5: (a) a linear transformer,
(b) its T-equivalent circuit.

Solution:

Given that L1 = 10, L2 = 4, and M = 2, the T equivalent network has
the following parameters:

La = L1 −M = 10 − 2 = 8 H

Lb = L2 −M = 4 − 2 = 2 H, Lc = M = 2 H

The T-equivalent circuit is shown in Fig. 13.26(b). We have assumed that
reference directions for currents and voltage polarities in the primary and
secondary windings conform to those in Fig. 13.21. Otherwise, we may
need to replace M with −M , as Example 13.6 illustrates.
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P R A C T I C E P R O B L E M 1 3 . 5

For the linear transformer in Fig. 13.26 (a), find the� equivalent network.

Answer: LA = 18 H, LB = 4.5 H, LC = 18 H.

E X A M P L E 1 3 . 6

Solve for I1, I2, and Vo in Fig. 13.27 (the same circuit as for Practice Prob.
13.1) using the T-equivalent circuit for the linear transformer.

+
− j8 Ω j5 ΩI1 I2

j1 Ω
4 Ω

V60   90° 10 Ω
+

−
Vo

Figure 13.27 For Example 13.6.

Solution:

Notice that the circuit in Fig. 13.27 is the same as that in Fig. 13.10 except
that the reference direction for current I2 has been reversed, just to make
the reference directions for the currents for the magnetically coupled coils
conform with those in Fig. 13.21.

+

−

j1 Ω

(a)

(b)

V1

+

−

V2
j8 Ω j5 Ω

j9 Ω j6 Ω

−j1 Ω

I1 I2

Figure 13.28 For Example 13.6:
(a) circuit for coupled coils of Fig.
13.27, (b) T-equivalent circuit.

We need to replace the magnetically coupled coils with the T-
equivalent circuit. The relevant portion of the circuit in Fig. 13.27 is
shown in Fig. 13.28(a). Comparing Fig. 13.28(a) with Fig. 13.21 shows
that there are two differences. First, due to the current reference direc-
tions and voltage polarities, we need to replace M by −M to make Fig.
13.28(a) conform with Fig. 13.21. Second, the circuit in Fig. 13.21 is in
the time-domain, whereas the circuit in Fig. 13.28(a) is in the frequency-
domain. The difference is the factor jω; that is, L in Fig. 13.21 has been
replaced with jωL and M with jωM . Since ω is not specified, we can
assume ω = 1 or any other value; it really does not matter. With these
two differences in mind,

La = L1 − (−M) = 8 + 1 = 9 H

Lb = L2 − (−M) = 5 + 1 = 6 H, Lc = −M = −1 H

Thus, the T-equivalent circuit for the coupled coils is as shown in Fig.
13.28(b).

Inserting the T-equivalent circuit in Fig. 13.28(b) to replace the two
coils in Fig. 13.27 gives the equivalent circuit in Fig. 13.29, which can be
solved using nodal or mesh analysis. Applying mesh analysis, we obtain

j6 = I1(4 + j9 − j1)+ I2(−j1) (13.6.1)

and
0 = I1(−j1)+ I2(10 + j6 − j1) (13.6.2)

From Eq. (13.6.2),

I1 = (10 + j5)

j
I2 = (5 − j10)I2 (13.6.3)
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Substituting Eq. (13.6.3) into Eq. (13.6.1) gives

j6 = (4 + j8)(5 − j10)I2 − jI2 = (100 − j)I2 � 100I2

Since 100 is very large compared to 1, the imaginary part of (100 − j)

can be ignored so that 100 − j � 100. Hence,

I2 = j6

100
= j0.06 = 0.06 90◦ A

From Eq. (13.6.3),

I1 = (5 − j10)j0.06 = 0.6 + j0.3 A

and

Vo = −10I2 = −j0.6 = 0.6 − 90◦ V

This agrees with the answer to Practice Prob. 13.1. Of course, the direc-
tion of I2 in Fig. 13.10 is opposite to that in Fig. 13.27. This will not
affect Vo, but the value of I2 in this example is the negative of that of I2

in Practice Prob. 13.1. The advantage of using the T-equivalent model
for the magnetically coupled coils is that in Fig. 13.29 we do not need to
bother with the dot on the coupled coils.

j6 V

4 Ω j9 Ω

+
− −j1 ΩI1 I2

j6 Ω

10 Ω

I1 I2

+

−
Vo

Figure 13.29 For Example 13.6.

P R A C T I C E P R O B L E M 1 3 . 6

Solve the problem in Example 13.1 (see Fig. 13.9) using the T-equivalent
model for the magnetically coupled coils.

Answer: 13 − 49.4◦ A, 2.91 14.04◦ A.

13.5 IDEAL TRANSFORMERS
An ideal transformer is one with perfect coupling (k = 1). It consists of
two (or more) coils with a large number of turns wound on a common
core of high permeability. Because of this high permeability of the core,
the flux links all the turns of both coils, thereby resulting in a perfect
coupling.

To see how an ideal transformer is the limiting case of two cou-
pled inductors where the inductances approach infinity and the coupling
is perfect, let us reexamine the circuit in Fig. 13.14. In the frequency
domain,

V1 = jωL1I1 + jωMI2 (13.49a)

V2 = jωMI1 + jωL2I2 (13.49b)
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From Eq. (13.49a), I1 = (V1 − jωMI2)/jωL1. Substituting this in Eq.
(13.49b) gives

V2 = jωL2I2 + MV1

L1
− jωM2I2

L1

But M = √
L1L2 for perfect coupling (k = 1). Hence,

V2 = jωL2I2 +
√
L1L2V1

L1
− jωL1L2I2

L1
=
√
L2

L1
V1 = nV1

where n = √
L2/L1 and is called the turns ratio. As L1, L2, M → ∞

such that n remains the same, the coupled coils become an ideal trans-
former. A transformer is said to be ideal if it has the following properties:

1. Coils have very large reactances (L1, L2, M → ∞).

2. Coupling coefficient is equal to unity (k = 1).

3. Primary and secondary coils are lossless (R1 = 0 = R2).

An ideal transformer is a unity-coupled, lossless transformer in which the
primary and secondary coils have infinite self-inductances.

Iron-core transformers are close approximations to ideal transformers.
These are used in power systems and electronics.

Figure 13.30(a) shows a typical ideal transformer; the circuit sym-
bol is in Fig. 13.30(b). The vertical lines between the coils indicate an
iron core as distinct from the air core used in linear transformers. The
primary winding has N1 turns; the secondary winding has N2 turns.

N1 N2

(a)

(b)

N1 N2

Figure 13.30 (a) Ideal transformer,
(b) circuit symbol for ideal transformers.

ZL
+
− V1 V2

1:n

V
+

−

+

−

I1 I2

Figure 13.31 Relating primary and
secondary quantities in an ideal transformer.

When a sinusoidal voltage is applied to the primary winding as
shown in Fig. 13.31, the same magnetic flux φ goes through both wind-
ings. According to Faraday’s law, the voltage across the primary winding
is

v1 = N1
dφ

dt
(13.50a)

while that across the secondary winding is

v2 = N2
dφ

dt
(13.50b)

Dividing Eq. (13.50b) by Eq. (13.50a), we get

v2

v1
= N2

N1
= n (13.51)

where n is, again, the turns ratio or transformation ratio. We can use the
phasor voltages V1 and V2 rather than the instantaneous values v1 and v2.
Thus, Eq. (13.51) may be written as

V2

V1
= N2

N1
= n (13.52)
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For the reason of power conservation, the energy supplied to the primary
must equal the energy absorbed by the secondary, since there are no losses
in an ideal transformer. This implies that

v1i1 = v2i2 (13.53)

In phasor form, Eq. (13.53) in conjunction with Eq. (13.52) becomes
I1

I2
= V2

V1
= n (13.54)

showing that the primary and secondary currents are related to the turns
ratio in the inverse manner as the voltages. Thus,

I2

I1
= N1

N2
= 1

n
(13.55)

When n = 1, we generally call the transformer an isolation transformer.
The reason will become obvious in Section 13.9.1. If n > 1, we have
a step-up transformer, as the voltage is increased from primary to sec-
ondary (V2 > V1). On the other hand, if n < 1, the transformer is a
step-down transformer, since the voltage is decreased from primary to
secondary (V2 < V1).

A step-down transformer is one whose secondary voltage
is less than its primary voltage.

A step-up transformer is one whose secondary voltage
is greater than its primary voltage.

The ratings of transformers are usually specified asV1/V2. A transformer
with rating 2400/120 V should have 2400 V on the primary and 120 in the
secondary (i.e., a step-down transformer). Keep in mind that the voltage
ratings are in rms.

Power companies often generate at some convenient voltage and
use a step-up transformer to increase the voltage so that the power can be
transmitted at very high voltage and low current over transmission lines,
resulting in significant cost savings. Near residential consumer premises,
step-down transformers are used to bring the voltage down to 120 V.
Section 13.9.3 will elaborate on this.

It is important that we know how to get the proper polarity of the
voltages and the direction of the currents for the transformer in Fig. 13.31.
If the polarity of V1 or V2 or the direction of I1 or I2 is changed, n in Eqs.
(13.51) to (13.55) may need to be replaced by −n. The two simple rules
to follow are:

1. If V1 and V2 are both positive or both negative at the dotted
terminals, use +n in Eq. (13.52). Otherwise, use −n.

2. If I1 and I2 both enter into or both leave the dotted terminals,
use −n in Eq. (13.55). Otherwise, use +n.

The rules are demonstrated with the four circuits in Fig. 13.32.

V1 V2

N1:N2

+

−

+

−

I1 I2

V2

V1

N2

N1
=

I2

I1

N1

N2
=

(a)

V1 V2

N1:N2

+

−

+

−

I1 I2

V2

V1

N2

N1
=

I2

I1

N1

N2
= −

(b)

V1 V2

N1:N2

+

−

+

−

I1

I2

V2

V1

N2

N1
= −

V2

V1

N2

N1
= −

I2

I1

N1

N2
=

(c)

V1 V2

N1:N2

+

−

+

−

I1

I2

I2

I1

N1

N2
= −

(d)

Figure 13.32 Typical
circuits illustrating proper
voltage polarities and
current directions in an
ideal transformer.
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Using Eqs. (13.52) and (13.55), we can always express V1 in terms
of V2 and I1 in terms of I2, or vice versa:

V1 = V2

n
or V2 = nV1 (13.56)

I1 = nI2 or I2 = I1

n
(13.57)

The complex power in the primary winding is

S1 = V1I∗
1 = V2

n
(nI2)

∗ = V2I∗
2 = S2 (13.58)

showing that the complex power supplied to the primary is delivered to the
secondary without loss. The transformer absorbs no power. Of course,
we should expect this, since the ideal transformer is lossless. The input
impedance as seen by the source in Fig. 13.31 is found from Eqs. (13.56)
and (13.57) as

Zin = V1

I1
= 1

n2

V2

I2
(13.59)

It is evident from Fig. 13.31 that V2/I2 = ZL, so that

Zin = ZL

n2
(13.60)

The input impedance is also called the reflected impedance, since it ap-
pears as if the load impedance is reflected to the primary side. This ability
of the transformer to transform a given impedance into another impedance
provides us a means of impedance matching to ensure maximum power
transfer. The idea of impedance matching is very useful in practice and
will be discussed more in Section 13.9.2.

Notice that an ideal transformer reflects an im-
pedance as the square of the turns ratio.

In analyzing a circuit containing an ideal transformer, it is common
practice to eliminate the transformer by reflecting impedances and sources
from one side of the transformer to the other. In the circuit of Fig. 13.33,
suppose we want to reflect the secondary side of the circuit to the primary
side. We find the Thevenin equivalent of the circuit to the right of the
terminals a-b. We obtain VTh as the open-circuit voltage at terminals a-b,
as shown in Fig. 13.34(a). Since terminals a-b are open, I1 = 0 = I2 so
that V2 = Vs2. Hence, from Eq. (13.56),

VTh = V1 = V2

n
= Vs2

n
(13.61)

+
−

Z1 Z2

Vs1
+
− Vs2

I1 I2a

b

c

d

V1 V2

+

−

+

−

1:n

Figure 13.33 Ideal transformer circuit whose equivalent circuits are
to be found.
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Z2

+
− Vs2

I1 I2a

b

a

b

V1VTh V2

+

−

+

−

1:n

(a)

+
−

I1 I2

V1 V2

+

−

+

−

1:n

(b)

+

−

Z2V1   0°

Figure 13.34 (a) Obtaining VTh for the circuit in Fig. 13.33, (b) obtaining ZTh for the circuit in Fig. 13.33.

To get ZTh, we remove the voltage source in the secondary winding and
insert a unit source at terminals a-b, as in Fig. 13.34(b). From Eqs. (13.56)
and (13.57), I1 = nI2 and V1 = V2/n, so that

ZTh = V1

I1
= V2/n

nI2
= Z2

n2
, V2 = Z2I2 (13.62)

which is what we should have expected from Eq. (13.60). Once we have
VTh and ZTh, we add the Thevenin equivalent to the part of the circuit in
Fig. 13.33 to the left of terminals a-b. Figure 13.35 shows the result.

+
−

Z1

Vs1
+
−

Vs2
n

a

b

V1

+

−

n2

Z2

Figure 13.35 Equivalent circuit for Fig. 13.33
obtained by reflecting the secondary circuit to
the primary side.

The general rule for eliminating the transformer and reflecting the secondary circuit
to the primary side is: divide the secondary impedance by n2, divide the secondary

voltage by n, and multiply the secondary current by n.

We can also reflect the primary side of the circuit in Fig. 13.33 to
the secondary side. Figure 13.36 shows the equivalent circuit.

The rule for eliminating the transformer and reflecting the primary circuit to the
secondary side is: multiply the primary impedance by n2, multiply the primary

voltage by n, and divide the primary current by n.

According to Eq. (13.58), the power remains the same, whether calculated
on the primary or the secondary side. But realize that this reflection
approach only applies if there are no external connections between the
primary and secondary windings. When we have external connections
between the primary and secondary windings, we simply use regular
mesh and nodal analysis. Examples of circuits where there are external
connections between the primary and secondary windings are in Figs.
13.39 and 13.40. Also note that if the locations of the dots in Fig. 13.33
are changed, we might have to replace n by −n in order to obey the dot
rule, illustrated in Fig. 13.32.

+
−

n2Z1 Z2

nVs1 Vs2
+
−

c

d

V2

+

−

Figure 13.36 Equivalent circuit for Fig. 13.33
obtained by reflecting the primary circuit to the
secondary side.

E X A M P L E 1 3 . 7

An ideal transformer is rated at 2400/120 V, 9.6 kVA, and has 50 turns
on the secondary side. Calculate: (a) the turns ratio, (b) the number of
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turns on the primary side, and (c) the current ratings for the primary and
secondary windings.

Solution:

(a) This is a step-down transformer, since V1 = 2400 V > V2 = 120 V.

n = V2

V1
= 120

2400
= 0.05

(b)

n = N2

N1

⇒ 0.05 = 50

N1
or

N1 = 50

0.05
= 1000 turns

(c) S = V1I1 = V2I2 = 9.6 kVA. Hence,

I1 = 9600

V1
= 9600

2400
= 4 A

I2 = 9600

V2
= 9600

120
= 80 A or I2 = I1

n
= 4

0.05
= 80 A

P R A C T I C E P R O B L E M 1 3 . 7

The primary current to an ideal transformer rated at 3300/110 V is 3 A.
Calculate: (a) the turns ratio, (b) the kVA rating, (c) the secondary current.

Answer: (a) 1/30, (b) 9.9 kVA, (c) 90 A.

E X A M P L E 1 3 . 8

For the ideal transformer circuit of Fig. 13.37, find: (a) the source current
I1, (b) the output voltage Vo, and (c) the complex power supplied by the
source.

4 Ω

+
− 20 Ω

−j6 Ω

V1 V2 Vo

1:2

+

−

+

−

I1 I2

V rms120   0°
+

−

Figure 13.37 For Example 13.8.

Solution:

(a) The 20-� impedance can be reflected to the primary side and we get

ZR = 20

n2
= 20

4
= 5 �

Thus,
Zin = 4 − j6 + ZR = 9 − j6 = 10.82 − 33.69◦ �

I1 = 120 0◦

Zin
= 120 0◦

10.82 − 33.69◦
= 11.09 33.69◦ A
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(b) Since both I1 and I2 leave the dotted terminals,

I2 = −1

n
I1 = −5.545 33.69◦ A

Vo = 20I2 = 110.9 213.69◦ V

(c) The complex power supplied is

S = VsI∗
1 = (120 0◦)(11.09 − 33.69◦) = 1330.8 − 33.69◦ VA

P R A C T I C E P R O B L E M 1 3 . 8

In the ideal transformer circuit of Fig. 13.38, find Vo and the complex
power supplied by the source.

2 Ω

+
−

16 Ω

V1 V2 Vo

1:4

+

−

+

−

I1 I2

V rms100   0°
+

−
−j24 Ω

Figure 13.38 For Practice Prob. 13.8.

Answer: 178.9 116.56◦ V, 2981.5 − 26.56◦ VA.

E X A M P L E 1 3 . 9

Calculate the power supplied to the 10-� resistor in the ideal transformer
circuit of Fig. 13.39.

20 Ω

10 Ω

V1 V2

2:1

+

−

+

−
V rms120   0°

30 Ω

+
− I1 I2

Figure 13.39 For Example 13.9.

Solution:

Reflection to the secondary or primary side cannot be done with this
circuit: there is direct connection between the primary and secondary
sides due to the 30-� resistor. We apply mesh analysis. For mesh 1,

−120 + (20 + 30)I1 − 30I2 + V1 = 0

or

50I1 − 30I2 + V1 = 120 (13.9.1)
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For mesh 2,

−V2 + (10 + 30)I2 − 30I1 = 0

or

−30I1 + 40I2 − V2 = 0 (13.9.2)

At the transformer terminals,

V2 = −1

2
V1 (13.9.3)

I2 = −2I1 (13.9.4)

(Note that n = 1/2.) We now have four equations and four unknowns,
but our goal is to get I2. So we substitute for V1 and I1 in terms of V2

and I2 in Eqs. (13.9.1) and (13.9.2). Equation (13.9.1) becomes

−55I2 − 2V2 = 120 (13.9.5)

and Eq. (13.9.2) becomes

15I2 + 40I2 − V2 = 0 
⇒ V2 = 55I2 (13.9.6)

Substituting Eq. (13.9.6) in Eq. (13.9.5),

−165I2 = 120 
⇒ I2 = −120

165
= −0.7272 A

The power absorbed by the 10-� resistor is

P = (−0.7272)2(10) = 5.3 W

P R A C T I C E P R O B L E M 1 3 . 9

Find Vo in the circuit in Fig. 13.40.

4 Ω

8 Ω

1:2

V60   0° +
−

2 Ω

8 Ω

+ −Vo

Figure 13.40 For Practice Prob. 13.9.

Answer: 24 V.

13.6 IDEAL AUTOTRANSFORMERS
Unlike the conventional two-winding transformer we have considered so
far, an autotransformer has a single continuous winding with a connection
point called a tap between the primary and secondary sides. The tap is
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often adjustable so as to provide the desired turns ratio for stepping up
or stepping down the voltage. This way, a variable voltage is provided to
the load connected to the autotransformer.

An autotransformer is a transformer in which both the primary
and the secondary are in a single winding.

Figure 13.41 A typical autotransformer.
(Courtesy of Todd Systems, Inc.)

Figure 13.41 shows a typical autotransformer. As shown in Fig.
13.42, the autotransformer can operate in the step-down or step-up mode.
The autotransformer is a type of power transformer. Its major advantage
over the two-winding transformer is its ability to transfer larger apparent
power. Example 13.10 will demonstrate this. Another advantage is that
an autotransformer is smaller and lighter than an equivalent two-winding
transformer. However, since both the primary and secondary windings
are one winding, electrical isolation (no direct electrical connection) is
lost. (We will see how the property of electrical isolation in the conven-
tional transformer is practically employed in Section 13.9.1.) The lack
of electrical isolation between the primary and secondary windings is a
major disadvantage of the autotransformer.

Some of the formulas we derived for ideal transformers apply to
ideal autotransformers as well. For the step-down autotransformer circuit
of Fig. 13.42(a), Eq. (13.52) gives

V1

V2
= N1 +N2

N2
= 1 + N1

N2
(13.63)

As an ideal autotransformer, there are no losses, so the complex power
remains the same in the primary and secondary windings:

S1 = V1I∗
1 = S2 = V2I∗

2 (13.64)

Equation (13.64) can also be expressed with rms values as

V1I1 = V2I2

or

V2

V1
= I1

I2
(13.65)

Thus, the current relationship is

I1

I2
= N2

N1 +N2
(13.66)

+
−

I1

I2

V1
N1

N2

+

−

V2

+

−

(a)

V

+
−

I1

I2

V1

N1

N2+

−

V2

+

−

(b)

ZL

ZL

V

Figure 13.42 (a) Step-down autotransformer,
(b) step-up autotransformer.

For the step-up autotransformer circuit of Fig. 13.42(b),

V1

N1
= V2

N1 +N2

or

V1

V2
= N1

N1 +N2
(13.67)
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The complex power given by Eq. (13.64) also applies to the step-up auto-
transformer so that Eq. (13.65) again applies. Hence, the current relation-
ship is

I1

I2
= N1 +N2

N1
= 1 + N2

N1
(13.68)

A major difference between conventional transformers and auto-
transformers is that the primary and secondary sides of the autotrans-
former are not only coupled magnetically but also coupled conductively.
The autotransformer can be used in place of a conventional transformer
when electrical isolation is not required.

E X A M P L E 1 3 . 1 0

Compare the power ratings of the two-winding transformer in Fig.
13.43(a) and the autotransformer in Fig. 13.43(b).

+

−

(a) (b)

240 V

+

−

12 VVsVp

0.2 A 4 A

4 A

+

−

Vs = 12 V
+

−

Vp = 240 V
+

−

+

−

+

−

240 V

+

−

252 V

4 A

0.2 A

Figure 13.43 For Example 13.10.

Solution:

Although the primary and secondary windings of the autotransformer
are together as a continuous winding, they are separated in Fig. 13.43(b)
for clarity. We note that the current and voltage of each winding of the
autotransformer in Fig. 13.43(b) are the same as those for the two-winding
transformer in Fig. 13.43(a). This is the basis of comparing their power
ratings.

For the two-winding transformer, the power rating is

S1 = 0.2(240) = 48 VA or S2 = 4(12) = 48 VA

For the autotransformer, the power rating is

S1 = 4.2(240) = 1008 VA or S2 = 4(252) = 1008 VA

which is 21 times the power rating of the two-winding transformer.

P R A C T I C E P R O B L E M 1 3 . 1 0

Refer to Fig. 13.43. If the two-winding transformer is a 60-VA,
120 V/10 V transformer, what is the power rating of the autotransformer?

Answer: 780 VA.



CHAPTER 13 Magnetically Coupled Circuits 555

E X A M P L E 1 3 . 1 1

Refer to the autotransformer circuit in Fig. 13.44. Calculate: (a) I1, I2,
and Io if ZL = 8+ j6�, and (b) the complex power supplied to the load.

+
−

I1

I2

V1

120 turns

80 turns

+

−

V2

+

−

ZL

Io

120   30° V rms

Figure 13.44 For Example 13.11.

Solution:

(a) This is a step-up autotransformer with N1 = 80, N2 = 120, V1 =
120 30◦, so Eq. (13.67) can be used to find V2 by

V1

V2
= N1

N1 +N2
= 80

200

or

V2 = 200

80
V1 = 200

80
(120 30◦) = 300 30◦ V

I2 = V2

ZL

= 300 30◦

8 + j6
= 300 30◦

10 36.87◦
= 30 − 6.87◦ A

But

I1

I2
= N1 +N2

N1
= 200

80

or

I1 = 200

80
I2 = 200

80
(30 − 6.87◦) = 75 − 6.87◦ A

At the tap, KCL gives

I1 + Io = I2

or

Io = I2 − I1 = 30 − 6.87◦ − 75 − 6.87◦ = 45 173.13◦ A

(b) The complex power supplied to the load is

S2 = V2I∗
2 = |I2|2ZL = (30)2(10 36.87◦) = 9 36.87◦ kVA
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P R A C T I C E P R O B L E M 1 3 . 1 1

In the autotransformer circuit in Fig. 13.45, find currents I1, I2, and Io.
Take V1 = 1250 V, V2 = 800 V.

I1

I2

V2

+

−

V1

+

− Io

16 kVA load

Figure 13.45 For Practice Prob. 13.11.

Answer: 12.8 A, 20 A, 7.2 A.

†13.7 THREE-PHASE TRANSFORMERS
To meet the demand for three-phase power transmission, transformer
connections compatible with three-phase operations are needed. We can
achieve the transformer connections in two ways: by connecting three
single-phase transformers, thereby forming a so-called transformer bank,
or by using a special three-phase transformer. For the same kVA rat-
ing, a three-phase transformer is always smaller and cheaper than three
single-phase transformers. When single-phase transformers are used, one
must ensure that they have the same turns ratio n to achieve a balanced
three-phase system. There are four standard ways of connecting three
single-phase transformers or a three-phase transformer for three-phase
operations: Y-Y, �-�, Y-�, and �-Y.

For any of the four connections, the total apparent power ST , real
power PT , and reactive power QT are obtained as

ST =
√

3VLIL (13.69a)

PT = ST cos θ =
√

3VLIL cos θ (13.69b)

QT = ST sin θ =
√

3VLIL sin θ (13.69c)

where VL and IL are, respectively, equal to the line voltage VLp and the
line current ILp for the primary side, or the line voltage VLs and the line
current ILs for the secondary side. Notice from Eq. (13.69) that for each of
the four connections, VLsILs = VLpILp, since power must be conserved
in an ideal transformer.

For the Y-Y connection (Fig. 13.46), the line voltage VLp at the
primary side, the line voltage VLs on the secondary side, the line current
ILp on the primary side, and the line current ILs on the secondary side
are related to the transformer per phase turns ratio n according to Eqs.
(13.52) and (13.55) as

VLs = nVLp (13.70a)

ILs = ILp

n
(13.70b)
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For the �-� connection (Fig. 13.47), Eq. (13.70) also applies for
the line voltages and line currents. This connection is unique in the sense
that if one of the transformers is removed for repair or maintenance, the
other two form an open delta, which can provide three-phase voltages at
a reduced level of the original three-phase transformer.

+

−

VLp

+

−

VLs = nVLp

ILp
ILs = 

ILp

n
1:n

Figure 13.46 Y-Y three-phase transformer connection.

+

−
VLp

+

−
VLs = nVLp

ILp
ILs = 

ILp

n
1:n

Figure 13.47 �-� three-phase transformer connection.

For the Y-� connection (Fig. 13.48), there is a factor of
√

3 arising
from the line-phase values in addition to the transformer per phase turns
ratio n. Thus,

VLs = nVLp√
3

(13.71a)

ILs =
√

3ILp
n

(13.71b)

Similarly, for the �-Y connection (Fig. 13.49),

VLs = n
√

3VLp (13.72a)

ILs = ILp

n
√

3
(13.72b)

+

−

VLp

+

−

ILp

1:n

ILs = 
3 ILp

n

VLs = 
nVLp

3

Figure 13.48 Y-� three-phase transformer connection.

+

−

VLs = n     VLp

ILp 1:n

ILs = 
ILp

3n

3

+

−

VLp

Figure 13.49 �-Y three-phase transformer connection.
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E X A M P L E 1 3 . 1 2

The 42-kVA balanced load depicted in Fig. 13.50 is supplied by a three-
phase transformer. (a) Determine the type of transformer connections.
(b) Find the line voltage and current on the primary side. (c) Determine
the kVA rating of each transformer used in the transformer bank. Assume
that the transformers are ideal.

a

b

c

A

B

C

42 kVA
Three-phase
load

240 V

1:5

Figure 13.50 For Example 13.12.

Solution:

(a) A careful observation of Fig. 13.50 shows that the primary side is
Y-connected, while the secondary side is �-connected. Thus, the three-
phase transformer is Y-�, similar to the one shown in Fig. 13.48.
(b) Given a load with total apparent power ST = 42 kVA, the turns ra-
tio n = 5, and the secondary line voltage VLs = 240 V, we can find the
secondary line current using Eq. (13.69a), by

ILs = ST√
3VLs

= 42,000√
3(240)

= 101 A

From Eq. (13.71),

ILp = n√
3
ILs = 5 × 101√

3
= 292 A

VLp =
√

3

n
VLs =

√
3 × 240

5
= 83.14 V

(c) Because the load is balanced, each transformer equally shares the
total load and since there are no losses (assuming ideal transformers), the
kVA rating of each transformer is S = ST /3 = 14 kVA. Alternatively,
the transformer rating can be determined by the product of the phase
current and phase voltage of the primary or secondary side. For the
primary side, for example, we have a delta connection, so that the phase
voltage is the same as the line voltage of 240 V, while the phase current
is ILp/

√
3 = 58.34 A. Hence, S = 240 × 58.34 = 14 kVA.

P R A C T I C E P R O B L E M 1 3 . 1 2

A three-phase �-� transformer is used to step down a line voltage of
625 kV, to supply a plant operating at a line voltage of 12.5 kV. The plant
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draws 40 MW with a lagging power factor of 85 percent. Find: (a) the
current drawn by the plant, (b) the turns ratio, (c) the current on the primary
side of the transformer, and (d) the load carried by each transformer.

Answer: (a) 2.1736 kA, (b) 0.02, (c) 43.47 A, (d) 15.69 MVA.

13.8 PSPICE ANALYSIS OF MAGNETICALLY COUPLED
CIRCUITS

PSpice analyzes magnetically coupled circuits just like inductor circuits
except that the dot convention must be followed. In PSpice Schematic, the
dot (not shown) is always next to pin 1, which is the left-hand terminal of
the inductor when the inductor with part name L is placed (horizontally)
without rotation on a schematic. Thus, the dot or pin 1 will be at the
bottom after one 90◦ counterclockwise rotation, since rotation is always
about pin 1. Once the magnetically coupled inductors are arranged with
the dot convention in mind and their value attributes are set in henries, we
use the coupling symbol K−LINEAR to define the coupling. For each
pair of coupled inductors, take the following steps:

1. Select Draw/Get New Part and type K−LINEAR.

2. Hit 〈enter〉 or click OK and place the K−LINEAR symbol on
the schematic, as shown in Fig. 13.51. (Notice that
K−LINEAR is not a component and therefore has no pins.)

3. DCLICKL on COUPLING and set the value of the coupling
coefficient k.

4. DCLICKL on the boxed K (the coupling symbol) and enter
the reference designator names for the coupled inductors as
values of Li, i = 1, 2, . . . , 6. For example, if inductors L20
and L23 are coupled, we set L1 = L20 and L2 = L23. L1 and
at least one other Li must be assigned values; other Li’s may be
left blank.

In step 4, up to six coupled inductors with equal coupling can be specified.
For the air-core transformer, the partname is XFRM−LINEAR. It

can be inserted in a circuit by selecting Draw/Get Part Name and then
typing in the part name or by selecting the part name from the analog.slb
library. As shown typically in Fig. 13.51, the main attributes of the linear
transformer are the coupling coefficient k and the inductance values L1
and L2 in henries. If the mutual inductanceM is specified, its value must
be used along with L1 and L2 to calculate k. Keep in mind that the value
of k should lie between 0 and 1.

TX2

COUPLING=0.5
L1_VALUE=1mH
L2_VALUE=25mH

Figure 13.51 Linear trans-
former XFRM LINEAR.

TX4

COUPLING=0.5
L1_TURNS=500
L2_TURNS=1000

kbreak

Figure 13.52 Ideal trans-
former XFRM NONLINEAR.

For the ideal transformer, the part name is XFRM−NONLINEAR
and is located in the breakout.slb library. Select it by clicking Draw/Get
Part Name and then typing in the part name. Its attributes are the cou-
pling coefficient and the numbers of turns associated with L1 and L2, as
illustrated typically in Fig. 13.52. The value of the coefficient of mutual
coupling must lie between 0 and 1.
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PSpice has some additional transformer configurations that we will
not discuss here.

E X A M P L E 1 3 . 1 3

Use PSpice to find i1, i2, and i3 in the circuit displayed in Fig. 13.53.

40 cos 12pt V60 cos (12pt – 10°) V 4 H

2 H
1.5 H

270 mF

3 H3 H

1 H

2 H

+
−

+
−

70 Ω

100 Ω

i2

i1 i3

Figure 13.53 For Example 13.13.

Solution:

The coupling coefficients of the three coupled inductors are determined
as follows.

k12 = M12√
L1L2

= 1√
3 × 3

= 0.3333

k13 = M13√
L1L3

= 1.5√
3 × 4

= 0.433

k23 = M23√
L2L3

= 2√
3 × 4

= 0.5774

The operating frequency f is obtained from Fig. 13.53 as ω = 12π =
2πf → f = 6 Hz.

The right-hand values are the reference designa-
tors of the inductors on the schematic.

The schematic of the circuit is portrayed in Fig. 13.54. Notice how
the dot convention is adhered to. For L2, the dot (not shown) is on pin
1 (the left-hand terminal) and is therefore placed without rotation. For
L1, in order for the dot to be on the right-hand side of the inductor, the
inductor must be rotated through 180◦. For L3, the inductor must be
rotated through 90◦ so that the dot will be at the bottom. Note that the
2-H inductor (L4) is not coupled. To handle the three coupled inductors,
we use three K−LINEAR parts provided in the analog library and set the
following attributes (by double-clicking on the symbol K in the box):

K1 - K_LINEAR
L1 = L1
L2 = L2
COUPLING = 0.3333

K2 - K_LINEAR
L1 = L2
L2 = L3
COUPLING = 0.433
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K3 - K_LINEAR
L1 = L1
L2 = L3
COUPLING = 0.5774

Three IPRINT pseudocomponents are inserted in the appropriate branches
to obtain the required currents i1, i2, and i3. As an AC single-frequency
analysis, we select Analysis/Setup/AC Sweep and enter Total Pts = 1,
Start Freq = 6, and Final Freq = 6. After saving the schematic, we select
Analysis/Simulate to simulate it. The output file includes:

FREQ IM(V_PRINT2) IP(V_PRINT2)
6.000E+00 2.114E-01 -7.575E+01
FREQ IM(V_PRINT1) IP(V_PRINT1)
6.000E+00 4.654E-01 -7.025E+01
FREQ IM(V_PRINT3) IP(V_PRINT3)
6.000E+00 1.095E-01 1.715E+01

From this we obtain

I1 = 0.4654 − 70.25◦

I2 = 0.2114 − 75.75◦, I3 = 0.1095 17.15◦

Thus,

i1 = 0.4654 cos(12πt − 70.25◦) A

i2 = 0.2114 cos(12πt − 75.75◦) A

i3 = 0.1095 cos(12πt + 17.15◦) A

V24HL3

270u

0

L2

3H3H

L1

L4R1

2H70

R2

100

−
+ ACMAG=40V

ACPHASE=0
V1−

+ACMAG=60V
ACPHASE=-10

MAG=ok
AC=ok
PHASE=ok

K K1
K_Linear
COUPLING=0.3333
L1=L1
L2=L2

K K2
K_Linear
COUPLING=0.433
L1=L2
L2=L3

K K3
K_Linear
COUPLING=0.5774
L1=L1
L2=L3

IPRINT

IPRINT
IPRINTC1

Figure 13.54 Schematic of the circuit of Fig. 13.53.

P R A C T I C E P R O B L E M 1 3 . 1 3

Find io in the circuit of Fig. 13.55.
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20 Ω

6 H5 H 4 H8 cos (4t + 50°) V +
−

10 Ω

8 Ω

12 Ω
k = 0.4

25 mF

io

Figure 13.55 For Practice Prob. 13.13.

Answer: 0.1006 cos(4t + 68.52◦) A.

E X A M P L E 1 3 . 1 4

Find V1 and V2 in the ideal transformer circuit of Fig. 13.56 using PSpice.

80 Ω

6 ΩV1 V2

4:1

+

−

+

−
V

20 Ω

+
−120   30°

−j40 Ω

j10 Ω

Figure 13.56 For Example 13.14.

Solution:

As usual, we assume ω = 1 and find the corresponding values of capac-
itance and inductance of the elements:

j10 = jωL 
⇒ L = 10 H

−j40 = 1

jωC

⇒ C = 25 mF

Figure 13.57 shows the schematic. For the ideal transformer, we set
the coupling factor to 0.999 and the numbers of turns to 400,000 and
100,000. The two VPRINT2 pseudocomponents are connected across
the transformer terminals to obtain V1 and V2. As a single-frequency
analysis, we select Analysis/Setup/AC Sweep and enter Total Pts =
1, Start Freq = 0.1592, and Final Freq = 0.1592. After saving the
schematic, we select Analysis/Simulate to simulate it. The output file
includes:

Reminder: For an ideal transformer, the induc-
tances of both the primary and secondary wind-
ings are infinitely large.

FREQ VM(C,A) VP(C,A)
1.592E-01 1.212E+02 -1.435E+02
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FREQ VM(B,C) VP(B,C)
1.592E-01 2.775E+02 2.789E+01

From this we obtain

V1 = −V(C,A) = 121.1 36.5◦ V

V2 = V(B,C) = 27.75 27.89◦ V

R1

V1

80

6R3

10HL1

TX1

ACMAG=120V
ACPHASE=30

AC=ok
MAG=ok
PHASE=ok

AC=ok
MAG=ok
PHASE=ok

L1_TURNS=400000
L2_TURNS=100000
COUPLING=0.999

20R2

C1
A B

C

25m

−
+

0

kbreak

Figure 13.57 The schematic for the circuit in Fig. 13.56.

P R A C T I C E P R O B L E M 1 3 . 1 4

Obtain V1 and V2 in the circuit of Fig. 13.58 using PSpice.

10 Ω
2:3

30 Ω

20 Ω

V1 V2

+

−

+

−
V +

−100   20° −j16 Ω

j15 Ω

Figure 13.58 For Practice Prob. 13.14.

Answer: 63.1 28.65◦ V, 94.64 − 151.4◦ V.

†13.9 APPLICATIONS
Transformers are the largest, the heaviest, and often the costliest of circuit
components. Nevertheless, they are indispensable passive devices in
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electric circuits. They are among the most efficient machines, 95 percent
efficiency being common and 99 percent being achievable. They have
numerous applications. For example, transformers are used:

• To step up or step down voltage and current, making them
useful for power transmission and distribution.

• To isolate one portion of a circuit from another (i.e., to transfer
power without any electrical connection).

• As an impedance-matching device for maximum power transfer.

• In frequency-selective circuits whose operation depends on the
response of inductances.

Because of these diverse uses, there are many special designs for
transformers (only some of which are discussed in this chapter): voltage
transformers, current transformers, power transformers, distribution trans-
formers, impedance-matching transformers, audio transformers, single-
phase transformers, three-phase transformers, rectifier transformers,
inverter transformers, and more. In this section, we consider three im-
portant applications: transformer as an isolation device, transformer as a
matching device, and power distribution system.

Formore information on themany kinds of trans-
formers, a good text is W. M. Flanagan, Hand-
book of Transformer Design and Applications, 2nd
ed. (New York: McGraw-Hill, 1993).

1 3 . 9 . 1 Tr an s fo rmer a s an I so l a t i on Dev i c e
Electrical isolation is said to exist between two devices when there is no
physical connection between them. In a transformer, energy is transferred
by magnetic coupling, without electrical connection between the primary
circuit and secondary circuit. We now consider three simple practical
examples of how we take advantage of this property.

First, consider the circuit in Fig. 13.59. A rectifier is an electronic
circuit that converts an ac supply to a dc supply. A transformer is often
used to couple the ac supply to the rectifier. The transformer serves two
purposes. First, it steps up or steps down the voltage. Second, it provides
electrical isolation between the ac power supply and the rectifier, thereby
reducing the risk of shock hazard in handling the electronic device.

va
+
−

1:n
Fuse

Rectifier

Isolation transformer

Figure 13.59 A transformer used to isolate an
ac supply from a rectifier.

As a second example, a transformer is often used to couple two
stages of an amplifier, to prevent any dc voltage in one stage from affecting
the dc bias of the next stage. Biasing is the application of a dc voltage to
a transistor amplifier or any other electronic device in order to produce
a desired mode of operation. Each amplifier stage is biased separately
to operate in a particular mode; the desired mode of operation will be
compromised without a transformer providing dc isolation. As shown in
Fig. 13.60, only the ac signal is coupled through the transformer from one
stage to the next. We recall that magnetic coupling does not exist with
a dc voltage source. Transformers are used in radio and TV receivers to
couple stages of high-frequency amplifiers. When the sole purpose of a
transformer is to provide isolation, its turns ratio n is made unity. Thus,
an isolation transformer has n = 1.

As a third example, consider measuring the voltage across 13.2-kV
lines. It is obviously not safe to connect a voltmeter directly to such
high-voltage lines. A transformer can be used both to electrically isolate
the line power from the voltmeter and to step down the voltage to a safe
level, as shown in Fig. 13.61. Once the voltmeter is used to measure the
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secondary voltage, the turns ratio is used to determine the line voltage on
the primary side.

1:1

Amplifier
stage 2

Amplifier
stage 1

Isolation transformer

ac onlyac + dc

Figure 13.60 A transformer providing dc isolation between
two amplifier stages.

1:n

V120 V

–

+

13,200 V
–

+
Power lines

Voltmeter

Figure 13.61 A transformer providing isolation between
the power lines and the voltmeter.

E X A M P L E 1 3 . 1 5

Determine the voltage across the load in Fig. 13.62.

Solution:

We can apply the superposition principle to find the load voltage. Let
vL = vL1 + vL2, where vL1 is due to the dc source and vL2 is due to the
ac source. We consider the dc and ac sources separately, as shown in
Fig. 13.63. The load voltage due to the dc source is zero, because a time-
varying voltage is necessary in the primary circuit to induce a voltage in
the secondary circuit. Thus, vL1 = 0. For the ac source,

V2

V1
= V2

120
= 1

3
or V2 = 120

3
= 40 V

Hence, VL2 = 40 V ac or vL2 = 40 cosωt ; that is, only the ac voltage
is passed to the load by the transformer. This example shows how the
transformer provides dc isolation.

3:1

+
−

120 V
ac

12 V
dc

RL = 5 kΩ

Figure 13.62 For Example 13.15.

3:1

6 V
dc RLV2 = 0

3:1

+
−

120 V
ac RL

+

−

+

−
V2V1

+

−

(a) (b)

Figure 13.63 For Example 13.15: (a) dc source, (b) ac source.

P R A C T I C E P R O B L E M 1 3 . 1 5

Refer to Fig. 13.61. Calculate the turns ratio required to step down the
13.2-kV line voltage to a safe level of 120 V.

Answer: 1/110.
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13 . 9 . 2 Tr an s fo rmer a s a Ma t ch i n g Dev i c e
We recall that for maximum power transfer, the load resistanceRL must be
matched with the source resistanceRs . In most cases, the two resistances
are not matched; both are fixed and cannot be altered. However, an iron-
core transformer can be used to match the load resistance to the source
resistance. This is called impedance matching. For example, to connect a
loudspeaker to an audio power amplifier requires a transformer, because
the speaker’s resistance is only a few ohms while the internal resistance
of the amplifier is several thousand ohms.

Consider the circuit shown in Fig. 13.64. We recall from Eq. (13.60)
that the ideal transformer reflects its load back to the primary with a
scaling factor of n2. To match this reflected load RL/n2 with the source
resistance Rs , we set them equal,

Rs = RL

n2
(13.73)

Equation (13.73) can be satisfied by proper selection of the turns ratio
n. From Eq. (13.73), we notice that a step-down transformer (n < 1) is
needed as the matching device when Rs > RL, and a step-up (n > 1) is
required when Rs < RL.

vs
+
−

1:n

Matching transformer
LoadSource

Rs

RL

Figure 13.64 Transformer used as a matching
device.

E X A M P L E 1 3 . 1 6

The ideal transformer in Fig. 13.65 is used to match the amplifier circuit
to the loudspeaker to achieve maximum power transfer. The Thevenin (or
output) impedance of the amplifier is 192 �, and the internal impedance
of the speaker is 12 �. Determine the required turns ratio.

Amplifier
circuit

1:n

Speaker

Figure 13.65 Using an ideal transformer to
match the speaker to the amplifier; for
Example 13.16.

Solution:

We replace the amplifier circuit with the Thevenin equivalent and reflect
the impedance ZL = 12 � of the speaker to the primary side of the
ideal transformer. Figure 13.66 shows the result. For maximum power
transfer,

ZTh = ZL

n2
or n2 = ZL

ZTh
= 12

192
= 1

16

Thus, the turns ratio is n = 1/4 = 0.25.

VTh
ZL

n2

ZTh

+
−

Figure 13.66 Equivalent circuit
of the circuit in Fig. 13.65, for
Example 13.16.

Using P = I 2R, we can show that indeed the power delivered to
the speaker is much larger than without the ideal transformer. Without
the ideal transformer, the amplifier is directly connected to the speaker.
The power delivered to the speaker is

PL =
(

VTh

ZTh + ZL

)2

ZL = 288 V2
Th µW

With the transformer in place, the primary and secondary currents are

Ip = VTh

ZTh + ZL/n2
, Is = Ip

n
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Hence,

PL = I 2
s ZL =

(
VTh/n

ZTh + ZL/n2

)2

ZL

=
(

nVTh

n2ZTh + ZL

)2

ZL = 1302V2
Th µW

confirming what was said earlier.

P R A C T I C E P R O B L E M 1 3 . 1 6

Calculate the turns ratio of an ideal transformer required to match a 100-�
load to a source with internal impedance of 2.5 k�. Find the load voltage
when the source voltage is 30 V.

Answer: 0.2, 3 V.

One may ask, How would increasing the voltage
not increase the current, thereby increasing I2R
losses? Keep in mind that I = V-/R, where V-
is the potential difference between the sending
and receiving ends of the line. The voltage that
is stepped up is the sending end voltage V, not
V-. If the receiving end is VR , then V- = V −
VR . Since V and VR are close to each other, V- is
small even when V is stepped up.

13 . 9 . 3 Power D i s t r i bu t i on
A power system basically consists of three components:generation, trans-
mission, and distribution. The local electric company operates a plant
that generates several hundreds of megavolt-amperes (MVA), typically at
about 18 kV. As Fig. 13.67 illustrates, three-phase step-up transformers
are used to feed the generated power to the transmission line. Why do
we need the transformer? Suppose we need to transmit 100,000 VA over
a distance of 50 km. Since S = V I , using a line voltage of 1000 V
implies that the transmission line must carry 100 A and this requires a
transmission line of a large diameter. If, on the other hand, we use a
line voltage of 10,000 V, the current is only 10 A. The smaller current
reduces the required conductor size, producing considerable savings as
well as minimizing transmission line I 2R losses. To minimize losses
requires a step-up transformer. Without the transformer, the majority of
the power generated would be lost on the transmission line. The ability

3f

345,000 V

3f 60 Hz ac
18,000 V
Generator

3f

Step-up
transformer

3f

Step-down
transformer

Neutral
3f 60 Hz ac 

208 V

345,000 V 345,000 V

Neutral

Neutral

NeutralTower

Tower

Insulators

Figure 13.67 A typical power distribution system.
(Source: A. Marcus and C. M. Thomson, Electricity for Technicians,
2nd ed. [Englewood Cliffs, NJ: Prentice Hall, 1975], p. 337.)
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of the transformer to step up or step down voltage and distribute power
economically is one of the major reasons for generating ac rather than dc.
Thus, for a given power, the larger the voltage, the better. Today, 1 MV
is the largest voltage in use; the level may increase as a result of research
and experiments.

Beyond the generation plant, the power is transmitted for hundreds
of miles through an electric network called the power grid. The three-
phase power in the power grid is conveyed by transmission lines hung
overhead from steel towers which come in a variety of sizes and shapes.
The (aluminum-conductor, steel-reinforced) lines typically have overall
diameters up to about 40 mm and can carry current of up to 1380 A.

At the substations, distribution transformers are used to step down
the voltage. The step-down process is usually carried out in stages. Power
may be distributed throughout a locality by means of either overhead or
underground cables. The substations distribute the power to residential,
commercial, and industrial customers. At the receiving end, a residen-
tial customer is eventually supplied with 120/240 V, while industrial or
commercial customers are fed with higher voltages such as 460/208 V.
Residential customers are usually supplied by distribution transformers
often mounted on the poles of the electric utility company. When direct
current is needed, the alternating current is converted to dc electronically.

E X A M P L E 1 3 . 1 7

A distribution transformer is used to supply a household as in Fig. 13.68.
The load consists of eight 100-W bulbs, a 350-W TV, and a 15-kW kitchen
range. If the secondary side of the transformer has 72 turns, calculate:
(a) the number of turns of the primary winding, and (b) the current Ip in
the primary winding.

Ip

2400 V
120 V+

−

+

−

120 V
–

+

TV

Kitchen
range

8 bulbs

Figure 13.68 For Example 13.17.

Solution:

(a) The dot locations on the winding are not important, since we are only
interested in the magnitudes of the variables involved. Since

Np

Ns
= Vp

Vs
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we get

Np = Ns
Vp

Vs
= 72

2400

240
= 720 turns

(b) The total power absorbed by the load is

S = 8 × 100 + 350 + 15,000 = 16.15 kW

But S = VpIp = VsIs , so that

Ip = S

Vp
= 16,150

2400
= 6.729 A

P R A C T I C E P R O B L E M 1 3 . 1 7

In Example 13.17, if the eight 100-W bulbs are replaced by twelve 60-W
bulbs and the kitchen range is replaced by a 4.5-kW air-conditioner, find:
(a) the total power supplied, (b) the current Ip in the primary winding.

Answer: (a) 5.57 kW, (b) 2.321 A.

13.10 SUMMARY
1. Two coils are said to be mutually coupled if the magnetic flux φ

emanating from one passes through the other. The mutual induc-
tance between the two coils is given by

M = k
√
L1L2

where k is the coupling coefficient, 0 < k < 1.

2. If v1 and i1 are the voltage and current in coil 1, while v2 and i2 are
the voltage and current in coil 2, then

v1 = L1
di1

dt
+M

di2

dt
and v2 = L2

di2

dt
+M

di1

dt

Thus, the voltage induced in a coupled coil consists of self-induced
voltage and mutual voltage.

3. The polarity of the mutually induced voltage is expressed in the
schematic by the dot convention.

4. The energy stored in two coupled coils is

1

2
L1i

2
1 + 1

2
L2i

2
2 ±Mi1i2

5. A transformer is a four-terminal device containing two or more
magnetically coupled coils. It is used in changing the current, volt-
age, or impedance level in a circuit.

6. A linear (or loosely coupled) transformer has its coils wound on a
magnetically linear material. It can be replaced by an equivalent T
or � network for the purposes of analysis.

7. An ideal (or iron-core) transformer is a lossless (R1 = R2 = 0)
transformer with unity coupling coefficient (k = 1) and infinite
inductances (L1, L2,M → ∞).
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8. For an ideal transformer,

V2 = nV1, I2 = I1

n
, S1 = S2, ZR = ZL

n2

where n = N2/N1 is the turns ratio. N1 is the number of turns of
the primary winding and N2 is the number of turns of the secondary
winding. The transformer steps up the primary voltage when
n > 1, steps it down when n < 1, or serves as a matching device
when n = 1.

9. An autotransformer is a transformer with a single winding common
to both the primary and the secondary circuits.

10. PSpice is a useful tool for analyzing magnetically coupled circuits.

11. Transformers are necessary in all stages of power distribution
systems. Three-phase voltages may be stepped up or down by
three-phase transformers.

12. Important uses of transformers in electronics applications are as
electrical isolation devices and impedance-matching devices.

R E V I EW QU E S T I ON S

13.1 Refer to the two magnetically coupled coils of Fig.
13.69(a). The polarity of the mutual voltage is:
(a) Positive (b) Negative

M
i1

(b)

i2
M

i1

(a)

i2

Figure 13.69 For Review Questions 13.1 and 13.2.

13.2 For the two magnetically coupled coils of Fig.
13.69(b), the polarity of the mutual voltage is:
(a) Positive (b) Negative

13.3 The coefficient of coupling for two coils having
L1 = 2 H, L2 = 8 H, M = 3 H is:
(a) 0.1875 (b) 0.75
(c) 1.333 (d) 5.333

13.4 A transformer is used in stepping down or stepping
up:
(a) dc voltages (b) ac voltages
(c) both dc and ac voltages

13.5 The ideal transformer in Fig. 13.70(a) has
N2/N1 = 10. The ratio V2/V1 is:
(a) 10 (b) 0.1 (c) −0.1 (d) −10

N1:N2
I1

(a)

I2

+

−

+

−

N1:N2
I1

(b)

I2

V1 V2

Figure 13.70 For Review Questions 13.5 and 13.6.

13.6 For the ideal transformer in Fig. 13.70(b),
N2/N1 = 10. The ratio I2/I1 is:
(a) 10 (b) 0.1 (c) −0.1 (d) −10

13.7 A three-winding transformer is connected as
portrayed in Fig. 13.71(a). The value of the output
voltage Vo is:
(a) 10 (b) 6 (c) −6 (d) −10

50 V
+

−
Vo

2 V

8 V

+

−

(a)

50 V
+

−

Vo

2 V

8 V

+

−

(b)

Figure 13.71 For Review Questions 13.7 and 13.8.

13.8 If the three-winding transformer is connected as in
Fig. 13.71(b), the value of the output voltage Vo is:
(a) 10 (b) 6 (c) −6 (d) −10
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13.9 In order to match a source with internal impedance
of 500 � to a 15-� load, what is needed is:
(a) step-up linear transformer
(b) step-down linear transformer
(c) step-up ideal transformer
(d) step-down ideal transformer
(e) autotransformer

13.10 Which of these transformers can be used as an
isolation device?
(a) linear transformer (b) ideal transformer
(c) autotransformer (d) all of the above

Answers: 13.1b, 13.2a, 13.3b, 13.4b, 13.5d, 13.6b, 13.7c, 13.8a,
13.9d, 13.10b.

P RO B L E M S

Section 13.2 Mutual Inductance

13.1 For the three coupled coils in Fig. 13.72, calculate
the total inductance.

6 H 10 H

2 H

8 H

4 H 5 H

Figure 13.72 For Prob. 13.1.

13.2 Determine the inductance of the three series-
connected inductors of Fig. 13.73.

10 H 8 H

4 H

12 H

6 H 6 H

Figure 13.73 For Prob. 13.2.

13.3 Two coils connected in series-aiding fashion have a
total inductance of 250 mH. When connected in a
series-opposing configuration, the coils have a total
inductance of 150 mH. If the inductance of one coil
(L1) is three times the other, find L1, L2, and M .
What is the coupling coefficient?

13.4 (a) For the coupled coils in Fig. 13.74(a), show that

Leq = L1 + L2 + 2M

(b) For the coupled coils in Fig. 13.74(b), show that

Leq = L1L2 −M2

L1L2 − 2M2

M

L2L1

L1

Leq (b)

M L2

Leq (a)

Figure 13.74 For Prob. 13.4.

13.5 Determine V1 and V2 in terms of I1 and I2 in the
circuit in Fig. 13.75.

+

−

jvM
I1

V1

+

−

V2

I2

jvL1 jvL2

R1 R2

Figure 13.75 For Prob. 13.5.

13.6 Find Vo in the circuit of Fig. 13.76.

V

–j6 Ω j8 Ω

+
−

j12 Ω

10 Ω

j4 Ω
20   30°

+

−

Vo

Figure 13.76 For Prob. 13.6.



572 PART 2 AC Circuits

13.7 Obtain Vo in the circuit of Fig. 13.77.

1 Ω

+
− j6 Ω j4 Ω −j3 Ω

4 Ω
j2 Ω

Vo

+

−
V10   0°

Figure 13.77 For Prob. 13.7.

13.8 Find Vx in the network shown in Fig. 13.78.

2 Ω

+
− j4 Ω j4 Ω −j1 Ω

2 Ω
j1 Ω

V8   30°

+ −Vx

A2   0°

Figure 13.78 For Prob. 13.8.

13.9 Find Io in the circuit of Fig. 13.79.

Im cos vt

L

C

L

R

io

k = 1

Figure 13.79 For Prob. 13.9.

13.10 Obtain the mesh equations for the circuit in Fig.
13.80.

V1

V2

R1

I1 I2

I3

R2

jvL1

jvL2

jvM
+
−

+ −

jvC
1

Figure 13.80 For Prob. 13.10.

13.11 Obtain the Thevenin equivalent circuit for the circuit
in Fig. 13.81 at terminals a-b.

j6 Ω

b

a

j8 Ω

2 Ω

j2 Ω

+
−V10   90° A4   0°

5 Ω −j3 Ω

Figure 13.81 For Prob. 13.11.

13.12 Find the Norton equivalent for the circuit in Fig.
13.82 at terminals a-b.

b

a
j20 Ω

j5 Ω
j10 Ω+

−V60   30°

20 Ω

Figure 13.82 For Prob. 13.12.

Section 13.3 Energy in a Coupled Circuit

13.13 Determine currents I1, I2, and I3 in the circuit of
Fig. 13.83. Find the energy stored in the coupled
coils at t = 2 ms. Take ω = 1000 rad/s.

j10 Ω j10 Ω

4 Ω

k = 0.5

+
−A3   90° V20   0°

8 Ω

−j5 Ω

I2I3

I1

Figure 13.83 For Prob. 13.13.
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13.14 Find I1 and I2 in the circuit of Fig. 13.84. Calculate
the power absorbed by the 4-� resistor.

5 Ω

4 Ω

j6 Ω j3 Ω

2 Ω

+
− I1 I2V36   30°

j1 Ω
–j4 Ω

Figure 13.84 For Prob. 13.14.

13.15∗ Find current Io in the circuit of Fig. 13.85.

j80 Ω
j30 Ωj10 Ω

j60 Ω

j20 Ω

+
−

Io

V50   0° 100 Ω

j40 Ω

–j50 Ω

Figure 13.85 For Prob. 13.15.

13.16 If M = 0.2 H and vs = 12 cos 10t V in the circuit of
Fig. 13.86, find i1 and i2. Calculate the energy
stored in the coupled coils at t = 15 ms.

0.5 H

25 mF

1 H

5 Ω

M

i1 i2

+
−vs

Figure 13.86 For Prob. 13.16.

13.17 In the circuit of Fig. 13.87,
(a) find the coupling coefficient,

(b) calculate vo,
(c) determine the energy stored in the coupled

inductors at t = 2 s.

2 Ω

+
− 4 H 2 H 1 Ω vo

1 H

12 cos 4t V
+

−
F1

4

Figure 13.87 For Prob. 13.17.

13.18 For the network in Fig. 13.88, find Zab and Io.

4 Ω

0.5 F

1 Ω

2 Ω

io

+
−12 sin 2t V 1 H 1 H 2 H

k = 0.5
3 Ωa

b

Figure 13.88 For Prob. 13.18.

13.19 Find Io in the circuit of Fig. 13.89. Switch the dot
on the winding on the right and calculate Io again.

−j30 Ω

j20 Ω j40 Ω 10 Ω50 Ω

k = 0.601
Io

A4   60°

Figure 13.89 For Prob. 13.19.

13.20 Rework Example 13.1 using the concept of reflected
impedance.

Section 13.4 Linear Transformers

13.21 In the circuit of Fig. 13.90, find the value of the
coupling coefficient k that will make the 10-�
resistor dissipate 320 W. For this value of k, find the
energy stored in the coupled coils at t = 1.5 s.

∗An asterisk indicates a challenging problem.



574 PART 2 AC Circuits

10 Ω

+
− 30 mH 50 mH 20 Ω

k

165 cos 103t V

Figure 13.90 For Prob. 13.21.

13.22 (a) Find the input impedance of the circuit in Fig.
13.91 using the concept of reflected impedance.

(b) Obtain the input impedance by replacing the
linear transformer by its T equivalent.

j30 Ω j20 Ω −j6 Ω

j10 Ω
8 Ω25 Ωj40 Ω

Zin

Figure 13.91 For Prob. 13.22.

13.23 For the circuit in Fig. 13.92, find:
(a) the T -equivalent circuit,
(b) the �-equivalent circuit.

15 H 20 H

5 H

Figure 13.92 For Prob. 13.23.

13.24∗ Two linear transformers are cascaded as shown in
Fig. 13.93. Show that

Zin =
ω2R(L2

a + LaLb −M2
a )

+jω3(L2
aLb + LaL

2
b − LaM

2
b − LbM

2
a )

ω2(LaLb + L2
b −M2

b )− jωR(La + Lb)

La La

Ma

Lb Lb

Mb

R

Zin

Figure 13.93 For Prob. 13.24.

13.25 Determine the input impedance of the air-core
transformer circuit of Fig. 13.94.

j12 Ω j40 Ω −j5 Ω

j15 Ω
20 Ω10 Ω

Zin

Figure 13.94 For Prob. 13.25.

Section 13.5 Ideal Transformers

13.26 As done in Fig. 13.32, obtain the relationships
between terminal voltages and currents for each of
the ideal transformers in Fig. 13.95.

V1 V2

1:n

+

−

+

−

I1 I2

(a)

V1 V2

1:n

+

−

+

−

I1 I2

(b)

V1 V2

1:n

+

−

+

−

I1 I2

(d)

V1 V2

1:n

+

−

+

−

I1 I2

(c)

Figure 13.95 For Prob. 13.26.

13.27 A 4-kVA, 2300/230-V rms transformer has an
equivalent impedance of 2 10◦ � on the primary
side. If the transformer is connected to a load with
0.6 power factor leading, calculate the input
impedance.

13.28 A 1200/240-V rms transformer has impedance
60 − 30◦ � on the high-voltage side. If the
transformer is connected to a 0.8 10◦-� load on
the low-voltage side, determine the primary and
secondary currents.

13.29 Determine I1 and I2 in the circuit of Fig. 13.96.

2 Ω10 Ω
3:1

I1 I2

+
−V14   0°

Figure 13.96 For Prob. 13.29.
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13.30 Obtain V1 and V2 in the ideal transformer circuit of
Fig. 13.97.

10 ΩA 12 Ω2   0° A1   0°V1 V2

+

−

+

−

1:4

Figure 13.97 For Prob. 13.30.

13.31 In the ideal transformer circuit of Fig. 13.98, find
i1(t) and i2(t).

R
1:n

i1(t) i2(t)

+
− Vm cos vt

Vo
dc

Figure 13.98 For Prob. 13.31.

13.32 (a) Find I1 and I2 in the circuit of Fig. 13.99 below.
(b) Switch the dot on one of the windings. Find I1

and I2 again.

13.33 For the circuit in Fig. 13.100, find Vo. Switch the
dot on the secondary side and find Vo again.

10 Ω

2 Ω

3:1

20 mF

10 cos 5t V +
−

+

−
Vo

Figure 13.100 For Prob. 13.33.

13.34 Calculate the input impedance for the network in
Fig. 13.101 below.

13.35 Use the concept of reflected impedance to find the
input impedance and current I1 in Fig. 13.102 below.

12 Ω10 Ωj16 Ω

+
−V16   60° 10   30°

I1 I2
1:2

+
−

–j8 Ω

Figure 13.99 For Prob. 13.32.

Zin

1:5 4:1
a

b

8 Ω 24 Ω 6 Ωj12 Ω

−j10 Ω

Figure 13.101 For Prob. 13.34.

1:2 1:3
5 Ω 8 Ω 36 Ω

j18 Ω+
−

I1 –j2 Ω

V24   0°

Figure 13.102 For Prob. 13.35.
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13.36 For the circuit in Fig. 13.103, determine the turns
ratio n that will cause maximum average power
transfer to the load. Calculate that maximum
average power.

40 Ω
1:n

+
− 10 ΩV rms120   0°

Figure 13.103 For Prob. 13.36.

13.37 Refer to the network in Fig. 13.104.
(a) Find n for maximum power supplied to the

200-� load.
(b) Determine the power in the 200-� load if

n = 10.

3 Ω
1:n

200 Ω5 ΩA rms4   0°

Figure 13.104 For Prob. 13.37.

13.38 A transformer is used to match an amplifier with an
8-� load as shown in Fig. 13.105. The Thevenin
equivalent of the amplifier is: VTh = 10 V,
ZTh = 128 �.
(a) Find the required turns ratio for maximum

energy power transfer.

(b) Determine the primary and secondary currents.
(c) Calculate the primary and secondary voltages.

1:n

8 ΩAmplifier
circuit

Figure 13.105 For Prob. 13.38.

13.39 In Fig. 13.106 below, determine the average power
delivered to Zs .

13.40 Find the power absorbed by the 10-� resistor in the
ideal transformer circuit of Fig. 13.107.

2 Ω

10 Ω

1:2

V46   0°

5 Ω

+
−

Figure 13.107 For Prob. 13.40.

13.41 For the ideal transformer circuit of Fig. 13.108
below, find:
(a) I1 and I2,
(b) V1, V2, and Vo,
(c) the complex power supplied by the source.

1:10

+
−V rms120   0° Zs = 500 – j200 Ω

Zp = 3 + j4 Ω

Figure 13.106 For Prob. 13.39.

12 Ω
j3 ΩV1 V2 Vo

− −

1:2

+
−V rms60   90°

I1 I22 Ω

+ + +

−

−j6 Ω

Figure 13.108 For Prob. 13.41.
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13.42 Determine the average power absorbed by each
resistor in the circuit of Fig. 13.109.

20 Ω

100 Ω

1:5

80 cos 4t V +
−

20 Ω

Figure 13.109 For Prob. 13.42.

13.43 Find the average power delivered to each resistor in
the circuit of Fig. 13.110.

8 Ω

4 Ω

2:1

V20   0° +
−

2 Ω

Figure 13.110 For Prob. 13.43.

13.44 Refer to the circuit in Fig. 13.111 below.
(a) Find currents I1, I2, and I3.
(b) Find the power dissipated in the 40-� resistor.

13.45∗ For the circuit in Fig. 13.112 below, find I1, I2, and
Vo.

13.46 For the network in Fig. 13.113 below, find
(a) the complex power supplied by the source,
(b) the average power delivered to the 18-� resistor.

1:4 1:2
4 Ω 5 Ω

+
−

I1 I2 I3

V120   0° 40 Ω10 Ω

Figure 13.111 For Prob. 13.44.

1:5 3:4
2 Ω 14 Ω

+
−

I1 I2

V24   0° 160 Ω60 ΩVo

+

−

Figure 13.112 For Prob. 13.45.

2:5 1:3
6 Ω 8 Ω

+
−V40   0°

18 Ω

–j20 Ωj4 Ω

j45 Ω

Figure 13.113 For Prob. 13.46.
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13.47 Find the mesh currents in the circuit of Fig. 13.114
below.

Section 13.6 Ideal Autotransformers

13.48 An ideal autotransformer with a 1:4 step-up turns
ratio has its secondary connected to a 120-� load
and the primary to a 420-V source. Determine the
primary current.

13.49 In the ideal autotransformer of Fig. 13.115, calculate
I1, I2, and Io. Find the average power delivered to
the load.

+
−

I1

I2

10 + j40 Ω

2 – j6 Ω

Io

20   30° V rms
80 turns

200 turns

Figure 13.115 For Prob. 13.49.

13.50∗ In the circuit of Fig. 13.116, ZL is adjusted until
maximum average power is delivered to ZL. Find
ZL and the maximum average power transferred to
it. Take N1 = 600 turns and N2 = 200 turns.

+
−V rms

N1

N2

75 Ω j125 Ω
ZL

120   0°

Figure 13.116 For Prob. 13.50.

13.51 In the ideal transformer circuit shown in Fig. 13.117,
determine the average power delivered to the load.

+
−V rms

20 – j40 Ω

120   0°

30 + j12 Ω

1000 turns

200 turns

Figure 13.117 For Prob. 13.51.

13.52 In the autotransformer circuit in Fig. 13.118, show
that

Zin =
(

1 + N1

N2

)2

ZL

ZL

Zin

Figure 13.118 For Prob. 13.52.

Section 13.7 Three-Phase Transformers

13.53 In order to meet an emergency, three single-phase
transformers with 12,470/7200 V rms are connected
in �-Y to form a three-phase transformer which is
fed by a 12,470-V transmission line. If the
transformer supplies 60 MVA to a load, find:
(a) the turns ratio for each transformer,
(b) the currents in the primary and secondary

windings of the transformer,
(c) the incoming and outgoing transmission line

currents.

1:2 1:3
1 Ω 9 Ω7 Ω

+
−V12   0°

–j6 Ω

j18 ΩI1 I1I2

Figure 13.114 For Prob. 13.47.
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13.54 Figure 13.119 below shows a three-phase
transformer that supplies a Y-connected load.
(a) Identify the transformer connection.
(b) Calculate currents I2 and Ic.
(c) Find the average power absorbed by the load.

13.55 Consider the three-phase transformer shown in Fig.
13.120. The primary is fed by a three-phase source
with line voltage of 2.4 kV rms, while the secondary
supplies a three-phase 120-kW balanced load at pf
of 0.8. Determine:
(a) the type of transformer connections,
(b) the values of ILS and IPS ,
(c) the values of ILP and IPP ,
(d) the kVA rating of each phase of the transformer.

13.56 A balanced three-phase transformer bank with the
�-Y connection depicted in Fig. 13.121 below is
used to step down line voltages from 4500 V rms to
900 V rms. If the transformer feeds a 120-kVA load,
find:
(a) the turns ratio for the transformer,
(b) the line currents at the primary and secondary

sides.

Load
120 kW pf = 0.8

4:1

2.4 kV

ILP

ILS

IPS

IPP

Figure 13.120 For Prob. 13.55.

3:1
V450   0°

I1

I2

I3

Ic

Ib

Ia

450   120° V

450   –120° V

8 Ω

−j6 Ω

8 Ω

−j6 Ω

8 Ω

−j6 Ω

Figure 13.119 For Prob. 13.54.

1:n

4500 V 900 V 42 kVA
Three-phase
load

Figure 13.121 For Prob. 13.56.
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13.57 A Y-� three-phase transformer is connected to a
60-kVA load with 0.85 power factor (leading)
through a feeder whose impedance is 0.05 + j0.1 �
per phase, as shown in Fig. 13.122 below. Find the
magnitude of:
(a) the line current at the load,
(b) the line voltage at the secondary side of the

transformer,
(c) the line current at the primary side of the

transformer.

13.58 The three-phase system of a town distributes power
with a line voltage of 13.2 kV. A pole transformer
connected to single wire and ground steps down the
high-voltage wire to 120 V rms and serves a house
as shown in Fig. 13.123.
(a) Calculate the turns ratio of the pole transformer

to get 120 V.
(b) Determine how much current a 100-W lamp

connected to the 120-V hot line draws from the
high-voltage line.

13.2 kV 120 V

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

Figure 13.123 For Prob. 13.58.

Section 13.8 PSpice Analysis of Magnetically
Coupled Circuits

13.59 Rework Prob. 13.14 using PSpice.

13.60 Use PSpice to find I1, I2, and I3 in the circuit of Fig.
13.124.

j15 Ω

j80 Ω
j0 Ω

j100 Ω

j10 Ω

+
−V60   0°

j50 Ω –j20 Ω

20   90°+
− V

I1 I3

I2

40 Ω

80 Ω

Figure 13.124 For Prob. 13.60.

13.61 Rework Prob. 13.15 using PSpice.

13.62 Use PSpice to find I1, I2, and I3 in the circuit of Fig.
13.125.

I1 I2

I3

100 Ω

8 H

2 H

1 H

4 H 3 H

2 H 60 mF

200 Ω

70 Ω 50 mF

+
−

V120   0°
f = 100

Figure 13.125 For Prob. 13.62.

1:n

0.05 Ω j0.1 Ω

0.05 Ω j0.1 Ω

0.05 Ω j0.1 Ω

Balanced
load

60 kVA
0.85 pf
leading

2640 V

240 V

Figure 13.122 For Prob. 13.57.
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13.63 Use PSpice to find V1, V2, and Io in the circuit of
Fig. 13.126.

2 Ω
1:2

+
−

20 Ω

16 Ω

V1 V2

+

−

+

−
V40   60° +

− V30   0°

–j12 Ω–j4 Ω

j8 Ω

Io

Figure 13.126 For Prob. 13.63.

13.64 Find Ix and Vx in the circuit of Fig. 13.127 below
using PSpice.

13.65 Determine I1, I2, and I3 in the ideal transformer
circuit of Fig. 13.128 using PSpice.

j80 Ω

−j30 Ω

50 Ω

+
−

I1 I2
1:2

1:3
V440   0°

40 Ω

j50 Ω

I3 60 Ω

Figure 13.128 For Prob. 13.65.

Section 13.9 Applications

13.66 A stereo amplifier circuit with an output impedance
of 7.2 k� is to be matched to a speaker with an input
impedance of 8 � by a transformer whose primary

side has 3000 turns. Calculate the number of turns
required on the secondary side.

13.67 A transformer having 2400 turns on the primary and
48 turns on the secondary is used as an
impedance-matching device. What is the reflected
value of a 3-� load connected to the secondary?

13.68 A radio receiver has an input resistance of 300 �.
When it is connected directly to an antenna system
with a characteristic impedance of 75 �, an
impedance mismatch occurs. By inserting an
impedance-matching transformer ahead of the
receiver, maximum power can be realized. Calculate
the required turns ratio.

13.69 A step-down power transformer with a turns ratio of
n = 0.1 supplies 12.6 V rms to a resistive load. If
the primary current is 2.5 A rms, how much power is
delivered to the load?

13.70 A 240/120-V rms power transformer is rated at
10 kVA. Determine the turns ratio, the primary
current, and the secondary current.

13.71 A 4-kVA, 2400/240-V rms transformer has 250
turns on the primary side. Calculate:
(a) the turns ratio,
(b) the number of turns on the secondary side,
(c) the primary and secondary currents.

13.72 A 25,000/240-V rms distribution transformer has a
primary current rating of 75 A.
(a) Find the transformer kVA rating.
(b) Calculate the secondary current.

13.73 A 4800-V rms transmission line feeds a distribution
transformer with 1200 turns on the primary and 28
turns on the secondary. When a 10-� load is
connected across the secondary, find:
(a) the secondary voltage,
(b) the primary and secondary currents,
(c) the power supplied to the load.

1:2 2:1
1 Ω 6 Ω

2Vx

8 Ω
j2 Ω

+
−

Ix –j10 Ω

V6   0°
+

−
Vx

4 Ω
+

−

Vo

+ −

Figure 13.127 For Prob. 13.64.
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COM P R E H EN S I V E P RO B L E M S

13.74 A four-winding transformer (Fig. 13.129) is often
used in equipment (e.g., PCs, VCRs) that may be
operated from either 110 V or 220 V. This makes the
equipment suitable for both domestic and foreign
use. Show which connections are necessary to
provide:
(a) an output of 12 V with an input of 110 V,
(b) an output of 50 V with an input of 220 V.

a

b

c

d

e

f

g

h

32 V

18 V

110 V

110 V

Figure 13.129 For Prob. 13.74.

13.75∗ A 440/110-V ideal transformer can be connected to
become a 550/440-V ideal autotransformer. There

are four possible connections, two of which are
wrong. Find the output voltage of:
(a) a wrong connection,
(b) the right connection.

13.76 Ten bulbs in parallel are supplied by a 7200/120-V
transformer as shown in Fig. 13.130, where the
bulbs are modeled by the 144-� resistors. Find:
(a) the turns ratio n,
(b) the current through the primary winding.

1:n

144 Ω7200 V 120 V 144 Ω

Figure 13.130 For Prob. 13.76.
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C H A P T E R

FREQUENCY RESPONSE

1 4

One machine can do the work of fifty ordinary men. No machine can do
the work of one extraordinary man.

— Elbert G. Hubbard

Enhancing Your Career
Career in Control Systems Control systems are another
area of electrical engineering where circuit analysis is used.
A control system is designed to regulate the behavior of
one or more variables in some desired manner. Control
systems play major roles in our everyday life. Household
appliances such as heating and air-conditioning systems,
switch-controlled thermostats, washers and dryers, cruise
controllers in automobiles, elevators, traffic lights, manu-
facturing plants, navigation systems—all utilize control sys-
tems. In the aerospace field, precision guidance of space
probes, the wide range of operational modes of the space
shuttle, and the ability to maneuver space vehicles remotely
from earth all require knowledge of control systems. In
the manufacturing sector, repetitive production line opera-
tions are increasingly performed by robots, which are pro-
grammable control systems designed to operate for many
hours without fatigue.

Control engineering integrates circuit theory and
communication theory. It is not limited to any specific engi-
neering discipline but may involve environmental, chemical,
aeronautical, mechanical, civil, and electrical engineering.
For example, a typical task for a control system engineer
might be to design a speed regulator for a disk drive head.

A thorough understanding of control systems tech-
niques is essential to the electrical engineer and is of great
value for designing control systems to perform the desired
task. A welding robot.

(Courtesy of Shela Terry/Science Photo Library.)
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14.1 INTRODUCTION
In our sinusoidal circuit analysis, we have learned how to find voltages and
currents in a circuit with a constant frequency source. If we let the ampli-
tude of the sinusoidal source remain constant and vary the frequency, we
obtain the circuit’sfrequency response. The frequency response may be
regarded as a complete description of the sinusoidal steady-state behavior
of a circuit as a function of frequency.

The frequency response of a circuit is the variation in its
behavior with change in signal frequency.

The frequency response of a circuit may also be
considered as the variation of the gain and phase
with frequency.

The sinusoidal steady-state frequency responses of circuits are of
significance in many applications, especially in communications and con-
trol systems. A specific application is in electric filters that block out or
eliminate signals with unwanted frequencies and pass signals of the de-
sired frequencies. Filters are used in radio, TV, and telephone systems to
separate one broadcast frequency from another.

We begin this chapter by considering the frequency response of sim-
ple circuits using their transfer functions. We then consider Bode plots,
which are the industry-standard way of presenting frequency response.
We also consider series and parallel resonant circuits and encounter im-
portant concepts such as resonance, quality factor, cutoff frequency, and
bandwidth. We discuss different kinds of filters and network scaling. In
the last section, we consider one practical application of resonant circuits
and two applications of filters.

14.2 TRANSFER FUNCTION
The transfer functionH(ω) (also called thenetwork function) is a useful
analytical tool for finding the frequency response of a circuit. In fact, the
frequency response of a circuit is the plot of the circuit’s transfer function
H(ω) versusω, with ω varying fromω = 0 toω = ∞.

A transfer function is the frequency-dependent ratio of a forced
function to a forcing function (or of an output to an input). The idea of a
transfer function was implicit when we used the concepts of impedance
and admittance to relate voltage and current. In general, a linear network
can be represented by the block diagram shown in Fig. 14.1.

Input Output

Linear network

H(v)

Y(v)X(v)

Figure 14.1 A block diagram representation
of a linear network. The transfer function H(ω) of a circuit is the frequency-dependent ratio of a

phasor output Y(ω) (an element voltage or current) to a phasor input
X(ω) (source voltage or current).

In this context, X(ω) and Y(ω) denote the input
and output phasors of a network; they should not
be confused with the same symbolism used for
reactance and admittance. The multiple usage
of symbols is conventionally permissible due to
lack of enough letters in the English language to
express all circuit variables distinctly.

Thus,

H(ω) = Y(ω)
X(ω)

(14.1)
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assuming zero initial conditions. Since the input and output can be either
voltage or current at any place in the circuit, there are four possible transfer
functions:

H(ω) = Voltage gain = Vo(ω)
Vi (ω)

(14.2a)

H(ω) = Current gain = Io(ω)
Ii (ω)

(14.2b)

H(ω) = Transfer Impedance = Vo(ω)
Ii (ω)

(14.2c)

H(ω) = Transfer Admittance = Io(ω)
Vi (ω)

(14.2d)

where subscripts i and o denote input and output values. Being a complex
quantity, H(ω) has a magnitude H(ω) and a phase φ; that is, H(ω) =
H(ω) φ.

To obtain the transfer function using Eq. (14.2), we first obtain
the frequency-domain equivalent of the circuit by replacing resistors,
inductors, and capacitors with their impedances R, jωL, and 1/jωC.
We then use any circuit technique(s) to obtain the appropriate quantity in
Eq. (14.2). We can obtain the frequency response of the circuit by plotting
the magnitude and phase of the transfer function as the frequency varies.
A computer is a real time-saver for plotting the transfer function.

Some authors use H( jω) for transfer instead of
H(ω), since ω and j are an inseparable pair.

The transfer function H(ω) can be expressed in terms of its numer-
ator polynomial N(ω) and denominator polynomial D(ω) as

H(ω) = N(ω)
D(ω)

(14.3)

where N(ω) and D(ω) are not necessarily the same expressions for the
input and output functions, respectively. The representation of H(ω) in
Eq. (14.3) assumes that common numerator and denominator factors in
H(ω) have canceled, reducing the ratio to lowest terms. The roots of
N(ω) = 0 are called the zeros of H(ω) and are usually represented as
jω = z1, z2, . . . . Similarly, the roots of D(ω) = 0 are the poles of H(ω)
and are represented as jω = p1, p2, . . . .

A zero, as a root of the numerator polynomial, is a value that results in a zero
value of the function. A pole, as a root of the denominator polynomial,

is a value for which the function is infinite.

A zero may also be regarded as the value of s =
jω that makes H(s) zero, and a pole as the value
of s = jω that makes H(s) infinite.

To avoid complex algebra, it is expedient to replace jω temporarily
with s when working with H(ω) and replace s with jω at the end.

E X A M P L E 1 4 . 1

For the RC circuit in Fig. 14.2(a), obtain the transfer function Vo/Vs and
its frequency response. Let vs = Vm cosωt .
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Solution:

The frequency-domain equivalent of the circuit is in Fig. 14.2(b). By
voltage division, the transfer function is given by

H(ω) = Vo
Vs

= 1/jωC

R + 1/jωC
= 1

1 + jωRC
Comparing this with Eq. (9.18e), we obtain the magnitude and phase of
H(ω) as

H = 1√
1 + (ω/ω0)2

, φ = − tan−1 ω

ω0

where ω0 = 1/RC. To plot H and φ for 0 < ω < ∞, we obtain their
values at some critical points and then sketch.

vs(t) vo(t)

R

(a) (b)

C+
− Vs Vo

R

jvC
1+

−

+

−

+

−

Figure 14.2 For Example 14.1: (a) time-domain RC circuit,
(b) frequency-domain RC circuit.

At ω = 0, H = 1 and φ = 0. At ω = ∞, H = 0 and φ = −90◦.
Also, at ω = ω0, H = 1/

√
2 and φ = −45◦. With these and a few more

points as shown in Table 14.1, we find that the frequency response is as
shown in Fig. 14.3. Additional features of the frequency response in Fig.
14.3 will be explained in Section 14.6.1 on lowpass filters.

TABLE 14.1 For Example 14.1.

ω/ω0 H φ ω/ω0 H φ

0 1 0 10 0.1 −84◦

1 0.71 −45◦ 20 0.05 −87◦

2 0.45 −63◦ 100 0.01 −89◦

3 0.32 −72◦ ∞ 0 −90◦

0

0.707

H

1

v0 = 1
RC

v0 = 1
RC

v

0 v

−90°

−45°

(a)

(b)
f

Figure 14.3 Frequency response of the
RC circuit: (a) amplitude response,
(b) phase response.

P R A C T I C E P R O B L E M 1 4 . 1

Obtain the transfer function Vo/Vs of the RL circuit in Fig. 14.4, assuming
vs = Vm cosωt . Sketch its frequency response.

Answer: jωL/(R + jωL); see Fig. 14.5 for the response.
vs vo

R

L+
−

+

−

Figure 14.4 RL circuit
for Practice Prob. 14.1.
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1

H

0.707

0 v0 = R
L v0 = R

L
v

(a) (b)

90°

45°

f

0 v

Figure 14.5 Frequency response of the RL circuit in Fig. 14.4.

E X A M P L E 1 4 . 2

For the circuit in Fig. 14.6, calculate the gain Io(ω)/Ii (ω) and its poles
and zeros.

ii (t)

io(t)

0.5 F

2 H

4 Ω

Figure 14.6 For Example 14.2.

Solution:

By current division,

Io(ω) = 4 + j2ω

4 + j2ω + 1/j0.5ω
Ii (ω)

or

Io(ω)
Ii (ω)

= j0.5ω(4 + j2ω)

1 + j2ω + (jω)2 = s(s + 2)

s2 + 2s + 1
, s = jω

The zeros are at

s(s + 2) = 0 �⇒ z1 = 0, z2 = −2

The poles are at

s2 + 2s + 1 = (s + 1)2 = 0

Thus, there is a repeated pole (or double pole) at p = −1.

P R A C T I C E P R O B L E M 1 4 . 2

Find the transfer function Vo(ω)/Ii (ω) for the circuit of Fig. 14.7. Obtain
its poles and zeros.

vo(t)

ii(t)

0.1 F 2 H

3 Ω5 Ω
+
−

Figure 14.7 For Practice Prob. 14.2.

Answer:
5(s + 2)(s + 1.5)

s2 + 4s + 5
, s = jω; poles: −2,−1.5; zeros: −2±j .
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†14.3 THE DECIBEL SCALE
It is not always easy to get a quick plot of the magnitude and phase
of the transfer function as we did above. A more systematic way of
obtaining the frequency response is to use Bode plots. Before we begin
to construct Bode plots, we should take care of two important issues: the
use of logarithms and decibels in expressing gain.

Since Bode plots are based on logarithms, it is important that we
keep the following properties of logarithms in mind:

1. logP1P2 = logP1 + logP2

2. logP1/P2 = logP1 − logP2

3. logPn = n logP

4. log 1 = 0

In communications systems, gain is measured in bels. Historically,
the bel is used to measure the ratio of two levels of power or power gain
G; that is,

G = Number of bels = log10
P2

P1
(14.4)

The decibel (dB) provides us with a unit of less magnitude. It is 1/10th
of a bel and is given by

GdB = 10 log10
P2

P1
(14.5)

When P1 = P2, there is no change in power and the gain is 0 dB. If
P2 = 2P1, the gain is

GdB = 10 log10 2 = 3 dB (14.6)

and when P2 = 0.5P1, the gain is

GdB = 10 log10 0.5 = −3 dB (14.7)

Equations (14.6) and (14.7) show another reason why logarithms are
greatly used: The logarithm of the reciprocal of a quantity is simply
negative the logarithm of that quantity.

Historical note: The bel is named after Alexander
Graham Bell, the inventor of the telephone.

V2

−

+

V1 R2Network

I1 I2

P1 P2

R1

+

−

Figure 14.8 Voltage-current relationships
for a four-terminal network.

Alternatively, the gain G can be expressed in terms of voltage or
current ratio. To do so, consider the network shown in Fig. 14.8. If P1 is
the input power, P2 is the output (load) power, R1 is the input resistance,
and R2 is the load resistance, then P1 = 0.5V 2

1 /R1 and P2 = 0.5V 2
2 /R2,

and Eq. (14.5) becomes

GdB = 10 log10
P2

P1
= 10 log10

V 2
2 /R2

V 2
1 /R1

= 10 log10

(
V2

V1

)2

+ 10 log10
R1

R2

(14.8)

GdB = 20 log10
V2

V1
− 10 log10

R2

R1
(14.9)
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For the case when R2 = R1, a condition that is often assumed when
comparing voltage levels, Eq. (14.9) becomes

GdB = 20 log10
V2

V1
(14.10)

Instead, if P1 = I 2
1R1 and P2 = I 2

2R2, for R1 = R2, we obtain

GdB = 20 log10
I2

I1
(14.11)

Two things are important to note from Eqs. (14.5), (14.10), and (14.11):

1. That 10 log is used for power, while 20 log is used for voltage
or current, because of the square relationship between them
(P = V 2/R = I 2R).

2. That the dB value is a logarithmic measurement of the ratio of
one variable to another of the same type. Therefore, it applies
in expressing the transfer function H in Eqs. (14.2a) and
(14.2b), which are dimensionless quantities, but not in
expressing H in Eqs. (14.2c) and (14.2d).

With this in mind, we now apply the concepts of logarithms and decibels
to construct Bode plots.

14.4 BODE PLOTS
Obtaining the frequency response from the transfer function as we did in
Section 14.2 is an uphill task. The frequency range required in frequency
response is often so wide that it is inconvenient to use a linear scale for
the frequency axis. Also, there is a more systematic way of locating
the important features of the magnitude and phase plots of the transfer
function. For these reasons, it has become standard practice to use a
logarithmic scale for the frequency axis and a linear scale in each of the
separate plots of magnitude and phase. Such semilogarithmic plots of
the transfer function—known as Bode plots—have become the industry
standard.

Historical note: Named after Hendrik W. Bode
(1905–1982), an engineerwith the Bell Telephone
Laboratories, for his pioneeringwork in the 1930s
and 1940s.

Bode plots are semilog plots of the magnitude (in decibels) and phase (in degrees)
of a transfer function versus frequency.

Bode plots contain the same information as the nonlogarithmic plots dis-
cussed in the previous section, but they are much easier to construct, as
we shall see shortly.

The transfer function can be written as

H = H φ = Hejφ (14.12)

Taking the natural logarithm of both sides,

ln H = lnH + ln ejφ = lnH + jφ (14.13)



590 PART 2 AC Circuits

Thus, the real part of ln H is a function of the magnitude while the imag-
inary part is the phase. In a Bode magnitude plot, the gain

HdB = 20 log10H (14.14)

is plotted in decibels (dB) versus frequency. Table 14.2 provides a few
values of H with the corresponding values in decibels. In a Bode phase
plot, φ is plotted in degrees versus frequency. Both magnitude and phase
plots are made on semilog graph paper.

TABLE 14.2 Specific gains
and their decibel values.

Magnitude H 20 log10H (dB)

0.001 −60
0.01 −40
0.1 −20
0.5 −6
1/

√
2 −3

1 0√
2 3
2 6

10 20
20 26

100 40
1000 60

A transfer function in the form of Eq. (14.3) may be written in terms
of factors that have real and imaginary parts. One such representation
might be

H(ω) = K(jω)±1(1 + jω/z1)[1 + j2ζ1ω/ωk + (jω/ωk)2] · · ·
(1 + jω/p1)[1 + j2ζ2ω/ωn + (jω/ωn)2] · · · (14.15)

which is obtained by dividing out the poles and zeros in H(ω). The
representation of H(ω) as in Eq. (14.15) is called the standard form. In
this particular case, H(ω) has seven different factors that can appear in
various combinations in a transfer function. These are:

The origin is where ω = 1 or log ω = 0 and the
gain is zero.

1. A gain K

2. A pole (jω)−1 or zero (jω) at the origin

3. A simple pole 1/(1 + jω/p1) or zero (1 + jω/z1)

4. A quadratic pole 1/[1 + j2ζ2ω/ωn + (jω/ωn)2] or zero
[1 + j2ζ1ω/ωk + (jω/ωk)2]

In constructing a Bode plot, we plot each factor separately and then com-
bine them graphically. The factors can be considered one at a time and
then combined additively because of the logarithms involved. It is this
mathematical convenience of the logarithm that makes Bode plots a pow-
erful engineering tool.

We will now make straight-line plots of the factors listed above. We
shall find that these straight-line plots known as Bode plots approximate
the actual plots to a surprising degree of accuracy.

Constant term: For the gain K , the magnitude is 20 log10K and the
phase is 0◦; both are constant with frequency. Thus the magnitude and
phase plots of the gain are shown in Fig. 14.9. If K is negative, the
magnitude remains 20 log10 |K| but the phase is ±180◦.

(a)

0.1 1 10 100 v

20 log10K

H

(b)

0.1 1 10 100 v

0

f

Figure 14.9 Bode plots for gain K: (a) magnitude plot, (b) phase plot.
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Pole/zero at the origin: For the zero (jω) at the origin, the magnitude
is 20 log10 ω and the phase is 90◦. These are plotted in Fig. 14.10, where
we notice that the slope of the magnitude plot is 20 dB/decade, while the
phase is constant with frequency.

A decade is an interval between two frequen-
cies with a ratio of 10; e.g., between ω0
and 10ω0, or between 10 and 100 Hz. Thus,
20 dB/decade means that the magnitude changes
20 dB whenever the frequency changes tenfold
or one decade.

The special case of dc (ω = 0) does not appear
on Bode plots because log 0 = −∞, implying
that zero frequency is infinitely far to the left of
the origin of Bode plots.

The Bode plots for the pole (jω)−1 are similar except that the slope
of the magnitude plot is −20 dB/decade while the phase is −90◦. In
general, for (jω)N , where N is an integer, the magnitude plot will have
a slope of 20N dB/decade, while the phase is 90N degrees.

Simple pole/zero: For the simple zero (1 + jω/z1), the magnitude is
20 log10 |1 + jω/z1| and the phase is tan−1 ω/z1. We notice that

HdB = 20 log10

∣∣∣∣1 + jω

z1

∣∣∣∣ �⇒ 20 log10 1 = 0

as ω → 0
(14.16)

HdB = 20 log10

∣∣∣∣1 + jω

z1

∣∣∣∣ �⇒ 20 log10
ω

z1

as ω → ∞
(14.17)

showing that we can approximate the magnitude as zero (a straight line
with zero slope) for small values of ω and by a straight line with slope
20 dB/decade for large values of ω. The frequency ω = z1 where the two
asymptotic lines meet is called the corner frequency or break frequency.
Thus the approximate magnitude plot is shown in Fig. 14.11(a), where
the actual plot is also shown. Notice that the approximate plot is close
to the actual plot except at the break frequency, where ω = z1 and the
deviation is 20 log10 |(1 + j1)| = 20 log10

√
2 = 3 dB.

(a)

(b)

0.1 1.0

Slope = 20 dB/decade

10 v
0

20

–20

H

0.1 1.0 10 v

90°

0°

f

Figure 14.10 Bode plot for a zero (jω) at
the origin: (a) magnitude plot, (b) phase plot.

The phase tan−1(ω/z1) can be expressed as

φ = tan−1

(
ω

z1

)
=



0, ω = 0
45◦, ω = z1

90◦, ω → ∞
(14.18)

As a straight-line approximation, we let φ � 0 for ω ≤ z1/10, φ � 45◦

for ω = z1, and φ � 90◦ for ω ≥ 10z1. As shown in Fig. 14.11(b) along
with the actual plot, the straight-line plot has a slope of 45◦ per decade.

The Bode plots for the pole 1/(1 + jω/p1) are similar to those in
Fig. 14.11 except that the corner frequency is at ω = p1, the magnitude

(a)

Approximate

Exact

3 dB0.1z1 10z1z1 v

20

H

(b)

Approximate

Exact

45°/decade

0.1z1 10z1z1 v

45°

0°

90°
f

Figure 14.11 Bode plots of zero (1 + jω/z1): (a) magnitude plot, (b) phase plot.
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has a slope of −20 dB/decade, and the phase has a slope of −45◦ per
decade.

Quadratic pole/zero: The magnitude of the quadratic pole 1/[1 +
j2ζ2ω/ωn + (jω/ωn)

2] is −20 log10 |1 + j2ζ2ω/ωn + (jω/ωn)
2| and

the phase is − tan−1(2ζ2ω/ωn)/(1 − ω/ω2
n). But

HdB = −20 log10

∣∣∣∣∣1 + j2ζ2ω

ωn
+
(
jω

ωn

)2
∣∣∣∣∣ �⇒ 0

as ω → 0

(14.19)

and

HdB = −20 log10

∣∣∣∣∣1 + j2ζ2ω

ωn
+
(
jω

ωn

)2
∣∣∣∣∣ �⇒ −40 log10

ω

ωn

as ω → ∞
(14.20)

Thus, the amplitude plot consists of two straight asymptotic lines: one
with zero slope for ω < ωn and the other with slope −40 dB/decade
for ω > ωn, with ωn as the corner frequency. Figure 14.12(a) shows
the approximate and actual amplitude plots. Note that the actual plot
depends on the damping factor ζ2 as well as the corner frequencyωn. The
significant peaking in the neighborhood of the corner frequency should
be added to the straight-line approximation if a high level of accuracy
is desired. However, we will use the straight-line approximation for the
sake of simplicity.

(a)

0.01vn 100vn10vn0.1vn

z2 = 0.05
z2 = 0.2
z2 = 0.4

z2 = 0.707
z2 = 1.5

vn v

20

0

–20

–40

H

–40 dB/dec

(b)

0.01vn 100vn10vn0.1vn

z2 = 0.4

z2 = 1.5

z2 = 0.2
z2 = 0.05

vn v

0°

–90°

–180° 

f

–90°/dec

z2 = 0.707

Figure 14.12 Bode plots of quadratic pole [1 + j2ζω/ωn − ω2/ω2
n]−1: (a) magnitude plot, (b) phase plot.

The phase can be expressed as

φ = − tan−1 2ζ2ω/ωn

1 − ω2/ω2
n

=



0, ω = 0
−90◦, ω = ωn

−180◦, ω → ∞
(14.21)

The phase plot is a straight line with a slope of 90◦ per decade starting
at ωn/10 and ending at 10ωn, as shown in Fig. 14.12(b). We see again
that the difference between the actual plot and the straight-line plot is
due to the damping factor. Notice that the straight-line approximations
for both magnitude and phase plots for the quadratic pole are the same
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as those for a double pole, i.e. (1 + jω/ωn)−2. We should expect this
because the double pole (1 + jω/ωn)−2 equals the quadratic pole 1/[1 +
j2ζ2ω/ωn + (jω/ωn)2] when ζ2 = 1. Thus, the quadratic pole can be
treated as a double pole as far as straight-line approximation is concerned.

For the quadratic zero [1+j2ζ1ω/ωk+(jω/ωk)2], the plots in Fig.
14.12 are inverted because the magnitude plot has a slope of 40 dB/decade
while the phase plot has a slope of 90◦ per decade.

Table 14.3 presents a summary of Bode plots for the seven factors.
To sketch the Bode plots for a function H(ω) in the form of Eq. (14.15), for
example, we first record the corner frequencies on the semilog graph pa-
per, sketch the factors one at a time as discussed above, and then combine
additively the graphs of the factors. The combined graph is often drawn
from left to right, changing slopes appropriately each time a corner fre-
quency is encountered. The following examples illustrate this procedure.

There is another procedure for obtaining Bode
plots that is faster and perhaps more efficient
than the one we have just discussed. It consists
in realizing that zeros cause an increase in slope,
while poles cause a decrease. By starting with
the low-frequency asymptote of the Bode plot,
moving along the frequency axis, and increasing
or decreasing the slope at each corner frequency,
one can sketch the Bode plot immediately from
the transfer function without the effort of making
individual plots and adding them. This procedure
can be used once you become proficient in the
one discussed here.

Digital computers have rendered the pro-
cedure discussed here almost obsolete. Several
software packages such as PSpice, Matlab, Math-
cad, and Micro-Cap can be used to generate fre-
quency response plots. We will discuss PSpice
later in the chapter.TABLE 14.3 Summary of Bode straight-line magnitude and phase plots.

Factor Magnitude Phase

K

v

20 log10 K

v

0°

(jω)N

v

20N dB ⁄decade

1 v

90N°

1

(jω)N
v1

−20N dB ⁄decade

v

−90N°

(
1 + jω

z

)N
vz

20N dB ⁄decade

v

90N°

0°
z

10
z 10z

1

(1 + jω/p)N
v

p

−20N dB ⁄decade

v

−90N°

0°

p
10 p 10p
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TABLE 14.3 (continued)

Factor Magnitude Phase

[
1 + 2jωζ

ωn
+
(
jω

ωn

)2
]N

vvn

40N dB ⁄decade

v

180N°

0°
vn vn 10vn
10

1

[1 + 2jωζ/ωk + (jω/ωk)2]N

v

vk

−40N dB ⁄decade

v

−180N°

0°

vk 10vk

vk
10

E X A M P L E 1 4 . 3

Construct the Bode plots for the transfer function

H(ω) = 200jω

(jω + 2)(jω + 10)
Solution:

We first put H(ω) in the standard form by dividing out the poles and zeros.
Thus,

H(ω) = 10jω

(1 + jω/2)(1 + jω/10)

= 10|jω|
|1 + jω/2| |1 + jω/10| 90◦ − tan−1 ω/2 − tan−1 ω/10

Hence the magnitude and phase are

HdB = 20 log10 10 + 20 log10 |jω| − 20 log10

∣∣∣∣1 + jω

2

∣∣∣∣
− 20 log10

∣∣∣∣1 + jω

10

∣∣∣∣
φ = 90◦ − tan−1 ω

2
− tan−1 ω

10

We notice that there are two corner frequencies atω = 2, 10. For both the
magnitude and phase plots, we sketch each term as shown by the dotted
lines in Fig. 14.13. We add them up graphically to obtain the overall plots
shown by the solid curves.
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(a)

1
1 + jv/2 

1 2 10 100

20 log1010

20 log1020 log10

20 log10 jv

200 v
0

20

H (dB)

0.1 20

1
1 + jv/10 

(b)

0.2

0.2 100 200 v

90°
90°

0°

–90°

f

0.1 201 2 10

–tan–1 v
2 –tan–1 v

10

Figure 14.13 For Example 14.3: (a) magnitude plot, (b) phase plot.

P R A C T I C E P R O B L E M 1 4 . 3

Draw the Bode plots for the transfer function

H(ω) = 5(jω + 2)

jω(jω + 10)
Answer: See Fig. 14.14.

(a)

20 log10  1 +

20 log10

20 log101
v

20

0

–20

H (dB)

1001

1

2 10

 jv 

20 log10
1

1+ jv/10 

(b)

90°

−90°

0°

–90°

f

v10010.2 2 10 200.1

tan–1
v
2

–tan–1
v

10

0.1

jv

2

Figure 14.14 For Practice Prob. 14.3: (a) magnitude plot, (b) phase plot.
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E X A M P L E 1 4 . 4

Obtain the Bode plots for

H(ω) = jω + 10

jω(jω + 5)2

Solution:

Putting H(ω) in the standard form, we get

H(ω) = 0.4 (1 + jω/10)

jω (1 + jω/5)2
From this, we obtain the magnitude and phase as

HdB = 20 log10 0.4 + 20 log10

∣∣∣∣1 + jω

10

∣∣∣∣− 20 log10 |jω|

− 40 log10

∣∣∣∣1 + jω

5

∣∣∣∣
φ = 0◦ + tan−1 ω

10
− 90◦ − 2 tan−1 ω

5
There are two corner frequencies atω = 5, 10 rad/s. For the pole with cor-
ner frequency atω = 5, the slope of the magnitude plot is −40 dB/decade
and that of the phase plot is −90◦ per decade due to the power of 2. The
magnitude and the phase plots for the individual terms (in dotted lines)
and the entire H(jω) (in solid lines) are in Fig. 14.15.

(a)

20

0

–20

–8

–40

H (dB)

v1005010.5 10

–20 dB/decade

–60 dB/decade

–40 dB/decade

5

20 log10

20 log100.4

0.1

1
  jv 

40 log10
1

 1 + jv/5 

20 log10  1 +
jv
10

(b)

90°

0°

–90°

–180°

f

v10050

–90°
10.5 10

–90°/decade

–45°/decade
45°/decade

50.1

tan–1
10
v

–2 tan–1 v
5

Figure 14.15 Bode plots for Example 14.4: (a) magnitude plot, (b) phase plot.
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P R A C T I C E P R O B L E M 1 4 . 4

Sketch the Bode plots for

H(ω) = 50jω

(jω + 4)(jω + 10)2

Answer: See Fig. 14.16.

20

–20

–40

H (dB)

100401 104

(a)

20 log10  jv 

0.1

–20 log108

20 log10
1

 1 + jv/4 

40 log10
1

 1 + jv/10 

v
0

90°

–90°

–180°

f

v

100

90°

4010.4 104

(b)

0.1

– tan–1
4
v

–2 tan–1
v
10

0°

Figure 14.16 For Practice Prob. 14.4: (a) magnitude plot, (b) phase plot.

E X A M P L E 1 4 . 5

Draw the Bode plots for

H(s) = s + 1

s2 + 60s + 100
Solution:

We express H(s) as

H(ω) = 1/100(1 + jω)
1 + jω6/10 + (jω/10)2

For the quadratic pole, ωn = 10 rad/s, which serves as the corner fre-
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quency. The magnitude and phase are

HdB = −20 log10 100 + 20 log10 |1 + jω|

− 20 log10

∣∣∣∣1 + jω6

10
− ω2

100

∣∣∣∣
φ = 0◦ + tan−1 ω − tan−1

[
ω6/10

1 − ω2/100

]

Figure 14.17 shows the Bode plots. Notice that the quadratic pole is
treated as a repeated pole at ωk , that is, (1 + jω/ωk)2, which is an ap-
proximation.

20

0

–20

–40

H (dB)

v1001 10

(a)

20 log10 1 + jv 

0.1
20 log10

–20 log10 100

1
 1 + j6v/10 – v2/100 

90°

0°

–90°

–180°

f

v1001

6v/10

1 – v2/100

10

(b)

0.1

–tan–1 

tan–1 v

Figure 14.17 Bode plots for Example 14.5: (a) magnitude plot, (b) phase plot.

P R A C T I C E P R O B L E M 1 4 . 5

Construct the Bode plots for

H(s) = 10

s(s2 + 80s + 400)
Answer: See Fig. 14.18.
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20
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–20

–40
–32
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–20 log10 40
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20 log10
1
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–90°

0°

–180°
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f

v1 2 2010

(b)

0.1
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 1 – v2/400 
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Figure 14.18 For Practice Prob. 14.5: (a) magnitude plot, (b) phase plot.

E X A M P L E 1 4 . 6

Given the Bode plot in Fig. 14.19, obtain the transfer function H(ω).

0.1 1 5 10 20 100

–20 dB/decade

v

40 dB

0

H

+20 dB/decade

–40 dB/decade

Figure 14.19 For Example 14.6.

Solution:

To obtain H(ω) from the Bode plot, we keep in mind that a zero always
causes an upward turn at a corner frequency, while a pole causes a down-
ward turn. We notice from Fig. 14.19 that there is a zero jω at the origin
which should have intersected the frequency axis at ω = 1. This is indi-
cated by the straight line with slope +20 dB/decade. The fact that this
straight line is shifted by 40 dB indicates that there is a 40-dB gain; that
is,

40 = 20 log10K �⇒ log10K = 2
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or

K = 102 = 100

In addition to the zero jω at the origin, we notice that there are three
factors with corner frequencies at ω = 1, 5, and 20 rad/s. Thus, we have:

1. A pole at p = 1 with slope −20 dB/decade to cause a down-
ward turn and counteract the pole at the origin. The pole at
z = 1 is determined as 1/(1 + jω/1).

2. Another pole at p = 5 with slope −20 dB/decade causing a
downward turn. The pole is 1/(1 + jω/5).

3. A third pole at p = 20 with slope −20 dB/decade causing a
further downward turn. The pole is 1/(1 + jω/20).

Putting all these together gives the corresponding transfer function
as

H(ω) = 100jω

(1 + jω/1)(1 + jω/5)(1 + jω/20)

= jω104

(jω + 1)(jω + 5)(jω + 20)

or

H(s) = 104s

(s + 1)(s + 5)(s + 20)
, s = jω

P R A C T I C E P R O B L E M 1 4 . 6

Obtain the transfer function H(ω) corresponding to the Bode plot in Fig.
14.20.

0.1 10.5 10 100

–40 dB/decade

v

0 dB

0

H
+20 dB/decade

Figure 14.20 For Practice Prob. 14.6.

Answer: H(ω) = 200(s + 0.5)

(s + 1)(s + 10)2
.

14.5 SERIES RESONANCE
The most prominent feature of the frequency response of a circuit may be
the sharp peak (or resonant peak) exhibited in its amplitude characteristic.
The concept of resonance applies in several areas of science and engi-
neering. Resonance occurs in any system that has a complex conjugate
pair of poles; it is the cause of oscillations of stored energy from one form
to another. It is the phenomenon that allows frequency discrimination in
communications networks. Resonance occurs in any circuit that has at
least one inductor and one capacitor.
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Resonance is a condition in an RLC circuit in which the capacitive and inductive
reactances are equal in magnitude, thereby resulting in a purely resistive impedance.

Resonant circuits (series or parallel) are useful for constructing filters, as
their transfer functions can be highly frequency selective. They are used
in many applications such as selecting the desired stations in radio and
TV receivers.

R jvL

jvC
1I+

−Vs = Vm     u

Figure 14.21 The series resonant circuit.

Consider the series RLC circuit shown in Fig. 14.21 in the fre-
quency domain. The input impedance is

Z = H(ω) = Vs
I

= R + jωL+ 1

jωC
(14.22)

or

Z = R + j
(
ωL− 1

ωC

)
(14.23)

Resonance results when the imaginary part of the transfer function is
zero, or

Im(Z) = ωL− 1

ωC
= 0 (14.24)

The value ofω that satisfies this condition is called the resonant frequency
ω0. Thus, the resonance condition is

ω0L = 1

ω0C
(14.25)

or

ω0 = 1√
LC

rad/s (14.26)

Since ω0 = 2πf0,

f0 = 1

2π
√
LC

Hz (14.27)

Note that at resonance:

Note No. 4 becomes evident from the fact that

|VL| = Vm

R
ω0L = QVm

|VC | = Vm

R
1
ω0C

= QVm

whereQ is the quality factor, defined in Eq. (14.38).

1. The impedance is purely resistive, thus, Z = R. In other
words, the LC series combination acts like a short circuit, and
the entire voltage is across R.

2. The voltage Vs and the current I are in phase, so that the power
factor is unity.

3. The magnitude of the transfer function H(ω) = Z(ω) is
minimum.

4. The inductor voltage and capacitor voltage can be much more
than the source voltage.



602 PART 2 AC Circuits

The frequency response of the circuit’s current magnitude

I = |I| = Vm√
R2 + (ωL− 1/ωC)2

(14.28)

is shown in Fig. 14.22; the plot only shows the symmetry illustrated in
this graph when the frequency axis is a logarithm. The average power
dissipated by the RLC circuit is

P(ω) = 1

2
I 2R (14.29)

The highest power dissipated occurs at resonance, when I = Vm/R, so
that

P(ω0) = 1

2

V 2
m

R
(14.30)

At certain frequencies ω = ω1, ω2, the dissipated power is half the
maximum value; that is,

P(ω1) = P(ω2) = (Vm/
√

2)2

2R
= V 2

m

4R
(14.31)

Hence, ω1 and ω2 are called the half-power frequencies.

0

Bandwidth B

vv1 v0 v2

I

Vm/R

0.707Vm/R

Figure 14.22 The current amplitude versus
frequency for the series resonant circuit of
Fig. 14.21.

The half-power frequencies are obtained by settingZ equal to
√

2R,
and writing √

R2 +
(
ωL− 1

ωC

)2

=
√

2R (14.32)

Solving for ω, we obtain

ω1 = − R

2L
+
√(

R

2L

)2

+ 1

LC

ω2 = R

2L
+
√(

R

2L

)2

+ 1

LC

(14.33)

We can relate the half-power frequencies with the resonant frequency.
From Eqs. (14.26) and (14.33),

ω0 = √
ω1ω2 (14.34)

showing that the resonant frequency is the geometric mean of the half-
power frequencies. Notice that ω1 and ω2 are in general not symmetrical
around the resonant frequency ω0, because the frequency response is not
generally symmetrical. However, as will be explained shortly, symmetry
of the half-power frequencies around the resonant frequency is often a
reasonable approximation.

Although the height of the curve in Fig. 14.22 is determined by
R, the width of the curve depends on other factors. The width of the
response curve depends on the bandwidth B, which is defined as the
difference between the two half-power frequencies,

B = ω2 − ω1 (14.35)
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This definition of bandwidth is just one of several that are commonly used.
Strictly speaking, B in Eq. (14.35) is a half-power bandwidth, because it
is the width of the frequency band between the half-power frequencies.

The “sharpness” of the resonance in a resonant circuit is measured
quantitatively by the quality factor Q. At resonance, the reactive energy
in the circuit oscillates between the inductor and the capacitor. The quality
factor relates the maximum or peak energy stored to the energy dissipated
in the circuit per cycle of oscillation:

Q = 2π
Peak energy stored in the circuit

Energy dissipated by the circuit
in one period at resonance

(14.36)

It is also regarded as a measure of the energy storage property of a circuit
in relation to its energy dissipation property. In the series RLC circuit,
the peak energy stored is 1

2LI
2, while the energy dissipated in one period

is 1
2 (I

2R)(1/f ). Hence,

Q = 2π
1
2LI

2

1
2I

2R(1/f )
= 2πfL

R
(14.37)

or

Q = ω0L

R
= 1

ω0CR
(14.38)

Notice that the quality factor is dimensionless. The relationship between
the bandwidth B and the quality factorQ is obtained by substituting Eq.
(14.33) into Eq. (14.35) and utilizing Eq. (14.38).

B = R

L
= ω0

Q
(14.39)

or B = ω2
0CR. Thus

Although the same symbol Q is used for the reac-
tive power, the two are not equal and should not
be confused. Q here is dimensionless, whereas
reactive power Q is in VAR. This may help distin-
guish between the two.

The quality factor of a resonant circuit is the ratio of its
resonant frequency to its bandwidth.

Keep in mind that Eqs. (14.26), (14.33), (14.38), and (14.39) only apply
to a series RLC circuit.

As illustrated in Fig. 14.23, the higher the value of Q, the more
selective the circuit is but the smaller the bandwidth. The selectivity of
anRLC circuit is the ability of the circuit to respond to a certain frequency
and discriminate against all other frequencies. If the band of frequencies
to be selected or rejected is narrow, the quality factor of the resonant
circuit must be high. If the band of frequencies is wide, the quality factor
must be low.

The quality factor is a measure of the selectivity
(or “sharpness” of resonance) of the circuit.

B3

Q3 (greatest selectivity)

Q2 (medium selectivity)
Q1 (least selectivity)

B2

B1

v

Amplitude

Figure 14.23 The higher the circuitQ, the
smaller the bandwidth.

A resonant circuit is designed to operate at or near its resonant
frequency. It is said to be a high-Q circuit when its quality factor is
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equal to or greater than 10. For high-Q circuits (Q ≥ 10), the half-
power frequencies are, for all practical purposes, symmetrical around the
resonant frequency and can be approximated as

ω1 � ω0 − B

2
, ω2 � ω0 + B

2
(14.40)

High-Q circuits are used often in communications networks.
We see that a resonant circuit is characterized by five related param-

eters: the two half-power frequencies ω1 and ω2, the resonant frequency
ω0, the bandwidth B, and the quality factorQ.

E X A M P L E 1 4 . 7

In the circuit in Fig. 14.24, R = 2 &, L = 1 mH, and C = 0.4 µF.
(a) Find the resonant frequency and the half-power frequencies. (b) Cal-
culate the quality factor and bandwidth. (c) Determine the amplitude of
the current at ω0, ω1, and ω2.20 sin vt

R L

C+
−

Figure 14.24 For Example 14.7.

Solution:

(a) The resonant frequency is

ω0 = 1√
LC

= 1√
10−3 × 0.4 × 10−6

= 50 krad/s

METHOD 1 The lower half-power frequency is

ω1 = − R

2L
+
√(

R

2L

)2

+ 1

LC

= − 2

2 × 10−3
+
√
(103)2 + (50 × 103)2

= −1 + √
1 + 2500 krad/s = 49 krad/s

Similarly, the upper half-power frequency is

ω2 = 1 + √
1 + 2500 krad/s = 51 krad/s

(b) The bandwidth is

B = ω2 − ω1 = 2 krad/s

or

B = R

L
= 2

10−3
= 2 krad/s

The quality factor is

Q = ω0

B
= 50

2
= 25

METHOD 2 Alternatively, we could find

Q = ω0L

R
= 50 × 103 × 10−3

2
= 25

FromQ, we find

B = ω0

Q
= 50 × 103

25
= 2 krad/s
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SinceQ > 10, this is a high-Q circuit and we can obtain the half-power
frequencies as

ω1 = ω0 − B

2
= 50 − 1 = 49 krad/s

ω2 = ω0 + B

2
= 50 + 1 = 51 krad/s

as obtained earlier.
(c) At ω = ω0,

I = Vm

R
= 20

2
= 10 A

At ω = ω1, ω2,

I = Vm√
2R

= 10√
2

= 7.071 A

P R A C T I C E P R O B L E M 1 4 . 7

A series-connected circuit has R = 4 & and L = 25 mH. (a) Calculate
the value of C that will produce a quality factor of 50. (b) Find ω1, ω2,

and B. (c) Determine the average power dissipated at ω = ω0, ω1, ω2.
Take Vm = 100 V.

Answer: (a) 0.625 µF, (b) 7920 rad/s, 8080 rad/s, 160 rad/s,
(c) 1.25 kW, 0.625 kW, 0.625 kW.

14.6 PARALLEL RESONANCE

1
jvCjvLRV

+

−
I = Im     u

Figure 14.25 The parallel resonant circuit.

0

Bandwidth B

vv1 v0 v2

V 

ImR

0.707 ImR

Figure 14.26 The current amplitude versus
frequency for the series resonant circuit of
Fig. 14.25.

The parallel RLC circuit in Fig. 14.25 is the dual of the series RLC
circuit. So we will avoid needless repetition. The admittance is

Y = H(ω) = I
V

= 1

R
+ jωC + 1

jωL
(14.41)

or

Y = 1

R
+ j

(
ωC − 1

ωL

)
(14.42)

Resonance occurs when the imaginary part of Y is zero,

ωC − 1

ωL
= 0 (14.43)

or

ω0 = 1√
LC

rad/s (14.44)

which is the same as Eq. (14.26) for the series resonant circuit. The
voltage |V| is sketched in Fig. 14.26 as a function of frequency. Notice
that at resonance, the parallelLC combination acts like an open circuit, so
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that the entire currents flows through R. Also, the inductor and capacitor
current can be much more than the source current at resonance.We can see this from the fact that

|IL| = ImR
ω0L

= QIm

|IC | = ω0CImR = QIm
whereQ is the quality factor, defined in Eq. (14.47).

We exploit the duality between Figs. 14.21 and 14.25 by comparing
Eq. (14.42) with Eq. (14.23). By replacingR,L, andC in the expressions
for the series circuit with 1/R, 1/C, and 1/L respectively, we obtain for
the parallel circuit

ω1 = − 1

2RC
+
√(

1

2RC

)2

+ 1

LC

ω2 = 1

2RC
+
√(

1

2RC

)2

+ 1

LC

(14.45)

B = ω2 − ω1 = 1

RC
(14.46)

Q = ω0

B
= ω0RC = R

ω0L
(14.47)

Using Eqs. (14.45) and (14.47), we can express the half-power frequen-
cies in terms of the quality factor. The result is

ω1 =ω0

√
1 +

(
1

2Q

)2

− ω0

2Q
, ω2 =ω0

√
1 +

(
1

2Q

)2

+ ω0

2Q
(14.48)

Again, for high-Q circuits (Q ≥ 10)

ω1 � ω0 − B

2
, ω2 � ω0 + B

2
(14.49)

Table 14.4 presents a summary of the characteristics of the series and
parallel resonant circuits. Besides the series and parallelRLC considered
here, other resonant circuits exist. Example 14.9 treats a typical example.

TABLE 14.4 Summary of the characteristics of resonant RLC circuits.

Characteristic Series circuit Parallel circuit

Resonant frequency, ω0
1√
LC

1√
LC

Quality factor,Q
ω0L

R
or

1

ω0RC

R

ω0L
or ω0RC

Bandwidth, B
ω0

Q

ω0

Q

Half-power frequencies, ω1, ω2 ω0

√
1 +

(
1

2Q

)2

± ω0

2Q
ω0

√
1 +

(
1

2Q

)2

± ω0

2Q

ForQ ≥ 10, ω1, ω2 ω0 ± B

2
ω0 ± B

2
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E X A M P L E 1 4 . 8

In the parallelRLC circuit in Fig. 14.27, letR = 8 k&,L = 0.2 mH, and
C = 8 µF. (a) Calculate ω0, Q, and B. (b) Find ω1 and ω2. (c) Deter-
mine the power dissipated at ω0, ω1, and ω2.

10 sin vt CLR

io

+
−

Figure 14.27 For Example 14.8.

Solution:

(a)

ω0 = 1√
LC

= 1√
0.2 × 10−3 × 8 × 10−6

= 105

4
= 25 krad/s

Q = R

ω0L
= 8 × 103

25 × 103 × 0.2 × 10−3
= 1600

B = ω0

Q
= 15.625 rad/s

(b) Due to the high value of Q, we can regard this as a high-Q circuit.
Hence,

ω1 = ω0 − B

2
= 25,000 − 7.812 = 24,992 rad/s

ω2 = ω0 + B

2
= 25,000 + 7.8125 = 25,008 rad/s

(c) At ω = ω0, Y = 1/R or Z = R = 8 k&. Then

Io = V
Z

= 10 − 90◦

8000
= 1.25 − 90◦ mA

Since the entire current flows through R at resonance, the average power
dissipated at ω = ω0 is

P = 1

2
|Io|2R = 1

2
(1.25 × 10−3)2(8 × 103) = 6.25 mW

or

P = V 2
m

2R
= 100

2 × 8 × 103
= 6.25 mW

At ω = ω1, ω2,

P = V 2
m

4R
= 3.125 mW

P R A C T I C E P R O B L E M 1 4 . 8

A parallel resonant circuit has R = 100 k&, L = 20 mH, and C = 5 nF.
Calculate ω0, ω1, ω2,Q, and B.

Answer: 100 krad/s, 99 krad/s, 101 krad/s, 50, 2 krad/s.

E X A M P L E 1 4 . 9

Determine the resonant frequency of the circuit in Fig. 14.28.
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Solution:

The input admittance is

Y = jω0.1 + 1

10
+ 1

2 + jω2
= 0.1 + jω0.1 + 2 − jω2

4 + 4ω2

At resonance, Im(Y) = 0 and

ω00.1 − 2ω0

4 + 4ω2
0

= 0 �⇒ ω0 = 2 rad/s

Im cos vt 0.1 F 10 Ω
2 H

2 Ω

Figure 14.28 For Example 14.9.

P R A C T I C E P R O B L E M 1 4 . 9

Calculate the resonant frequency of the circuit in Fig. 14.29.

Vm cos vt 10 Ω0.2 F

1 H

+
−

Figure 14.29 For Practice Prob. 14.9.

Answer: 2.179 rad/s.

14.7 PASSIVE FILTERS
The concept of filters has been an integral part of the evolution of electri-
cal engineering from the beginning. Several technological achievements
would not have been possible without electrical filters. Because of this
prominent role of filters, much effort has been expended on the theory,
design, and construction of filters and many articles and books have been
written on them. Our discussion in this chapter should be considered
introductory.

A filter is a circuit that is designed to pass signals with desired frequencies
and reject or attenuate others.

As a frequency-selective device, a filter can be used to limit the frequency
spectrum of a signal to some specified band of frequencies. Filters are the
circuits used in radio and TV receivers to allow us to select one desired
signal out of a multitude of broadcast signals in the environment.

A filter is a passive filter if it consists of only passive elements R,
L, and C. It is said to be an active filter if it consists of active elements
(such as transistors and op amps) in addition to passive elements R, L,
and C. We consider passive filters in this section and active filters in
the next section. Besides the filters we study in these sections, there are
other kinds of filters—such as digital filters, electromechanical filters,
and microwave filters—which are beyond the level of the text.

As shown in Fig. 14.30, there are four types of filters whether
passive or active:
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1. A lowpass filter passes low frequencies and stops high
frequencies, as shown ideally in Fig. 14.30(a).

2. A highpass filter passes high frequencies and rejects low
frequencies, as shown ideally in Fig. 14.30(b).

3. A bandpass filter passes frequencies within a frequency band
and blocks or attenuates frequencies outside the band, as
shown ideally in Fig. 14.30(c).

4. A bandstop filter passes frequencies outside a frequency band
and blocks or attenuates frequencies within the band, as shown
ideally in Fig. 14.30(d).

0
(b)

vvc

H(v) 

1

0
(a)

vvc

H(v) 

1

0
(c)

vv1 v2

H(v) 

1

0
(d)

vv1 v2

H(v) 

1

Figure 14.30 Ideal frequency response
of four types of filter: (a) lowpass filter,
(b) highpass filter, (c) bandpass filter,
(d) bandstop filter.

Table 14.5 presents a summary of the characteristics of these filters. Be
aware that the characteristics in Table 14.5 are only valid for first- or
second-order filters—but one should not have the impression that only
these kinds of filter exist. We now consider typical circuits for realizing
the filters shown in Table 14.5.

TABLE 14.5 Summary of the characteristics of filters.

Type of Filter H(0) H(∞) H(ωc) or H(ω0)

Lowpass 1 0 1/
√

2
Highpass 0 1 1/

√
2

Bandpass 0 0 1
Bandstop 1 1 0

ωc is the cutoff frequency for lowpass and highpass filters; ω0 is
the center frequency for bandpass and bandstop filters.

vi(t)

R

C+
− vo(t)

+

−

Figure 14.31 A lowpass filter.

14 . 7 . 1 Lowpa s s F i l t e r
A typical lowpass filter is formed when the output of an RC circuit is
taken off the capacitor as shown in Fig. 14.31. The transfer function (see
also Example 14.1) is

H(ω) = Vo
Vi

= 1/jωC

R + 1/jωC

H(ω) = 1

1 + jωRC (14.50)

Note that H(0) = 1, H(∞) = 0. Figure 14.32 shows the plot of |H(ω)|,
along with the ideal characteristic. The half-power frequency, which is
equivalent to the corner frequency on the Bode plots but in the context of
filters is usually known as the cutoff frequency ωc, is obtained by setting
the magnitude of H(ω) equal to 1/

√
2, thus

H(ωc) = 1√
1 + ω2

cR
2C2

= 1√
2

or

ωc = 1

RC
(14.51)
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vc v

0.707

Ideal

Actual

1

0

 H(v)

Figure 14.32 Ideal and actual fre-
quency response of a lowpass filter.

The cutoff frequency is also called the rolloff frequency.The cutoff frequency is the frequency at which
the transfer function H drops in magnitude to
70.71% of its maximum value. It is also regarded
as the frequency at which the power dissipated
in a circuit is half of its maximum value.

A lowpass filter is designed to pass only frequencies from dc up
to the cutoff frequency ωc.

A lowpass filter can also be formed when the output of an RL
circuit is taken off the resistor. Of course, there are many other circuits
for lowpass filters.

vi(t) R

C

+
− vo(t)

+

−

Figure 14.33 A highpass filter.

14 . 7 . 2 H i ghpa s s F i l t e r
A highpass filter is formed when the output of an RC circuit is taken off
the resistor as shown in Fig. 14.33. The transfer function is

H(ω) = Vo
Vi

= R

R + 1/jωC

H(ω) = jωRC

1 + jωRC (14.52)

Note that H(0) = 0, H(∞) = 1. Figure 14.34 shows the plot of |H(ω)|.
Again, the corner or cutoff frequency is

ωc = 1

RC
(14.53)

vc v

0.707

Ideal

Actual

1

0

 H(v)

Figure 14.34 Ideal and actual fre-
quency response of a highpass filter.

A highpass filter is designed to pass all frequencies above its cutoff frequency ωc.

vi(t) R

C

+
− vo(t)

L

+

−

Figure 14.35 A bandpass filter.

A highpass filter can also be formed when the output of an RL
circuit is taken off the inductor.

14 . 7 . 3 Bandpa s s F i l t e r
The RLC series resonant circuit provides a bandpass filter when the out-
put is taken off the resistor as shown in Fig. 14.35. The transfer function
is

H(ω) = Vo
Vi

= R

R + j (ωL− 1/ωC)
(14.54)
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We observe that H(0) = 0, H(∞) = 0. Figure 14.36 shows the plot of
|H(ω)|. The bandpass filter passes a band of frequencies (ω1 < ω < ω2)
centered on ω0, the center frequency, which is given by

ω0 = 1√
LC

(14.55)

A bandpass filter is designed to pass all frequencies within a band
of frequencies, ω1 < ω < ω2.

Since the bandpass filter in Fig. 14.35 is a series resonant circuit, the half-
power frequencies, the bandwidth, and the quality factor are determined
as in Section 14.5. A bandpass filter can also be formed by cascading
the lowpass filter (where ω2 = ωc) in Fig. 14.31 with the highpass filter
(where ω1 = ωc) in Fig. 14.33.

v0v1 v2 v

0.707

Ideal

Actual

1

0

 H(v)

Figure 14.36 Ideal and actual frequency
response of a bandpass filter.

14 . 7 . 4 Band s top F i l t e r
A filter that prevents a band of frequencies between two designated values
(ω1 and ω2) from passing is variably known as a bandstop, bandreject,
or notch filter. A bandstop filter is formed when the output RLC series
resonant circuit is taken off the LC series combination as shown in Fig.
14.37. The transfer function is

H(ω) = Vo
Vi

= j (ωL− 1/ωC)

R + j(ωL− 1/ωC)
(14.56)

Notice that H(0) = 1, H(∞) = 1. Figure 14.38 shows the plot of |H(ω)|.
Again, the center frequency is given by

ω0 = 1√
LC

(14.57)

while the half-power frequencies, the bandwidth, and the quality factor are
calculated using the formulas in Section 14.5 for a series resonant circuit.
Here, ω0 is called the frequency of rejection, while the corresponding
bandwidth (B = ω2 −ω1) is known as the bandwidth of rejection. Thus,

vi(t)

R

C
+
−

–

+

vo(t)
L

Figure 14.37 A bandstop filter.

v0v1 v2 v

0.707

Ideal

Actual

1

0

 H(v)

Figure 14.38 Ideal and actual frequency
response of a bandstop filter.

A bandstop filter is designed to stop or eliminate all frequencies within
a band of frequencies, ω1 < ω < ω2.

Notice that adding the transfer functions of the bandpass and the
bandstop gives unity at any frequency for the same values of R, L, and
C. Of course, this is not true in general but true for the circuits treated
here. This is due to the fact that the characteristic of one is the inverse of
the other.

In concluding this section, we should note that:

1. From Eqs. (14.50), (14.52), (14.54), and (14.56), the maximum
gain of a passive filter is unity. To generate a gain greater than
unity, one should use an active filter as the next section shows.
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2. There are other ways to get the types of filters treated in this
section.

3. The filters treated here are the simple types. Many other filters
have sharper and complex frequency responses.

E X A M P L E 1 4 . 1 0

Determine what type of filter is shown in Fig. 14.39. Calculate the corner
or cutoff frequency. Take R = 2 k&, L = 2 H, and C = 2 µF.

vi(t) CR+
− vo(t)

L

+

−

Figure 14.39 For Example 14.10.

Solution:

The transfer function is

H(s) = Vo
Vi

= R ‖ 1/sC

sL+ R ‖ 1/sC
, s = jω (14.10.1)

But

R

∥∥∥∥ 1

sC
= R/sC

R + 1/sC
= R

1 + sRC
Substituting this into Eq. (14.10.1) gives

H(s) = R/(1 + sRC)
sL+ R/(1 + sRC) = R

s2RLC + sL+ R , s = jω
or

H(ω) = R

−ω2RLC + jωL+ R (14.10.2)

Since H(0) = 1 and H(∞) = 0, we conclude from Table 14.5 that the
circuit in Fig. 14.39 is a second-order lowpass filter. The magnitude of
H is

H = R√
(R − ω2RLC)2 + ω2L2

(14.10.3)

The corner frequency is the same as the half-power frequency, i.e., where
H is reduced by a factor of 1

√
2. Since the dc value of H(ω) is 1, at the

corner frequency, Eq. (14.10.3) becomes after squaring

H 2 = 1

2
= R2

(R − ω2
cRLC)

2 + ω2
cL

2

or

2 = (1 − ω2
cLC)

2 +
(
ωcL

R

)2

Substituting the values of R, L, and C, we obtain

2 = (
1 − ω2

c 4 × 10−6
)2 + (ωc 10−3)2

Assuming that ωc is in krad/s,

2 = (1 − 4ωc)
2 + ω2

c or 16ω4
c − 7ω2

c − 1 = 0

Solving the quadratic equation in ω2
c , we get ω2

c = 0.5509, or

ωc = 0.742 krad/s = 742 rad/s
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P R A C T I C E P R O B L E M 1 4 . 1 0

For the circuit in Fig. 14.40, obtain the transfer function Vo(ω)/Vi (ω).
Identify the type of filter the circuit represents and determine the corner
frequency. Take R1 = 100 & = R2, L = 2 mH.

vi(t)

R1

R2
+
− vo(t)L

+

−

Figure 14.40 For Practice Prob. 14.10.

Answer: Highpass filter,
R2

R1 + R2

(
jω

jω + ωc

)
,

ωc = R1R2

(R1 + R2)L
= 25 krad/s.

E X A M P L E 1 4 . 1 1

If the bandstop filter in Fig. 14.37 is to reject a 200-Hz sinusoid while pass-
ing other frequencies, calculate the values of L and C. Take R = 150 &
and the bandwidth as 100 Hz.

Solution:

We use the formulas for a series resonant circuit in Section 14.5.

B = 2π(100) = 200π rad/s

But

B = R

L
�⇒ L = R

B
= 150

200π
= 0.2387 H

Rejection of the 200-Hz sinusoid means that f0 is 200 Hz, so that ω0 in
Fig. 14.38 is

ω0 = 2πf0 = 2π(200) = 400π

Since ω0 = 1/
√
LC,

C = 1

ω2
0L

= 1

(400π)2(0.2387)
= 2.66 µF

P R A C T I C E P R O B L E M 1 4 . 1 1

Design a bandpass filter of the form in Fig. 14.35 with a lower cutoff fre-
quency of 20.1 kHz and an upper cutoff frequency of 20.3 kHz. Take
R = 20 k&. Calculate L, C, andQ.

Answer: 7.96 H, 3.9 pF, 101.

14.8 ACTIVE FILTERS
There are three major limits to the passive filters considered in the previous
section. First, they cannot generate gain greater than 1; passive elements
cannot add energy to the network. Second, they may require bulky and
expensive inductors. Third, they perform poorly at frequencies below the
audio frequency range (300 Hz < f < 3000 Hz). Nevertheless, passive
filters are useful at high frequencies.
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Active filters consist of combinations of resistors, capacitors, and
op amps. They offer some advantages over passive RLC filters. First,
they are often smaller and less expensive, because they do not require
inductors. This makes feasible the integrated circuit realizations of fil-
ters. Second, they can provide amplifier gain in addition to providing
the same frequency response as RLC filters. Third, active filters can be
combined with buffer amplifiers (voltage followers) to isolate each stage
of the filter from source and load impedance effects. This isolation allows
designing the stages independently and then cascading them to realize the
desired transfer function. (Bode plots, being logarithmic, may be added
when transfer functions are cascaded.) However, active filters are less
reliable and less stable. The practical limit of most active filters is about
100 kHz—most active filters operate well below that frequency.

Filters are often classified according to their order (or number of
poles) or their specific design type.

14 . 8 . 1 F i r s t -Orde r Lowpa s s F i l t e r
One type of first-order filter is shown in Fig. 14.41. The components
selected forZi andZf determine whether the filter is lowpass or highpass,
but one of the components must be reactive.

+
−

−

+

Vo

+

–

Vi

Zi

Zf

Figure 14.41 A general first-
order active filter.

Figure 14.42 shows a typical active low-pass filter. For this filter,
the transfer function is

H(ω) = Vo
Vi

= −Zf
Zi

(14.58)

where Zi = Ri and

Zf = Rf
∥∥∥∥ 1

jωCf
= Rf /jωCf

Rf + 1/jωCf
= Rf

1 + jωCfRf (14.59)

Therefore,

H(ω) = −Rf
Ri

1

1 + jωCfRf (14.60)

We notice that Eq. (14.60) is similar to Eq. (14.50), except that there is
a low frequency (ω → 0) gain or dc gain of −Rf /Ri . Also, the corner
frequency is

ωc = 1

RfCf
(14.61)

which does not depend on Ri . This means that several inputs with dif-
ferent Ri could be summed if required, and the corner frequency would
remain the same for each input.

+
−

+

–

Vo

+

–

Vi

Ri

Rf

Cf

Figure 14.42 Active first-order
lowpass filter.

14 . 8 . 2 F i r s t -Orde r H i ghpa s s F i l t e r
+
−

+

–

Vo

+

–

Vi

Ri
Ci

Rf

Figure 14.43 Active first-order
highpass filter.

Figure 14.43 shows a typical highpass filter. As before,

H(ω) = Vo
Vi

= −Zf
Zi

(14.62)

where Zi = Ri + 1/jωCi and Zf = Rf so that

H(ω) = − Rf

Ri + 1/jωCi
= − jωCiRf

1 + jωCiRi (14.63)
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This is similar to Eq. (14.52), except that at very high frequencies (ω →
∞), the gain tends to −Rf /Ri . The corner frequency is

ωc = 1

RiCi
(14.64)

14 . 8 . 3 Bandpa s s F i l t e r
The circuit in Fig. 14.42 may be combined with that in Fig. 14.43 to form
a bandpass filter that will have a gain K over the required range of fre-
quencies. By cascading a unity-gain lowpass filter, a unity-gain highpass
filter, and an inverter with gain −Rf /Ri , as shown in the block diagram
of Fig. 14.44(a), we can construct a bandpass filter whose frequency re-
sponse is that in Fig. 14.44(b). The actual construction of the bandpass
filter is shown in Fig. 14.45.

This way of creating a bandpass filter, not neces-
sarily the best, is perhaps the easiest to under-
stand.

v0v1 v2 v

0.707 K
K

B

0

(a) (b)

Low-pass
filter

vi vo

H

High-pass
filter

Inverter

Figure 14.44 Active bandpass filter: (a) block diagram, (b) frequency response.

+
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vi
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R
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−
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Stage 1
Low-pass filter
sets v2 value

Stage 2
High-pass filter

sets v1 value

Stage 3
An inverter

provides gain

R

+
−

+

–

vo

Ri

Rf

Figure 14.45 Active bandpass filter.

The analysis of the bandpass filter is relatively simple. Its transfer
function is obtained by multiplying Eqs. (14.60) and (14.63) with the gain
of the inverter; that is

H(ω) = Vo
Vi

=
(

− 1

1 + jωC1R

)(
− jωC2R

1 + jωC2R

)(
−Rf
Ri

)

= −Rf
Ri

1

1 + jωC1R

jωC2R

1 + jωC2R

(14.65)
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The lowpass section sets the upper corner frequency as

ω2 = 1

RC1
(14.66)

while the highpass section sets the lower corner frequency as

ω1 = 1

RC2
(14.67)

With these values of ω1 and ω2, the center frequency, bandwidth, and
quality factor are found as follows:

ω0 = √
ω1ω2 (14.68)

B = ω2 − ω1 (14.69)

Q = ω0

B
(14.70)

To find the passband gain K , we write Eq. (14.65) in the standard
form of Eq. (14.15),

H(ω) = −Kjω/ω1

(1 + jω/ω1)(1 + jω/ω2)
= −Kjωω2

(ω1 + jω)(ω2 + jω) (14.71)

At the center frequency ω0 = √
ω1ω2, the magnitude of the transfer

function is

H(ω0) =
∣∣∣∣ −Kjω0ω2

(ω1 + jω0)(ω2 + jω0)

∣∣∣∣ = Kω2

ω1 + ω2
(14.72)

We set this equal to the gain of the inverting amplifier, as

Kω2

ω1 + ω2
= Rf

Ri
(14.73)

from which the gain K can be determined.

14 . 8 . 4 Bandre j e c t (o r Notch ) F i l t e r
A bandreject filter may be constructed by parallel combination of a low-
pass filter and a highpass filter and a summing amplifier, as shown in
the block diagram of Fig. 14.46(a). The circuit is designed such that the

v0v1 v2 v

0.707 K

K

B

(b)(a)

0

H

vi vo = v1 + v2

v1

v2

Low-pass
filter sets

v1

High-pass
filter sets
v2 > v1

Summing
amplifier

Figure 14.46 Active bandreject filter: (a) block diagram, (b) frequency response.
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lower cutoff frequency ω1 is set by the lowpass filter while the upper cut-
off frequency ω2 is set by the highpass filter. The gap between ω1 and ω2

is the bandwidth of the filter. As shown in Fig. 14.46(b), the filter passes
frequencies below ω1 and above ω2. The block diagram in Fig. 14.46(a)
is actually constructed as shown in Fig. 14.47. The transfer function is

H(ω) = Vo
Vi

= −Rf
Ri

(
− 1

1 + jωC1R
− jωC2R

1 + jωC2R

)
(14.74)

The formulas for calculating the values of ω1, ω2, the center frequency,
bandwidth, and quality factor are the same as in Eqs. (14.66) to (14.70).

+
−

+

–

vi

+

–

vo

R

R

C1

Rf

C2

+
−

+
−

R

R Ri

Ri

Figure 14.47 Active bandreject filter.

To determine the passband gain K of the filter, we can write Eq.
(14.74) in terms of the upper and lower corner frequencies as

H(ω) = Rf

Ri

(
1

1 + jω/ω2
+ jω/ω1

1 + jω/ω1

)

= Rf

Ri

(1 + j2ω/ω1 + (jω)2/ω1ω1)

(1 + jω/ω2)(1 + jω/ω1)

(14.75)

Comparing this with the standard form in Eq. (14.15) indicates that in the
two passbands (ω → 0 and ω → ∞) the gain is

K = Rf

Ri
(14.76)

We can also find the gain at the center frequency by finding the magnitude
of the transfer function at ω0 = √

ω1ω2, writing

H(ω0) =
∣∣∣∣RfRi

(1 + j2ω0/ω1 + (jω0)
2/ω1ω1)

(1 + jω0/ω2)(1 + jω0/ω1)

∣∣∣∣
= Rf

Ri

2ω1

ω1 + ω2

(14.77)

Again, the filters treated in this section are only typical. There are
many other active filters that are more complex.
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E X A M P L E 1 4 . 1 2

Design a low-pass active filter with a dc gain of 4 and a corner frequency
of 500 Hz.

Solution:

From Eq. (14.61), we find

ωc = 2πfc = 2π(500) = 1

RfCf
(14.12.1)

The dc gain is

H(0) = −Rf
Ri

= −4 (14.12.2)

We have two equations and three unknowns. If we select Cf = 0.2 µF,
then

Rf = 1

2π(500)0.2 × 10−6
= 1.59 k&

and

Ri = Rf

4
= 397.5 &

We use a 1.6-k& resistor forRf and a 400-& resistor forRi . Figure 14.42
shows the filter.

P R A C T I C E P R O B L E M 1 4 . 1 2

Design a highpass filter with a high-frequency gain of 5 and a corner fre-
quency of 2 kHz. Use a 0.1-µF capacitor in your design.

Answer: Ri = 800 & and Rf = 4 k&.

E X A M P L E 1 4 . 1 3

Design a bandpass filter in the form of Fig. 14.45 to pass frequencies be-
tween 250 Hz and 3000 Hz and with K = 10. Select R = 20 k&.

Solution:

Since ω1 = 1/RC2, we obtain

C2 = 1

Rω1
= 1

2πf1R
= 1

2π × 250 × 20 × 103
= 31.83 nF

Similarly, since ω2 = 1/RC1,

C1 = 1

Rω2
= 1

2πf2R
= 1

2π × 3000 × 20 × 103
= 2.65 nF

From Eq. (14.73),

Rf

Ri
= Kω2

ω1 + ω2
= Kf2

f1 + f2
= 10

3000

3250
= 9.223

If we select Ri = 10 k&, then Rf = 9.223Ri � 92 k&.
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P R A C T I C E P R O B L E M 1 4 . 1 3

Design a notch filter based on Fig. 14.47 for ω0 = 20 krad/s,K = 5, and
Q = 10. Use R = Ri = 10 k&.

Answer: C1 = 47.62 nF, C2 = 52.63 nF, and Rf = 50 k&.

†14.9 SCALING
In designing and analyzing filters and resonant circuits or in circuit anal-
ysis in general, it is sometimes convenient to work with element values
of 1 &, 1 H, or 1 F, and then transform the values to realistic values by
scaling. We have taken advantage of this idea by not using realistic el-
ement values in most of our examples and problems; mastering circuit
analysis is made easy by using convenient component values. We have
thus eased calculations, knowing that we could use scaling to then make
the values realistic.

There are two ways of scaling a circuit: magnitude or impedance
scaling, and frequency scaling. Both are useful in scaling responses and
circuit elements to values within the practical ranges. While magnitude
scaling leaves the frequency response of a circuit unaltered, frequency
scaling shifts the frequency response up or down the frequency spectrum.

14 . 9 . 1 Magn i t ude Sc a l i n g

Magnitude scaling is the process of increasing all impedance in a network by a factor,
the frequency response remaining unchanged.

Recall that impedances of individual elements R, L, and C are
given by

ZR = R, ZL = jωL, ZC = 1

jωC
(14.78)

In magnitude scaling, we multiply the impedance of each circuit element
by a factorKm and let the frequency remain constant. This gives the new
impedances as

Z′
R = KmZR = KmR, Z′

L = KmZL = jωKmL

Z′
C = KmZC = 1

jωC/Km

(14.79)

Comparing Eq. (14.79) with Eq. (14.78), we notice the following changes
in the element values: R → KmR, L → KmL, and C → C/Km. Thus,
in magnitude scaling, the new values of the elements and frequency are

R′ = KmR, L′ = KmL
C ′ = C

Km
, ω′ = ω (14.80)
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The primed variables are the new values and the unprimed variables are
the old values. Consider the series or parallelRLC circuit. We now have

ω′
0 = 1√

L′C ′ = 1√
KmLC/Km

= 1√
LC

= ω0 (14.81)

showing that the resonant frequency, as expected, has not changed. Sim-
ilarly, the quality factor and the bandwidth are not affected by magnitude
scaling. Also, magnitude scaling does not affect transfer functions in the
forms of Eqs. (14.2a) and (14.2b), which are dimensionless quantities.

14 . 9 . 2 F requency Sc a l i n g

Frequency scaling is the process of shifting the frequency response of a network up
or down the frequency axis while leaving the impedance the same.

We achieve frequency scaling by multiplying the frequency by a factor
Kf while keeping the impedance the same.

Frequency scaling is equivalent to relabeling the
frequency axis of a frequency response plot. It is
needed when translating such frequencies such
as a resonant frequency, a corner frequency, a
bandwidth, etc., to a realistic level. It can be
used to bring capacitance and inductance values
into a range that is convenient to work with.

From Eq. (14.78), we see that the impedances of L and C are
frequency-dependent. If we apply frequency scaling to ZL(ω) and ZC(ω)
in Eq. (14.78), we obtain

ZL = j (ωKf )L′ = jωL �⇒ L′ = L

Kf
(14.82a)

ZC = 1

j (ωKf )C ′ = 1

jωC
�⇒ C ′ = C

Kf
(14.82b)

since the impedance of the inductor and capacitor must remain the same
after frequency scaling. We notice the following changes in the element
values: L → L/Kf and C → C/Kf . The value of R is not affected,
since its impedance does not depend on frequency. Thus, in frequency
scaling, the new values of the elements and frequency are

R′ = R, L′ = L

Kf

C ′ = C

Kf
, ω′ = Kfω

(14.83)

Again, if we consider the series or parallel RLC circuit, for the resonant
frequency

ω′
0 = 1√

L′C ′ = 1√
(L/Kf )(C/Kf )

= Kf√
LC

= Kfω0 (14.84)

and for the bandwidth

B ′ = KfB (14.85)

but the quality factor remains the same (Q′ = Q).
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14 . 9 . 3 Magn i t ude and F requency Sc a l i n g
If a circuit is scaled in magnitude and frequency at the same time, then

R′ = KmR, L′ = Km

Kf
L

C ′ = 1

KmKf
C, ω′ = Kfω

(14.86)

These are more general formulas than those in Eqs. (14.80) and (14.83).
We set Km = 1 in Eq. (14.86) when there is no magnitude scaling or
Kf = 1 when there is no frequency scaling.

E X A M P L E 1 4 . 1 4

A fourth-order Butterworth lowpass filter is shown in Fig. 14.48(a). The
filter is designed such that the cutoff frequency ωc = 1 rad/s. Scale the
circuit for a cutoff frequency of 50 kHz using 10-k& resistors.

1 Ω

1 Ω

(a)

+
− vovs

+

−

1.848 F0.765 F

1.848 H 0.765 H 10 kΩ

10 kΩ

(b)

+
− vovs

+

−

588.2 pF243.5 pF

58.82 mH 24.35 H

Figure 14.48 For Example 14.14: (a) Normalized Butterworth lowpass filter, (b) scaled version of the same lowpass filter.

Solution:

If the cutoff frequency is to shift from ωc = 1 rad/s to ω′
c = 2π(50)

krad/s, then the frequency scale factor is

Kf = ω′
c

ωc
= 100π × 103

1
= π × 105

Also, if each 1-& resistor is to be replaced by a 10-k& resistor, then the
magnitude scale factor must be

Km = R′

R
= 10 × 103

1
= 104

Using Eq. (14.86),

L′
1 = Km

Kf
L1 = 104

π × 105
(1.848) = 58.82 mH

L′
2 = Km

Kf
L2 = 104

π × 105
(0.765) = 24.35 mH

C ′
1 = C1

KmKf
= 0.765

π × 109
= 243.5 pF

C ′
2 = C2

KmKf
= 1.848

π × 109
= 588.2 pF
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The scaled circuit is as shown in Fig. 14.48(b). This circuit uses practical
values and will provide the same transfer function as the prototype in Fig.
14.48(a), but shifted in frequency.

P R A C T I C E P R O B L E M 1 4 . 1 4

A third-order Butterworth filter normalized to ωc = 1 rad/s is shown in
Fig. 14.49. Scale the circuit to a cutoff frequency of 10 kHz. Use 15-nF
capacitors.

1 Ω

1 Ω+
− vovs

+

−

1 F1 F

2 H

Figure 14.49 For Practice Prob. 14.14.

Answer: R′
1 = R′

2 = 1.061 k&, C ′
1 = C ′

2 =15 nF, L′ = 33.77 mH.

14.10 FREQUENCY RESPONSE USING PSPICE
PSpice is a useful tool in the hands of the modern circuit designer for
obtaining the frequency response of circuits. The frequency response is
obtained using the AC Sweep as discussed in Section D.5 (Appendix D).
This requires that we specify in the AC Sweep dialog box Total Pts, Start
Freq, End Freq, and the sweep type. Total Pts is the number of points in
the frequency sweep, and Start Freq and End Freq are, respectively, the
starting and final frequencies, in hertz. In order to know what frequencies
to select for Start Freq and End Freq, one must have an idea of the
frequency range of interest by making a rough sketch of the frequency
response. In a complex circuit where this may not be possible, one may
use a trial-and-error approach.

There are three types of sweeps:

Linear: The frequency is varied linearly from Start Freq to End
Freq with Total equally spaced points (or responses).

Octave: The frequency is swept logarithmically by octaves from
Start Freq to End Freq with Total points per octave. An
octave is a factor of 2 (e.g., 2 to 4, 4 to 8, 8 to 16).

Decade: The frequency is varied logarithmically by decades from
Start Freq to End Freq with Total points per decade. A
decade is a factor of 10 (e.g., from 2 Hz to 20 Hz, 20 Hz to
200 Hz, 200 Hz to 2 kHz).

It is best to use a linear sweep when displaying a narrow frequency range
of interest, as a linear sweep displays the frequency range well in a narrow
range. Conversely, it is best to use a logarithmic (octave or decade) sweep
for displaying a wide frequency range of interest—if a linear sweep is
used for a wide range, all the data will be crowded at the high- or low-
frequency end and insufficient data at the other end.

With the above specifications, PSpice performs a steady-state si-
nusoidal analysis of the circuit as the frequency of all the independent
sources is varied (or swept) from Start Freq to End Freq.
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The Probe program produces a graphical output. The output data
type may be specified in the Trace Command Box by adding one of the
following suffixes to V or I:

M Amplitude of the sinusoid.

P Phase of the sinusoid.

dB Amplitude of the sinusoid in decibels, i.e., 20 log10

(amplitude).

E X A M P L E 1 4 . 1 5

Determine the frequency response of the circuit shown in Fig. 14.50. 8 kΩ

1 kΩ vo

++

−

vs

−

1 mF

Figure 14.50 For Example 14.15.

Solution:

We let the input voltage vs be a sinusoid of amplitude 1 V and phase 0◦.
Figure 14.51 is the schematic for the circuit. The capacitor is rotated 270◦

counterclockwise to ensure that pin 1 (the positive terminal) is on top.
The voltage marker is inserted to the output voltage across the capacitor.
To perform a linear sweep for 1 < f < 1000 Hz with 50 points, we
select Analysis/Setup/AC Sweep, DCLICK Linear, type 50 in the Total
Pts box, type 1 in the Start Freq box, and type 1000 in the End Freq box.
After saving the file, we select Analysis/Simulate to simulate the circuit.
If there are no errors, the Probe window will display the plot of V(C1:1),
which is the same as Vo orH(ω) = Vo/1, as shown in Fig. 14.52(a). This
is the magnitude plot, since V(C1:1) is the same as VM(C1:1). To obtain
the phase plot, select Trace/Add in the Probe menu and type VP(C1:1) in
the Trace Command box. Figure 14.52(b) shows the result. Notice that
the plots in Fig. 14.52 are similar to those in Fig. 14.3. By hand, the
transfer function is

H(ω) = Vo

Vs
= 1000

9000 + jω8

or

H(ω) = 1

9 + j16π × 10−3

showing that the circuit is a lowpass filter as demonstrated in Fig. 14.52.

R1

R2V1
-
-

C11u1k

0

ACMAG=1V
ACPHASE=0

8k

V

Figure 14.51 The schematic for the circuit in Fig. 14.50.
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1.0 Hz 10 Hz 100 Hz 1.0 KHz

(a)

0 V

40 mV

80 mV

120 mV

1.0 Hz 10 Hz 100 Hz 1.0 KHz

Frequency

(b)

–40 d

–60 d

–80 d

–20 d

0 d

 VP(C1:1)

Frequency

  V(C1:1)

Figure 14.52 For Example 14.15: (a) magnitude plot, (b) phase plot of the frequency response.

P R A C T I C E P R O B L E M 1 4 . 1 5

Obtain the frequency response of the circuit in Fig. 14.53 using PSpice.
Use a linear frequency sweep and consider 1 < f < 1000 Hz with 100
points.

2 kΩ vo

++

−

vs

−

6 kΩ

1 mF

Figure 14.53 For Practice Prob. 14.15.

Answer: See Fig. 14.54.

1.0 Hz 10 Hz 100 Hz 1.0 KHz

(a)

0 V

0.5 V

1.0 V

1.0 Hz 10 Hz 100 Hz 1.0 KHz
0 d

20 d

40 d

Frequency

  V(R2:2)

(b)

Frequency

  VP(R2:2)

Figure 14.54 For Practice Problem 14.15: (a) magnitude plot, (b) phase plot of the frequency response.

E X A M P L E 1 4 . 1 6

Use PSpice to generate the gain and phase Bode plots of Vo in the circuit
of Fig. 14.55.
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Solution:

The circuit treated in Example 14.15 is first-order while the one in this
example is second-order. Since we are interested in Bode plots, we use
decade frequency sweep for 300 < f < 3000 Hz with 50 points per
decade. We select this range because we know that the resonant frequency
of the circuit is within the range. Recall that

ω0 = 1√
LC

= 5 krad/s or f0 = ω

2π
= 795.8 Hz

After drawing the circuit as in Fig. 14.55, we select Analysis/Setup/AC
Sweep, DCLICK Linear, enter 50 as the Total Pts box, 300 as the Start
Freq, and 3000 as the End Freq box. Upon saving the file, we simulate
it by selecting Analysis/Simulate. This will automatically bring up the
Probe window and display V(C1:1) if there are no errors. Since we are
interested in the Bode plot, we select Trace/Add in the Probe menu and
type dB(V(C1:1)) in the Trace Command box. The result is the Bode
magnitude plot in Fig. 14.56(a). For the phase plot, we select Trace/Add
in the Probe menu and type VP(C1:1) in the Trace Command box. The
result is the Bode phase plot of Fig. 14.56(b). Notice that the plots confirm
the resonant frequency of 795.8 Hz.

R1

V1−
+

C14u

0

ACMAG=10V
ACPHASE=0

2 10mH

V
L1

Figure 14.55 For Example 14.16.

50

-50

0

100 Hz 1.0 KHz 10 KHz

 dB(V(C1:1))

Frequency

(a)

0 d

-100 d

-150 d

-50 d

-200 d
100 Hz 1.0 KHz 10 KHz

 VP(C1:1)

Frequency

(b)

Figure 14.56 For Example 14.16: (a) Bode plot, (b) phase plot of the response.

P R A C T I C E P R O B L E M 1 4 . 1 6

Consider the network in Fig. 14.57. Use PSpice to obtain the Bode plots
forVo over a frequency from 1 kHz to 100 kHz using 20 points per decade.

1 kΩ Vo1 mF0.4 mH1   0° A
+

−

Figure 14.57 For Practice Prob. 14.16.

Answer: See Fig. 14.58.
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60

40

20

0
1.0 KHz 10 KHz 100 KHz

0 d

-100 d

-200 d

-300 d
1.0 KHz 10 KHz 100 KHz

 dB(V(R1:1))

Frequency

(a)

 VP(R1:1)

Frequency

(b)

Figure 14.58 For Practice Prob. 14.16: Bode (a) magnitude plot, (b) phase plot.

†14.11 APPLICATIONS
Resonant circuits and filters are widely used, particularly in electronics,
power systems, and communications systems. For example, a Notch
filter with cutoff frequency above 60 Hz may be used to eliminate the
60-Hz power line noise in various communications electronics. Filtering
of signals in communications systems is necessary in order to select the
desired signal from a host of others in the same range (as in the case of
radio receivers discussed next) and also to minimize the effects of noise
and interference on the desired signal. In this section, we consider one
practical application of resonant circuits and two applications of filters.
The focus of each application is not to understand the details of how each
device works but to see how the circuits considered in this chapter are
applied in the practical devices.

14 . 11 . 1 Rad io Rece i v e r
Series and parallel resonant circuits are commonly used in radio and TV
receivers to tune in stations and to separate the audio signal from the radio-
frequency carrier wave. As an example, consider the block diagram of an
AM radio receiver shown in Fig. 14.59. Incoming amplitude-modulated
radio waves (thousands of them at different frequencies from different
broadcasting stations) are received by the antenna. A resonant circuit (or
a bandpass filter) is needed to select just one of the incoming waves. The
selected signal is very weak and is amplified in stages in order to generate
an audible audio-frequency wave. Thus we have the radio frequency
(RF) amplifier to amplify the selected broadcast signal, the intermediate
frequency (IF) amplifier to amplify an internally generated signal based
on the RF signal, and the audio amplifier to amplify the audio signal just
before it reaches the loudspeaker. It is much easier to amplify the signal
at three stages than to build an amplifier to provide the same amplification
for the entire band.
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Audio
amplifier

Loudspeaker

Detector
IF

amplifier
stages

RF
amplifier Mixer

1255
kHz

455 kHz 455 kHz
Audio to

5 kHz

Audio frequency

800 kHz

Amplitude
modulated

radio waves

Carrier
frequency

Local
oscillator

Ganged tuning

Figure 14.59 A simplified block diagram of a superheterodyne AM radio receiver.

The type of AM receiver shown in Fig. 14.59 is known as the super-
heterodyne receiver. In the early development of radio, each amplification
stage had to be tuned to the frequency of the incoming signal. This way,
each stage must have several tuned circuits to cover the entire AM band
(540 to 1600 kHz). To avoid the problem of having several resonant
circuits, modern receivers use a frequency mixer or heterodyne circuit,
which always produces the same IF signal (445 kHz) but retains the audio
frequencies carried on the incoming signal. To produce the constant IF
frequency, the rotors of two separate variable capacitors are mechanically
coupled with one another so that they can be rotated simultaneously with
a single control; this is called ganged tuning. A local oscillator ganged
with the RF amplifier produces an RF signal that is combined with the
incoming wave by the frequency mixer to produce an output signal that
contains the sum and the difference frequencies of the two signals. For
example, if the resonant circuit is tuned to receive an 800-kHz incoming
signal, the local oscillator must produce a 1255-kHz signal, so that the
sum (1255+800=2055 kHz) and the difference (1255−800=455 kHz)
of frequencies are available at the output of the mixer. However, only the
difference, 455 kHz, is used in practice. This is the only frequency to
which all the IF amplifier stages are tuned, regardless of the station dialed.
The original audio signal (containing the “ intelligence” ) is extracted in
the detector stage. The detector basically removes the IF signal, leaving
the audio signal. The audio signal is amplified to drive the loudspeaker,
which acts as a transducer converting the electrical signal to sound.

Our major concern here is the tuning circuit for the AM radio re-
ceiver. The operation of the FM radio receiver is different from that of the
AM receiver discussed here, and in a much different range of frequencies,
but the tuning is similar.
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E X A M P L E 1 4 . 1 7

The resonant or tuner circuit of an AM radio is portrayed in Fig. 14.60.
Given that L = 1 µH, what must be the range of C to have the resonant
frequency adjustable from one end of the AM band to another?

LC

Tuner

RF amplifier

Input resistance
to amplifier

R A

Figure 14.60 The tuner circuit for
Example 14.17.

Solution:

The frequency range for AM broadcasting is 540 to 1600 kHz. We con-
sider the low and high ends of the band. Since the resonant circuit in Fig.
14.60 is a parallel type, we apply the ideas in Section 14.6. From Eq.
(14.44),

ω0 = 2πf0 = 1√
LC

or

C = 1

4π2f 2
0 L

For the high end of the AM band, f0 = 1600 kHz, and the corresponding
C is

C1 = 1

4π2 × 16002 × 106 × 10−6
= 9.9 nF

For the low end of the AM band, f0 = 540 kHz, and the corresponding
C is

C2 = 1

4π2 × 5402 × 106 × 10−6
= 86.9 nF

Thus, C must be an adjustable (gang) capacitor varying from 9.9 nF to
86.9 nF.

P R A C T I C E P R O B L E M 1 4 . 1 7

For an FM radio receiver, the incoming wave is in the frequency range
from 88 to 108 MHz. The tuner circuit is a parallel RLC circuit with
a 4-µH coil. Calculate the range of the variable capacitor necessary to
cover the entire band.

Answer: From 0.543 pF to 0.818 pF.

14 . 11 . 2 Touch -Tone Te l ephone
A typical application of filtering is the Touch-Tone telephone set shown
in Fig. 14.61. The keypad has 12 buttons arranged in four rows and
three columns. The arrangement provides 12 distinct signals by using
seven tones divided into two groups: the low-frequency group (697 to
941 Hz) and the high-frequency group (1209 to 1477 Hz). Pressing a
button generates a sum of two sinusoids corresponding to its unique pair
of frequencies. For example, pressing the number 6 button generates
sinusoidal tones with frequencies 770 Hz and 1477 Hz.

When a caller dials a telephone number, a set of signals is trans-
mitted to the telephone office, where the Touch-Tone signals are decoded
by detecting the frequencies they contain. Figure 14.62 shows the block
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Figure 14.61 Frequency assignments for Touch-Tone dialing.
(Adapted from G. Daryanani, Principles of Active Network Syn-
thesis and Design [New York: John Wiley & Sons], 1976, p. 79.)

D1BP1

L1LP

697 Hz

D2BP2 770 Hz

D3BP3 852 Hz

D4BP4 941 Hz

Low-group
signals

Band-pass
filters
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L2HP

A
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D6BP6 1336 Hz

D7BP7 1477 Hz

High-group
signals

Band-pass
filters

Detectors

Low-pass
filter

Limiter

High-pass
filter

Amplifier

Limiter

Figure 14.62 Block diagram of detection scheme.
(Source: G. Daryanani, Principles of Active Network Synthesis and Design
[New York: John Wiley & Sons], 1976, p. 79.)

diagram for the detection scheme. The signals are first amplified and
separated into their respective groups by the lowpass (LP) and highpass
(HP) filters. The limiters (L) are used to convert the separated tones into
square waves. The individual tones are identified using seven highpass
(HP) filters, each filter passing one tone and rejecting other tones. Each
filter is followed by a detector (D), which is energized when its input
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voltage exceeds a certain level. The outputs of the detectors provide the
required dc signals needed by the switching system to connect the caller
to the party being called.

E X A M P L E 1 4 . 1 8

Using the standard 600-& resistor used in telephone circuits and a series
RLC circuit, design the bandpass filter BP2 in Fig. 14.62.

Solution:

The bandpass filter is the series RLC circuit in Fig. 14.35. Since BP2

passes frequencies 697 Hz to 852 Hz and is centered at f0 = 770 Hz, its
bandwidth is

B = 2π(f2 − f1) = 2π(852 − 697) = 973.89 rad/s

From Eq. (14.39),

L = R

B
= 600

973.89
= 0.616 H

From Eq. (14.27) or (14.57),

C = 1

ω2
0L

= 1

4π2f 2
0 L

= 1

4π2 × 7702 × 0.616
= 69.36 nF

P R A C T I C E P R O B L E M 1 4 . 1 8

Repeat Example 14.18 for bandpass filter BP6.

Answer: 0.356 H, 39.83 nF.

14 . 11 . 3 Cros sove r Ne twork
Another typical application of filters is the crossover network that cou-
ples an audio amplifier to woofer and tweeter speakers, as shown in Fig.
14.63(a). The network basically consists of one highpass RC filter and
one lowpass RL filter. It routes frequencies higher than a prescribed
crossover frequency fc to the tweeter (high-frequency loudspeaker) and
frequencies belowfc into the woofer (low-frequency loudspeaker). These
loudspeakers have been designed to accommodate certain frequency re-
sponses. A woofer is a low-frequency loudspeaker designed to reproduce
the lower part of the frequency range, up to about 3 kHz. A tweeter can
reproduce audio frequencies from about 3 kHz to about 20 kHz. The two
speaker types can be combined to reproduce the entire audio range of
interest and provide the optimum in frequency response.

L

C

S1

S2

One channel
of a stereo
amplifier

Woofer
(a)

(b)

Tweeter

Vs

R1 R2

S1 S2

C

+
−

V2V1

L

+

−

+

−

Figure 14.63 (a) A crossover network
for two loudspeakers, (b) equivalent
model.

By replacing the amplifier with a voltage source, the approximate
equivalent circuit of the crossover network is shown in Fig. 14.63(b),
where the loudspeakers are modeled by resistors. As a highpass filter,
the transfer function V1/Vs is given by

H1(ω) = V1

Vs
= jωR1C

1 + jωR1C
(14.87)

Similarly, the transfer function of the lowpass filter is given by

H2(ω) = V2

Vs
= R2

R2 + jωL (14.88)
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The values of R1, R2, L, and C may be selected such that the two filters
have the same cutoff frequency, known as the crossover frequency, as
shown in Fig. 14.64.

vc v

H2(v) H1(v)

Figure 14.64 Frequency responses of the
crossover network in Fig. 14.63.

The principle behind the crossover network is also used in the res-
onant circuit for a TV receiver, where it is necessary to separate the video
and audio bands of RF carrier frequencies. The lower-frequency band
(picture information in the range from about 30 Hz to about 4 MHz) is
channeled into the receiver’s video amplifier, while the high-frequency
band (sound information around 4.5 MHz) is channeled to the receiver’s
sound amplifier.

E X A M P L E 1 4 . 1 9

In the crossover network of Fig. 14.63, suppose each speaker acts as a
6-& resistance. Find C and L if the crossover frequency is 2.5 kHz.

Solution:

For the highpass filter,

ωc = 2πfc = 1

R1C

or

C = 1

2πfcR1
= 1

2π × 2.5 × 103 × 6
= 10.61 µF

For the lowpass filter,

ωc = 2πfc = R2

L
or

L = R2

2πfc
= 6

2π × 2.5 × 103
= 382 µH

P R A C T I C E P R O B L E M 1 4 . 1 9

If each speaker in Fig. 14.63 has an 8-& resistance and C = 10 µF, find
L and the crossover frequency.

Answer: 0.64 mH, 1.989 kHz.

14.12 SUMMARY
1. The transfer function H(ω) is the ratio of the output response Y(ω)

to the input excitation X(ω); that is, H(ω) = Y(ω)/X(ω).

2. The frequency response is the variation of the transfer function with
frequency.

3. Zeros of a transfer function H(s) are the values of s = jω that make
H(s) = 0, while poles are the values of s that make H(s)→ ∞.

4. The decibel is the unit of logarithmic gain. For a gain G, its decibel
equivalent is GdB = 20 log10G.



632 PART 2 AC Circuits

5. Bode plots are semilog plots of the magnitude and phase of the
transfer function as it varies with frequency. The straight-line
approximations of H (in dB) and φ (in degrees) are constructed
using the corner frequencies defined by the poles and zeros of H(ω).

6. The resonant frequency is that frequency at which the imaginary
part of a transfer function vanishes. For series and parallel RLC
circuits,

ω0 = 1√
LC

7. The half-power frequencies (ω1, ω2) are those frequencies at which
the power dissipated is one-half of that dissipated at the resonant
frequency. The geometric mean between the half-power frequen-
cies is the resonant frequency, or

ω0 = √
ω1ω2

8. The bandwidth is the frequency band between half-power frequen-
cies:

B = ω2 − ω1

9. The quality factor is a measure of the sharpness of the resonance
peak. It is the ratio of the resonant (angular) frequency to the band-
width,

Q = ω0

B

10. A filter is a circuit designed to pass a band of frequencies and reject
others. Passive filters are constructed with resistors, capacitors, and
inductors. Active filters are constructed with resistors, capacitors,
and an active device, usually an op amp.

11. Four common types of filters are lowpass, highpass, bandpass, and
bandstop. A lowpass filter passes only signals whose frequencies
are below the cutoff frequency ωc. A highpass filter passes only
signals whose frequencies are above the cutoff frequency ωc. A
bandpass filter passes only signals whose frequencies are within a
prescribed range (ω1 < ω < ω2). A bandstop filter passes only
signals whose frequencies are outside a prescribed range
(ω1 > ω > ω2).

12. Scaling is the process whereby unrealistic element values are mag-
nitude-scaled by a factor Km and/or frequency-scaled by a factor
Kf to produce realistic values.

R′ = KmR, L′ = Km

Kf
L, C ′ = 1

KmKf
C

13. PSpice can be used to obtain the frequency response of a circuit if a
frequency range for the response and the desired number of points
within the range are specified in the AC Sweep.

14. The radio receiver—one practical application of resonant
circuits—employs a bandpass resonant circuit to tune in one
frequency among all the broadcast signals picked up by the antenna.
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15. The Touch-Tone telephone and the crossover network are two typi-
cal applications of filters. The Touch-Tone telephone system
employs filters to separate tones of different frequencies to activate
electronic switches. The crossover network separates signals in
different frequency ranges so that they can be delivered to different
devices such as tweeters and woofers in a loudspeaker system.

R E V I EW QU E S T I ON S

14.1 A zero of the transfer function

H(s) = 10(s + 1)

(s + 2)(s + 3)
is at
(a) 10 (b) −1 (c) −2 (d) −3

14.2 On the Bode magnitude plot, the slope of the pole
1/(5 + jω)2 is

(a) 20 dB/decade (b) 40 dB/decade
(c) −40 dB/decade (d) −20 dB/decade

14.3 On the Bode phase plot, the slope of
[1 + j10ω − ω2/25]2 is
(a) 45◦/decade (b) 90◦/decade
(c) 135◦/decade (d) 180◦/decade

14.4 How much inductance is needed to resonate at 5
kHz with a capacitance of 12 nF?
(a) 2652 H (b) 11.844 H
(c) 3.333 H (d) 84.43 mH

14.5 The difference between the half-power frequencies
is called the:
(a) quality factor (b) resonant frequency
(c) bandwidth (d) cutoff frequency

14.6 In a series RLC circuit, which of these quality
factors has the steepest curve at resonance?
(a) Q = 20 (b) Q = 12
(c) Q = 8 (d) Q = 4

14.7 In a parallel RLC circuit, the bandwidth B is
directly proportional to R.
(a) True (b) False

14.8 When the elements of an RLC circuit are both
magnitude-scaled and frequency-scaled, which
quality is unaffected?
(a) resistor (b) resonant frequency
(c) bandwidth (d) quality factor

14.9 What kind of filter can be used to select a signal of
one particular radio station?
(a) lowpass (b) highpass
(c) bandpass (d) bandstop

14.10 A voltage source supplies a signal of constant
amplitude, from 0 to 40 kHz, to an RC lowpass
filter. The load resistor experiences the maximum
voltage at:
(a) dc (b) 10 kHz
(c) 20 kHz (d) 40 kHz

Answers: 14.1b, 14.2c, 14.3d, 14.4d, 14.5c, 14.6a, 14.7b, 14.8d,
14.9c, 14.10a.

P RO B L E M S

Section 14.2 Transfer Function

14.1 Find the transfer function Vo/Vi of the RC circuit
in Fig. 14.65.

vi(t) R

C

+
− vo(t)

+

−

Figure 14.65 For Prob. 14.1.

14.2 Obtain the transfer function Vo/Vi of the RL circuit
of Fig. 14.66.

vi(t) R+
− vo(t)

L

+

−

Figure 14.66 For Probs. 14.2 and 14.36.
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14.3 (a) Given the circuit in Fig. 14.67, determine the
transfer function H(s) = Vo(s)/V i(s) .

(b) If R = 40 k& and C = 2 µF, specify the
locations of the poles and zeros of H(s) .

Vi

R

C+
− Vo

R

C

+

−

Figure 14.67 For Prob. 14.3.

14.4 Find the transfer function H(ω) = Vo/Vi of the
circuits shown in Fig. 14.68.

RC Vo

++

−

Vi

−

L

R

C

(a)

(b)

Vo

++

−

Vi

−
L

Figure 14.68 For Prob. 14.4.

14.5 Repeat Prob. 14.4 for the circuits in Fig. 14.69.

C

R

Vo

++

−

Vi

−

L

(a)

Vo

++

−

Vi

−

(b)

R

C

L

Figure 14.69 For Prob. 14.5.

14.6 Obtain the transfer function H(ω) = Io/Is of the
circuits shown in Fig. 14.70.

is 0.25 F20 Ω

(a)

vx

10 H

io

is 2.5 H10 Ω

0.1 F 0.5vx

(b)

io
+ −

+

−

Figure 14.70 For Prob. 14.6.

Section 14.3 The Decibel Scale

14.7 Calculate |H(ω)| if HdB equals
(a) 0.05 dB (b) −6.2 dB (c) 104.7 dB

14.8 Determine the magnitude (in dB) and the phase (in
degrees) of H(ω) at ω = 1 if H(ω) equals
(a) 0.05 (b) 125

(c)
10jω

2 + jω (d)
3

1 + jω + 6

2 + jω
Section 14.4 Bode Plots

14.9 A ladder network has a voltage gain of

H(ω) = 10

(1 + jω)(10 + jω)
Sketch the Bode plots for the gain.

14.10 Sketch the Bode plots for

H(ω) = 10 + jω
jω(2 + jω)

14.11 Construct the Bode plots for

G(s) = s + 1

s2(s + 10)
, s = jω

14.12 Draw the Bode plots for

H(ω) = 50(jω + 1)

jω(−ω2 + 10jω + 25)
14.13 Construct the Bode magnitude and phase plots for

H(s) = 40(s + 1)

(s + 2)(s + 10)
, s = jω

14.14 Sketch the Bode plots for

G(s) = s

(s + 2)2(s + 1)
, s = jω
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14.15 Draw Bode plots for

G(s) = (s + 2)2

s(s + 5)(s + 10)
, s = jω

14.16 A filter has

H(s) = s

s2 + 10s + 100
Sketch the filter’s Bode magnitude and phase plots.

14.17 Sketch Bode magnitude and phase plots for

N(s) = 100(s2 + s + 1)

(s + 1)(s + 10)
, s = jω

Construct the straight-line approximate plots and the
exact plots.

14.18 Construct Bode plots for

T(ω) = 10jω(1 + jω)
(10 + jω)(100 + 10jω − ω2)

14.19 Find the transfer function H(ω) with the Bode
magnitude plot shown in Fig. 14.71.

v (rad/s)2 20 100

–20 dB/decade

20

40

H (dB)

0

Figure 14.71 For Prob. 14.19.

14.20 The Bode magnitude plot of H(ω) is shown in Fig.
14.72. Find H(ω).

v (rad/s)10.1 10

–40 dB/decade

+20 dB/decade

H

Figure 14.72 For Prob. 14.20.

14.21 The Bode phase plot of G(ω) of a network is
depicted in Fig. 14.73. Find G(ω).

v (rad/s)1031021010.1

f

0°

–45°

–90°

Figure 14.73 For Prob. 14.21.

Section 14.5 Series Resonance

14.22 A series RLC network has R = 2 k&, L = 40 mH,
and C = 1 µF. Calculate the impedance at
resonance and at one-fourth, one-half, twice, and
four times the resonant frequency.

14.23 Design a series RLC circuit that will have an
impedance of 10 & at the resonant frequency of
ω0 = 50 rad/s and a quality factor of 80. Find the
bandwidth.

14.24 Design a series RLC circuit with B = 20 rad/s and
ω0 = 1000 rad/s. Find the circuit’sQ.

14.25 For the circuit in Fig. 14.74, find the frequency ω for
which v(t) and i(t) are in phase.

v(t) 1 Ω 1 H+
−

i(t) 1 H 1 F

Figure 14.74 For Prob. 14.25.

Section 14.6 Parallel Resonance

14.26 Design a parallel resonant RLC circuit with
ω0 = 10 rad/s andQ = 20. Calculate the bandwidth
of the circuit.

14.27 A parallel resonant circuit with quality factor 120
has a resonant frequency of 6 × 106 rad/s. Calculate
the bandwidth and half-power frequencies.

14.28 It is expected that a parallel RLC resonant circuit
has a midband admittance of 25 × 103 S, quality
factor of 80, and a resonant frequency of 200 krad/s.
Calculate the values of R, L, and C. Find the
bandwidth and the half-power frequencies.

14.29 Rework Prob. 14.22 if the elements are connected in
parallel.

14.30 For the “ tank” circuit in Fig. 14.75, find the resonant
frequency.

Io cos vt

50 Ω

40 mH

1 mF

Figure 14.75 For Probs. 14.30 and 14.71.
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14.31 For the circuits in Fig. 14.76, find the resonant
frequency ω0, the quality factorQ, and the
bandwidth B.

2 Ω

(a)

6 Ω

1 H

0.4 F

(b)

3 mF
20 mH 2 kΩ

6 mF

Figure 14.76 For Prob. 14.31.

14.32 Calculate the resonant frequency of each of the
circuits in Fig. 14.77.

R

(a)

C R

L

(b)

CL

R L

C

(c)

Figure 14.77 For Prob. 14.32.

14.33∗ For the circuit in Fig. 14.78, find:
(a) the resonant frequency ω0

(b) Zin(ω)

9 mF

20 mH 0.1 Ω1 Ω
Zin

Figure 14.78 For Prob. 14.33.

14.34 In the circuit of Fig. 14.79, i(t) = 10 sin t . Calculate
the value of C such that v(t) = Vo sin t V. Find Vo.

*An asterisk indicates a challenging problem.

–

+

v(t)i(t) 1 F

1 Ω

CH2
3

Figure 14.79 For Prob. 14.34.

14.35 For the network illustrated in Fig. 14.80, find
(a) the transfer function H(ω) = Vo(ω)/I(ω),
(b) the magnitude of H at ω0 = 1 rad/s.

VoI 1 F1 H

1 Ω

1 Ω 1 Ω
+

−

Figure 14.80 For Probs. 14.35, 14.61, and 14.72.

Section 14.7 Passive Filters

14.36 Show that the circuit in Fig. 14.66 is a lowpass filter.
Calculate the corner frequency fc if L = 2 mH and
R = 10 k&.

14.37 Find the transfer function Vo/Vs of the circuit in
Fig. 14.81. Show that the circuit is a lowpass filter.

vs 1 F0.25 F+
− vo

1 H

+

−

Figure 14.81 For Prob. 14.37.

14.38 Determine the cutoff frequency of the lowpass filter
described by

H(ω) = 4

2 + jω10

Find the gain in dB and phase of H(ω) at ω = 2
rad/s.

14.39 Determine what type of filter is in Fig. 14.82.
Calculate the corner frequency fc.

vi(t)

200 Ω

+
− vo(t)0.1 H

+

−

Figure 14.82 For Prob. 14.39.
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14.40 Obtain the transfer function of a highpass filter with
a passband gain of 10 and a cutoff frequency of
50 rad/s.

14.41 In a highpass RL filter with a cutoff frequency of
100 kHz, L = 40 mH. Find R.

14.42 Design a series RLC type bandpass filter with
cutoff frequencies of 10 kHz and 11 kHz. Assuming
C = 80 pF, find R, L, andQ.

14.43 Determine the range of frequencies that will be
passed by a series RLC bandpass filter with
R = 10 &, L = 25 mH, and C = 0.4 µF. Find the
quality factor.

14.44 (a) Show that for a bandpass filter,

H(s) = sB

s2 + sB + ω2
0

where B = bandwidth of the filter and ω0 is the
center frequency.

(b) Similarly, show that for a bandstop filter,

H(s) = s2 + ω2
0

s2 + sB + ω2
0

14.45 Determine the center frequency and bandwidth of
the bandpass filters in Fig. 14.83.

Vs Vo1 F

(a)

1 Ω

1 Ω+
−

1 F

Vs Vo1 Ω

(b)

1 Ω

1 H+
−

1 H

+

−

+

−

Figure 14.83 For Prob. 14.45.

14.46 The circuit parameters for a series RLC bandstop
filter are R = 2 k&, L = 0.1 H, C = 40 pF.
Calculate:
(a) the center frequency
(b) the half-power frequencies
(c) the quality factor

14.47 Find the bandwidth and center frequency of the
bandstop filter of Fig. 14.84.

Vi Vo

+

–

4 Ω

6 Ω

1 mH
+
−

4 mF

Figure 14.84 For Prob. 14.47.

Section 14.8 Active Filters

14.48 Find the transfer function for each of the active
filters in Fig. 14.85.

+
−

+

–

vo

+

–
vi

R

C

(a)

+
−

+

–

vo

+

–
vi

C

R

(b)

Figure 14.85 For Probs. 14.48 and 14.49.

14.49 The filter in Fig. 14.85(b) has a 3-dB cutoff
frequency at 1 kHz. If its input is connected to a
120-mV variable frequency signal, find the output
voltage at:
(a) 200 Hz (b) 2 kHz (c) 10 kHz

14.50 Obtain the transfer function of the active filter in
Fig. 14.86. What kind of filter is it?

Rf

+
−

+

–

vo

+

–

vi

Ri
Ci

Cf

Figure 14.86 For Prob. 14.50.
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14.51 A highpass filter is shown in Fig. 14.87. Show that
the transfer function is

H(ω) =
(

1 + Rf

Ri

)
jωRC

1 + jωRC

+
− +

–

vo

+

–

vi

C

Rf

R

Ri

Figure 14.87 For Prob. 14.51.

14.52 A “general” fi rst-order filter is shown in Fig. 14.88.
(a) Show that the transfer function is

H(s) = R4

R3 + R4
× s + (1/R1C)[R1/R2 − R3/R4]

s + 1/R2C
,

s = jω

(b) What condition must be satisfied for the circuit
to operate as a highpass filter?

(c) What condition must be satisfied for the circuit
to operate as a lowpass filter?

R2

vo

vs

C

R4

+

−

R3

R1

Figure 14.88 For Prob. 14.52.

14.53 Design an active lowpass filter with dc gain of 0.25
and a corner frequency of 500 Hz.

14.54 Design an active highpass filter with a
high-frequency gain of 5 and a corner frequency of
200 Hz.

14.55 Design the filter in Fig. 14.89 to meet the following
requirements:
(a) It must attenuate a signal at 2 kHz by 3 dB

compared with its value at 10 MHz.

(b) It must provide a steady-state output of vo(t) =
10 sin(2π × 108t + 180◦) V for an input vs(t) =
4 sin(2π × 108t) V.

Rf

+
−

vo
vs

R C

+

–

+
−

Figure 14.89 For Prob. 14.55.

14.56∗ A second-order active filter known as a Butterworth
filter is shown in Fig. 14.90.
(a) Find the transfer function Vo/Vi .
(b) Show that it is a lowpass filter.

+
− +

–

Vo

+

–

Vi

R1 R2

C1

C2

Figure 14.90 For Prob. 14.56.

Section 14.9 Scaling

14.57 Use magnitude and frequency scaling on the circuit
of Fig. 14.75 to obtain an equivalent circuit in which
the inductor and capacitor have magnitude 1 H and
1 C respectively.

14.58 What values of Km and Kf will scale a 4-mH
inductor and a 20-µF capacitor to 1 H and 2 F
respectively?

14.59 Calculate the values of R, L, and C that will result
in R = 12 k&, L = 40 µH, and C = 300 nF
respectively when magnitude-scaled by 800 and
frequency-scaled by 1000.

14.60 A series RLC circuit has R = 10 &, ω0 = 40 rad/s,
and B = 5 rad/s. Find L and C when the circuit is
scaled:
(a) in magnitude by a factor of 600,
(b) in frequency by a factor of 1000,
(c) in magnitude by a factor of 400 and in frequency

by a factor of 105.

14.61 Redesign the circuit in Fig. 14.80 so that all resistive
elements are scaled by a factor of 1000 and all
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frequency-sensitive elements are frequency-scaled
by a factor of 104.

14.62∗ Refer to the network in Fig. 14.91.
(a) Find Zin(s).
(b) Scale the elements by Km = 10 and Kf = 100.

Find Zin(s) and ω0.

0.1 F

2 H

5 Ω
4 Ω

3Vo
Vo

Zin(s)
+ − +

−

Figure 14.91 For Prob. 14.62.

14.63 (a) For the circuit in Fig. 14.92, draw the new
circuit after it has been scaled by Km = 200 and
Kf = 104.

(b) Obtain the Thevenin equivalent impedance at
terminals a-b of the scaled circuit at ω =
104 rad/s.

0.5 F

a

b

1 H

0.5Ix2 Ω

Ix

Figure 14.92 For Prob. 14.63.

14.64 Scale the lowpass active filter in Fig. 14.93 so that
its corner frequency increases from 1 rad/s to 200
rad/s. Use a 1-µF capacitor.

+
−

+

–
Vo

+

–

Vi

2 Ω

1 Ω

1 F

Figure 14.93 For Prob. 14.64.

Section 14.10 Frequency Response Using PSpice

14.65 Obtain the frequency response of the circuit in Fig.
14.94 using PSpice.

4 kΩ

1 kΩ Vo

++

−

Vi

−

1 mF

Figure 14.94 For Prob. 14.65.

14.66 Use PSpice to provide the frequency response
(magnitude and phase of i) of the circuit in Fig.
14.95. Use linear frequency sweep from 1 to
10,000 Hz.

1 mH+
− 0.1Vo0.5 mF

1 kΩ 1 kΩ 1 kΩ

Vo100   0° V

I+

−

Figure 14.95 For Prob. 14.66.

14.67 In the interval 0.1 < f < 100 Hz, plot the response
of the network in Fig. 14.96. Classify this filter and
obtain ω0.

1 Ω Vo

++

−

Vi

−

1 F

1 Ω

1 F

1 Ω

1 F

Figure 14.96 For Prob. 14.67.

14.68 Use PSpice to generate the magnitude and phase
Bode plots of Vo in the circuit of Fig. 14.97.

2 F

+
− 1 F

1 Ω 2 H

1 Ω Vo1 H1   0° V
+

−

Figure 14.97 For Prob. 14.68.

14.69 Obtain the magnitude plot of the response Vo in the
network of Fig. 14.98 for the frequency interval
100 < f < 1000 Hz.
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Vo10 Ω 4 mH20 Ω

50 Ω

10 mF

1   0° A
+

−

Figure 14.98 For Prob. 14.69.

14.70 Obtain the frequency response of the circuit in Fig.
14.40 (see Practice Problem 14.10). Take R1 =
R2 = 100 &, L = 2 mH. Use 1 < f < 100,000 Hz.

14.71 For the “ tank” circuit of Fig. 14.75, obtain the
frequency response (voltage across the capacitor)
using PSpice. Determine the resonant frequency of
the circuit.

14.72 Using PSpice, plot the magnitude of the frequency
response of the circuit in Fig. 14.80.

Section 14.11 Applications

14.73 The resonant circuit for a radio broadcast consists of
a 120-pF capacitor in parallel with a 240-µH
inductor. If the inductor has an internal resistance of
400 &, what is the resonant frequency of the circuit?
What would be the resonant frequency if the
inductor resistance were reduced to 40 &?

14.74 A series-tuned antenna circuit consists of a variable
capacitor (40 pF to 360 pF) and a 240-µH antenna
coil which has a dc resistance of 12 &.
(a) Find the frequency range of radio signals to

which the radio is tunable.
(b) Determine the value ofQ at each end of the

frequency range.

14.75 The crossover circuit in Fig. 14.99 is a lowpass filter
that is connected to a woofer. Find the transfer
function H(ω) = Vo(ω)/Vi (ω).

+
−

L Speakers

Amplifier
Woofer

Tweeter

VoVi C1

Ri

C2 RL

+

−

Figure 14.99 For Prob. 14.75.

14.76 The crossover circuit in Fig. 14.100 is a highpass
filter that is connected to a tweeter. Determine the
transfer function H(ω) = Vo(ω)/Vi (ω).

+
−

C2

L

Speakers

Amplifier
Woofer

Tweeter

VoVi

C1Ri

RL

+

−

Figure 14.100 For Prob. 14.76.

COM P R E H EN S I V E P RO B L E M S

14.77 A certain electronic test circuit produced a resonant
curve with half-power points at 432 Hz and 454 Hz.
IfQ = 20, what is the resonant frequency of the
circuit?

14.78 In an electronic device, a series circuit is employed
that has a resistance of 100 &, a capacitive reactance
of 5 k&, and an inductive reactance of 300 & when
used at 2 MHz. Find the resonant frequency and
bandwidth of the circuit.

14.79 In a certain application, a simple RC lowpass filter
is designed to reduce high frequency noise. If the
desired corner frequency is 20 kHz and C = 0.5 µF,
find the value of R.

14.80 In an amplifier circuit, a simple RC highpass filter is
needed to block the dc component while passing the
time-varying component. If the desired rolloff fre-
quency is 15 Hz and C = 10 µF, find the value of R.

14.81 Practical
RC filter design should allow for source and load
resistances as shown in Fig. 14.101. Let R = 4 k&
and C = 40-nF. Obtain the cutoff frequency when:
(a) Rs = 0, RL = ∞,
(b) Rs = 1 k&, RL = 5 k&.
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+
−Vs

Rs R

C RL

Figure 14.101 For Prob. 14.81.

14.82 The RC circuit in Fig. 14.102 is used for a lead
compensator in a system design. Obtain the
transfer function of the circuit.

R1

R2

From
photoresistor

output

To 
amplifier

input
Vo

++

−

Vi

−

C

Figure 14.102 For Prob. 14.82.

14.83 A low-quality factor, double-tuned bandpass
filter is shown in Fig. 14.103. Use PSpice to
generate the magnitude plot of Vo(ω).
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C H A P T E R

THE LAPLACE TRANSFORM

1 5

A man is like a function whose numerator is what he is and whose
denominator is what he thinks of himself. The larger the denominator the
smaller the fraction.

—I. N. Tolstroy

Historical Profiles
Pierre Simon Laplace (1749–1827), a French astronomer and mathematician, first
presented the transform that bears his name and its applications to differential equations
in 1779.

Born of humble origins in Beaumont-en-Auge, Normandy, France, Laplace
became a professor of mathematics at the age of 20. His mathematical abilities inspired
the famous mathematician Simeon Poisson, who called Laplace the Isaac Newton
of France. He made important contributions in potential theory, probability theory,
astronomy, and celestial mechanics. He was widely known for his work,Traite de
Mecanique Celeste (Celestial Mechanics), which supplemented the work of New-
ton on astronomy. The Laplace transform, the subject of this chapter, is named after him.

Samuel F. B. Morse (1791–1872), an American painter, invented the telegraph, the first
practical, commercialized application of electricity.

Morse was born in Charlestown, Massachusetts and studied at Yale and the Royal
Academy of Arts in London to become an artist. In the 1830s, he became intrigued
with developing a telegraph. He had a working model by 1836 and applied for a patent
in 1838. The U.S. Senate appropriated funds for Morse to construct a telegraph line
between Baltimore and Washington, D.C. On May 24, 1844, he sent the famous first
message: “What hath God wrought!” Morse also developed a code of dots and dashes
for letters and numbers, for sending messages on the telegraph. The development of
the telegraph led to the invention of the telephone.
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15.1 INTRODUCTION
Our frequency-domain analysis has been limited to circuits with sinu-
soidal inputs. In other words, we have assumed sinusoidal time-varying
excitations in all our non-dc circuits. This chapter introduces theLaplace
transform, a very powerful tool for analyzing circuits with sinusoidalor
nonsinusoidal inputs.

The idea of transformation should be familiar by now. When using
phasors for the analysis of circuits, we transform the circuit from the time
domain to the frequency or phasor domain. Once we obtain the phasor
result, we transform it back to the time domain. The Laplace transform
method follows the same process: we use the Laplace transformation
to transform the circuit from the time domain to the frequency domain,
obtain the solution, and apply the inverse Laplace transform to the result
to transform it back to the time domain.

The Laplace transform is significant for a number of reasons. First,
it can be applied to a wider variety of inputs than phasor analysis. Second,
it provides an easy way to solve circuit problems involving initial con-
ditions, because it allows us to work with algebraic equations instead of
differential equations. Third, the Laplace transform is capable of provid-
ing us, in one single operation, the total response of the circuit comprising
both the natural and forced responses.

We begin with the definition of the Laplace transform and use it to
derive the transforms of some basic, important functions. We consider
some properties of the Laplace transform that are very helpful in circuit
analysis. We then consider the inverse Laplace transform, transfer func-
tions, and convolution. Finally, we examine how the Laplace transform
is applied in circuit analysis, network stability, and network synthesis.

15.2 DEFINITION OF THE LAPLACE TRANSFORM
Given a functionf (t), its Laplace transform, denoted byF(s) orL[f (t)],
is given by

L[f (t)] = F(s) =
∫ ∞

0−
f (t)e−st dt (15.1)

wheres is a complex variable given by

s = σ + jω (15.2)

Since the argumentst of the exponente in Eq. (15.1) must be dimension-
less, it follows thats has the dimensions of frequency and units of inverse
seconds (s−1). In Eq. (15.1), the lower limit is specified as 0− to indicate
a time just beforet = 0. We use 0− as the lower limit to include the origin
and capture any discontinuity off (t) at t = 0; this will accommodate
functions—such as singularity functions—that may be discontinuous at
t = 0.For an ordinary function f (t), the lower limit can

be replaced by 0.

The Laplace transform is an integral transformation of a function f (t) from the time
domain into the complex frequency domain, giving F(s).
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We assume in Eq. (15.1) thatf (t) is ignored fort < 0. To ensure
that this is the case, a function is often multiplied by the unit step. Thus,
f (t) is written asf (t)u(t) or f (t), t ≥ 0.

The Laplace transform in Eq. (15.1) is known as theone-sided
(or unilateral ) Laplace transform. Thetwo-sided (or bilateral ) Laplace
transform is given by

F(s) =
∫ ∞

−∞
f (t)e−st dt (15.3)

The one-sided Laplace transform in Eq. (15.1), being adequate for our
purposes, is the only type of Laplace transform that we will treat in this
book.

| e jωt| =
√
cos2 ωt + sin2 ωt = 1

A function f (t) may not have a Laplace transform. In order for
f (t) to have a Laplace transform, the integral in Eq. (15.1) must converge
to a finite value. Since|ejωt | = 1 for any value oft , the integral converges
when ∫ ∞

0−
e−σ t |f (t)| dt < ∞ (15.4)

for some real valueσ = σc. Thus, the region of convergence for the
Laplace transform is Re(s) = σ > σc, as shown in Fig. 15.1. In this
region, |F(s)| < ∞ andF(s) exists. F(s) is undefined outside the
region of convergence. Fortunately, all functions of interest in circuit
analysis satisfy the convergence criterion in Eq. (15.4) and have Laplace
transforms. Therefore, it is not necessary to specifyσc in what follows.

A companion to the direct Laplace transform in Eq. (15.1) is the
inverse Laplace transform given by

L−1[F(s)] = f (t) = 1

2πj

∫ σ1+j∞

σ1−j∞
F(s)est ds (15.5)

where the integration is performed along a straight line (σ1 + jω, −∞ <

ω < ∞) in the region of convergence,σ1 > σc. See Fig. 15.1. The
direct application of Eq. (15.5) involves some knowledge about complex
analysis beyond the scope of this book. For this reason, we will not use
Eq. (15.5) to find the inverse Laplace transform. We will rather use a
look-up table, to be developed in Section 15.3. The functionsf (t) and
F(s) are regarded as a Laplace transform pair where

f (t) ⇐⇒ F(s) (15.6)

meaning that there is one-to-one correspondence betweenf (t) andF(s).
The following examples derive the Laplace transforms of some important
functions.

jv

0 sc s1 s

Figure 15.1 Region of convergence for
the Laplace transform.

E X A M P L E 1 5 . 1

Determine the Laplace transform of each of the following functions:
(a) u(t), (b) e−atu(t), a ≥ 0, and (c) δ(t).
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Solution:

(a) For the unit step function u(t), shown in Fig. 15.2(a), the Laplace
transform is

L[u(t)] =
∫ ∞

0−
1e−st dt = −1

s
e−st

∣∣∣∣
∞

0

= −1

s
(0)+ 1

s
(1) = 1

s

(15.1.1)

(b) For the exponential function, shown in Fig. 15.2(b), the Laplace trans-
form is

L[e−atu(t)] =
∫ ∞

0−
e−at e−st dt

= − 1

s + a e
−(s+a)t

∣∣∣∣
∞

0

= 1

s + a

(15.1.2)

(c) For the unit impulse function, shown in Fig. 15.2(c),

L[δ(t)] =
∫ ∞

0−
δ(t)e−st dt = e−0 = 1 (15.1.3)

since the impulse function δ(t) is zero everywhere except at t = 0. The
sifting property in Eq. (7.33) has been applied in Eq. (15.1.3).

u(t)

t

1

0

(a)

e−atu(t)

t

1

0

(b)

d(t)

t

1

0

(c)

Figure 15.2 For Example 15.1: (a) unit step function, (b) exponential function,
(c) unit impulse function.

P R A C T I C E P R O B L E M 1 5 . 1

Find the Laplace transforms of these functions: r(t) = tu(t), that is, the
ramp function; and eatu(t).

Answer: 1/s2, 1/(s − a).

E X A M P L E 1 5 . 2

Determine the Laplace transform of f (t) = sinωtu(t).

Solution:

Using Eq. (B.26) in addition to Eq. (15.1), we obtain the Laplace trans-
form of the sine function as
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F(s) = L[sinωt] =
∫ ∞

0
(sinωt)e−st dt =

∫ ∞

0

(
ejωt − e−jωt

2j

)
e−st dt

= 1

2j

∫ ∞

0
(e−(s−jω)t − e−(s+jω)t ) dt

= 1

2j

(
1

s − jω − 1

s + jω
)

= ω

s2 + ω2

P R A C T I C E P R O B L E M 1 5 . 2

Find the Laplace transform of f (t) = cosωtu(t).

Answer: s/(s2 + ω2).

15.3 PROPERTIES OF THE LAPLACE TRANSFORM
The properties of the Laplace transform help us to obtain transform pairs
without directly using Eq. (15.1) as we did in Examples 15.1 and 15.2. As
we derive each of these properties, we should keep in mind the definition
of the Laplace transform in Eq. (15.1).

Linearity

If F1(s) and F2(s) are, respectively, the Laplace transforms of f1(t) and
f2(t), then

L[a1f1(t)+ a2f2(t)] = a1F1(s)+ a2F2(s) (15.7)

where a1 and a2 are constants. Equation 15.7 expresses the linearity
property of the Laplace transform. The proof of Eq. (15.7) follows readily
from the definition of the Laplace transform in Eq. (15.1).

For example, by the linearity property in Eq. (15.7), we may write

L[coswt] = L
[

1

2
(ejωt + e−jωt )

]
= 1

2
L[ejωt ] + 1

2
L[e−jωt ] (15.8)

But from Example 15.1(b), L[e−at ] = 1/(s + a). Hence,

L[coswt] = 1

2

(
1

s − jω + 1

s + jω
)

= s

s2 + ω2
(15.9)

Scaling

If F(s) is the Laplace transform of f (t), then

L[f (at)] =
∫ ∞

0
f (at)e−st dt (15.10)

where a is a constant and a > 0. If we let x = at , dx = a dt , then

L[f (at)] =
∫ ∞

0
f (x)e−x(s/a)

dx

a
= 1

a

∫ ∞

0
f (x)e−x(s/a) dx (15.11)
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Comparing this integral with the definition of the Laplace transform in
Eq. (15.1) shows that s in Eq. (15.1) must be replaced by s/a while the
dummy variable t is replaced by x. Hence, we obtain the scaling property
as

L[f (at)] = 1

a
F
( s
a

)
(15.12)

For example, we know from Example 15.2 that

L[sinωt] = ω

s2 + ω2
(15.13)

Using the scaling property in Eq. (15.12),

L[sin 2ωt] = 1

2

ω

(s/2)2 + ω2
= 2ω

s2 + 4ω2
(15.14)

which may also be obtained from Eq. (15.13) by replacing ω with 2ω.

Time Shift

If F(s) is the Laplace transform of f (t), then

L[f (t − a)u(t − a)] =
∫ ∞

0
f (t − a)u(t − a)e−st dt

a ≥ 0
(15.15)

But u(t − a) = 0 for t < a and u(t − a) = 1 for t > a. Hence,

L[f (t − a)u(t − a)] =
∫ ∞

a

f (t − a)e−st dt (15.16)

If we let x = t − a, then dx = dt and t = x + a. As t → a, x → 0 and
as t → ∞, x → ∞. Thus,

L[f (t − a)u(t − a)] =
∫ ∞

0
f (x)e−s(x+a) dx

= e−as
∫ ∞

0
f (x)e−sx dx = e−asF (s)

or

L[f (t − a)u(t − a)] = e−asF (s) (15.17)

In other words, if a function is delayed in time by a, the result in the s
domain is multiplying the Laplace transform of the function (without the
delay) by e−as . This is called the time-delay or time-shift property of the
Laplace transform.

As an example, we know from Eq. (15.9) that

L[cosωt] = s

s2 + ω2

Using the time-shift property in Eq. (15.17),

L[cosω(t − a)u(t − a)] = e−as
s

s2 + ω2
(15.18)
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Frequency Shift

If F(s) is the Laplace transform of f (t), then

L[e−atf (t)] =
∫ ∞

0
e−atf (t)e−st dt

=
∫ ∞

0
f (t)e−(s+a)t dt = F(s + a)

or

L[e−atf (t)] = F(s + a) (15.19)

That is, the Laplace transform of e−atf (t) can be obtained from the
Laplace transform of f (t) by replacing every s with s+a. This is known
as frequency shift or frequency translation.

As an example, we know that

cosωt ⇐⇒ s

s2 + ω2

and

sinωt ⇐⇒ ω

s2 + ω2

(15.20)

Using the shift property in Eq. (15.19), we obtain the Laplace transform
of the damped sine and damped cosine functions as

L[e−at cosωt] = s + a
(s + a)2 + ω2

(15.21a)

L[e−at sinωt] = ω

(s + a)2 + ω2
(15.21b)

Time Differentiation

Given that F(s) is the Laplace transform of f (t), the Laplace transform
of its derivative is

L
[
df

dt

]
=
∫ ∞

0−

df

dt
e−st dt (15.22)

To integrate this by parts, we let u = e−st , du = −se−st dt, and dv =
(df/dt) dt = df (t), v = f (t). Then

L
[
df

dt

]
= f (t)e−st

∣∣∣∣
∞

0−
−
∫ ∞

0−
f (t)[−se−st ] dt

= 0 − f (0−)+ s
∫ ∞

0−
f (t)e−st dt = sF (s)− f (0−)

or

L[f ′(t)] = sF (s)− f (0−) (15.23)

The Laplace transform of the second derivative of f (t) is a repeated
application of Eq. (15.23) as

L
[
d2f

dt2

]
= sL[f ′(t)] − f ′(0−) = s[sF (s)− f (0−)] − f ′(0−)

= s2F(s)− sf (0−)− f ′(0−)
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or

L[f ′′(t)] = s2F(s)− sf (0−)− f ′(0−) (15.24)

Continuing in this manner, we can obtain the Laplace transform of the
nth derivative of f (t) as

L
[
dnf

dtn

]
= snF (s)− sn−1f (0−)

− sn−2f ′(0−)− · · · − s0f (n−1)(0−)
(15.25)

As an example, we can use Eq. (15.23) to obtain the Laplace trans-
form of the sine from that of the cosine. If we let f (t) = cosωt , then
f (0) = 1 and f ′(t) = −ω sinωt . Using Eq. (15.23) and the scaling
property,

L[sinωt] = − 1

ω
L[f ′(t)] = − 1

ω
[sF (s)− f (0−)]

= − 1

ω

(
s

s

s2 + ω2
− 1

)
= ω

s2 + ω2

(15.26)

as expected.

Time Integration

If F(s) is the Laplace transform of f (t), the Laplace transform of its
integral is

L
[∫ t

0
f (t) dt

]
=
∫ ∞

0−

[∫ t

0
f (x) dx

]
e−st dt (15.27)

To integrate this by parts, we let

u =
∫ t

0
f (x) dx, du = f (t) dt

and

dv = e−st dt, v = −1

s
e−st

Then

L
[∫ t

0
f (t) dt

]
=
[∫ t

0
f (x) dx

](
−1

s
e−st

) ∣∣∣∣
∞

0−

−
∫ ∞

0−

(
−1

s

)
e−stf (t) dt

For the first term on the right-hand side of the equation, evaluating the
term at t = ∞ yields zero due to e−s∞ and evaluating it at t = 0 gives
1

s

∫ 0

0
f (x) dx = 0. Thus, the first term is zero, and

L
[∫ t

0
f (t) dt

]
= 1

s

∫ ∞

0−
f (t)e−st dt = 1

s
F (s)
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or simply,

L
[∫ t

0
f (t) dt

]
= 1

s
F (s) (15.28)

As an example, if we letf (t) = u(t), from Example 15.1(a),F(s) =
1/s. Using Eq. (15.28),

L
[∫ t

0
f (t) dt

]
= L[t] = 1

s

(
1

s

)

Thus, the Laplace transform of the ramp function is

L[t] = 1

s2
(15.29)

Applying Eq. (15.28), this gives

L
[∫ t

0
t dt

]
= L

[
t2

2

]
= 1

s

1

s2

or

L[t2] = 2

s3
(15.30)

Repeated applications of Eq. (15.28) lead to

L[tn] = n!

sn+1
(15.31)

Similarly, using integration by parts, we can show that

L
[∫ t

−∞
f (t) dt

]
= 1

s
F (s)+ 1

s
f −1(0−) (15.32)

where

f −1(0−) =
∫ 0−

−∞
f (t) dt

Frequency Differentiation

If F(s) is the Laplace transform of f (t), then

F(s) =
∫ ∞

0
f (t)e−st dt

Taking the derivative with respect to s,

dF(s)

ds
=
∫ ∞

0
f (t)(−te−st ) dt =

∫ ∞

0
(−tf (t))e−st dt = L[−tf (t)]

and the frequency differentiation property becomes

L[tf (t)] = −dF(s)
ds

(15.33)

Repeated applications of this equation lead to

L[tnf (t)] = (−1)n
dnF (s)

dsn
(15.34)



654 PART 3 Advanced Circuit Analysis

For example, we know from Example 15.1(b) that L[e−at ] = 1/
(s + a). Using the property in Eq. (15.33),

L[te−at ] = − d

ds

(
1

s + a
)

= 1

(s + a)2 (15.35)

Note that if a = 0, we obtain L[t] = 1/s2 as in Eq. (15.29), and repeated
applications of Eq. (15.33) will yield Eq. (15.31).

f (t)

0 tT 2T 3T

Figure 15.3 A periodic function.

f1(t)

0 tT

f2(t)

0 tT 2T

f3(t)

0 tT 2T 3T

Figure 15.4 Decomposition of
the periodic function in Fig. 15.2.

Time Periodicity

If function f (t) is a periodic function such as shown in Fig. 15.3, it can
be represented as the sum of time-shifted functions shown in Fig. 15.4.
Thus,

f (t) = f1(t)+ f2(t)+ f3(t)+ · · ·
= f1(t)+ f1(t − T )u(t − T )

+ f1(t − 2T )u(t − 2T )+ · · ·
(15.36)

where f1(t) is the same as the function f (t) gated over the interval 0 <
t < T , that is,

f1(t) = f (t)[u(t)− u(t − T )] (15.37a)

or

f1(t) =
{
f (t), 0 < t < T
0, otherwise

(15.37b)

We now transform each term in Eq. (15.36) and apply the time-shift pro-
perty in Eq. (15.17). We obtain

F(s) = F1(s)+ F1(s)e
−T s + F1(s)e

−2T s + F1(s)e
−3T s + · · ·

= F1(s)[1 + e−T s + e−2T s + e−3T s + · · ·] (15.38)

But

1 + x + x2 + x3 + · · · = 1

1 − x (15.39)

if |x| < 1. Hence,

F(s) = F1(s)

1 − e−T s (15.40)

where F1(s) is the Laplace transform of f1(t); in other words, F1(s) is
the transform f (t) defined over its first period only. Equation (15.40)
shows that the Laplace transform of a periodic function is the transform
of the first period of the function divided by 1 − e−T s .
Initial and Final Values

The initial-value and final-value properties allow us to find the initial value
f (0) and the final value f (∞) of f (t) directly from its Laplace trans-
form F(s). To obtain these properties, we begin with the differentiation
property in Eq. (15.23), namely,

sF (s)− f (0+) = L
[
df

dt

]
=
∫ ∞

0

df

dt
e−st dt (15.41)
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If we let s → ∞, the integrand in Eq. (15.41) vanishes due to the damping
exponential factor, and Eq. (15.41) becomes

lim
s→∞

[
sF (s)− f (0+)

] = 0

or

f (0+) = lim
s→∞ sF (s) (15.42)

This is known as the initial-value theorem. For example, we know from
Eq. (15.21a) that

f (t) = e−2t cos 10t ⇐⇒ F(s) = s + 2

(s + 2)2 + 102
(15.43)

Using the initial-value theorem,

f (0+) = lim
s→∞ sF (s) = lim

s→∞
s2 + 2s

s2 + 4s + 104

= lim
s→∞

1 + 2/s

1 + 4/s + 104/s2
= 1

which confirms what we would expect from the given f (t).
In Eq. (15.41), we let s → 0; then

lim
s→0

[sF (s)− f (0−)] =
∫ ∞

0

df

dt
e0t dt =

∫ ∞

0
df = f (∞)− f (0−)

or

f (∞) = lim
s→0

sF (s) (15.44)

This is referred to as the final-value theorem. In order for the final-value
theorem to hold, all poles of F(s) must be located in the left half of the
s plane (see Fig. 15.1 or Fig. 15.9); that is, the poles must have negative
real parts. The only exception to this requirement is the case in which
F(s) has a simple pole at s = 0, because the effect of 1/s will be nullified
by sF (s) in Eq. (15.44). For example, from Eq. (15.21b),

f (t) = e−2t sin 5t ⇐⇒ F(s) = 5

(s + 2)2 + 52
(15.45)

Applying the final-value theorem,

f (∞) = lim
s→0

sF (s) = lim
s→0

5s

s2 + 4s + 29
= 0

as expected from the given f (t). As another example,

f (t) = sin t ⇐⇒ f (s) = 1

s2 + 1
(15.46)

so that

f (∞) = lim
s→0

sF (s) = lim
s→0

s

s2 + 1
= 0

This is incorrect, because f (t) = sin t oscillates between +1 and −1 and
does not have a limit as t → ∞. Thus, the final-value theorem cannot
be used to find the final value of f (t) = sin t, because F(s) has poles
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at s = ±j , which are not in the left half of the s plane. In general, the
final-value theorem does not apply in finding the final values of sinusoidal
functions—these functions oscillate forever and do not have final values.

The initial-value and final-value theorems depict the relationship
between the origin and infinity in the time domain and the s domain.
They serve as useful checks on Laplace transforms.

Table 15.1 provides a list of the properties of the Laplace transform.
The last property (on convolution) will be proved in Section 15.7. There
are other properties, but these are enough for present purposes. Table 15.2
summarizes the Laplace transforms of some common functions. We have
omitted the factor u(t) except where it is necessary.

TABLE 15.1 Properties of the Laplace transform.

Property f (t) F (s)

Linearity a1f1(t)+ a2f2(t) a1F1(s)+ a2F2(s)

Scaling f (at)
1

a
F
( s
a

)
Time shift f (t − a)u(t − a) e−asF (s)

Frequency shift e−atf (t) F (s + a)
Time

df

dt
sF (s)− f (0−)

differentiation
d2f

dt2
s2F(s)− sf (0−)− f ′(0−)

d3f

dt3
s3F(s)− s2f (0−)− sf ′(0−)

−f ′′(0−)
dnf

dtn
snF (s)− sn−1f (0−)− sn−2f ′(0−)

− · · · − f (n−1)(0−)

Time integration
∫ t

0
f (t) dt

1

s
F (s)

Frequency tf (t) − d

ds
F (s)

differentiation

Frequency
f (t)

t

∫ ∞

s

F (s) ds

integration

Time periodicity f (t) = f (t + nT ) F1(s)

1 − e−sT
Initial value f (0+) lim

s→∞
sF (s)

Final value f (∞) lim
s→0

sF (s)

Convolution f1(t) ∗ f1(t) F1(s)F2(s)

TABLE 15.2 Laplace transform pairs.

f (t) F (s)

δ(t) 1

u(t)
1

s

e−at
1

s + a

t
1

s2

tn
n!

sn+1

te−at
1

(s + a)2

tne−at
n!

(s + a)n+1

sinωt
ω

s2 + ω2

cosωt
s

s2 + ω2

sin(ωt + θ) s sin θ + ω cos θ

s2 + ω2

cos(ωt + θ) s cos θ − ω sin θ

s2 + ω2

e−at sinωt
ω

(s + a)2 + ω2

e−at cosωt
s + a

(s + a)2 + ω2

E X A M P L E 1 5 . 3

Obtain the Laplace transform of f (t) = δ(t)+ 2u(t)− 3e−2t , t ≥ 0.
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Solution:

By the linearity property,

F(s) = L[δ(t)] + 2L[u(t)] − 3L[e−2t ]

= 1 + 2
1

s
− 3

1

s + 2
= s2 + s + 4

s(s + 2)

P R A C T I C E P R O B L E M 1 5 . 3

Find the Laplace transform of f (t) = cos 2t + e−3t , t ≥ 0.

Answer:
2s2 + 3s + 4

(s + 3)(s2 + 4)
.

E X A M P L E 1 5 . 4

Determine the Laplace transform of f (t) = t2 sin 2t u(t).

Solution:

We know that

L[sin 2t] = 2

s2 + 22

Using frequency differentiation in Eq. (15.34),

F(s) = L[t2 sin 2t] = (−1)2
d2

ds2

(
2

s2 + 4

)

= d

ds

( −4s

(s2 + 4)2

)
= 12s2 − 16

(s2 + 4)3

P R A C T I C E P R O B L E M 1 5 . 4

Find the Laplace transform of f (t) = t2 cos 3t u(t).

Answer:
2s(s2 − 27)

(s2 + 9)3
.

E X A M P L E 1 5 . 5

Find the Laplace transform of the gate function in Fig. 15.5. g(t)

0 1 2 3

10

t

Figure 15.5 The gate function;
for Example 15.5.

Solution:

We can express the gate function in Fig. 15.5 as

g(t) = 10[u(t − 2)− u(t − 3)]

Since we know the Laplace transform of u(t), we apply the time-shift
property and obtain

G(s) = 10

(
e−2s

s
− e−3s

s

)
= 10

s
(e−2s − e−3s)
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P R A C T I C E P R O B L E M 1 5 . 5

Find the Laplace transform of the function h(t) in Fig. 15.6.

5

10

0 2 4

h(t)

t

Figure 15.6 For Practice Prob. 15.5.

Answer:
5

s
(2 − e−2s − e−4s).

E X A M P L E 1 5 . 6

Calculate the Laplace transform of the periodic function in Fig. 15.7.
2

0 1 2 3 4 5

f(t)

t

Figure 15.7 For Example 15.6.

Solution:

The period of the function is T = 2. To apply Eq. (15.40), we first obtain
the transform of the first period of the function.

f1(t) = 2t[u(t)− u(t − 1)] = 2tu(t)− 2tu(t − 1)

= 2tu(t)− 2(t − 1 + 1)u(t − 1)

= 2tu(t)− 2(t − 1)u(t − 1)− 2u(t − 1)

Using the time-shift property,

F1(s) = 2

s2
− 2

e−s

s2
− 2

s
e−s = 2

s2
(1 − e−s − se−s)

Thus, the transform of the periodic function in Fig. 15.7 is

F(s) = F1(s)

1 − e−T s = 2

s2(1 − e−2s)
(1 − e−s − se−s)

P R A C T I C E P R O B L E M 1 5 . 6

Determine the Laplace transform of the periodic function in Fig. 15.8.
1

0 2 5 7 10 12

f(t)

t

Figure 15.8 For Practice Prob. 15.6.

Answer:
1 − e−2s

s(1 − e−5s)
.

E X A M P L E 1 5 . 7

Find the initial and final values of the function whose Laplace transform
is

H(s) = 20

(s + 3)(s2 + 8s + 25)
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Solution:

Applying the initial-value theorem,

h(0) = lim
s→∞ sH(s) = lim

s→∞
20s

(s + 3)(s2 + 8s + 25)

= lim
s→∞

20/s2

(1 + 3/s)(1 + 8/s + 25/s2)
= 0

(1 + 0)(1 + 0 + 0)
= 0

To be sure that the final-value theorem is applicable, we check where the
poles of H(s) are located. The poles of H(s) are s = −3, −4 ± j3,
which all have negative real parts: they are all located on the left half of
the s plane (Fig. 15.9). Hence the final-value theorem applies and

h(∞) = lim
s→0

sH(s) = lim
s→0

20s

(s + 3)(s2 + 8s + 25)

= 0

(0 + 3)(0 + 0 + 25)
= 0

Both the initial and final values could be determined from h(t) if we knew
it. See Example 15.11, where h(t) is given.

1

1

2

2

3

3
−1

−1

−2

−3

−2−3

jv

s

×

×

×
−4

Figure 15.9 For Example 15.7: Poles ofH(s).

P R A C T I C E P R O B L E M 1 5 . 7

Obtain the initial and the final values of

G(s) = s3 + 2s + 6

s(s + 1)2(s + 3)
Answer: 1, 2.

15.4 THE INVERSE LAPLACE TRANSFORM
Given F(s), how do we transform it back to the time domain and obtain
the corresponding f (t)? By matching entries in Table 15.2, we avoid
using Eq. (15.5) to find f (t).

Suppose F(s) has the general form of

F(s) = N(s)

D(s)
(15.47)

where N(s) is the numerator polynomial and D(s) is the denominator
polynomial. The roots of N(s) = 0 are called the zeros of F(s), while
the roots of D(s) = 0 are the poles of F(s). Although Eq. (15.47) is
similar in form to Eq. (14.3), here F(s) is the Laplace transform of a
function, which is not necessarily a transfer function. We use partial
fraction expansion to break F(s) down into simple terms whose inverse
transform we obtain from Table 15.2. Thus, finding the inverse Laplace
transform of F(s) involves two steps. Software packages such as Matlab, Mathcad, and

Maple are capable of finding partial fraction ex-
pansions quite easily.S t e p s t o F i n d t h e I n v e r s e L a p l a c e T r a n s f o rm :

1. Decompose F(s) into simple terms using partial fraction
expansion.

2. Find the inverse of each term by matching entries in Table 15.2.
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Let us consider the three possible forms F(s)may take and how to apply
the two steps to each form.

Otherwise, we must first apply long division so
that F(s) = N(s)/D(s) = Q(s) + R(s)/D(s), where
the degree of R(s), the remainder of the long
division, is less than the degree of D(s).

Historical note: Named after Oliver Heaviside
(1850–1925), an English engineer, the pioneer of
operational calculus.

1 5 . 4 . 1 S imp l e Po l e s
Recall from Chapter 14 that a simple pole is a first-order pole. If F(s)
has only simple poles, then D(s) becomes a product of factors, so that

F(s) = N(s)

(s + p1)(s + p2) · · · (s + pn) (15.48)

where s = −p1, −p2, . . . ,−pn are the simple poles, and pi �= pj for all
i �= j (i.e., the poles are distinct). Assuming that the degree ofN(s) is less
than the degree ofD(s), we use partial fraction expansion to decompose
F(s) in Eq. (15.48) as

F(s) = k1

s + p1
+ k2

s + p2
+ · · · + kn

s + pn (15.49)

The expansion coefficients k1, k2, . . . , kn are known as the residues of
F(s). There are many ways of finding the expansion coefficients. One
way is using the residue method. If we multiply both sides of Eq. (15.49)
by (s + p1), we obtain

(s + p1)F (s) = k1 + (s + p1)k2

s + p2
+ · · · + (s + p1)kn

s + pn (15.50)

Since pi �= pj , setting s = −p1 in Eq. (15.50) leaves only k1 on the
right-hand side of Eq. (15.50). Hence,

(s + p1)F (s)
∣∣
s=−p1

= k1 (15.51)

Thus, in general,

ki = (s + pi)F (s)
∣∣
s=−pi (15.52)

This is known as Heaviside’s theorem. Once the values of ki are known,
we proceed to find the inverse ofF(s) using Eq. (15.49). Since the inverse
transform of each term in Eq. (15.49) is L−1[k/(s + a)] = ke−atu(t),
then, from Table 15.1,

f (t) = (
k1e

−p1t + k2e
−p2t + · · · + kne−pnt

)
(15.53)

15 . 4 . 2 Repea t ed Po l e s
Suppose F(s) has n repeated poles at s = −p. Then we may represent
F(s) as

F(s) = kn

(s + p)n + kn−1

(s + p)n−1
+ · · · + k2

(s + p)2

+ k1

s + p + F1(s)

(15.54)

where F1(s) is the remaining part of F(s) that does not have a pole at
s = −p. We determine the expansion coefficient kn as

kn = (s + p)nF (s) ∣∣
s=−p (15.55)
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as we did above. To determine kn−1, we multiply each term in Eq. (15.54)
by (s + p)n and differentiate to get rid of kn, then evaluate the result at
s = −p to get rid of the other coefficients except kn−1. Thus, we obtain

kn−1 = d

ds
[(s + p)nF (s)] ∣∣

s=−p (15.56)

Repeating this gives

kn−2 = 1

2!

d2

ds2
[(s + p)nF (s)] ∣∣

s=−p (15.57)

The mth term becomes

kn−m = 1

m!

dm

dsm
[(s + p)nF (s)] ∣∣

s=−p (15.58)

where m = 1, 2, . . . , n − 1. One can expect the differentiation to be
difficult to handle as m increases. Once we obtain the values of k1,
k2, . . . , kn by partial fraction expansion, we apply the inverse transform

L−1

[
1

(s + a)n
]

= tn−1e−at

(n− 1)!
(15.59)

to each term in the right-hand side of Eq. (15.54) and obtain

f (t) = k1e
−pt + k2te

−pt + k3

2!
t2e−pt

+ · · · + kn

(n− 1)!
tn−1e−pt + f1(t)

(15.60)

15 . 4 . 3 Comp l ex Po l e s
A pair of complex poles is simple if it is not repeated; it is a double or
multiple pole if repeated. Simple complex poles may be handled the
same as simple real poles, but because complex algebra is involved the
result is always cumbersome. An easier approach is a method known as
completing the square. The idea is to express each complex pole pair (or
quadratic term) in D(s) as a complete square such as (s + α)2 + β2 and
then use Table 15.2 to find the inverse of the term.

Since N(s) and D(s) always have real coefficients and we know
that the complex roots of polynomials with real coefficients must occur
in conjugate pairs, F(s) may have the general form

F(s) = A1s + A2

s2 + as + b + F1(s) (15.61)

where F1(s) is the remaining part of F(s) that does not have this pair of
complex poles. If we complete the square by letting

s2 + as + b = s2 + 2αs + α2 + β2 = (s + α)2 + β2 (15.62)

and we also let

A1s + A2 = A1(s + α)+ B1β (15.63)

then Eq. (15.61) becomes

F(s) = A1(s + α)
(s + α)2 + β2

+ B1β

(s + α)2 + β2
+ F1(s) (15.64)
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From Table 15.2, the inverse transform is

f (t) = A1e
−αt cosβt + B1e

−αt sinβt + f1(t) (15.65)

The sine and cosine terms can be combined using Eq. (9.12).
Whether the pole is simple, repeated, or complex, a general ap-

proach that can always be used in finding the expansion coefficients is
the method of algebra, illustrated in Examples 15.9 to 15.11. To apply
the method, we first set F(s) = N(s)/D(s) equal to an expansion con-
taining unknown constants. We multiply the result through by a common
denominator. Then we determine the unknown constants by equating
coefficients (i.e., by algebraically solving a set of simultaneous equations
for these coefficients at like powers of s).

Another general approach is to substitute specific, convenient val-
ues of s to obtain as many simultaneous equations as the number of
unknown coefficients, and then solve for the unknown coefficients. We
must make sure that each selected value of s is not one of the poles of
F(s). Example 15.11 illustrates this idea.

E X A M P L E 1 5 . 8

Find the inverse Laplace transform of

F(s) = 3

s
− 5

s + 1
+ 6

s2 + 4
Solution:

The inverse transform is given by

f (t) = L−1[F(s)] = L−1

(
3

s

)
− L−1

(
5

s + 1

)
+ L−1

(
6

s2 + 4

)

= 3u(t)− 5e−t + 3 sin 2t, t ≥ 0

where Table 15.2 has been consulted for the inverse of each term.

P R A C T I C E P R O B L E M 1 5 . 8

Determine the inverse Laplace transform of

F(s) = 1 + 4

s + 3
− 5s

s2 + 16
Answer: δ(t)+ 4e−3t − 5 cos 4t, t ≥ 0.

E X A M P L E 1 5 . 9

Find f (t) given that

F(s) = s2 + 12

s(s + 2)(s + 3)
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Solution:

Unlike in the previous example where the partial fractions have been
provided, we first need to determine the partial fractions. Since there are
three poles, we let

s2 + 12

s(s + 2)(s + 3)
= A

s
+ B

s + 2
+ C

s + 3
(15.9.1)

where A, B, and C are the constants to be determined. We can find the
constants using two approaches.

METHOD 1 Residue method:

A = sF (s)
∣∣
s=0 = s2 + 12

(s + 2)(s + 3)

∣∣∣∣
s=0

= 12

(2)(3)
= 2

B = (s + 2)F (s)
∣∣
s=−2 = s2 + 12

s(s + 3)

∣∣∣∣
s=−2

= 4 + 12

(−2)(1)
= −8

C = (s + 3)F (s)
∣∣
s=−3 = s2 + 12

s(s + 2)

∣∣∣∣
s=−3

= 9 + 12

(−3)(−1)
= 7

METHOD 2 Algebraic method: Multiplying both sides of Eq.
(15.9.1) by s(s + 2)(s + 3) gives

s2 + 12 = A(s + 2)(s + 3)+ Bs(s + 3)+ Cs(s + 2)

or

s2 + 12 = A(s2 + 5s + 6)+ B(s2 + 3s)+ C(s2 + 2s)

Equating the coefficients of like powers of s gives

Constant: 12 = 6A �⇒ A = 2

s : 0 = 5A+ 3B + 2C �⇒ 3B + 2C = −10

s2 : 1 = A+ B + C �⇒ B + C = −1

Thus A = 2, B = −8, C = 7, and Eq. (15.9.1) becomes

F(s) = 2

s
− 8

s + 2
+ 7

s + 3

By finding the inverse transform of each term, we obtain

f (t) = 2u(t)− 8e−2t + 7e−3t , t ≥ 0.

P R A C T I C E P R O B L E M 1 5 . 9

Find f (t) if

F(s) = 6(s + 2)

(s + 1)(s + 3)(s + 4)

Answer: f (t) = e−t + 3e−3t − 4e−4t , t ≥ 0.
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E X A M P L E 1 5 . 1 0

Calculate v(t) given that

V (s) = 10s2 + 4

s(s + 1)(s + 2)2

Solution:

While the previous example is on simple roots, this example is on repeated
roots. Let

V (s) = 10s2 + 4

s(s + 1)(s + 2)2

= A

s
+ B

s + 1
+ C

(s + 2)2
+ D

s + 2

(15.10.1)

METHOD 1 Residue method:

A = sV (s)
∣∣
s=0 = 10s2 + 4

(s + 1)(s + 2)2

∣∣∣∣
s=0

= 4

(1)(2)2
= 1

B = (s + 1)V (s)
∣∣
s=−1 = 10s2 + 4

s(s + 2)2

∣∣∣∣
s=−1

= 14

(−1)(1)2
= −14

C = (s + 2)2V (s)
∣∣
s=−2 = 10s2 + 4

s(s + 1)

∣∣∣∣
s=−2

= 44

(−2)(−1)
= 22

D = d

ds
[(s + 2)2V (s)]

∣∣∣∣
s=−2

= d

ds

(
10s2 + 4

s2 + s
) ∣∣∣∣

s=−2

= (s2 + s)(20s)− (10s2 + 4)(2s + 1)

(s2 + s)2
∣∣∣∣
s=−2

= 52

4
= 13

METHOD 2 Algebraic method: Multiplying Eq. (15.10.1) by
s(s + 1)(s + 2)2, we obtain

10s2 + 4 = A(s + 1)(s + 2)2 + Bs(s + 2)2

+ Cs(s + 1)+Ds(s + 1)(s + 2)

or

10s2 + 4 = A(s3 + 5s2 + 8s + 4)+ B(s3 + 4s2 + 4s)

+ C(s2 + s)+D(s3 + 3s2 + 2s)

Equating coefficients,

Constant: 4 = 4A �⇒ A = 1

s: 0 = 8A+ 4B + C + 2D �⇒ 4B + C + 2D = −8

s2: 10 = 5A+ 4B + C + 3D �⇒ 4B + C + 3D = 5

s3: 0 = A+ B +D �⇒ B +D = −1

Solving these simultaneous equations gives A = 1, B = −14, C = 22,
D = 13, so that

V (s) = 1

s
− 14

s + 1
+ 13

s + 2
+ 22

(s + 2)2
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Taking the inverse transform of each term, we get

v(t) = u(t)− 14e−t + 13e−2t + 22te−2t , t ≥ 0

P R A C T I C E P R O B L E M 1 5 . 1 0

Obtain g(t) if

G(s) = s3 + 2s + 6

s(s + 1)2(s + 3)

Answer: 2u(t)− 3.25e−t − 1.5te−t + 2.25e−3t , t ≥ 0.

E X A M P L E 1 5 . 1 1

Find the inverse transform of the frequency-domain function in Example
15.7:

H(s) = 20

(s + 3)(s2 + 8s + 25)
Solution:

In this example,H(s) has a pair of complex poles at s2 + 8s+ 25 = 0 or
s = −4 ± j3. We let

H(s) = 20

(s + 3)(s2 + 8s + 25)
= A

s + 3
+ Bs + C
(s2 + 8s + 25)

(15.11.1)

We now determine the expansion coefficients in two ways.

METHOD 1 Combination of methods: We can obtain A using the
method of residue,

A = (s + 3)H(s)
∣∣
s=−3 = 20

s2 + 8s + 25

∣∣∣∣
s=−3

= 20

10
= 2

Although B and C can be obtained using the method of residue, we
will not do so, to avoid complex algebra. Rather, we can substitute two
specific values of s [say s = 0, 1, which are not poles of F(s)] into Eq.
(15.11.1). This will give us two simultaneous equations from which to
find B and C. If we let s = 0 in Eq. (15.11.1), we obtain

20

75
= A

3
+ C

25
or

20 = 25A+ 3C (15.11.2)

Since A = 2, Eq. (15.11.2) gives C = −10. Substituting s = 1 into Eq.
(15.11.1) gives

20

(4)(34)
= A

4
+ B + C

34
or

20 = 34A+ 4B + 4C (15.11.3)

But A = 2, C = −10, so that Eq. (15.11.3) gives B = −2.
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M E THOD 2 Algebraic method: Multiplying both sides of Eq.
(15.11.1) by (s + 3)(s2 + 8s + 25) yields

20 = A(s2 + 8s + 25)+ (Bs + C)(s + 3)

= A(s2 + 8s + 25)+ B(s2 + 3s)+ C(s + 3)
(15.11.4)

Equating coefficients,

s2: 0 = A+ B �⇒ A = −B
s: 0 = 8A+ 3B + C = 5A+ C �⇒ C = −5A

Constant: 20 = 25A+ 3C = 25A− 15A �⇒ A = 2

That is, B = −2, C = −10. Thus

H(s) = 2

s + 3
− 2s + 10

(s2 + 8s + 25)
= 2

s + 3
− 2(s + 4)+ 2

(s + 4)2 + 9

= 2

s + 3
− 2(s + 4)

(s + 4)2 + 9
− 2

3

3

(s + 4)2 + 9

Taking the inverse of each term, we obtain

h(t) = 2e−3t − 2e−4t cos 3t − 2

3
e−4t sin 3t (15.11.5)

It is alright to leave the result this way. However, we can combine the
cosine and sine terms as

h(t) = 2e−3t − Ae−4t cos(3t − θ) (15.11.6)

To obtain Eq. (15.11.6) from Eq. (15.11.5), we apply Eq. (9.12). Next,
we determine the coefficient A and the phase angle θ :

A =
√

22 + (
2
3

)2 = 2.108, θ = tan−1
2
3

2
= 18.43◦

Thus,

h(t) = 2e−3t − 2.108e−4t cos(3t − 18.43◦)

P R A C T I C E P R O B L E M 1 5 . 1 1

Find g(t) given that

G(s) = 10

(s + 1)(s2 + 4s + 13)

Answer: e−t − e−2t cos 3t + 1

3
e−2t sin 3t , t ≥ 0.

15.5 APPLICATION TO CIRCUITS
Having mastered how to obtain the Laplace transform and its inverse, we
are now prepared to employ the Laplace transform to analyze circuits.
This usually involves three steps.
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S t e p s i n a p p l y i n g t h e L a p l a c e t r a n s f o rm :
1. Transform the circuit from the time domain to the s domain.

2. Solve the circuit using nodal analysis, mesh analysis, source
transformation, superposition, or any circuit analysis technique
with which we are familiar.

3. Take the inverse transform of the solution and thus obtain the
solution in the time domain.

Only the first step is new and will be discussed here. As we did in phasor
analysis, we transform a circuit in the time domain to the frequency or s
domain by Laplace transforming each term in the circuit.

As one can infer from step 2, all the circuit anal-
ysis techniques applied for dc circuits are appli-
cable to the s domain.

For a resistor, the voltage-current relationship in the time domain
is

v(t) = Ri(t) (15.66)

Taking the Laplace transform, we get

V (s) = RI (s) (15.67)

For an inductor,

v(t) = L
di(t)

dt
(15.68)

Taking the Laplace transform of both sides gives

V (s) = L[sI (s)− i(0−)] = sLI (s)− Li(0−) (15.69)

or

I (s) = 1

sL
V (s)+ i(0−)

s
(15.70)

The s-domain equivalents are shown in Fig. 15.10, where the initial con-
dition is modeled as a voltage or current source.

i(t)

+

−

v(t)

i(0)

L

(a)

I(s)

+

−

V(s)

sL

(b)

+
− Li(0)

(c)

V(s)

I(s)

+

−

sL i(0)
s

Figure 15.10 Representation of an
inductor: (a) time-domain, (b,c) s-domain
equivalents.

The elegance of using the Laplace transform in
circuit analysis lies in the automatic inclusion of
the initial conditions in the transformation pro-
cess, thus providing a complete (transient and
steady-state) solution.

For a capacitor,

i(t) = C
dv(t)

dt
(15.71)

which transforms into the s domain as

I (s) = C[sV (s)− v(0−)] = sCV (s)− Cv(0−) (15.72)

or

V (s) = 1

sC
I (s)+ v(0−)

s
(15.73)

The s-domain equivalents are shown in Fig. 15.11. With the s-domain
equivalents, the Laplace transform can be used readily to solve first-
and second-order circuits such as those we considered in Chapters 7
and 8. We should observe from Eqs. (15.68) to (15.73) that the initial
conditions are part of the transformation. This is one advantage of using
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i(t)

+

−

(a)

+

−

v(t) v(0) C
v(0)

I(s)

+

−

(b)

+

−

V(s)
+
−

(c)

V(s)

I(s)

+

−

Cv(o)

+

−

sC
1

sC
1

s

Figure 15.11 Representation of a capacitor: (a) time-domain, (b,c) s-domain equivalents.

the Laplace transform in circuit analysis. Another advantage is that a
complete response—transient and steady state—of a network is obtained.
We will illustrate this with Examples 15.13 and 15.14. Also, observe the
duality of Eqs. (15.70) and (15.73), confirming what we already know
from Chapter 8 (see Table 8.1), namely, thatL andC, I (s) and V (s), and
v(0) and i(0) are dual pairs.

If we assume zero initial conditions for the inductor and the capac-
itor, the above equations reduce to:

Resistor: V (s) = RI (s)

Inductor: V (s) = sLI (s)

Capacitor: V (s) = 1

sC
I (s)

(15.74)

The s-domain equivalents are shown in Fig. 15.12.

+

−

i(t)

v(t) R

+

−

I(s)

V(s) R

i(t)

+

−

v(t) L

I(s)

+

−

V(s) sL

i(t)

+

−

v(t) C

I(s)

+

−

V(s) sC
1

(a)

(b)

(c)

Figure 15.12 Time-domain and
s-domain representations of passive
elements under zero initial conditions.

We define the impedance in the s-domain as the ratio of the voltage
transform to the current transform under zero initial conditions, that is,

Z(s) = V (s)

I (s)
(15.75)

Thus the impedances of the three circuit elements are

Resistor: Z(s) = R

Inductor: Z(s) = sL

Capacitor: Z(s) = 1

sC

(15.76)

Table 15.3 summarizes these. The admittance in the s domain is the
reciprocal of the impedance, or

Y (s) = 1

Z(s)
= I (s)

V (s)
(15.77)

The use of the Laplace transform in circuit analysis facilitates the use
of various signal sources such as impulse, step, ramp, exponential, and
sinusoidal.

TABLE 15.3 Impedance of an
element in the s domain.∗

Element Z(s) = V (s)/I (s)

Resistor R

Inductor sL

Capacitor 1/sC

∗Assuming zero initial conditions

E X A M P L E 1 5 . 1 2

Find vo(t) in the circuit in Fig. 15.13, assuming zero initial conditions.
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Solution:

We first transform the circuit from the time domain to the s domain.

u(t) �⇒ 1

s
1 H �⇒ sL = s

1

3
F �⇒ 1

sC
= 3

s

The resulting s-domain circuit is in Fig. 15.14. We now apply mesh
analysis. For mesh 1,

1

s
=
(

1 + 3

s

)
I1 − 3

s
I2 (15.12.1)

For mesh 2,

0 = −3

s
I1 +

(
s + 5 + 3

s

)
I2

or

I1 = 1

3
(s2 + 5s + 3)I2 (15.12.2)

Substituting this into Eq. (15.12.1),

1

s
=
(

1 + 3

s

)
1

3
(s2 + 5s + 3)I2 − 3

s
I2

Multiplying through by 3s gives

3 = (s3 + 8s2 + 18s)I2 �⇒ I2 = 3

s3 + 8s2 + 18s

Vo(s) = sI2 = 3

s2 + 8s + 18
= 3√

2

√
2

(s + 4)2 + (√2)2

Taking the inverse transform yields

vo(t) = 3√
2
e−4t sin

√
2t V, t ≥ 0

1 H

1 Ω 5 Ω

vo(t)
+

−
+
−u(t) F1

3

Figure 15.13 For Example 15.12.

3 s

1 Ω 5 Ω

Vo(s)
+

−
+
−

I1(s) I2(s)

s
1
s

Figure 15.14 Mesh analysis of the frequency-
domain equivalent of the same circuit.

P R A C T I C E P R O B L E M 1 5 . 1 2

Determine vo(t) in the circuit of Fig. 15.15, assuming zero initial condi-
tions.

+

−
4 Ω vo(t)

1 H

2u(t) VF1
4

Figure 15.15 For Practice Prob. 15.12.

Answer: 8(1 − e−2t − 2te−2t )u(t) V.

E X A M P L E 1 5 . 1 3

Find vo(t) in the circuit of Fig. 15.16. Assume vo(0) = 5 V.
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+

−
+
− 0.1 F

10 Ω

10 Ω vo(t) 2d(t) V10e−tu(t) V

Figure 15.16 For Example 15.13.

Solution:

We transform the circuit to the s domain as shown in Fig. 15.17. The
initial condition is included in the form of the current source Cvo(0) =
0.1(5) = 0.5 A. [See Fig. 15.11(c).] We apply nodal analysis. At the top
node,

10/(s + 1)− Vo
10

+ 2 + 0.5 = Vo

10
+ Vo

10/s

or

1

s + 1
+ 2.5 = 2Vo

10
+ sVo

10
= 1

10
Vo(s + 2)

Multiplying through by 10,

10

s + 1
+ 25 = Vo(s + 2)

or

Vo = 25s + 35

(s + 1)(s + 2)
= A

s + 1
+ B

s + 2

where

A = (s + 1)Vo(s)
∣∣
s=−1 = 25s + 35

(s + 2)

∣∣∣∣
s=−1

= 10

1
= 10

B = (s + 2)Vo(s)
∣∣
s=−2 = 25s + 35

(s + 1)

∣∣∣∣
s=−2

= −15

−1
= 15

Thus,

Vo(s) = 10

s + 1
+ 15

s + 2

Taking the inverse Laplace transform, we obtain

vo(t) = (10e−t + 15e−2t )u(t)

10 Ω

10 Ω+
−

10
s

10
s + 1 0.5 A 2 A

Vo(s)

Figure 15.17 Nodal analysis of the equivalent of the circuit in
Fig. 15.16.
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P R A C T I C E P R O B L E M 1 5 . 1 3

Find vo(t) in the circuit shown in Fig. 15.18.

2 H

1 Ω

2 Ω vo(t)
+

−
+
−e−2tu(t) V

Figure 15.18 For Practice Prob. 15.13.

Answer: ( 4
5e

−2t + 8
15e

−t/3)u(t).

E X A M P L E 1 5 . 1 4

In the circuit in Fig. 15.19(a), the switch moves from position a to posi-
tion b at t = 0. Find i(t) for t > 0.

+
−

t = 0 R

R

L

a

b
Io

(a)

(b)

Vo

i(t)

+
−

+
−

sL

I(s)

LIo

Vo
s

Figure 15.19 For Example 15.14.

Solution:

The initial current through the inductor is i(0) = Io. For t > 0, Fig.
15.19(b) shows the circuit transformed to the s domain. The initial con-
dition is incorporated in the form of a voltage source as Li(0) = LIo.
Using mesh analysis,

I (s)(R + sL)− LIo − Vo

s
= 0 (15.14.1)

or

I (s) = LIo

R + sL + Vo

s(R + sL) = Io

s + R/L + Vo/L

s(s + R/L) (15.14.2)

Applying partial fraction expansion on the second term on the right-hand
side of Eq. (15.14.2) yields

I (s) = Io

s + R/L + Vo/R

s
− Vo/R

(s + R/L) (15.14.3)

The inverse Laplace transform of this gives

i(t) =
(
Io − Vo

R

)
e−t/τ + Vo

R
, t ≥ 0 (15.14.4)

where τ = R/L. The term in fences is the transient response, while
the second term is the steady-state response. In other words, the final
value is i(∞) = Vo/R, which we could have predicted by applying the
final-value theorem on Eq. (15.14.2) or (15.14.3); that is,

lim
s→0

sI (s) = lim
s→0

(
sIo

s + R/L + Vo/L

s + R/L
)

= Vo

R
(15.14.5)

Equation (15.14.4) may also be written as

i(t) = Ioe
−t/τ + Vo

R
(1 − e−t/τ ), t ≥ 0 (15.14.6)

The first term is the natural response, while the second term is the forced
response. If the initial condition Io = 0, Eq. (15.14.6) becomes
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i(t) = Vo

R
(1 − e−t/τ ), t ≥ 0 (15.14.7)

which is the step response, since it is due to the step input Vo with no
initial energy.

P R A C T I C E P R O B L E M 1 5 . 1 4

The switch in Fig. 15.20 has been in position b for a long time. It is moved
to position a at t = 0. Determine v(t) for t > 0.

+
−

t = 0

+

−Vo
v(t)Io R C

a

b

Figure 15.20 For Practice Prob. 15.14.

Answer: v(t) = (Vo − IoR)e−t/τ + IoR, t > 0, where τ = RC.

15.6 TRANSFER FUNCTIONS
The transfer function is a key concept in signal processing because it
indicates how a signal is processed as it passes through a network. It is
a fitting tool for finding the network response, determining (or designing
for) network stability, and network synthesis. The transfer function of a
network describes how the output behaves in respect to the input. It spec-
ifies the transfer from the input to the output in the s domain, assuming
no initial energy.

For electrical networks, the transfer function is
also known as the network function.

The transfer function H(s) is the ratio of the output response Y (s) to the input
excitation X(s), assuming all initial conditions are zero.

Some authors would not consider Eqs. (15.79c)
and (15.79d) transfer functions.

Thus,

H(s) = Y (s)

X(s)
(15.78)

The transfer function depends on what we define as input and output.
Since the input and output can be either current or voltage at any place in
the circuit, there are four possible transfer functions:

H(s) = Voltage gain = Vo(s)

Vi(s)
(15.79a)

H(s) = Current gain = Io(s)

Ii(s)
(15.79b)

H(s) = Impedance = V (s)

I (s)
(15.79c)

H(s) = Admittance = I (s)

V (s)
(15.79d)
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Thus, a circuit can have many transfer functions. Note that H(s) is
dimensionless in Eqs. (15.79a) and (15.79b).

Each of the transfer functions in Eq. (15.79) can be found in two
ways. One way is to assume any convenient input X(s), use any circuit
analysis technique (such as current or voltage division, nodal or mesh
analysis) to find the output Y (s), and then obtain the ratio of the two. The
other approach is to apply the ladder method, which involves walking our
way through the circuit. By this approach, we assume that the output is
1 V or 1 A as appropriate and use the basic laws of Ohm and Kirchhoff
(KCL only) to obtain the input. The transfer function becomes unity
divided by the input. This approach may be more convenient to use
when the circuit has many loops or nodes so that applying nodal or mesh
analysis becomes cumbersome. In the first method, we assume an input
and find the output; in the second method, we assume the output and find
the input. In both methods, we calculate H(s) as the ratio of output to
input transforms. The two methods rely on the linearity property, since
we only deal with linear circuits in this book. Example 15.16 illustrates
these methods.

Equation (15.78) assumes that both X(s) and Y (s) are known.
Sometimes, we know the input X(s) and the transfer function H(s).
We find the output Y (s) as

Y (s) = H(s)X(s) (15.80)

and take the inverse transform to get y(t). A special case is when the
input is the unit impulse function, x(t) = δ(t), so that X(s) = 1. For
this case,

Y (s) = H(s) or y(t) = h(t) (15.81)

where

h(t) = L−1[H(s)] (15.82)

The term h(t) represents the unit impulse response—it is the time-domain
response of the network to a unit impulse. Thus, Eq. (15.82) provides a
new interpretation for the transfer function: H(s) is the Laplace transform
of the unit impulse response of the network. Once we know the impulse
response h(t) of a network, we can obtain the response of the network to
any input signal using Eq. (15.80) in the s domain or using the convolution
integral (see next section) in the time domain.

The unit impulse response is the output response
of a circuit when the input is a unit impulse.

E X A M P L E 1 5 . 1 5

The output of a linear system is y(t) = 10e−t cos 4tu(t)when the input is
x(t) = e−t u(t). Find the transfer function of the system and its impulse
response.

Solution:

If x(t) = e−t u(t) and y(t) = 10e−t cos 4tu(t), then

X(s) = 1

s + 1
and Y (s) = 10(s + 1)

(s + 1)2 + 42
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Hence,

H(s) = Y (s)

X(s)
= 10

(s + 1)2 + 16
= 10

s2 + 2s + 17

To find h(t), we write H(s) as

H(s) = 10

4

4

(s + 1)2 + 42

From Table 15.2, we obtain

h(t) = 2.5e−t sin 4t

P R A C T I C E P R O B L E M 1 5 . 1 5

The transfer function of a linear system is

H(s) = 2s

s + 6

Find the output y(t) due to the input e−3t u(t) and its impulse response.

Answer: −2e−3t + 4e−6t , t ≥ 0, 2δ(t)− 12e−6t u(t).

E X A M P L E 1 5 . 1 6

Determine the transfer functionH(s) = Vo(s)/Io(s) of the circuit in Fig.
15.21.

+

−
Vo

+
−

1 Ω

2 Ω

4 Ω

s

V(s)

1
2sIo I2

I1

Figure 15.21 For Example 15.16.

Solution:

METHOD 1 By current division,

I2 = (s + 4)Io
s + 4 + 2 + 1/2s

But

Vo = 2I2 = 2(s + 4)Io
s + 6 + 1/2s

Hence,

H(s) = Vo(s)

Io(s)
= 4s(s + 4)

2s2 + 12s + 1

METHOD 2 We can apply the ladder method. We let Vo = 1 V. By
Ohm’s law, I2 = Vo/2 = 1/2 A. The voltage across the (2 + 1/2s)
impedance is

V1 = I2

(
2 + 1

2s

)
= 1 + 1

4s
= 4s + 1

4s
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This is the same as the voltage across the (s + 4) impedance. Hence,

I1 = V1

s + 4
= 4s + 1

4s(s + 4)

Applying KCL at the top node yields

Io = I1 + I2 = 4s + 1

4s(s + 4)
+ 1

2
= 2s2 + 12s + 1

4s(s + 4)
Hence,

H(s) = Vo

Io
= 1

Io
= 4s(s + 4)

2s2 + 12s + 1
as before.

P R A C T I C E P R O B L E M 1 5 . 1 6

Find the transfer functionH(s) = I1(s)/Io(s) in the circuit of Fig. 15.21.

Answer:
4s + 1

2s2 + 12s + 1
.

E X A M P L E 1 5 . 1 7

For the s-domain circuit in Fig. 15.22, find: (a) the transfer function
H(s) = Vo/Vi , (b) the impulse response, (c) the response when vi(t) =
u(t) V, (d) the response when vi(t) = 8 cos 2t V. +

−
Vo

+
−Vi

1 Ω

1 Ω 1 Ω

a s

b

Figure 15.22 For Example 15.17.

Solution:

(a) Using voltage division,

Vo = 1

s + 1
Vab (15.17.1)

But

Vab = 1 ‖ (s + 1)

1 + 1 ‖ (s + 1)
Vi = (s + 1)/(s + 2)

1 + (s + 1)/(s + 2)
Vi

or

Vab = s + 1

2s + 3
Vi (15.17.2)

Substituting Eq. (15.17.2) into Eq. (15.17.1) results in

Vo = Vi

2s + 3
Thus, the impulse response is

H(s) = Vo

Vi
= 1

2s + 3
(b) We may write H(s) as

H(s) = 1

2

1

s + 3
2

Its inverse Laplace transform is the required impulse response:

h(t) = 1

2
e−3t/2u(t)
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(c) When vi(t) = u(t), Vi(s) = 1/s, and

Vo(s) = H(s)Vi(s) = 1

2s(s + 3
2 )

= A

s
+ B

s + 3
2

where

A = sVo(s)
∣∣
s=0 = 1

2(s + 3
2 )

∣∣∣∣
s=0

= 1

3

B =
(
s + 3

2

)
Vo(s)

∣∣∣∣
s=−3/2

= 1

2s

∣∣∣∣
s=−3/2

= −1

3

Hence, for vi(t) = u(t),

Vo(s) = 1

3

(
1

s
− 1

s + 3
2

)

and its inverse Laplace transform is

vo(t) = 1

3
(1 − e−3t/2)u(t) V

(d) When vi(t) = 8 cos 2t , then Vi(s) = 8s

s2 + 4
, and

Vo(s) = H(s)Vi(s) = 4s

(s + 3
2 )(s

2 + 4)

= A

s + 3
2

+ Bs + C
s2 + 4

(15.17.3)

where

A =
(
s + 3

2

)
Vo(s)

∣∣∣∣
s=−3/2

= 4s

s2 + 4

∣∣∣∣
s=−3/2

= −24

25

To get B and C, we multiply Eq. (15.17.3) by (s + 3/2)(s2 + 4). We get

4s = A(s2 + 4)+ B
(
s2 + 3

2
s

)
+ C

(
s + 3

2

)

Equating coefficients,

Constant: 0 = 4A+ 3

2
C �⇒ C = −8

3
A

s : 4 = 3

2
B + C

s2 : 0 = A+ B �⇒ B = −A
Solving these gives A = −24/25, B = 24/25, C = 64/25. Hence, for
vi(t) = 8 cos 2t V,

Vo(s) = − 24
25

s + 3
2

+ 24

25

s

s2 + 4
+ 32

25

2

s2 + 4

and its inverse is

vo(t) = 24

25

(
−e−3t/2 + cos 2t + 4

3
sin 2t

)
u(t) V
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P R A C T I C E P R O B L E M 1 5 . 1 7

Rework Example 15.17 for the circuit shown in Fig. 15.23.

1 Ω Vo
+
−

+

−

1 Ω

Vi
2
s

Figure 15.23 For Practice Prob. 15.17.

Answer: (a) 2/(s + 4), (b) 2e−4t u(t), (c) 1
2 (1 − e−4t )u(t) V,

(d) 3
2 (e

−4t + cos 2t + 1
2 sin 2t)u(t) V.

15.7 THE CONVOLUTION INTEGRAL
The term convolution means “ folding.” Convolution is an invaluable tool
to the engineer because it provides a means of viewing and characterizing
physical systems. For example, it is used in finding the response y(t) of a
system to an excitation x(t), knowing the system impulse response h(t).
This is achieved through the convolution integral, defined as

y(t) =
∫ ∞

−∞
x(λ)h(t − λ) dλ (15.83)

or simply

y(t) = x(t) ∗ h(t) (15.84)

where λ is a dummy variable and the asterisk denotes convolution. Equa-
tion (15.83) or (15.84) states that the output is equal to the input convolved
with the unit impulse response. The convolution process is commutative:

y(t) = x(t) ∗ h(t) = h(t) ∗ x(t) (15.85a)

or

y(t) =
∫ ∞

−∞
x(λ)h(t − λ) dλ =

∫ ∞

−∞
h(λ)x(t − λ) dλ (15.85b)

This implies that the order in which the two functions are convolved is
immaterial. We will see shortly how to take advantage of this commuta-
tive property when performing graphical computation of the convolution
integral.

The convolution of two signals consists of time-reversing one of the signals,
shifting it, and multiplying it point by point with the second signal,

and integrating the product.

The convolution integral in Eq. (15.83) is the general one; it applies
to any linear system. However, the convolution integral can be simplified
if we assume that a system has two properties. First, if x(t) = 0 for
t < 0, then

y(t) =
∫ ∞

−∞
x(λ)h(t − λ) dλ =

∫ ∞

0
x(λ)h(t − λ) dλ (15.86)
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Second, if the system’s impulse response is causal (i.e., h(t) = 0 for
t < 0), then h(t − λ) = 0 for t − λ < 0 or λ > t , so that Eq. (15.86)
becomes

y(t) = h(t) ∗ x(t) =
∫ t

0
x(λ)h(t − λ) dλ (15.87)

Here are some properties of the convolution integral.

1. x(t) ∗ h(t) = h(t) ∗ x(t) (Commutative)

2. f (t) ∗ [x(t)+ y(t)] = f (t) ∗ x(t)+ f (t) ∗ y(t) (Distributive)

3. f (t) ∗ [x(t) ∗ y(t)] = [f (t) ∗ x(t)] ∗ y(t) (Associative)

4. f (t) ∗ δ(t) =
∫ ∞

−∞
f (λ)δ(t − λ) dλ = f (t)

5. f (t) ∗ δ(t − to) = f (t − to)
6. f (t) ∗ δ′(t) =

∫ ∞

−∞
f (λ)δ′(t − λ) dλ = f ′(t)

7. f (t) ∗ u(t) =
∫ ∞

−∞
f (λ)u(t − λ) dλ =

∫ t

−∞
f (λ) dλ

Before learning how to evaluate the convolution integral in Eq.
(15.87), let us establish the link between the Laplace transform and the
convolution integral. Given two functions f1(t) and f2(t) with Laplace
transforms F1(s) and F2(s), respectively, their convolution is

f (t) = f1(t) ∗ f2(t) =
∫ t

0
f1(λ)f2(t − λ) dλ (15.88)

Taking the Laplace transform gives

F(s) = L[f1(t) ∗ f2(t)] = F1(s)F2(s) (15.89)

To prove that Eq. (15.89) is true, we begin with the fact that F1(s)

is defined as

F1(s) =
∫ ∞

0
f1(λ)e

−sλ dλ (15.90)

Multiplying this with F2(s) gives

F1(s)F2(s) =
∫ ∞

0
f1(λ)[F2(s)e

−sλ] dλ (15.91)

We recall from the time shift property in Eq. (15.17) that the term in
brackets can be written as

F2(s)e
−sλ = L[f2(t − λ)u(t − λ)]

=
∫ ∞

0
f2(t − λ)u(t − λ)e−sλ dt

(15.92)

Substituting Eq. (15.92) into Eq. (15.91) gives

F1(s)F2(s) =
∫ ∞

0
f1(λ)

[∫ ∞

0
f2(t − λ)u(t − λ)e−sλ dt

]
dλ (15.93)

Interchanging the order of integration results in

F1(s)F2(s) =
∫ ∞

0

[∫ t

0
f1(λ)f2(t − λ) dλ

]
e−sλ dt (15.94)
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The integral in brackets extends only from 0 to t because the delayed unit
step u(t − λ) = 1 for λ < t and u(t − λ) = 0 for λ > t . We notice
that the integral is the convolution of f1(t) and f2(t) as in Eq. (15.88).
Hence,

F1(s)Fs(s) = L[f1(t) ∗ f2(t)] (15.95)

as desired. This indicates that convolution in the time domain is equivalent
to multiplication in the s domain. For example, if x(t) = 4e−t and
h(t) = 5e−2t , applying the property in Eq. (15.95), we get

h(t) ∗ x(t) = L−1[H(s)X(s)] = L−1

[(
5

s + 2

)(
4

s + 1

)]

= L−1

[
20

s + 1
+ −20

s + 2

]

= 20(e−t − e−2t ), t ≥ 0

(15.96)

Although we can find the convolution of two signals using Eq.
(15.95), as we have just done, if the product F1(s)F2(s) is very com-
plicated, finding the inverse may be tough. Also, there are situations in
which f1(t) and f2(t) are available in the form of experimental data and
there are no explicit Laplace transforms. In these cases, one must do the
convolution in the time domain.

The process of convolving two signals in the time domain is better
appreciated from a graphical point of view. The graphical procedure for
evaluating the convolution integral in Eq. (15.87) usually involves four
steps.

S t e p s t o e v a l u a t e t h e c o n v o l u t i o n i n t e g r a l :
1. Folding: Take the mirror image of h(λ) about the ordinate axis to

obtain h(−λ).
2. Displacement: Shift or delay h(−λ) by t to obtain h(t − λ).
3. Multiplication: Find the product of h(t − λ) and x(λ).

4. Integration: For a given time t , calculate the area under the
product h(t − λ)x(λ) for 0 < λ < t to get y(t) at t .

The folding operation in step 1 is the reason for the term convolution. The
function h(t − λ) scans or slides over x(λ). In view of this superposition
procedure, the convolution integral is also known as the superposition
integral.

To apply the four steps, it is necessary to be able to sketch x(λ) and
h(t − λ). To get x(λ) from the original function x(t) involves merely
replacing t with λ. Sketching h(t − λ) is the key to the convolution
process. It involves reflecting h(λ) about the vertical axis and shifting it
by t . Analytically, we obtain h(t − λ) by replacing every t in h(t) by
t − λ. Since convolution is commutative, it may be more convenient to
apply steps 1 and 2 to x(t) instead of h(t). The best way to illustrate the
procedure is with some examples.
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E X A M P L E 1 5 . 1 8

Find the convolution of the two signals in Fig. 15.24.x1(t) x2(t)

2

0 1 t t

1

0 1 2 3

Figure 15.24 For Example 15.18.

Solution:

We follow the four steps to get y(t) = x1(t) ∗ x2(t). First, we fold x1(t)

as shown in Fig. 15.25(a) and shift it by t as shown in Fig. 15.25(b). For
different values of t , we now multiply the two functions and integrate to
determine the area of the overlapping region.

2

−1 0 l l

x1(−l) x1(t − l)

t − 1
0

t

2

(a) (b)

Figure 15.25 (a) Folding x1(λ),
(b) shifting x1(−λ) by t .

For 0 < t < 1, there is no overlap of the two functions, as shown
in Fig. 15.26(a). Hence,

y(t) = x1(t) ∗ x2(t) = 0, 0 < t < 1 (15.18.1)

For 1 < t < 2, the two signals overlap between 1 and t , as shown in Fig.
15.26(b).

y(t) =
∫ t

1
(2)(1) dλ = 2λ

∣∣∣∣
t

1

= 2(t − 1), 1 < t < 2 (15.18.2)

For 2 < t < 3, the two signals completely overlap between (t − 1) and t ,
as shown in Fig. 15.26(c). It is easy to see that the area under the curve
is 2. Or

y(t) =
∫ t

t−1
(2)(1) dλ = 2λ

∣∣∣∣
t

t−1

= 2, 2 < t < 3 (15.18.3)

For 3 < t < 4, the two signals overlap between (t − 1) and 3, as shown
in Fig. 15.26(d).

y(t) =
∫ 3

t−1
(2)(1) dλ = 2λ

∣∣∣∣
3

t−1

= 2(3 − t + 1) = 8 − 2t, 3 < t < 4

(15.18.4)

0 1 2 3t l

2

1

x1(t − l)

x2(l)

0 1 t 3t − 1 l

2

1

x1(t − l)

x2(l)

0 1 t 3t − 1 l

2

1

x1(t − l)

x2(l)

(a) (b) (c)

0 1 t3t − 1 l

2

1

x1(t − l)

x2(l)

(d)

0 1 t3 42 t − 1 l

2

1

x1(t − l)

x2(l)

(e)

4

Figure 15.26 Overlapping of x1(t − λ) and x2(λ) for: (a) 0 < t < 1, (b) 1 < t < 2, (c) 2 < t < 3,
(d) 3 < t < 4, (e) t > 4.
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For t > 4, the two signals do not overlap [Fig. 15.26(e)], and

y(t) = 0, t > 4 (15.18.5)

Combining Eqs. (15.18.1) to (15.18.5), we obtain

y(t) =




0, 0 ≤ t ≤ 1
2t − 2, 1 ≤ t ≤ 2
2, 2 ≤ t ≤ 3
8 − 2t, 3 ≤ t ≤ 4
0, t ≥ 4

(15.18.6)

which is sketched in Fig. 15.27. Notice that y(t) in this equation is
continuous. This fact can be used to check the results as we move from
one range of t to another. The result in Eq. (15.18.6) can be obtained
without using the graphical procedure—by directly using Eq. (15.87)
and the properties of step functions. This will be illustrated in Example
15.20.

0 1 2 3 4

2

y(t)

t

Figure 15.27 Convolution of signals x1(t)

and x2(t) in Fig. 15.24.

P R A C T I C E P R O B L E M 1 5 . 1 8

Graphically convolve the two functions in Fig. 15.28.

0 1

1

t

x1(t)

0 1

1

t

x2(t)

2

2

Figure 15.28 For Practice Prob. 15.18.

Answer: The result of the convolutiony(t) is shown in Fig. 15.29, where

y(t) =


t, 0 ≤ t ≤ 2
6 − 2t, 2 ≤ t ≤ 3
0, otherwise

0 1 2 3

2

t

y(t)

Figure 15.29 Convolution of the
signals in Fig. 15.28.

E X A M P L E 1 5 . 1 9

Graphically convolve g(t) and u(t) shown in Fig. 15.30.

Solution:

Let y(t) = g(t) ∗ u(t). We can find y(t) in two ways.

METHOD 1 Suppose we fold g(t), as in Fig. 15.31(a), and shift it by
t , as in Fig. 15.31(b). Since g(t) = t, 0 < t < 1 originally, we expect
that g(t − λ) = t − λ, 0 < t − λ < 1 or t − 1 < λ < t . There is no
overlap of the two functions when t < 0 so that y(0) = 0 for this case.
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g(−l)

1

−1 0 l

(a)

1

0 l

(b)

1

0 l

(c)

t − 1 t − 1t t

g(t − l) g(t − l)

u(l) u(l)

Figure 15.31 Convolution of g(t) and u(t) in Fig. 15.30 with g(t) folded.

g(t)

1

0 1 t

u(t)

1

0 t

Figure 15.30 For Example 15.19.

For 0 < t < 1, g(t − λ) and u(λ) overlap from 0 to t , as evident in Fig.
15.31(b). Therefore,

y(t) =
∫ t

0
(1)(t − λ) dλ =

(
tλ− 1

2
λ2

) ∣∣∣∣
t

0

= t2 − t2

2
= t2

2
, 0 ≤ t ≤ 1

(15.19.1)

For t > 1, the two functions overlap completely between (t − 1) and t
[see Fig. 15.31(c)]. Hence,

y(t) =
∫ t

t−1
(1)(t − λ) dλ

=
(
tλ− 1

2
λ2

) ∣∣∣∣
t

t−1

= 1

2
, t ≥ 1

(15.19.2)

Thus, from Eqs. (15.19.1) and (15.19.2),

y(t) =




1

2
t2, 0 ≤ t ≤ 1

1

2
, t ≥ 1

METHOD 2 Instead of foldingg, suppose we fold the unit step function
u(t), as in Fig. 15.32(a), and then shift it by t , as in Fig. 15.32(b). Since
u(t) = 1 for t > 0, u(t−λ) = 1 for t−λ > 0 or λ < t , the two functions
overlap from 0 to t , so that

y(t) =
∫ t

0
(1)λ dλ = 1

2
λ2

∣∣∣∣
t

0

= t2

2
, 0 ≤ t ≤ 1 (15.19.3)

u(−l)

1

0 l

(a)

1

0 l

(b)

1

0 l

(c)

1t t

g(l) = l u(t − l) = 1

u(t − l) = 1

1

g(l) = l

Figure 15.32 Convolution of g(t) and u(t) in Fig. 15.30 with u(t) folded.
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For t > 1, the two functions overlap between 0 and 1, as shown in Fig.
15.32(c). Hence,

y(t) =
∫ 1

0
(1)λ dλ = 1

2
λ2

∣∣∣∣
1

0

= 1

2
, t ≥ 1 (15.19.4)

And, from Eqs. (15.19.3) and (15.19.4),

y(t) =




1

2
t2, 0 ≤ t ≤ 1

1

2
, t ≥ 1

Although the two methods give the same result, as expected, notice
that it is more convenient to fold the unit step function u(t) than fold g(t)
in this example. Figure 15.33 shows y(t).

y(t)

0 1 t

1
2

Figure 15.33 Result of
Example 15.19.

P R A C T I C E P R O B L E M 1 5 . 1 9

Given g(t) and f (t) in Fig. 15.34, graphically find y(t) = g(t) ∗ f (t).

g(t)

1

0 1 t

f (t)

3

0 t

3e−t

Figure 15.34 For Practice Prob. 15.19.

Answer: y(t) =



3(1 − e−t ), 0 ≤ t ≤ 1
3(e − 1)e−t , t ≥ 1
0, elsewhere

E X A M P L E 1 5 . 2 0

For the RL circuit in Fig. 15.35(a), use the convolution integral to find
the response io(t) due to the excitation shown in Fig. 15.35(b).

Solution:

This problem can be solved in two ways: directly using the convolution
integral or using the graphical technique. To use either approach, we
first need the unit impulse response h(t) of the circuit. In the s domain,
applying the current division principle to the circuit in Fig. 15.36(a) gives

Io = 1

s + 1
Is
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Hence,

H(s) = Io

Is
= 1

s + 1
(15.20.1)

and the inverse Laplace transform of this gives

h(t) = e−t u(t) (15.20.2)

Figure 15.36(b) shows the impulse response h(t) of the circuit.

io

1 H1 Ωis(t)

(a)

(b)

1

0 2 t(s)

is(t) A

Figure 15.35 For Example 15.20.

Io

s1 ΩIs

(a)

(b)

1

t

h(t)

e−t

Figure 15.36 For the
circuit in Fig. 15.35:
(a) its s-domain equivalent,
(b) its impulse response.

METHOD 1 To use the convolution integral directly, recall that the
response is given in the s domain as

Io(s) = H(s)Is(s)

With the given is(t) in Fig. 15.35(b),

is(t) = u(t)− u(t − 2)

so that

io(t) = h(t) ∗ is(t) =
∫ t

0
is(λ)h(t − λ) dλ

=
∫ t

0
[u(λ)− u(λ− 2)]e−(t−λ) dλ

(15.20.3)

Since u(λ− 2) = 0 for 0 < λ < 2, the integrand involving u(λ) is non-
zero for all λ > 0, whereas the integrand involving u(λ − 2) is nonzero
only for λ > 2. The best way to handle the integral is to do the two parts
separately. For 0 < t < 2,

i ′o(t) =
∫ t

0
(1)e−(t−λ) dλ = e−t

∫ t

0
(1)eλ dλ

= e−t (et − 1) = 1 − e−t , 0 < t < 2

(15.20.4)

For t > 2,

i ′′o (t) =
∫ t

2
(1)e−(t−λ) dλ = e−t

∫ t

2
eλ dλ

= e−t (et − e2) = 1 − e2e−t , t > 2

(15.20.5)

Substituting Eqs. (15.20.4) and (15.20.5) into Eq. (15.20.3) gives

io(t) = i ′o(t)− i ′′o (t)
= (1 − e−t )[u(t − 2)− u(t)] − (1 − e2e−t )u(t − 2)

=
{

1 − e−t , 0 < t < 2
(e2 − 1)e−t , t > 2

(15.20.6)

t − 2 0 t l

is(t − l)

h(l)

(a)

t − 20 lt

is(t − l)

h(l)

(b)

1

1

Figure 15.37 For Example 15.20.

METHOD 2 To use the graphical technique, we may fold is(t) in Fig.
15.35(a) and shift by t , as shown in Fig. 15.37(a). For 0 < t < 2, the
overlap between is(t − λ) and h(λ) is from 0 to t , so that

io(t) =
∫ t

0
(1)e−λ dλ = −e−λ

∣∣∣∣
t

0

= 1 − e−t , 0 ≤ t ≤ 2 (15.20.7)
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For t > 2, the two functions overlap between (t − 2) and t , as in Fig.
15.37(b). Hence

io(t) =
∫ t

t−2
(1)e−λ dλ = −e−λ

∣∣∣∣
t

t−2

= −e−t + e−(t−2)

= (e2 − 1)e−t , t ≥ 0

(15.20.8)

From Eqs. (15.20.7) and (15.20.8), the response is

io(t) =
{

1 − e−t , 0 ≤ t ≤ 2
(e2 − 1)e−t , t ≥ 2

(15.20.9)

which is the same as in Eq. (15.20.6). Thus, the response io(t) along the
excitation is(t) is as shown in Fig. 15.38.

1

0 1 2 3 4 t

Excitation is

Response io

Figure 15.38 For Example 15.20;
excitation and response.

P R A C T I C E P R O B L E M 1 5 . 2 0

Use convolution to find vo(t) in the circuit of Fig. 15.39(a) when the ex-
citation is the signal shown in Fig. 15.39(b).

−
+
−

+

−

1 Ω

vovs

(a)

0 t

10

vs (V)

10e−t

(b)

0.5 F

Figure 15.39 For Practice Prob. 15.20.

Answer: 20(e−t − e−2t ) V.

†15.8 APPLICATION TO INTEGRODIFFERENTIAL
EQUATIONS

The Laplace transform is useful in solving linear integrodifferential equa-
tions. Using the differentiation and integration properties of Laplace
transforms, each term in the integrodifferential equation is transformed.
Initial conditions are automatically taken into account. We solve the re-
sulting algebraic equation in the s domain. We then convert the solution
back to the time domain by using the inverse transform. The following
examples illustrate the process.

E X A M P L E 1 5 . 2 1

Use the Laplace transform to solve the differential equation

d2v(t)

dt2
+ 6

dv(t)

dt
+ 8v(t) = 2u(t)

subject to v(0) = 1, v′(0) = −2.
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Solution:

We take the Laplace transform of each term in the given differential
equation and obtain

[s2V (s)− sv(0)− v′(0)] + 6[sV (s)− v(0)] + 8V (s) = 2

s

Substituting v(0) = 1, v′(0) = −2,

s2V (s)− s + 2 + 6sV (s)− 6 + 8V (s) = 2

s
or

(s2 + 6s + 8)V (s) = s + 4 + 2

s
= s2 + 4s + 2

s

Hence,

V (s) = s2 + 4s + 2

s(s + 2)(s + 4)
= A

s
+ B

s + 2
+ C

s + 4

where

A = sV (s)
∣∣
s=0 = s2 + 4s + 2

(s + 2)(s + 4)

∣∣∣∣
s=0

= 2

(2)(4)
= 1

4

B = (s + 2)V (s)
∣∣
s=−2 = s2 + 4s + 2

s(s + 4)

∣∣∣∣
s=−2

= −2

(−2)(2)
= 1

2

C = (s + 4)V (s)
∣∣
s=−4 = s2 + 4s + 2

s(s + 2)

∣∣∣∣
s=−4

= 2

(−4)(−2)
= 1

4

Hence,

V (s) =
1
4

s
+

1
2

s + 2
+

1
4

s + 4

By the inverse Laplace transform,

v(t) = 1

4
(1 + 2e−2t + e−4t )u(t)

P R A C T I C E P R O B L E M 1 5 . 2 1

Solve the following differential equation using the Laplace transform
method.

d2v(t)

dt2
+ 4

dv(t)

dt
+ 4v(t) = e−t

if v(0) = v′(0) = 1.

Answer: (e−t + 2te−2t )u(t).

E X A M P L E 1 5 . 2 2

Solve for the response y(t) in the following integrodifferential equation.

dy

dt
+ 5y(t)+ 6

∫ t

0
y(τ) dτ = u(t), y(0) = 2
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Solution:

Taking the Laplace transform of each term, we get

[sY (s)− y(0)] + 5Y (s)+ 6

s
Y (s) = 1

s

Substituting y(0) = 2 and multiplying through by s,

Y (s)(s2 + 5s + 6) = 1 + 2s

or

Y (s) = 2s + 1

(s + 2)(s + 3)
= A

s + 2
+ B

s + 3

where

A = (s + 2)Y (s)
∣∣
s=−2 = 2s + 1

s + 3

∣∣∣∣
s=−2

= −3

1
= −3

B = (s + 3)Y (s)
∣∣
s=−3 = 2s + 1

s + 2

∣∣∣∣
s=−3

= −5

−1
= 5

Thus,

Y (s) = −3

s + 2
+ 5

s + 3

Its inverse transform is

y(t) = (−3e−2t + 5e−3t )

P R A C T I C E P R O B L E M 1 5 . 2 2

Use the Laplace transform to solve the integrodifferential equation

dy

dt
+ 3y(t)+ 2

∫ t

0
y(τ) dτ = 2e−3t , y(0) = 0

Answer: (−e−t + 4e−2t − 3e−3t )u(t).

†15.9 APPLICATIONS
So far we have considered three applications of Laplace’s transform: cir-
cuit analysis in general, obtaining transfer functions, and solving linear
integrodifferential equations. The Laplace transform also finds appli-
cation in other areas in circuit analysis, signal processing, and control
systems. Here we will consider two more important applications: net-
work stability and network synthesis.

15 . 9 . 1 Ne twork S t ab i l i t y
A circuit is stable if its impulse response h(t) is bounded (i.e., h(t) con-
verges to a finite value) as t → ∞; it is unstable if h(t) grows without
bound as t → ∞. In mathematical terms, a circuit is stable when

lim
t→∞ |h(t)| = finite (15.97)
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Since the transfer function H(s) is the Laplace transform of the impulse
response h(t), H(s) must meet certain requirements in order for Eq.
(15.97) to hold. Recall that H(s) may be written as

H(s) = N(s)

D(s)
(15.98)

where the roots of N(s) = 0 are called the zeros of H(s) because they
makeH(s) = 0, while the roots ofD(s) = 0 are called the poles ofH(s)
since they cause H(s) → ∞. The zeros and poles of H(s) are often
located in the s plane as shown in Fig. 15.40(a). Recall from Eqs. (15.47)
and (15.48) that H(s) may also be written in terms of its poles as

H(s) = N(s)

D(s)
= N(s)

(s + p1)(s + p2) · · · (s + pn) (15.99)

H(s) must meet two requirements for the circuit to be stable. First, the
degree of N(s) must be less than the degree of D(s); otherwise, long
division would produce

H(s) = kns
n + kn−1s

n−1 + · · · + k1s + k0 + R(s)

D(s)
(15.100)

where the degree of R(s), the remainder of the long division, is less than
the degree ofD(s). The inverse ofH(s) in Eq. (15.99) does not meet the
condition in Eq. (15.97). Second, all the poles ofH(s) in Eq. (15.98) (i.e.,
all the roots of D(s) = 0) must have negative real parts; in other words,
all the poles must lie in the left half of the s plane, as shown typically in
Fig. 15.40(b). The reason for this will be apparent if we take the inverse
Laplace transform of H(s) in Eq. (15.98). Since Eq. (15.98) is similar
to Eq. (15.48), its partial fraction expansion is similar to the one in Eq.
(15.49) so that the inverse ofH(s) is similar to that in Eq. (15.53). Hence,

h(t) = (k1e
−p1t + k2e

−p2t + · · · + kne−pnt ) (15.101)

We see from this equation that each polepi must be positive (i.e., pole s =
−pi in the left-half plane) in order for e−pi t to decrease with increasing
t . Thus,

jv

jv

s

O

O Zero

O

XX

X Pole

(a)

s

X

X

(b)

0

Figure 15.40 The complex s
plane: (a) poles and zeros
plotted, (b) left-half plane.

A circuit is stable when all the poles of its transfer function H(s) lie
in the left half of the s plane.

An unstable circuit never reaches steady state because the transient
response does not decay to zero. Consequently, steady-state analysis is
only applicable to stable circuits.

+
− Vo

+

−

1
sCVs

R sL

Figure 15.41 A typical RLC
circuit.

A circuit made up exclusively of passive elements (R,L, andC) and
independent sources cannot be unstable, because that would imply that
some branch currents or voltages would grow indefinitely with sources
set to zero. Passive elements cannot generate such indefinite growth.
Passive circuits either are stable or have poles with zero real parts. To
show that this is the case, consider the series RLC circuit in Fig. 15.41.
The transfer function is given by

H(s) = Vo

Vs
= 1/sC

R + sL+ 1/sC
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or

H(s) = 1/LC

s2 + sR/L+ 1/LC
(15.102)

Notice that D(s) = s2 + sR/L + 1/LC = 0 is the same as the char-
acteristic equation obtained for the series RLC circuit in Eq. (8.8). The
circuit has poles at

p1,2 = −α ±
√
α2 − ω0

2 (15.103)

where

α = R

2L
, ω0 = 1

LC

For R, L, C > 0, the two poles always lie in the left half of the s plane,
implying that the circuit is always stable. However, when R = 0, α = 0
and the circuit becomes unstable. Although ideally this is possible, it
does not really happen, because R is never zero.

On the other hand, active circuits or passive circuits with controlled
sources can supply energy, and they can be unstable. In fact, an oscillator
is a typical example of a circuit designed to be unstable. An oscillator is
designed such that its transfer function is of the form

H(s) = N(s)

s2 + ω0
2

= N(s)

(s + jω0)(s − jω0)
(15.104)

so that its output is sinusoidal.

E X A M P L E 1 5 . 2 3

Determine the values of k for which the circuit in Fig. 15.42 is stable.

–
+

+
−

1
sCVi

R R

I1 I2 kI1

Figure 15.42 For Example 15.23.

Solution:

Applying mesh analysis to the first-order circuit in Fig. 15.42 gives

Vi =
(
R + 1

sC

)
I1 − I2

sC
(15.23.1)

and

0 = −kI1 +
(
R + 1

sC

)
I2 − I1

sC

or

0 = −
(
k + 1

sC

)
I1 +

(
R + 1

sC

)
I2 (15.23.2)

We can write Eqs. (15.23.1) and (15.23.2) in matrix form as

[
Vi
0

]
=



(
R + 1

sC

)
− 1

sC

−
(
k + 1

sC

) (
R + 1

sC

)


[
I1

I2

]

The determinant is

8 =
(
R + 1

sC

)2

− k

sC
− 1

s2C2
= sR2C + 2R − k

sC
(15.23.3)
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The characteristic equation (8 = 0) gives the single pole as

p = k − 2R

R2C

which is negative when k < 2R. Thus, we conclude the circuit is stable
when k < 2R and unstable for k > 2R.

P R A C T I C E P R O B L E M 1 5 . 2 3

For what value of β is the circuit in Fig. 15.43 stable?

+

−
VoR C C R

bVo

Figure 15.43 For Practice Prob. 15.23.

Answer: β > 1/R.

E X A M P L E 1 5 . 2 4

An active filter has the transfer function

H(s) = k

s2 + s(4 − k)+ 1

For what values of k is the filter stable?

Solution:

As a second-order circuit, H(s) may be written as

H(s) = N(s)

s2 + bs + c
where b = 4−k, c = 1, andN(s) = k.This has poles atp2 +bp+c = 0,
that is,

p1,2 = −b ± √
b2 − 4c

2

For the circuit to be stable, the poles must be located in the left half of
the s plane. This implies that b > 0.

Applying this to the given H(s) means that for the circuit to be
stable, 4 − k > 0 or k < 4.

P R A C T I C E P R O B L E M 1 5 . 2 4

A second-order active circuit has the transfer function

H(s) = 1

s2 + s(10 + α)+ 25

Find the range of the values of α for which the circuit is stable. What is
the value of α that will cause oscillation?

Answer: α > −10, α = −10.
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15 . 9 . 2 Ne twork Syn the s i s
Network synthesis may be regarded as the process of obtaining an appro-
priate network to represent a given transfer function. Network synthesis
is easier in the s domain than in the time domain.

In network analysis, we find the transfer function of a given net-
work. In network synthesis, we reverse the approach: given a transfer
function, we are required to find a suitable network.

Network synthesis is finding a network that represents a given transfer function.

Keep in mind that in synthesis, there may be many different an-
swers—or possibly no answers—because there are many circuits that
can be used to represent the same transfer function; in network analysis,
there is only one answer.

Network synthesis is an exciting field of prime engineering impor-
tance. Being able to look at a transfer function and come up with the
type of circuit it represents is a great asset to a circuit designer. Although
network synthesis constitutes a whole course by itself and requires some
experience, the following examples are meant to whet your appetite.

E X A M P L E 1 5 . 2 5

Given the transfer function

H(s) = Vo(s)

Vi(s)
= 10

s2 + 3s + 10

realize the function using the circuit in Fig. 15.44(a). (a) SelectR = 59,
and find L and C. (b) Select R = 1 9, and find L and C.

+

−
Vo(t)+

−vi(t)

L

C R

(a)

+

−
Vo(s)+

−Vi(s)

sL

(b)

1
sC

Figure 15.44 For Example 15.25.

Solution:

The s-domain equivalent of the circuit in Fig. 15.44(a) is shown in Fig.
15.44(b). The parallel combination of R and C gives

R

∥∥∥∥ 1

sC
= R/sC

R + 1/sC
= R

1 + sRC
Using the voltage division principle,

Vo = R/(1 + sRC)
sL+ R/(1 + sRC)Vi = R

sL(1 + sRC)+ RVi
or

Vo

Vi
= R

s2RLC + sL+ R = 1/LC

s2 + s/RC + 1/LC

Comparing this with the given transfer function H(s) reveals that

1

LC
= 10,

1

RC
= 3

There are several values of R, L, and C that satisfy these requirements.
This is the reason for specifying one element value so that others can be
determined.
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(a) If we select R = 5 9, then

C = 1

3R
= 66.67 mF, L = 1

10C
= 1.5 H

(b) If we select R = 1 9, then

C = 1

3R
= 0.333 F, L = 1

10C
= 0.3 H

Making R = 1 9 can be regarded as normalizing the design.
In this example we have used passive elements to realize the given

transfer function. The same goal can be achieved by using active ele-
ments, as the next example demonstrates.

P R A C T I C E P R O B L E M 1 5 . 2 5

Realize the function

G(s) = Vo(s)

Vi(s)
= 4s

s2 + 4s + 20

using the circuit in Fig. 15.45. Select R = 2 9, and determine L and C.
+
−vi(t)

LC

+

−
vo(t)R

Figure 15.45 For Practice Prob. 15.25.

Answer: 0.5 H, 0.1 F.

E X A M P L E 1 5 . 2 6

Synthesize the function

T (s) = Vo(s)

Vs(s)
= 106

s2 + 100s + 106

using the topology in Fig. 15.46.

+
−

V1

V2
Y1 Vo

Vo

Vs

Y2

Y3

Y4

+

−
1 2

Figure 15.46 For Example 15.26.

Solution:

We apply nodal analysis to nodes 1 and 2. At node 1,

(Vs − V1)Y1 = (V1 − Vo)Y2 + (V1 − V2)Y3 (15.26.1)
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At node 2,

(V1 − V2)Y3 = (V2 − 0)Y4 (15.26.2)

But V2 = Vo, so Eq. (15.26.1) becomes

Y1Vs = (Y1 + Y2 + Y3)V1 − (Y2 + Y3)Vo (15.26.3)

and Eq. (15.26.2) becomes

V1Y3 = (Y3 + Y4)Vo

or

V1 = 1

Y3
(Y3 + Y4)Vo (15.26.4)

Substituting Eq. (15.26.4) into Eq. (15.26.3) gives

Y1Vs = (Y1 + Y2 + Y3)
1

Y3
(Y3 + Y4)Vo − (Y2 + Y3)Vo

or

Y1Y3Vs = [Y1Y3 + Y4(Y1 + Y2 + Y3)]Vo

Thus,

Vo

Vs
= Y1Y3

Y1Y3 + Y4(Y1 + Y2 + Y3)
(15.26.5)

To synthesize the given transfer function T (s), compare it with the one in
Eq. (15.26.5). Notice two things: (1) Y1Y3 must not involve s because the
numerator of T (s) is constant; (2) the given transfer function is second-
order, which implies that we must have two capacitors. Therefore, we
must make Y1 and Y3 resistive, while Y2 and Y4 are capacitive. So we
select

Y1 = 1

R1
, Y2 = sC1, Y3 = 1

R2
, Y4 = sC2 (15.26.6)

Substituting Eq. (15.26.6) into Eq. (15.26.5) gives

Vo

Vs
= 1/(R1R2)

1/(R1R2)+ sC2(1/R1 + 1/R2 + sC1)

= 1/(R1R2C1C2)

s2 + s(R1 + R2)/(R1R2C1)+ 1/(R1R2C1C2)

Comparing this with the given transfer function T (s), we notice that

1

R1R2C1C2
= 106,

R1 + R2

R1R2C1
= 100

If we select R1 = R2 = 10 k9, then

C1 = R1 + R2

100R1R2
= 20 × 103

100 × 100 × 106
= 2 µF

C2 = 10−6

R1R2C1
= 10−6

100 × 106 × 2 × 10−6
= 5 nF

Thus, the given transfer function is realized using the circuit shown in
Fig. 15.47.
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+
−

Vo

Vs

R1 = 10 kΩ R2 = 10 kΩ

C1 = 2 mF

C2 = 5 nF

+
−

Figure 15.47 For Example 15.26.

P R A C T I C E P R O B L E M 1 5 . 2 6

Synthesize the function

Vo(s)

Vin
= −2s

s2 + 6s + 10

using the op amp circuit shown in Fig. 15.48. Select

Y1 = 1

R1
, Y2 = sC1, Y3 = sC2, Y4 = 1

R2

Let R1 = 1 k9, and determine C1, C2, and R2.

+
−

Y1

Vo

Vin

Y3

Y4

+
−

Y2

Figure 15.48 For Practice Prob. 15.26.

Answer: 0.1 mF, 0.5 mF, 2 k9.

15.10 SUMMARY
1. The Laplace transform allows a signal represented by a function in

the time domain to be analyzed in the s domain (or complex fre-
quency domain). It is defined as

L[f (t)] = F(s) =
∫ ∞

0
f (t)e−st dt
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2. Properties of the Laplace transform are listed in Table 15.1, while
the Laplace transforms of basic common functions are listed in
Table 15.2.

3. The inverse Laplace transform can be found using partial fraction
expansions and using the Laplace transform pairs in Table 15.2 as a
look-up table. Real poles lead to exponential functions and com-
plex poles to damped sinusoids.

4. The Laplace transform can be used to analyze a circuit. We convert
each element from the time domain to the s domain, solve the
problem using any circuit technique, and convert the result to the
time domain using the inverse transform.

5. In the s domain, the circuit elements are replaced with the initial
condition at t = 0 as follows:

Resistor: vR �⇒ VR = RI

Inductor: vL �⇒ VL = sLI − Li(0−)

Capacitor: vC �⇒ VC = I

sC
− v(0−)

s

6. Using the Laplace transform to analyze a circuit results in a com-
plete (both natural and forced) response, as the initial conditions
are incorporated in the transformation process.

7. The transfer function H(s) of a network is the Laplace transform of
the impulse response h(t).

8. In the s domain, the transfer function H(s) relates the output re-
sponse Y (s) and an input excitation X(s); that is, H(s) = Y (s)/

X(s).

9. The convolution of two signals consists of time-reversing one of the
signals, shifting it, multiplying it point by point with the second
signal, and integrating the product. The convolution integral relates
the convolution of two signals in the time domain to the inverse of
the product of their Laplace transforms:

L−1[F1(s)F2(s)] = f1(t) ∗ f2(t) =
∫ t

0
f1(λ)f2(t − λ) dλ

10. In the time domain, the output y(t) of the network is the convolu-
tion of the impulse response with the input x(t),

y(t) = h(t) ∗ x(t)

11. The Laplace transform can be used to solve a linear integrodiffer-
ential equation.

12. Two other typical areas of applications of the Laplace transform are
circuit stability and synthesis. A circuit is stable when all the poles
of its transfer function lie in the left half of the s plane. Network
synthesis is the process of obtaining an appropriate network to
represent a given transfer function for which analysis in the s
domain is well suited.



696 PART 3 Advanced Circuit Analysis

R E V I EW QU E S T I ON S

15.1 Every function f (t) has a Laplace transform.
(a) True (b) False

15.2 The variable s in the Laplace transform H(s) is
called
(a) complex frequency (b) transfer function
(c) zero (d) pole

15.3 The Laplace transform of u(t − 2) is:

(a)
1

s + 2
(b)

1

s − 2

(c)
e2s

s
(d)

e−2s

s

15.4 The zero of the function

F(s) = s + 1

(s + 2)(s + 3)(s + 4)

is at
(a) −4 (b) −3 (c) −2 (d) −1

15.5 The poles of the function

F(s) = s + 1

(s + 2)(s + 3)(s + 4)

are at
(a) −4 (b) −3 (c) −2 (d) −1

15.6 If F(s) = 1/(s + 2), then f (t) is
(a) e2t u(t) (b) e−2t u(t)

(c) u(t − 2) (d) u(t + 2)

15.7 Given that F(s) = e−2s/(s + 1), then f (t) is
(a) e−2(t−1)u(t − 1) (b) e−(t−2)u(t − 2)
(c) e−t u(t − 2) (d) e−t u(t + 1)
(e) e−(t−2)u(t)

15.8 The initial value of f (t) with transform

F(s) = s + 1

(s + 2)(s + 3)

is:
(a) nonexistent (b) ∞ (c) 0
(d) 1 (e) 1

6

15.9 The inverse Laplace transform of

s + 2

(s + 2)2 + 1

is:
(a) e−t cos 2t (b) e−t sin 2t (c) e−2t cos t
(d) e−2t sin 2t (e) none of the above

15.10 A transfer function is defined only when all initial
conditions are zero.
(a) True (b) False

Answers: 15.1b, 15.2a, 15.3d, 15.4d, 15.5a,b,c, 15.6b, 15.7b, 15.8d,
15.9c, 15.10b.

P RO B L E M S

Sections 15.2 and 15.3 Definition and
Properties of the Laplace Transform

15.1 Find the Laplace transform of:
(a) cosh at (b) sinh at
[Hint: cosh x = 1

2 (e
x + e−x),

sinh x = 1
2 (e

x − e−x).]
15.2 Determine the Laplace transform of:

(a) cos(ωt + θ) (b) sin(ωt + θ)
15.3 Obtain the Laplace transform of each of the

following functions:
(a) e−2t cos 3tu(t) (b) e−2t sin 4tu(t)
(c) e−3t cosh 2tu(t) (d) e−4t sinh tu(t)
(e) te−t sin 2tu(t)

15.4 Find the Laplace transform of each of the following
functions:
(a) t2 cos(2t + 30◦)u(t) (b) 3t4e−2t u(t)

(c) 2tu(t)− 4
d

dt
δ(t) (d) 2e−(t−1)u(t)

(e) 5u(t/2) (f ) 6e−t/3u(t)

(g)
dn

dtn
δ(t)

15.5 Calculate the Laplace transforms of these functions:
(a) 2δ(t − 1) (b) 10u(t − 2)
(c) (t + 4)u(t) (d) 2e−t u(t − 4)

15.6 Obtain the Laplace transform of
(a) 10 cos 4(t − 1)u(t) (b) t2e−2t u(t)+ u(t − 3)
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15.7 Find the Laplace transforms of the following
functions:
(a) 2δ(3t)+ 6u(2t)+ 4e−2t − 10e−3t

(b) te−t u(t − 1)
(c) cos 2(t − 1)u(t − 1)
(d) sin 4t[u(t)− u(t − π)]

15.8 Determine the Laplace transforms of these
functions:
(a) f (t) = (t − 4)u(t − 2)
(b) g(t) = 2e−4t u(t − 1)
(c) h(t) = 5 cos(2t − 1)u(t)
(d) p(t) = 6[u(t − 2)− u(t − 4)]

15.9 In two different ways, find the Laplace transform of

g(t) = d

dt
(te−t cos t)

15.10 Find F(s) if:
(a) f (t) = 6e−t cosh 2t (b) f (t) = 3te−2t sinh 4t
(c) f (t) = 8e−3t cosh tu(t − 2)

15.11 Calculate the Laplace transform of the function in
Fig. 15.49.

0 1 2 t

5

f (t)

Figure 15.49 For Prob. 15.11.

15.12 Find the Laplace transform of the function in Fig.
15.50.

1 2
0

10

−10

f(t)

t

Figure 15.50 For Prob. 15.12.

15.13 Obtain the Laplace transform of f (t) in Fig. 15.51.

0 1 2 3 4

2

5

t

f(t)

Figure 15.51 For Prob. 15.13.

15.14 Determine the Laplace transforms of the function in
Fig. 15.52.

0 1 2 3 t

1

f(t)

t2

Figure 15.52 For Prob. 15.14.

15.15 Obtain the Laplace transforms of the functions in
Fig. 15.53.

0 1 2 3

1

2

3

g(t)

t

(a)

0 1 2 3 4

2

h(t)

t

(b)

Figure 15.53 For Prob. 15.15.

15.16 Calculate the Laplace transform of the train of unit
impulses in Fig. 15.54.

0 2 4 6 8 t

1

f(t)

Figure 15.54 For Prob. 15.16.
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15.17 The periodic function shown in Fig. 15.55 is defined
over its period as

g(t) =
{

sinπt, 0 < t < 1
0, 1 < t < 2

Find G(s).

0 1

1

2 3 t

g(t)

Figure 15.55 For Prob. 15.17.

15.18 Obtain the Laplace transform of the periodic
waveform in Fig. 15.56.

0 2p 4p 6p 8p t

1

f(t)

Figure 15.56 For Prob. 15.18.

15.19 Find the Laplace transforms of the functions in Fig.
15.57.

2

0 1 2 3 t

g(t)

(a)

3

0 1 2 3 4 5

h(t)

(b)

1

t

Figure 15.57 For Prob. 15.19.

15.20 Determine the Laplace transforms of the periodic
functions in Fig. 15.58.

1

0
1 2 3 4 t

f(t)

(a)

0 2 4 6

h(t)

(b)

t

−1

4
t2

Figure 15.58 For Prob. 15.20.

15.21 Find the initial and final values, if they exist, of the
following Laplace transforms:

(a) F(s) = 10s3 + 1

s2 + 6s + 5

(b) F(s) = s + 1

s2 − 4s + 6

(c) F(s) = 2s2 + 7

(s + 1)(s + 2)(s2 + 2s + 5)

15.22 Find f (0) and f (∞), if they exist, when:

(a) F(s) = 8(s + 1)(s + 3)

s(s + 2)(s + 4)

(b) F(s) = 6(s − 1)

s4 − 1

15.23 Determine the initial and final values of f (t), if they
exist, given that:

(a) F(s) = s2 + 3

s3 + 4s2 + 6

(b) F(s) = s2 − 2s + 1

(s − 2)(s2 + 2s + 4)

Section 15.4 The Inverse Laplace Transform

15.24 Determine the inverse Laplace transform of each of
the following functions:

(a) F(s) = 1

s
+ 2

s + 1

(b) G(s) = 3s + 1

s + 4

(c) H(s) = 4

(s + 1)(s + 3)

(d) J (s) = 12

(s + 2)2(s + 4)

15.25 Find f (t) for each F(s):

(a)
10s

(s + 1)(s + 2)(s + 3)

(b)
2s2 + 4s + 1

(s + 1)(s + 2)3

(c)
s + 1

(s + 2)(s2 + 2s + 5)

15.26 Determine the inverse Laplace transform of each of
the following functions:

(a)
8(s + 1)(s + 3)

s(s + 2)(s + 4)
(b)

s2 − 2s + 4

(s + 1)(s + 2)2

(c)
s2 + 1

(s + 3)(s2 + 4s + 5)
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15.27 Calculate the inverse Laplace transform of:

(a)
6(s − 1)

s4 − 1
(b)

se−πs

s2 + 1
(c)

8

s(s + 1)3

15.28 Find the time functions that have the following
Laplace transforms:

(a) F(s) = 10 + s2 + 1

s2 + 4

(b) G(s) = e−s + 4e−2s

s2 + 6s + 8

(c) H(s) = (s + 1)e−2s

s(s + 3)(s + 4)

15.29 Obtain f (t) for the following transforms:

(a) F(s) = (s + 3)e−6s

(s + 1)(s + 2)

(b) F(s) = 4 − e−2s

s2 + 5s + 4

(c) F(s) = se−s

(s + 3)(s2 + 4)

15.30 Obtain the inverse Laplace transforms of the
following functions:

(a) X(s) = 1

s2(s + 2)(s + 3)

(b) Y (s) = 1

s(s + 1)2

(c) Z(s) = 1

s(s + 1)(s2 + 6s + 10)

15.31 Obtain the inverse Laplace transforms of these
functions:

(a)
12e−2s

s(s2 + 4)
(b)

2s + 1

(s2 + 1)(s2 + 9)

(c)
9s2

(s2 + 4s + 13)

15.32 Find f (t) given that:

(a) F(s) = s2 + 4s

s2 + 10s + 26

(b) F(s) = 5s2 + 7s + 29

s(s2 + 4s + 29)

15.33∗ Determine f (t) if:

(a) F(s) = 2s3 + 4s2 + 1

(s2 + 2s + 17)(s2 + 4s + 20)

(b) F(s) = s2 + 4

(s2 + 9)(s2 + 6s + 3)

Section 15.5 Application to Circuits

15.34 Determine i(t) in the circuit of Fig. 15.59 by means
of the Laplace transform.

+
−

i(t)1 Ω

1 F

1 H

u(t)

Figure 15.59 For Prob. 15.34.

15.35 Find vo(t) in the circuit in Fig. 15.60.

+

−
+
−   F1

10

6 Ω

vo(t)

1 H

e−tu(t)

Figure 15.60 For Prob. 15.35.

15.36 Find the input impedance Zin(s) of each of the
circuits in Fig. 15.61.

2 Ω

(a) (b)

1 Ω

1 Ω

2 Ω

1 F

1 H
1 H 0.5 F

Figure 15.61 For Prob. 15.36.

15.37 Obtain the mesh currents in the circuit of Fig. 15.62.

i1 i2
+
−

+
−u(t)

1 H

4e−2tu(t)2 Ω

F1
4

Figure 15.62 For Prob. 15.37.

15.38 Find vo(t) in the circuit in Fig. 15.63.

+

−
4 Ωvo(t)+

− 2 F

1 H

10e−tu(t) V 3u(t) A

Figure 15.63 For Prob. 15.38.
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15.39 Determine io(t) in the circuit in Fig. 15.64.

io

1 Ω2 Ω

1 F 2 H

e−2tu(t) A

Figure 15.64 For Prob. 15.39.

15.40∗ Determine io(t) in the network shown in Fig. 15.65.

+
−5 + 10u(t) V 2 H

1 Ω 4 Ω

io

F1
4

Figure 15.65 For Prob. 15.40.

15.41∗ Find io(t) for t > 0 in the circuit in Fig. 15.66.

+
−

+ −vo

+
−

+
−

1 Ω

2 Ω

1 F

0.5vo

1 H

3u(−t) V5e−2t V

io

Figure 15.66 For Prob. 15.41.

15.42 Calculate io(t) for t > 0 in the network of Fig.
15.67.

io

+ −

1 Ω 1 Ω

1 F 1 H

2e−tu(t) V

4u(t) A

Figure 15.67 For Prob. 15.42.

15.43 In the circuit of Fig. 15.68, let i(0) = 1 A, vo(0) = 2
V, and vs = 4e−2t u(t) V. Find vo(t) for t > 0.

+−
+

−

2 Ω

vo+
−vs 1 H 1 F

2i

i

Figure 15.68 For Prob. 15.43.

15.44 Find vo(t) in the circuit in Fig. 15.69 if vx(0) = 2 V
and i(0) = 1 A.

+ −

+

−

i

1 Ω 1 Ω vo

vx

1 He−tu(t) A

1 F

Figure 15.69 For Prob. 15.44.

15.45 Consider the parallel RLC circuit of Fig. 15.70.
Find v(t) and i(t) given that v(0) = 5 and
i(0) = −2 A.

+

−
10 Ω 4 H v

i

4u(t) A F1
80

Figure 15.70 For Prob. 15.45.

15.46 For the RLC circuit shown in Fig. 15.71, find the
complete response if v(0) = 2 V when the switch is
closed.

+
−

t = 0

v
+

−

6 Ω

2 cos 4t V 

1 H

F1
9

Figure 15.71 For Prob. 15.46.
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15.47 For the op amp circuit in Fig. 15.72, find vo(t) for
t > 0. Take vs = 3e−5t u(t) V.

+
−

+
−

20 kΩ
vo

50 mF

vs

10 kΩ

Figure 15.72 For Prob. 15.47.

15.48 Find I1(s) and I2(s) in the circuit of Fig. 15.73.

i1 i2

+
− 1 Ω 1 Ω

2 H

1 H

2 H

10e−3tu(t) V

Figure 15.73 For Prob. 15.48.

15.49 For the circuit in Fig. 15.74, find vo(t) for t > 0.

1 Ω

+
− 2 H 1 H

1 H

2 Ω
+

−
vo6u(t)

Figure 15.74 For Prob. 15.49.

15.50 For the ideal transformer circuit in Fig. 15.75,
determine io(t).

+
−

1 Ω io

8 Ω0.25 F

1:2

10e−tu(t) V

Figure 15.75 For Prob. 15.50.

Section 15.6 Transfer Functions

15.51 The transfer function of a system is

H(s) = s2

3s + 1
Find the output when the system has an input of
4e−t/3u(t).

15.52 When the input to a system is a unit step function,
the response is 10 cos 2t . Obtain the transfer
function of the system.

15.53 A circuit is known to have its transfer function as

H(s) = s + 3

s2 + 4s + 5

Find its output when:
(a) the input is a unit step function
(b) the input is 6te−2t u(t).

15.54 When a unit step is applied to a system at t = 0, its
response is

y(t) = 4 + 1

2
e−3t − e−2t (2 cos 4t + 3 sin 4t)

What is the transfer function of the system?

15.55 For the circuit in Fig. 15.76, find
H(s) = Vo(s)/Vs(s). Assume zero initial
conditions.

+

−

2 Ω

4 Ω vo+
−vs

1 H

0.1 F

Figure 15.76 For Prob. 15.55.

15.56 Obtain the transfer function H(s) = Vo/Vs for the
circuit of Fig. 15.77.

+

−
vo+

−

i 0.5 F 1 H

3 Ω2ivs

Figure 15.77 For Prob. 15.56.

15.57 Repeat the previous problem for H(s) = Vo/I .

15.58 For the circuit in Fig. 15.78, find:
(a) I1/Vs (b) I2/Vx

+
−

+
−

i1 i23 Ω

vs

2 H

4vx0.5 FVx

+

−

Figure 15.78 For Prob. 15.58.

15.59 Refer to the network in Fig. 15.79. Find the
following transfer functions:
(a) H1(s) = Vo(s)/Vs(s)
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(b) H2(s) = Vo(s)/Is(s)

(c) H3(s) = Io(s)/Is(s)

(d) H4(s) = Io(s)/Vs(s)

+

−
vo+

−

is io

vs

1 Ω

1 Ω

1 Η

1 F 1 F

Figure 15.79 For Prob. 15.59.

15.60 Calculate the gain H(s) = Vo/Vs in the op amp
circuit of Fig. 15.80.

+
−

+
−

+

−

R

C

vo
vs

Figure 15.80 For Prob. 15.60.

15.61 Refer to the RL circuit in Fig. 15.81. Find:
(a) the impulse response h(t) of the circuit
(b) the unit step response of the circuit.

Rvs

+

−
vo+

−

L

Figure 15.81 For Prob. 15.61.

15.62 A network has the impulse response h(t) =
2e−t u(t). When the input signal vi(t) = 5u(t) is
applied to it, find its output.

15.63 Obtain the impulse response of a system modeled by
the differential equation

2
dy

dt
+ y(t) = x(t)

where x(t) is the input and y(t) is the output.

Section 15.7 The Convolution Integral

15.64 Graphically convolve the pairs of functions in Fig.
15.82.

0 1 t

f1(t)

1

0 1 t

f1(t) = f2(t)

1

0 1 t

f2(t)

1

(a) (b)

(c)

0 t

f2(t)

1

0 1−1 t

f1(t)

1

Figure 15.82 For Prob. 15.64.

15.65 Find y(t) = x(t) ∗ h(t) for each paired x(t) and h(t)
in Fig. 15.83.

x(t)

1

0 t

t

h(t)

(b)

(c)

x(t)

1

0 1 t

h(t)
2

0 t

2e−t

x(t)

1

0 1 t−1

1

0 1 2

h(t)

1

0 1 t

(a)

Figure 15.83 For Prob. 15.65.
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15.66 Obtain the convolution of the pairs of signals in Fig.
15.84.

(b)

x(t)

1

0 1 t

(a)

f1(t) f2(t)

1

0 t

1

2

0

1

−1

h(t)

t

1

0 11 2 3 4 5 t

Figure 15.84 For Prob. 15.66.

15.67 Show that:
(a) x(t) ∗ δ(t) = x(t)

(b) f (t) ∗ u(t) =
∫ t

0
f (λ) dλ

15.68 Determine the convolution for each of the following
pairs of continuous signals:
(a) x1(t) = e−t , t > 0, x2(t) = 4e−2t , 0 < t < 3
(b) x1(t) = u(t − 1)− u(t − 3),

x2(t) = u(t)− u(t − 1)
(c) x1(t) = 4e−t u(t),

x2(t) = u(t + 1)− 2u(t) + u(t − 1)

15.69 Given that F1(s) = F2(s) = s/(s2 + 1), find
L−1[F1(s)F2(s)] by convolution.

15.70 Find f (t) using convolution given that:

(a) F(s) = 4

(s2 + 2s + 5)2

(b) F(s) = 2s

(s + 1)(s2 + 4)

Section 15.8 Application to Integrodifferential
Equations

15.71 Use the Laplace transform to solve the differential
equation

d2v(t)

dt2
+ 2

dv(t)

dt
+ 10v(t) = 3 cos 2t

subject to v(0) = 1, dv(0)/dt = −2.

15.72 Use the Laplace transform to find i(t) for t > 0 if

d2i

dt2
+ 3

di

dt
+ 2i + δ(t) = 0,

i(0) = 0, i ′(0) = 3

15.73 Solve the following equation by means of the
Laplace transform:

y ′′ + 5y ′ + 6y = cos 2t

Let y(0) = 1, y ′(0) = 4.

15.74 The voltage across a circuit is given by

v′′ + 3v′ + 2v = 5e−3t

Find v(t) if the initial conditions are v(0) = 0,
v′(0) = −1.

15.75 Solve for y(t) in the following differential equation
if the initial conditions are zero.

d3y

dt3
+ 6

d2y

dt2
+ 8

dy

dt
= e−t cos 2t

15.76 Solve for v(t) in the integrodifferential equation

4
dv

dt
+ 12

∫ t

−∞
v dt = 0

given that v(0) = 2.

15.77 Solve the following integrodifferential equation
using the Laplace transform method:

dy(t)

dt
+ 9

∫ t

0
y(τ) dτ = cos 2t, y(0) = 1

15.78 Solve the integrodifferential equation

dy

dt
+ 4y + 3

∫ t

0
y dt = 6e−2t , y(0) = −1

15.79 Solve the following integrodifferential equation

2
dx

dt
+ 5x + 3

∫ t

0
x dt + 4 = sin 4t, x(0) = 1

Section 15.9 Applications

15.80 Show that the parallel RLC circuit shown in Fig.
15.85 is stable.

CRIs L 

Io

Figure 15.85 For Prob. 15.80.

15.81 A system is formed by cascading two systems as
shown in Fig. 15.86. Given that the impulse
response of the systems are

h1(t) = 3e−t u(t), h2(t) = e−4t u(t)

(a) Obtain the impulse response of the overall
system.

(b) Check if the overall system is stable.

h1(t) h2(t)vi vo

Figure 15.86 For Prob. 15.81.
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15.82 Determine whether the op amp circuit in Fig. 15.87
is stable.

+
− vo

vs

R

C
C

+

−

+
−+

− R

Figure 15.87 For Prob. 15.82.

15.83 It is desired to realize the transfer function

V2(s)

V1(s)
= 2s

s2 + 2s + 6

using the circuit in Fig. 15.88. Choose R = 1 k9
and find L and C.

L C

R

V1

+

−

V2

+

−

Figure 15.88 For Prob. 15.83.

15.84 Realize the transfer function

Vo(s)

Vi(s)
= 5

s2 + 6s + 25

using the circuit in Fig. 15.89. Choose R1 = 4 9
and R2 = 1 9, and determine L and C.

C

R1

R2
+
−vi(t) vo(t)

L

+

−

Figure 15.89 For Prob. 15.84.

15.85 Realize the transfer function

Vo(s)

Vs(s)
= − s

s + 10

using the circuit in Fig. 15.90. Let Y1 = sC1,
Y2 = 1/R1, Y3 = sC2. Choose R1 = 1 k9 and
determine C1 and C2.

+
−

Y3

Vo
Vs

Y1

Y2

+

−

+
−

Figure 15.90 For Prob. 15.85.

15.86 Synthesize the transfer function

Vo(s)

Vin(s)
= 106

s2 + 100s + 106

using the topology of Fig. 15.91. Let Y1 = 1/R1,
Y2 = 1/R2, Y3 = sC1, Y4 = sC2. Choose R1 = 1
k9 and determine C1, C2, and R2.

+
−

Y2

Y3

Vo

Vin

Y1

Y4

+
−

Figure 15.91 For Prob. 15.86.
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COM P R E H EN S I V E P RO B L E M S

15.87 Obtain the transfer function of the op amp circuit in
Fig. 15.92 in the form of

Vo(s)

Vi(s)
= as

s2 + bs + c
where a, b, and c are constants. Determine the
constants.

+
−

Vo
Vi

10 kΩ

10 kΩ0.5 ΩF

1 mF

+
−

Figure 15.92 For Prob. 15.87.

15.88 A certain network has an input admittance Y (s).
The admittance has a pole at s = −3, a zero at
s = −1, and Y (∞) = 0.25 S.
(a) Find Y (s).
(b) An 8-V battery is connected to the network via a

switch. If the switch is closed at t = 0, find the
current i(t) through Y (s) using the Laplace
transform.

15.89 A gyrator is a device for simulating an inductor in a
network. A basic gyrator circuit is shown in Fig.
15.93. By finding Vi(s)/Io(s), show that the
inductance produced by the gyrator is L = CR2.

R

R

R

R

C

Io
+
−Vi

+
−+

−

Figure 15.93 For Prob. 15.89.
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C H A P T E R

THE FOURIER SERIES

1 6

Do not worry about your difficulties in mathematics, I assure you that
mine are greater.

—Albert Einstein

Historical Profiles
Jean Baptiste Joseph Fourier (1768–1830), a French mathematician, first presented
the series and transform that bear his name. Fourier’s results were not enthusiastically
received by the scientific world. He could not even get his work published as a paper.

Born in Auxerre, France, Fourier was orphaned at age 8. He attended a local
military college run by Benedictine monks, where he demonstrated great proficiency in
mathematics. Like most of his contemporaries, Fourier was swept into the politics of
the French Revolution. He played an important role in Napoleon’s expeditions to Egypt
in the later 1790s. Due to his political involvement, he narrowly escaped death twice.

Alexander Graham Bell (1847–1922) inventor of the telephone, was a Scottish-
American scientist.

Bell was born in Edinburgh, Scotland, a son of Alexander Melville Bell, a
well-known speech teacher. Alexander the younger also became a speech teacher
after graduating from the University of Edinburgh and the University of London. In
1866 he became interested in transmitting speech electrically. After his older brother
died of tuberculosis, his father decided to move to Canada. Alexander was asked to
come to Boston to work at the School for the Deaf. There he met Thomas A. Watson,
who became his assistant in his electromagnetic transmitter experiment. On March
10, 1876, Alexander sent the famous first telephone message: “Watson, come here I
want you.” The bel, the logarithmic unit introduced in Chapter 14, is named in his honor.
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16.1 INTRODUCTION
We have spent a considerable amount of time on the analysis of circuits
with sinusoidal sources. This chapter is concerned with a means of an-
alyzing circuits with periodic, nonsinusoidal excitations. The notion of
periodic functions was introduced in Chapter 9; it was mentioned there
that the sinusoid is the most simple and useful periodic function. This
chapter introduces the Fourier series, a technique for expressing a peri-
odic function in terms of sinusoids. Once the source function is expressed
in terms of sinusoids, we can apply the phasor method to analyze circuits.

The Fourier series is named after Jean Baptiste Joseph Fourier
(1768–1830). In 1822, Fourier’s genius came up with the insight that
any practical periodic function can be represented as a sum of sinusoids.
Such a representation, along with the superposition theorem, allows us
to find the response of circuits to arbitrary periodic inputs using phasor
techniques.

We begin with the trigonometric Fourier series. Later we consider
the exponential Fourier series. We then apply Fourier series in circuit
analysis. Finally, practical applications of Fourier series in spectrum
analyzers and filters are demonstrated.

16.2 TRIGONOMETRIC FOURIER SERIES
While studying heat flow, Fourier discovered that a nonsinusoidal periodic
function can be expressed as an infinite sum of sinusoidal functions.
Recall that a periodic function is one that repeats everyT seconds. In
other words, a periodic functionf (t) satisfies

f (t) = f (t + nT ) (16.1)

wheren is an integer andT is the period of the function.

The harmonic frequencyωn is an integral multiple
of the fundamental frequency ω0, i.e., ωn = nω0.

According to theFourier theorem, any practical periodic function
of frequencyω0 can be expressed as an infinite sum of sine or cosine
functions that are integral multiples ofω0. Thus,f (t) can be expressed
as

f (t) = a0 + a1 cosω0t + b1 sinω0t + a2 cos 2ω0t

+ b2 sin 2ω0t + a3 cos 3ω0t + b3 sin 3ω0t + · · · (16.2)

or

f (t) = a0︸︷︷︸
dc

+
∞∑
n=1

(an cosnω0t + bn sinnω0t)︸ ︷︷ ︸
ac

(16.3)

whereω0 = 2π/T is called thefundamental frequency in radians per
second. The sinusoid sinnω0t or cosnω0t is called thenth harmonic
of f (t); it is an odd harmonic ifn is odd and an even harmonic ifn is
even. Equation 16.3 is called thetrigonometric Fourier series of f (t).
The constantsan andbn are theFourier coefficients. The coefficienta0

is the dc component or the average value off (t). (Recall that sinusoids
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have zero average values.) The coefficientsan andbn (for n �= 0) are the
amplitudes of the sinusoids in the ac component. Thus,

The Fourier series of a periodic function f (t) is a representation that resolves
f (t) into a dc component and an ac component comprising an

infinite series of harmonic sinusoids.

A function that can be represented by a Fourier series as in Eq. (16.3)
must meet certain requirements, because the infinite series in Eq. (16.3)
may or may not converge. These conditions onf (t) to yield a convergent
Fourier series are as follows:

1. f (t) is single-valued everywhere.

2. f (t) has a finite number of finite discontinuities in any one
period.

3. f (t) has a finite number of maxima and minima in any one
period.

4. The integral
∫ t0+T

t0

|f (t)| dt < ∞ for anyt0.

These conditions are calledDirichlet conditions. Although they are not
necessary conditions, they are sufficient conditions for a Fourier series to
exist.

Historical note: Although Fourier published his
theorem in 1822, it was P. G. L. Dirichlet (1805–
1859) who later supplied an acceptable proof of
the theorem.A major task in Fourier series is the determination of the Fourier

coefficientsa0, an, andbn. The process of determining the coefficients is
calledFourier analysis. The following trigonometric integrals are very
helpful in Fourier analysis. For any integersm andn,

∫ T

0
sinnω0t dt = 0 (16.4a)

∫ T

0
cosnω0t dt = 0 (16.4b)

∫ T

0
sinnω0t cosmω0t dt = 0 (16.4c)

∫ T

0
sinnω0t sinmω0t dt = 0, (m �= n) (16.4d)

∫ T

0
cosnω0t cosmω0t dt = 0, (m �= n) (16.4e)

∫ T

0
sin2 nω0t dt = T

2
(16.4f)

∫ T

0
cos2 nω0t dt = T

2
(16.4g)

Let us use these identities to evaluate the Fourier coefficients.

A software package like Mathcad or Maple can
be used to evaluate the Fourier coefficients.
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We begin by findinga0. We integrate both sides of Eq. (16.3) over
one period and obtain∫ T

0
f (t) dt =

∫ T

0

[
a0 +

∞∑
n=1

(an cosnω0t + bn sinnω0t)

]
dt

=
∫ T

0
a0 dt +

∞∑
n=1

[∫ T

0
an cosnω0t dt

+
∫ T

0
bn sinnω0t dt

]
dt

(16.5)

Invoking the identities of Eqs. (16.4a) and (16.4b), the two integrals in-
volving the ac terms vanish. Hence,∫ T

0
f (t) dt =

∫ T

0
a0 dt = a0T

or

a0 = 1

T

∫ T

0
f (t) dt (16.6)

showing thata0 is the average value off (t).
To evaluatean, we multiply both sides of Eq. (16.3) by cosmω0t

and integrate over one period:∫ T

0
f (t) cosmω0t dt

=
∫ T

0

[
a0 +

∞∑
n=1

(an cosnω0t + bn sinnω0t)

]
cosmω0t dt

=
∫ T

0
a0 cosmω0t dt +

∞∑
n=1

[∫ T

0
an cosnω0t cosmω0t dt

+
∫ T

0
bn sinnω0t cosmω0t dt

]
dt (16.7)

The integral containinga0 is zero in view of Eq. (16.4b), while the
integral containingbn vanishes according to Eq. (16.4c). The integral
containingan will be zero except whenm = n, in which case it isT/2,
according to Eqs. (16.4e) and (16.4g). Thus,∫ T

0
f (t) cosmω0t dt = an

T

2
, for m = n

or

an = 2

T

∫ T

0
f (t) cosnω0t dt (16.8)

In a similar vein, we obtainbn by multiplying both sides of Eq.
(16.3) by sinmω0t and integrating over the period. The result is

bn = 2

T

∫ T

0
f (t) sinnω0t dt (16.9)



CHAPTER 16 The Fourier Series 711

Be aware that sincef (t) is periodic, it may be more convenient to carry
the integrations above from−T/2 toT/2 or generally fromt0 to t0 + T

instead of 0 toT . The result will be the same.
An alternative form of Eq. (16.3) is theamplitude-phase form

f (t) = a0 +
∞∑
n=1

An cos(nω0t + φn) (16.10)

We can use Eqs. (9.11) and (9.12) to relate Eq. (16.3) to Eq. (16.10), or
we can apply the trigonometric identity

cos(α + β) = cosα cosβ − sinα sinβ (16.11)

to the ac terms in Eq. (16.10) so that

a0 +
∞∑
n=1

An cos(nω0t + φn) = a0 +
∞∑
n=1

(An cosφn) cosnω0t

− (An sinφn) sinnω0t

(16.12)

Equating the coefficients of the series expansions in Eqs. (16.3) and
(16.12) shows that

an = An cosφn, bn = −An sinφn (16.13a)

or

An =
√
a2
n + b2

n, φn = − tan−1 bn

an

(16.13b)

To avoid any confusion in determiningφn, it may be better to relate the
terms in complex form as

An φn = an − jbn (16.14)

The convenience of this relationship will become evident in Section 16.6.
The plot of the amplitudeAn of the harmonics versusnω0 is called the
amplitude spectrum of f (t); the plot of the phaseφn versusnω0 is the
phase spectrum of f (t). Both the amplitude and phase spectra form
thefrequency spectrum of f (t). The frequency spectrum is also known as the

line spectrum in view of the discrete frequency
components.

The frequency spectrum of a signal consists of the plots of the amplitudes
and phases of the harmonics versus frequency.

Thus, the Fourier analysis is also a mathematical tool for finding the
spectrum of a periodic signal. Section 16.6 will elaborate more on the
spectrum of a signal.

To evaluate the Fourier coefficientsa0, an, andbn, we often need
to apply the following integrals:∫

cosat dt = 1

a
sinat (16.15a)∫

sinat dt = −1

a
cosat (16.15b)
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∫
t cosat dt = 1

a2
cosat + 1

a
t sinat (16.15c)∫

t sinat dt = 1

a2
sinat − 1

a
t cosat (16.15d)

It is also useful to know the values of the cosine, sine, and exponential
functions for integral multiples ofπ . These are given in Table 16.1, where
n is an integer.

TABLE 16.1 Values of cosine, sine, and
exponential functions for integral
multiples ofπ .

Function Value

cos 2nπ 1
sin 2nπ 0
cosnπ (−1)n

sinnπ 0

cos
nπ

2

{
(−1)n/2, n = even

0, n = odd

sin
nπ

2

{
(−1)(n−1)/2, n = odd

0, n = even

ej2nπ 1

ejnπ (−1)n

ejnπ/2

{
(−1)n/2, n = even

j (−1)(n−1)/2, n = odd

E X A M P L E 1 6 . 1

Determine the Fourier series of the waveform shown in Fig. 16.1. Obtain
the amplitude and phase spectra.

–2 –1 0 1 2 3 t

1

f (t)

Figure 16.1 For Example 16.1; a square wave.

Solution:

The Fourier series is given by Eq. (16.3), namely,

f (t) = a0 +
∞∑
n=1

(an cos nω0t + bn sin nω0t) (16.1.1)

Our goal is to obtain the Fourier coefficients a0, an, and bn using Eqs.
(16.6), (16.8), and (16.9). First, we describe the waveform as

f (t) =
{

1, 0 < t < 1

0, 1 < t < 2
(16.1.2)

and f (t) = f (t + T ). Since T = 2, ω0 = 2π/T = π . Thus,

a0 = 1

T

∫ T

0
f (t) dt = 1

2

[∫ 1

0
1 dt +

∫ 2

1
0 dt

]
= 1

2
t

∣∣∣∣
1

0

= 1

2
(16.1.3)
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Using Eq. (16.8) along with Eq. (16.15a),

an = 2

T

∫ T

0
f (t) cos nω0t dt

= 2

2

[∫ 1

0
1 cos nπt dt +

∫ 2

1
0 cos nπt dt

]

= 1

nπ
sin nπt

∣∣∣∣
1

0

= 1

nπ
sin nπ = 0

(16.1.4)

From Eq. (16.9) with the aid of Eq. (16.15b),

bn = 2

T

∫ T

0
f (t) sin nω0t dt

= 2

2

[∫ 1

0
1 sin nπt dt +

∫ 2

1
0 sin nπt dt

]

= − 1

nπ
cos nπt

∣∣∣∣
1

0

= − 1

nπ
(cos nπ − 1), cos nπ = (−1)n

= 1

nπ
[1 − (−1)n] =




2

nπ
, n = odd

0, n = even

(16.1.5)

Substituting the Fourier coefficients in Eqs. (16.1.3) to (16.1.5) into Eq.
(16.1.1) gives the Fourier series as

f (t) = 1

2
+ 2

π
sinπt + 2

3π
sin 3πt + 2

5π
sin 5πt + · · · (16.1.6)

Since f (t) contains only the dc component and the sine terms with the
fundamental component and odd harmonics, it may be written as

f (t) = 1

2
+ 2

π

∞∑
k=1

1

n
sin nπt, n = 2k − 1 (16.1.7)

By summing the terms one by one as demonstrated in Fig. 16.2,
we notice how superposition of the terms can evolve into the original
square. As more and more Fourier components are added, the sum gets
closer and closer to the square wave. However, it is not possible in
practice to sum the series in Eq. (16.1.6) or (16.1.7) to infinity. Only a
partial sum (n = 1, 2, 3, . . . , N , where N is finite) is possible. If we plot
the partial sum (or truncated series) over one period for a large N as in
Fig. 16.3, we notice that the partial sum oscillates above and below the
actual value of f (t). At the neighborhood of the points of discontinuity
(x = 0, 1, 2, . . .), there is overshoot and damped oscillation. In fact, an
overshoot of about 9 percent of the peak value is always present, regardless
of the number of terms used to approximate f (t). This is called the Gibbs
phenomenon.

Summing the Fourier terms by hand calculation
may be tedious. A computer is helpful to com-
pute the terms and plot the sum like those shown
in Fig. 16.2.

Historical note: Named after the mathematical
physicist Josiah Willard Gibbs, who first ob-
served it in 1899.
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t

f (t)

1

0 1 2

Figure 16.3 Truncating the Fourier series at
N = 11; Gibbs phenomenon.

Sum of first two ac components

t

Sum of first three ac components

t

Sum of first four ac components

t

Sum of first five ac components

(b)

t

Fundamental ac component

t

dc component t

1
2

(a)

Figure 16.2 Evolution of a
square wave from its Fourier
components.

Finally, let us obtain the amplitude and phase spectra for the signal
in Fig. 16.1. Since an = 0,

An =
√
a2
n + b2

n = |bn| =



2

nπ
, n = odd

0, n = even
(16.1.8)

and

φn = − tan−1 bn

an

=
{−90◦, n = odd

0, n = even
(16.1.9)

The plots of An and φn for different values of nω0 = nπ provide the
amplitude and phase spectra in Fig. 16.4. Notice that the amplitudes of
the harmonics decay very fast with frequency.

v

An

0.5

0 p 2p 3p

(a)

4p 5p 6p

v

f

0°

–90°

p 2p 3p 4p 5p 6p

(b)

2
p

2
3p

2
5p

Figure 16.4 For Example 16.1: (a) ampli-
tude and (b) phase spectrum of the function
shown in Fig. 16.1.
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P R A C T I C E P R O B L E M 1 6 . 1

Find the Fourier series of the square wave in Fig. 16.5. Plot the amplitude
and phase spectra.

v

f (t)

2 3–2 –1 0

1

1

–1

Figure 16.5 For Practice Prob. 16.1.

Answer: f (t) = 4

π

∞∑
k=1

1

n
sin nπt, n = 2k − 1. See Fig. 16.6 for the

spectra.

v

An

0 p 2p 3p

(a)

4p 5p 6p

v

f

0°

–90°

p 2p 3p 4p 5p 6p

(b)

4
p

4
3p

4
5p

Figure 16.6 For Practice Prob. 16.1: amplitude and phase spectra for the function shown
in Fig. 16.5.

E X A M P L E 1 6 . 2

Obtain the Fourier series for the periodic function in Fig. 16.7 and plot
the amplitude and phase spectra.

t

f (t)

2 3–2 –1 0

1

1

Figure 16.7 For Example 16.2.

Solution:

The function is described as

f (t) =
{
t, 0 < t < 1

0, 1 < t < 2

Since T = 2, ω0 = 2π/T = π . Then

a0 = 1

T

∫ T

0
f (t) dt = 1

2

[∫ 1

0
t dt +

∫ 2

1
0 dt

]
= 1

2

t2

2

∣∣∣∣
1

0

= 1

4
(16.2.1)

To evaluate an and bn, we need the integrals in Eq. (16.15):

an = 2

T

∫ T

0
f (t) cos nω0t dt

= 2

2

[∫ 1

0
t cos nπt dt +

∫ 2

1
0 cos nπt dt

]

=
[

1

n2π2
cos nπt + t

nπ
sin nπt

]∣∣∣∣
1

0

= 1

n2π2
(cos nπ − 1) + 0 = (−1)n − 1

n2π2

(16.2.2)



716 PART 3 Advanced Circuit Analyses

since cos nπ = (−1)n; and

bn = 2

T

∫ T

0
f (t) sin nω0t dt

= 2

2

[∫ 1

0
t sin nπt dt +

∫ 2

1
0 sin nπt dt

]

=
[

1

n2π2
sin nπt − t

nπ
cos nπt

]∣∣∣∣
1

0

= 0 − cos nπ

nπ
= (−1)n+1

nπ

(16.2.3)

Substituting the Fourier coefficients just found into Eq. (16.3) yields

f (t) = 1

4
+

∞∑
n=1

[
[(−1)n − 1]

(nπ)2
cos nπt + (−1)n+1

nπ
sin nπt

]

To obtain the amplitude and phase spectra, we notice that, for even
harmonics, an = 0, bn = −1/nπ , so that

An φn = an − jbn = 0 + j
1

nπ
(16.2.4)

Hence,

An = |bn| = 1

nπ
, n = 2, 4, . . .

φn = 90◦, n = 2, 4, . . .
(16.2.5)

For odd harmonics, an = −2/(n2π2), bn = 1/(nπ) so that

An φn = an − jbn = − 2

n2π2
− j

1

nπ
(16.2.6)

That is,

An =
√
a2
n + b2

n =
√

4

n4π4
+ 1

n2π2

= 1

n2π2

√
4 + n2π2, n = 1, 3, . . .

(16.2.7)

From Eq. (16.2.6), we observe that φ lies in the third quadrant, so that

φn = 180◦ + tan−1 nπ

2
, n = 1, 3, . . . (16.2.8)

From Eqs. (16.2.5), (16.2.7), and (16.2.8), we plot An and φn for different
values of nω0 = nπ to obtain the amplitude spectrum and phase spectrum
as shown in Fig. 16.8.

v

An

0.25

0 p

0.38

2p

0.16

3p

(a)

0.11

4p 5p

0.06

6p

0.08
0.05

v

f

180°

270°

90°

0 p

237.8°

2p

90°

3p

(b)

258°

4p 5p

262.7°

6p

90° 90°

Figure 16.8 For Example 16.2: (a) ampli-
tude spectrum, (b) phase spectrum.

P R A C T I C E P R O B L E M 1 6 . 2

Determine the Fourier series of the sawtooth waveform in Fig. 16.9.
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t

f (t)

2 3–2 –1 0

1

1

Figure 16.9 For Practice Prob. 16.2.

Answer: f (t) = 1

2
− 1

π

∞∑
n=1

1

n
sin 2πnt .

16.3 SYMMETRY CONSIDERATIONS
We noticed that the Fourier series of Example 16.1 consisted only of the
sine terms. One may wonder if a method exists whereby one can know
in advance that some Fourier coefficients would be zero and avoid the
unnecessary work involved in the tedious process of calculating them.
Such a method does exist; it is based on recognizing the existence of
symmetry. Here we discuss three types of symmetry: (1) even symmetry,
(2) odd symmetry, (3) half-wave symmetry.

t

f (t)

–T T0

(a)

A

–A

t

g(t)

–T T0

A

t

h(t)

–2p 2p–p p0

A

(b)

(c)

T
2

T
2

–

Figure 16.10 Typical examples of even
periodic functions.

16 . 3 . 1 Even Symmet r y
A function f (t) is even if its plot is symmetrical about the vertical axis;
that is,

f (t) = f (−t) (16.16)

Examples of even functions are t2, t4, and cos t . Figure 16.10 shows more
examples of periodic even functions. Note that each of these examples
satisfies Eq. (16.16). A main property of an even function fe(t) is that:∫ T/2

−T/2
fe(t) dt = 2

∫ T/2

0
fe(t) dt (16.17)

because integrating from −T/2 to 0 is the same as integrating from 0 to
T/2. Utilizing this property, the Fourier coefficients for an even function
become

a0 = 2

T

∫ T/2

0
f (t) dt

an = 4

T

∫ T/2

0
f (t) cos nω0t dt

bn = 0

(16.18)

Since bn = 0, Eq. (16.3) becomes a Fourier cosine series. This makes
sense because the cosine function is itself even. It also makes intuitive
sense that an even function contains no sine terms since the sine function
is odd.

To confirm Eq. (16.18) quantitatively, we apply the property of an
even function in Eq. (16.17) in evaluating the Fourier coefficients in Eqs.
(16.6), (16.8), and (16.9). It is convenient in each case to integrate over
the interval −T/2 < t < T/2, which is symmetrical about the origin.
Thus,
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a0 = 1

T

∫ T/2

−T/2
f (t) dt = 1

T

[∫ 0

−T/2
f (t) dt +

∫ T/2

0
f (t) dt

]
(16.19)

We change variables for the integral over the interval −T/2 < t < 0 by
letting t = −x, so that dt = −dx, f (t) = f (−t) = f (x), since f (t) is
an even function, and when t = −T/2, x = T/2. Then,

a0 = 1

T

[∫ 0

T/2
f (x)(−dx) +

∫ T/2

0
f (t) dt

]

= 1

T

[∫ T/2

0
f (x) dx +

∫ T/2

0
f (t) dt

] (16.20)

showing that the two integrals are identical. Hence,

a0 = 2

T

∫ T/2

0
f (t) dt (16.21)

as expected. Similarly, from Eq. (16.8),

an = 2

T

[∫ 0

−T/2
f (t) cos nω0t dt +

∫ T/2

0
f (t) cos nω0t dt

]
(16.22)

We make the same change of variables that led to Eq. (16.20) and note that
both f (t) and cos nω0t are even functions, implying that f (−t) = f (t)

and cos(−nω0t) = cos nω0t . Equation (16.22) becomes

an = 2

T

[∫ 0

T/2
f (−x) cos(−nω0x)(−dx) +

∫ T/2

0
f (t) cos nω0t dt

]

= 2

T

[∫ 0

T/2
f (x) cos(nω0x)(−dx) +

∫ T/2

0
f (t) cos nω0t dt

]

= 2

T

[∫ T/2

0
f (x) cos(nω0x) dx +

∫ T/2

0
f (t) cos nω0t dt

]
(16.23a)

or

an = 4

T

∫ T/2

0
f (t) cos nω0t dt (16.23b)

as expected. For bn, we apply Eq. (16.9),

bn = 2

T

[∫ 0

−T/2
f (t) sin nω0t dt +

∫ T/2

0
f (t) sin nω0t dt

]
(16.24)

We make the same change of variables but keep in mind that f (−t) =
f (t) but sin(−nω0t) = − sin nω0t . Equation (16.24) yields

bn = 2

T

[∫ 0

T/2
f (−x) sin(−nω0x)(−dx) +

∫ T/2

0
f (t) sin nω0t dt

]

= 2

T

[∫ 0

T/2
f (x) sin nω0x dx +

∫ T/2

0
f (t) sin nω0t dt

]

= 2

T

[
−

∫ T/2

0
f (x) sin(nω0x) dx +

∫ T/2

0
f (t) sin nω0t dt

]

= 0 (16.25)

confirming Eq. (16.18).
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16 . 3 . 2 Odd Symmet r y
A function f (t) is said to be odd if its plot is antisymmetrical about the
vertical axis:

f (−t) = −f (t) (16.26)

Examples of odd functions are t, t3, and sin t . Figure 16.11 shows more
examples of periodic odd functions. All these examples satisfy Eq.
(16.26). An odd function fo(t) has this major characteristic:∫ T/2

−T/2
fo(t) dt = 0 (16.27)

because integration from −T/2 to 0 is the negative of that from 0 to T/2.
With this property, the Fourier coefficients for an odd function become

a0 = 0, an = 0

bn = 4

T

∫ T/2

0
f (t) sin nω0t dt

(16.28)

which give us a Fourier sine series. Again, this makes sense because the
sine function is itself an odd function. Also, note that there is no dc term
for the Fourier series expansion of an odd function.

t

f (t)

–T T0

(a)

A

–A

t

g(t)

–T T0

(b)

A

–A

t

h(t)

–T T0

(c)

A

–A

T
2

T
2

–

Figure 16.11 Typical examples of odd
periodic functions.

The quantitative proof of Eq. (16.28) follows the same procedure
taken to prove Eq. (16.18) except that f (t) is now odd, so that f (t) =
−f (t). With this fundamental but simple difference, it is easy to see that
a0 = 0 in Eq. (16.20), an = 0 in Eq. (16.23a), and bn in Eq. (16.24)
becomes

bn = 2

T

[∫ 0

T/2
f (−x) sin(−nω0x)(−dx) +

∫ T/2

0
f (t) sin nω0t dt

]

= 2

T

[
−

∫ 0

T/2
f (x) sin nω0x dx +

∫ T/2

0
f (t) sin nω0t dt

]

= 2

T

[∫ T/2

0
f (x) sin(nω0x) dx +

∫ T/2

0
f (t) sin nω0t dt

]

bn = 4

T

∫ T/2

0
f (t) sin nω0t dt (16.29)

as expected.
It is interesting to note that any periodic function f (t) with neither

even nor odd symmetry may be decomposed into even and odd parts.
Using the properties of even and odd functions from Eqs. (16.16) and
(16.26), we can write

f (t) = 1

2
[f (t) + f (−t)]︸ ︷︷ ︸

even

+ 1

2
[f (t) − f (−t)]︸ ︷︷ ︸

odd

= fe(t) + fo(t) (16.30)

Notice that fe(t) = 1
2 [f (t) + f (−t)] satisfies the property of an even

function in Eq. (16.16), while fo(t) = 1
2 [f (t) − f (−t)] satisfies the

property of an odd function in Eq. (16.26). The fact that fe(t) contains
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only the dc term and the cosine terms, while fo(t) has only the sine terms,
can be exploited in grouping the Fourier series expansion of f (t) as

f (t) = a0 +
∞∑
n=1

an cos nω0t︸ ︷︷ ︸
even

+
∞∑
n=1

bn sin nω0t︸ ︷︷ ︸
odd

= fe(t) + fo(t) (16.31)

It follows readily from Eq. (16.31) that when f (t) is even, bn = 0, and
when f (t) is odd, a0 = 0 = an.

Also, note the following properties of odd and even functions:

1. The product of two even functions is also an even function.

2. The product of two odd functions is an even function.

3. The product of an even function and an odd function is an odd
function.

4. The sum (or difference) of two even functions is also an even
function.

5. The sum (or difference) of two odd functions is an odd
function.

6. The sum (or difference) of an even function and an odd
function is neither even nor odd.

Each of these properties can be proved using Eqs. (16.16) and (16.26).

16 . 3 . 3 Ha l f -Wave Symmet r y
A function is half-wave (odd) symmetric if

f

(
t − T

2

)
= −f (t) (16.32)

which means that each half-cycle is the mirror image of the next half-
cycle. Notice that functions cos nω0t and sin nω0t satisfy Eq. (16.32)
for odd values of n and therefore possess half-wave symmetry when
n is odd. Figure 16.12 shows other examples of half-wave symmetric
functions. The functions in Figs. 16.11(a) and 16.11(b) are also half-wave
symmetric. Notice that for each function, one half-cycle is the inverted

t

T

–T

f (t)

0

(a)

A

t–T

g(t)

0

(b)

A

–A–A

T

Figure 16.12 Typical examples of half-wave odd symmetric functions.
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version of the adjacent half-cycle. The Fourier coefficients become

a0 = 0

an =




4

T

∫ T/2

0
f (t) cos nω0t dt, for n odd

0, for n even

bn =




4

T

∫ T/2

0
f (t) sin nω0t dt, for n odd

0, for n even

(16.33)

showing that the Fourier series of a half-wave symmetric function contains
only odd harmonics.

To derive Eq. (16.33), we apply the property of half-wave symmet-
ric functions in Eq. (16.32) in evaluating the Fourier coefficients in Eqs.
(16.6), (16.8), and (16.9). Thus,

a0 = 1

T

∫ T/2

−T/2
f (t) dt = 1

T

[∫ 0

−T/2
f (t) dt +

∫ T/2

0
f (t) dt

]
(16.34)

We change variables for the integral over the interval −T/2 < t < 0
by letting x = t + T/2, so that dx = dt ; when t = −T/2, x = 0;
and when t = 0, x = T/2. Also, we keep Eq. (16.32) in mind; that is,
f (x − T/2) = −f (x). Then,

a0 = 1

T

[∫ T/2

0
f

(
x − T

2

)
dx +

∫ T/2

0
f (t) dt

]

= 1

T

[
−

∫ T/2

0
f (x) dx +

∫ T/2

0
f (t) dt

]
= 0

(16.35)

confirming the expression for a0 in Eq. (16.33). Similarly,

an = 2

T

[∫ 0

−T/2
f (t) cos nω0t dt +

∫ T/2

0
f (t) cos nω0t dt

]
(16.36)

We make the same change of variables that led to Eq. (16.35) so that Eq.
(16.36) becomes

an = 2

T

[∫ T/2

0
f

(
x − T

2

)
cos nω0

(
x − T

2

)
dx

+
∫ T/2

0
f (t) cos nω0t dt

] (16.37)

Since f (x − T/2) = −f (x) and

cos nω0

(
x − T

2

)
= cos(nω0t − nπ)

= cos nω0t cos nπ + sin nω0t sin nπ

= (−1)n cos nω0t

(16.38)

substituting these in Eq. (16.37) leads to
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an = 2

T
[1 − (−1)n]

∫ T/2

0
f (t) cos nω0t dt

=



4

T

∫ T/2

0
f (t) cos nω0t dt, for n odd

0, for n even

(16.39)

confirming Eq. (16.33). By following a similar procedure, we can derive
bn as in Eq. (16.33).

Table 16.2 summarizes the effects of these symmetries on the
Fourier coefficients. Table 16.3 provides the Fourier series of some com-
mon periodic functions.

TABLE 16.2 Effects of symmetry on Fourier coefficients.

Symmetry a0 an bn Remarks

Even a0 �= 0 an �= 0 bn = 0 Integrate over T/2 and multiply
by 2 to get the coefficients.

Odd a0 = 0 an = 0 bn �= 0 Integrate over T/2 and multiply
by 2 to get the coefficients.

Half-wave a0 = 0 a2n = 0 b2n = 0 Integrate over T/2 and multiply
a2n+1 �= 0 b2n+1 �= 0 by 2 to get the coefficients.

TABLE 16.3 The Fourier series of common functions.

Function Fourier series

1. Square wave

0 T t

A

f (t)

f (t) = 4A

π

∞∑
n=1

1

2n − 1
sin(2n − 1)ω0t

2. Sawtooth wave

0 T t

A

f (t)

f (t) = A

2
− A

π

∞∑
n=1

sin nω0t

n

3. Triangular wave

0 T t

A

f (t)

f (t) = A

2
− 4A

π 2

∞∑
n=1

1

(2n + 1)2
cos(2n − 1)ω0t
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TABLE 16.3 (continued)

Function Fourier series

4. Rectangular pulse train

t

f (t)

0

A

Tt
2

t
2

−

f (t) = Aτ

T
+ 2A

T

∞∑
n=1

1

n
sin

nπτ

T
cos nω0t

5. Half-wave rectified sine

t

f (t)

0

A

T

f (t) = A

π
+ A

2
sinω0t − 2A

π

∞∑
n=1

1

4n2 − 1
cos 2nω0t

6. Full-wave rectified sine

t

f (t)

0

A

T

f (t) = 2A

π
− 4A

π

∞∑
n=1

1

4n2 − 1
cos nω0t

E X A M P L E 1 6 . 3

Find the Fourier series expansion of f (t) given in Fig. 16.13.

t

f (t)

0–2–3 21 5

1

–1

3–1–5 –4 4

Figure 16.13 For Example 16.3.

Solution:

The function f (t) is an odd function. Hence a0 = 0 = an. The period is
T = 4, and ω0 = 2π/T = π/2, so that
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bn = 4

T

∫ T/2

0
f (t) sin nω0t dt

= 4

4

[∫ 1

0
1 sin

nπ

2
t dt +

∫ 2

1
0 sin

nπ

2
t dt

]

= − 2

nπ
cos

nπt

2

∣∣∣∣
1

0

= 2

nπ

(
1 − cos

nπ

2

)
Hence,

f (t) = 2

π

∞∑
n=1

1

n

(
1 − cos

nπ

2

)
sin

nπ

2
t

which is a Fourier sine series.

P R A C T I C E P R O B L E M 1 6 . 3

Find the Fourier series of the function f (t) in Fig. 16.14.

t

f (t)

0–2π –π π 2π 3π

1

–1

Figure 16.14 For Practice Prob. 16.3.

Answer: f (t) = − 4

π

∞∑
k=1

1

n
sin nt, n = 2k − 1.

E X A M P L E 1 6 . 4

Determine the Fourier series for the half-wave rectified cosine function
shown in Fig. 16.15.

t

f (t)

0–1 1 3 5

1

–5 –3

Figure 16.15 A half-wave rectified cosine function; for
Example 16.4.

Solution:

This is an even function so that bn = 0. Also, T = 4, ω0 = 2π/T = π/2.
Over a period,
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f (t) =




0, −2 < t < −1

cos
π

2
t, −1 < t < 1

0, 1 < t < 2

a0 = 2

T

∫ T/2

0
f (t) dt = 2

4

[∫ 1

0
cos

π

2
t dt +

∫ 2

1
0 dt

]

= 1

2

2

π
sin

π

2
t

∣∣∣∣
1

0

= 1

π

an = 4

T

∫ T/2

0
f (t) cos nω0t dt = 4

4

[∫ 1

0
cos

π

2
t cos

nπt

2
dt + 0

]

But cosA cosB = 1
2 [cos(A + B) + cos(A − B)]. Then

an = 1

2

∫ 1

0

[
cos

π

2
(n + 1)t + cos

π

2
(n − 1)t

]
dt

For n = 1,

a1 = 1

2

∫ 1

0
[cosπt + 1] dt = 1

2

[
sinπt

π
+ t

]∣∣∣∣
1

0

= 1

2

For n > 1,

an = 1

π(n + 1)
sin

π

2
(n + 1) + 1

π(n − 1)
sin

π

2
(n − 1)

For n = odd (n = 1, 3, 5, . . .), (n + 1) and (n − 1) are both even, so

sin
π

2
(n + 1) = 0 = sin

π

2
(n − 1), n = odd

For n = even (n = 2, 4, 6, . . .), (n + 1) and (n − 1) are both odd. Also,

sin
π

2
(n + 1) = − sin

π

2
(n − 1) = cos

nπ

2
= (−1)n/2, n = even

Hence,

an = (−1)n/2

π(n + 1)
+ −(−1)n/2

π(n − 1)
= −2(−1)n/2

π(n2 − 1)
, n = even

Thus,

f (t) = 1

π
+ 1

2
cos

π

2
t − 2

π

∞∑
n=even

(−1)n/2

(n2 − 1)
cos

nπ

2
t

To avoid using n = 2, 4, 6, . . . and also to ease computation, we can
replace n by 2k, where k = 1, 2, 3, . . . and obtain

f (t) = 1

π
+ 1

2
cos

π

2
t − 2

π

∞∑
k=1

(−1)k

(4k2 − 1)
cos kπt

which is a Fourier cosine series.

P R A C T I C E P R O B L E M 1 6 . 4

Find the Fourier series expansion of the function in Fig. 16.16.
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t

f (t)

0–2p 2p 4p

1

Figure 16.16 For Practice Prob. 16.4.

Answer: f (t) = 1

2
− 4

π2

∞∑
k=1

1

n2
cos nt, n = 2k − 1.

E X A M P L E 1 6 . 5

Calculate the Fourier series for the function in Fig. 16.17.

t

f (t)

0–1–2 2 31 4

1

–1

Figure 16.17 For Example 16.5.

Solution:

The function in Fig. 16.17 is half-wave odd symmetric, so that a0 = 0 =
an. It is described over half the period as

f (t) = t, −1 < t < 1

T = 4, ω0 = 2π/T = π/2. Hence,

bn = 4

T

∫ T/2

0
f (t) sin nω0t dt

Instead of integrating f (t) from 0 to 2, it is more convenient to integrate
from −1 to 1. Applying Eq. (16.15d),

bn = 4

4

∫ 1

−1
t sin

nπt

2
dt =

[
sin nπt/2

n2π2/4
− t cos nπt/2

nπ/2

]∣∣∣∣
1

−1

= 4

n2π2

[
sin

nπ

2
− sin

(
−nπ

2

)]
− 2

nπ

[
cos

nπ

2
+ cos

(
−nπ

2

)]

= 8

n2π2
sin

nπ

2
− 4

nπ
cos

nπ

2
since sin(−x) = − sin x as an odd function, while cos(−x) = cos x as
an even function. Using the identities for sin nπ/2 and cos nπ/2 in Table
16.1,

bn =




8

n2π2
(−1)(n−1)/2, n = odd = 1, 3, 5, . . .

4

nπ
(−1)(n+2)/2, n = even = 2, 4, 6, . . .

Thus,

f (t) =
∞∑
n=1

bn sin
nπ

2
t

where bn is given above.

P R A C T I C E P R O B L E M 1 6 . 5

Determine the Fourier series of the function in Fig. 16.12(a). Take A = 1
and T = 2π .

Answer: f (t) = 2

π

∞∑
k=1

( −2

n2π
cos nt + 1

n
sin nt

)
, n = 2k − 1.
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16.4 CIRCUIT APPLICATIONS
We find that in practice, many circuits are driven by nonsinusoidal peri-
odic functions. To find the steady-state response of a circuit to a nonsinu-
soidal periodic excitation requires the application of a Fourier series, ac
phasor analysis, and the superposition principle. The procedure usually
involves three steps.

S t e p s f o r A p p l y i n g F o u r i e r S e r i e s :
1. Express the excitation as a Fourier series.

2. Find the response of each term in the Fourier series.

3. Add the individual responses using the superposition principle.

The first step is to determine the Fourier series expansion of the
excitation. For the periodic voltage source shown in Fig. 16.18(a), for
example, the Fourier series is expressed as

v(t) = V0 +
∞∑
n=1

Vn cos(nω0t + θn) (16.40)

(The same could be done for a periodic current source.) Equation (16.40)
shows that v(t) consists of two parts: the dc component V0 and the ac
component Vn = Vn θn with several harmonics. This Fourier series
representation may be regarded as a set of series-connected sinusoidal
sources, with each source having its own amplitude and frequency, as
shown in Fig. 16.18(b).

(a)

i(t)

+
−

Linear
network

v(t)

(b)

i(t)

+
−

+
−

+
−

+
−

Linear
network

V1 cos(v0t + u1)

V0

V2 cos(2v0t + u2)

Vn cos(nv0t + un)Periodic 
Source

Figure 16.18 (a) Linear network excited by a periodic voltage source, (b) Fourier series
representation (time-domain).

The second step is finding the response to each term in the Fourier
series. The response to the dc component can be determined in the fre-
quency domain by setting n = 0 or ω = 0 as in Fig. 16.19(a), or in
the time domain by replacing all inductors with short circuits and all
capacitors with open circuits. The response to the ac component is ob-
tained by the phasor techniques covered in Chapter 9, as shown in Fig.
16.19(b). The network is represented by its impedance Z(nω0) or admit-
tance Y(nω0). Z(nω0) is the input impedance at the source when ω is
everywhere replaced by nω0, and Y(nω0) is the reciprocal of Z(nω0).

V0

(a)

(b)

+
−

Io

+

+

+

Z(v = 0)

V1     u1

V2     u2

Vn     un

+
−

I1

Z(v0)

+
−

I2

Z(2v0)

+
−

In

Z(nv0)

Figure 16.19 Steady-state responses:
(a) dc component, (b) ac component
(frequency domain).
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Finally, following the principle of superposition, we add all the
individual responses. For the case shown in Fig. 16.19,

i(t) = i0(t) + i1(t) + i2(t) + · · ·

= I0 +
∞∑
n=1

|In| cos(nω0t + ψn)
(16.41)

where each component In with frequency nω0 has been transformed to
the time domain to get in(t), and ψn is the argument of In.

E X A M P L E 1 6 . 6

Let the function f (t) in Example 16.1 be the voltage source vs(t) in the
circuit of Fig. 16.20. Find the response vo(t) of the circuit.

vs(t) vo(t)

5 Ω

2 H+
−

+

−

Figure 16.20 For Example 16.6.

Solution:

From Example 16.1,

vs(t) = 1

2
+ 2

π

∞∑
k=1

1

n
sin nπt, n = 2k − 1

where ωn = nω0 = nπ rad/s. Using phasors, we obtain the response Vo

in the circuit of Fig. 16.20 by voltage division:

Vo = jωnL

R + jωnL
Vs = j2nπ

5 + j2nπ
Vs

For the dc component (ωn = 0 or n = 0)

Vs = 1

2
	⇒ Vo = 0

This is expected, since the inductor is a short circuit to dc. For the nth
harmonic,

Vs = 2

nπ
− 90◦ (16.6.1)

and the corresponding response is

Vo = 2nπ 90◦
√

25 + 4n2π2 tan−1 2nπ/5

2

nπ
− 90◦

= 4 − tan−1 2nπ/5√
25 + 4n2π2

(16.6.2)

In the time domain,

vo(t) =
∞∑
k=1

4√
25 + 4n2π2

cos

(
nπt − tan−1 2nπ

5

)
, n = 2k − 1

The first three terms (k = 1, 2, 3 or n = 1, 3, 5) of the odd harmonics in
the summation give us

vo(t) = 0.4981 cos(πt − 51.49◦) + 0.2051 cos(3πt − 75.14◦)
+ 0.1257 cos(5πt − 80.96◦) + · · · Vv

|Vo |

0 p

0.5

2p 3p

0.2

4p 5p

0.13

6p 7p

0.1

Figure 16.21 For Example 16.6: Amplitude
spectrum of the output voltage.

Figure 16.21 shows the amplitude spectrum for output voltagevo(t),
while that of the input voltage vs(t) is in Fig. 16.4(a). Notice that the
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two spectra are close. Why? We observe that the circuit in Fig. 16.20
is a highpass filter with the corner frequency ωc = R/L = 2.5 rad/s,
which is less than the fundamental frequency ω0 = π rad/s. The dc
component is not passed and the first harmonic is slightly attenuated, but
higher harmonics are passed. In fact, from Eqs. (16.6.1) and (16.6.2), Vo

is identical to Vs for large n, which is characteristic of a highpass filter.

P R A C T I C E P R O B L E M 1 6 . 6

If the sawtooth waveform in Fig. 16.9 (see Practice Prob. 16.2) is the volt-
age source vs(t) in the circuit of Fig. 16.22, find the response vo(t).

vs(t) vo(t)

2 Ω

1 F+
−

+

−

Figure 16.22 For Practice Prob. 16.6.

Answer: vo(t) = 1

2
− 1

π

∞∑
n=1

sin(2πnt − tan−1 4nπ)

n
√

1 + 16n2π2
V.

E X A M P L E 1 6 . 7

Find the response io(t) in the circuit in Fig. 16.23 if the input voltage v(t)

has the Fourier series expansion

v(t) = 1 +
∞∑
n=1

2(−1)n

1 + n2
(cos nt − n sin nt) v(t)

i(t)

io(t)

4 Ω 2 Ω

2 Ω2 H+
−

Figure 16.23 For Example 16.7.

Solution:

Using Eq. (16.13), we can express the input voltage as

v(t) = 1 +
∞∑
n=1

2(−1)n√
1 + n2

cos(nt + tan−1 n)

= 1 − 1.414 cos(t + 45◦) + 0.8944 cos(2t + 63.45◦)
− 0.6345 cos(3t + 71.56◦) − 0.4851 cos(4t + 78.7◦) + · · ·

We notice that ω0 = 1, ωn = n rad/s. The impedance at the source is

Z = 4 + jωn2 ‖ 4 = 4 + jωn8

4 + jωn2
= 8 + jωn8

2 + jωn

The input current is

I = V
Z

= 2 + jωn

8 + jωn8
V

where V is the phasor form of the source voltage v(t). By current division,

Io = 4

4 + jωn2
I = V

4 + jωn4

Since ωn = n, Io can be expressed as

Io = V

4
√

1 + n2 tan−1 n

For the dc component (ωn = 0 or n = 0)

V = 1 	⇒ Io = V
4

= 1

4
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For the nth harmonic,

V = 2(−1)n√
1 + n2

tan−1 n

so that

Io = 1

4
√

1 + n2 tan−1 n

2(−1)n√
1 + n2

tan−1 n = (−1)n

2(1 + n2)

In the time domain,

io(t) = 1

4
+

∞∑
n=1

(−1)n

2(1 + n2)
cos nt A

P R A C T I C E P R O B L E M 1 6 . 7

If the input voltage in the circuit of Fig. 16.24 is

v(t) = 1

3
+ 1

π2

∞∑
n=1

(
1

n2
cos nt − π

n
sin nt

)
V

determine the response io(t).
v(t)

io(t)

2 Ω

1 Ω1 F+
−

Figure 16.24 For Practice Prob. 16.7.
Answer:

1

9
+

∞∑
n=1

√
1 + n2π2

n2π2
√

9 + 4n2
cos

(
nt − tan−1 2n

3
+ tan−1 nπ

)
A.

16.5 AVERAGE POWER AND RMS VALUES

−

+

v(t)

i(t)

Linear
circuit

Figure 16.25 The voltage
polarity reference and current
reference direction.

Recall the concepts of average power and rms value of a periodic signal
that we discussed in Chapter 11. To find the average power absorbed by
a circuit due to a periodic excitation, we write the voltage and current in
amplitude-phase form [see Eq. (16.10)] as

v(t) = Vdc +
∞∑
n=1

Vn cos(nω0t − θn) (16.42)

i(t) = Idc +
∞∑

m=1

Im cos(mω0t − φm) (16.43)

Following the passive sign convention (Fig. 16.25), the average power is

P = 1

T

∫ T

0
vi dt (16.44)

Substituting Eqs. (16.42) and (16.43) into Eq. (16.44) gives

P = 1

T

∫ T

0
VdcIdc dt +

∞∑
m=1

ImVdc

T

∫ T

0
cos(mω0t − φm) dt

+
∞∑
n=1

VnIdc

T

∫ T

0
cos(nω0t − θn) dt

+
∞∑

m=1

∞∑
n=1

VnIm

T

∫ T

0
cos(nω0t − θn) cos(mω0t − φm) dt

(16.45)
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The second and third integrals vanish, since we are integrating the cosine
over its period. According to Eq. (16.4e), all terms in the fourth integral
are zero when m �= n. By evaluating the first integral and applying Eq.
(16.4g) to the fourth integral for the case m = n, we obtain

P = VdcIdc + 1

2

∞∑
n=1

VnIn cos(θn − φn) (16.46)

This shows that in average-power calculation involving periodic voltage
and current, the total average power is the sum of the average powers in
each harmonically related voltage and current.

Given a periodic function f (t), its rms value (or the effective value)
is given by

Frms =
√

1

T

∫ T

0
f 2(t) dt (16.47)

Substituting f (t) in Eq. (16.10) into Eq. (16.47) and noting that
(a + b)2 = a2 + 2ab + b2, we obtain

F 2
rms = 1

T

∫ T

0

[
a2

0 + 2
∞∑
n=1

a0An cos(nω0t + φn)

+
∞∑
n=1

∞∑
m=1

AnAm cos(nω0t + φn) cos(mω0t + φm)

]
dt

= 1

T

∫ T

0
a2

0 dt + 2
∞∑
n=1

a0An

1

T

∫ T

0
cos(nω0t + φn) dt

+
∞∑
n=1

∞∑
m=1

AnAm

1

T

∫ T

0
cos(nω0t + φn) cos(mω0t + φm) dt

(16.48)

Distinct integers n and m have been introduced to handle the product of
the two series summations. Using the same reasoning as above, we get

F 2
rms = a2

0 + 1

2

∞∑
n=1

A2
n

or

Frms =
√√√√a2

0 + 1

2

∞∑
n=1

A2
n (16.49)

In terms of Fourier coefficients an and bn, Eq. (16.49) may be written as

Frms =
√√√√a2

0 + 1

2

∞∑
n=1

(a2
n + b2

n) (16.50)

If f (t) is the current through a resistor R, then the power dissipated in
the resistor is

P = RF 2
rms (16.51)
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Or if f (t) is the voltage across a resistor R, the power dissipated in the
resistor is

P = F 2
rms

R
(16.52)

One can avoid specifying the nature of the signal by choosing a 1-* re-
sistance. The power dissipated by the 1-* resistance is

P1* = F 2
rms = a2

0 + 1

2

∞∑
n=1

(a2
n + b2

n) (16.53)

This result is known as Parseval’s theorem. Notice that a2
0 is the power

in the dc component, while 1/2(a2
n + b2

n) is the ac power in the nth
harmonic. Thus, Parseval’s theorem states that the average power in a
periodic signal is the sum of the average power in its dc component and
the average powers in its harmonics.

Historical note: Named after the French mathe-
matician Marc-Antoine Parseval Deschemes
(1755–1836).

E X A M P L E 1 6 . 8

Determine the average power supplied to the circuit in Fig. 16.26 if
i(t) = 2 + 10 cos(t + 10◦) + 6 cos(3t + 35◦) A.

i(t) v(t) 2 F10 Ω
+

−

Figure 16.26 For Example 16.8.

Solution:

The input impedance of the network is

Z = 10

∥∥∥∥ 1

j2ω
= 10(1/j2ω)

10 + 1/j2ω
= 10

1 + j20ω

Hence,

V = IZ = 10I√
1 + 400ω2 tan−1 20ω

For the dc component, ω = 0,

I = 2 A 	⇒ V = 10(2) = 20 V

This is expected, because the capacitor is an open circuit to dc and the
entire 2-A current flows through the resistor. For ω = 1 rad/s,

I = 10 10◦ 	⇒ V = 10(10 10◦)√
1 + 400 tan−1 20

= 5 − 77.14◦

For ω = 3 rad/s,

I = 6 45◦ 	⇒ V = 10(6 45◦)√
1 + 3600 tan−1 60

= 1 − 44.05◦

Thus, in the time domain,

v(t) = 20 + 5 cos(t − 77.14◦) + 1 cos(3t − 44.05◦) V
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We obtain the average power supplied to the circuit by applying Eq.
(16.46), as

P = VdcIdc + 1

2

∞∑
n=1

VnIn cos(θn − φn)

To get the proper signs of θn and φn, we have to compare v and i in this
example with Eqs. (16.42) and (16.43). Thus,

P = 20(2) + 1

2
(5)(10) cos[77.14◦ − (−10◦)]

+ 1

2
(1)(6) cos[44.05◦ − (−35◦)]

= 40 + 1.247 + 0.05 = 41.5 W

Alternatively, we can find the average power absorbed by the resistor as

P = V 2
dc

R
+ 1

2

∞∑
n=1

|Vn|
R

= 202

10
+ 1

2
· 52

10
+ 1

2
· 12

10

= 40 + 1.25 + 0.05 = 41.5 W

which is the same as the power supplied, since the capacitor absorbs no
average power.

P R A C T I C E P R O B L E M 1 6 . 8

The voltage and current at the terminals of a circuit are

v(t) = 80 + 120 cos 120πt + 60 cos(360πt − 30◦)
i(t) = 5 cos(120πt − 10◦) + 2 cos(360πt − 60◦)

Find the average power absorbed by the circuit.

Answer: 347.4 W.

E X A M P L E 1 6 . 9

Find an estimate for the rms value of the voltage in Example 16.7.

Solution:

From Example 16.7, v(t) is expressed as

v(t) = 1 − 1.414 cos(t + 45◦) + 0.8944 cos(2t + 63.45◦)
− 0.6345 cos(3t + 71.56◦)
− 0.4851 cos(4t + 78.7◦) + · · · V

Using Eq. (16.49),

Vrms =
√
a2

0 + 1

2

∞∑
n=1

A2
n

=
√

12 + 1

2

[
(−1.414)2 + (0.8944)2 + (−0.6345)2 + (−0.4851)2 + · · ·]

=
√

2.7186 = 1.649 V
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This is only an estimate, as we have not taken enough terms of the series.
The actual function represented by the Fourier series is

v(t) = πet

sinhπ
, −π < t < π

with v(t) = v(t + T ). The exact rms value of this is 1.776 V.

P R A C T I C E P R O B L E M 1 6 . 9

Find the rms value of the periodic current

i(t) = 8 + 30 cos 2t − 20 sin 2t + 15 cos 4t − 10 sin 4t A

Answer: 29.61 A.

16.6 EXPONENTIAL FOURIER SERIES
A compact way of expressing the Fourier series in Eq. (16.3) is to put it
in exponential form. This requires that we represent the sine and cosine
functions in the exponential form using Euler’s identity:

cos nω0t = 1

2
[ejnω0t + e−jnω0t ] (16.54a)

sin nω0t = 1

2j
[ejnω0t − e−jnω0t ] (16.54b)

Substituting Eq. (16.54) into Eq. (16.3) and collecting terms, we obtain

f (t) = a0 + 1

2

∞∑
n=1

[(an − jbn)e
jnω0t + (an + jbn)e

−jnω0t ] (16.55)

If we define a new coefficient cn so that

c0 = a0, cn = (an − jbn)

2
, c−n = c∗

n = (an + jbn)

2
(16.56)

then f (t) becomes

f (t) = c0 +
∞∑
n=1

(cne
jnω0t + c−ne

−jnω0t ) (16.57)

or

f (t) =
∞∑

n=−∞
cne

jnω0t (16.58)

This is the complex or exponential Fourier series representation of f (t).
Note that this exponential form is more compact than the sine-cosine
form in Eq. (16.3). Although the exponential Fourier series coefficients
cn can also be obtained from an and bn using Eq. (16.56), they can also
be obtained directly from f (t) as

cn = 1

T

∫ T

0
f (t)e−jnω0t dt (16.59)
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where ω0 = 2π/T , as usual. The plots of the magnitude and phase of
cn versus nω0 are called the complex amplitude spectrum and complex
phase spectrum of f (t), respectively. The two spectra form the complex
frequency spectrum of f (t).

The exponential Fourier series of a periodic function f (t) describes the spectrum
of f (t) in terms of the amplitude and phase angle of ac components at positive

and negative harmonic frequencies.

The coefficients of the three forms of Fourier series (sine-cosine
form, amplitude-phase form, and exponential form) are related by

An φn = an − jbn = 2cn (16.60)

or

cn = |cn| θn =
√
a2
n + b2

n

2
− tan−1 bn/an (16.61)

if only an > 0. Note that the phase θn of cn is equal to φn.
In terms of the Fourier complex coefficients cn, the rms value of a

periodic signal f (t) can be found as

F 2
rms = 1

T

∫ T

0
f 2(t) dt = 1

T

∫ T

0
f (t)

[ ∞∑
n=−∞

cne
jnω0t

]
dt

=
∞∑

n=−∞
cn

[
1

T

∫ T

0
f (t)ejnω0t

]

=
∞∑

n=−∞
cnc

∗
n =

∞∑
n=−∞

|cn|2

(16.62)

or

Frms =
√√√√ ∞∑

n=−∞
|cn|2 (16.63)

Equation (16.62) can be written as

F 2
rms = |c0|2 + 2

∞∑
n=1

|cn|2 (16.64)

Again, the power dissipated by a 1-* resistance is

P1* = F 2
rms =

∞∑
n=−∞

|cn|2 (16.65)

which is a restatement of Parseval’s theorem. The power spectrum of the
signal f (t) is the plot of |cn|2 versus nω0. If f (t) is the voltage across a
resistor R, the average power absorbed by the resistor is F 2

rms/R; if f (t)

is the current through R, the power is F 2
rmsR.
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As an illustration, consider the periodic pulse train of Fig. 16.27.
Our goal is to obtain its amplitude and phase spectra. The period of the
pulse train is T = 10, so that ω0 = 2π/T = π/5. Using Eq. (16.59),

cn = 1

T

∫ T/2

−T/2
f (t)e−jnω0t dt = 1

10

∫ 1

−1
10e−jnω0t dt

= 1

−jnω0
e−jnω0t

∣∣∣∣
1

−1

= 1

−jnω0
(e−jnω0 − ejnω0)

= 2

nω0

ejnω0 − e−jnω0

2j
= 2

sin nω0

nω0
, ω0 = π

5

= 2
sin nπ/5

nπ/5

(16.66)

and

f (t) = 2
∞∑

n=−∞

sin nπ/5

nπ/5
ejnπt/5 (16.67)

Notice from Eq. (16.66) that cn is the product of 2 and a function of the
form sin x/x. This function is known as the sinc function; we write it as

sinc(x) = sin x

x
(16.68)

Some properties of the sinc function are important here. For zero argu-
ment, the value of the sinc function is unity,

sinc(0) = 1 (16.69)

This is obtained applying L’Hopital’s rule to Eq. (16.68). For an integral
multiple of π , the value of the sinc function is zero,

sinc(nπ) = 0, n = 1, 2, 3, . . . (16.70)

Also, the sinc function shows even symmetry. With all this in mind, we
can obtain the amplitude and phase spectra of f (t). From Eq. (16.66),
the magnitude is

|cn| = 2

∣∣∣∣ sin nπ/5

nπ/5

∣∣∣∣ (16.71)

while the phase is

θn =




0◦, sin
nπ

5
> 0

180◦, sin
nπ

5
< 0

(16.72)

Figure 16.28 shows the plot of |cn| versus n for n varying from −10 to 10,
where n = ω/ω0 is the normalized frequency. Figure 16.29 shows the
plot of θn versus n. Both the amplitude spectrum and phase spectrum are
called line spectra, because the value of |cn| and θn occur only at discrete
values of frequencies. The spacing between the lines is ω0. The power
spectrum, which is the plot of |cn|2 versusnω0, can also be plotted. Notice
that the sinc function forms the envelope of the amplitude spectrum.

–11 –9 –1 10 9 11 t

10

f (t)

Figure 16.27 The periodic pulse train.

The sinc function is called the sampling function in
communication theory, where it is very useful.

Examining the input and output spectra allows
visualization of the effect of a circuit on a periodic
signal.
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–2–4–6–8–10 0 2 4 6 8 10

0.31

2

1.87

|cn|

1.51

1.0

0.47
0.43

0.38

0.27

Figure 16.28 The amplitude of a periodic
pulse train.

n

un

180°

0 2 4 6 8 10–2–4–6–8–10

Figure 16.29 The phase spectrum of a periodic pulse train.

E X A M P L E 1 6 . 1 0

Find the exponential Fourier series expansion of the periodic function
f (t) = et , 0 < t < 2π with f (t + 2π) = f (t).

Solution:

Since T = 2π , ω0 = 2π/T = 1. Hence,

cn = 1

T

∫ T

0
f (t)e−jnω0t dt = 1

2π

∫ 2π

0
ete−jnt dt

= 1

2π

1

1 − jn
e(1−jn)t

∣∣∣∣
2π

0

= 1

2π(1 − jn)
[e2πe−j2πn − 1]

But by Euler’s identity,

e−j2πn = cos 2πn − j sin 2πn = 1 − j0 = 1

Thus,

cn = 1

2π(1 − jn)
[e2π − 1] = 85

1 − jn

The complex Fourier series is

f (t) =
∞∑

n=−∞

85

1 − jn
ejnt
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We may want to plot the complex frequency spectrum of f (t). If we let
cn = |cn| θn, then

|cn| = 85√
1 + n2

, θn = tan−1 n

By inserting in negative and positive values of n, we obtain the amplitude
and the phase plots of cn versus nω0 = n, as in Fig. 16.30.

–1–2–3–4–5 0

(a)

1 2 3 4 5 nv0

85

60.1

38
26.9

20.6
16.7

 |cn |

–1–2–3–4–5

0

(b)

1 2 3 4 5 nv0

un

90°

–90°

Figure 16.30 The complex frequency spectrum of the function in Example 16.10: (a) amplitude spectrum, (b) phase spectrum.

P R A C T I C E P R O B L E M 1 6 . 1 0

Obtain the complex Fourier series of the function in Fig. 16.1.

Answer: f (t) = 1

2
−

∞∑
n = −∞

n �= 0
n = odd

j

nπ
ejnπt .

E X A M P L E 1 6 . 1 1

Find the complex Fourier series of the sawtooth wave in Fig. 16.9. Plot
the amplitude and the phase spectra.

Solution:

From Fig. 16.9, f (t) = t, 0 < t < 1, T = 1 so that ω0 = 2π/T = 2π.
Hence,

cn = 1

T

∫ T

0
f (t)e−jnω0t dt = 1

1

∫ 1

0
te−j2nπt dt (16.11.1)



CHAPTER 16 The Fourier Series 739

But ∫
teat dt = eat

a2
(ax − 1) + C

Applying this to Eq. (16.11.1) gives

cn = e−j2nπt

(−j2nπ)2
(−j2nπt − 1)

∣∣∣∣
1

0

= e−j2nπ (−j2nπ − 1) + 1

−4n2π2

(16.11.2)

Again,

e−j2πn = cos 2πn − j sin 2πn = 1 − j0 = 1

so that Eq. (16.11.2) becomes

cn = −j2nπ

−4n2π2
= j

2nπ
(16.11.3)

This does not include the case when n = 0. When n = 0,

c0 = 1

T

∫ T

0
f (t) dt = 1

1

∫ 1

0
t dt = t2

2

∣∣∣∣
0

1

= 0.5 (16.11.4)

Hence,

f (t) = 0.5 +
∞∑

n = −∞
n �= 0

j

2nπ
ej2nπt (16.11.5)

and

|cn| =



1

2|n|π , n �= 0

0.5, n = 0
, θn = 90◦, n �= 0 (16.11.6)

By plotting |cn| and θn for different n, we obtain the amplitude spectrum
and the phase spectrum shown in Fig. 16.31.

v

|cn |

0

(a)

–v0

0.16 0.16

0.08 0.080.05 0.050.04 0.040.03 0.03

–2v0–3v0–4v0–5v0 v0

0.5

2v0 3v0 4v0 5v0 v

un

0

(b)

–v0–2v0–3v0–4v0–5v0 v0

90°

2v0 3v0 4v0 5v0

Figure 16.31 For Example 16.11: (a) amplitude spectrum, (b) phase spectrum.
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P R A C T I C E P R O B L E M 1 6 . 1 1

Obtain the complex Fourier series expansion of f (t) in Fig. 16.17. Show
the amplitude and phase spectra.

Answer: f (t) = −
∞∑

n = −∞
n �= 0

j (−1)n

nπ
ejnπt . See Fig. 16.32 for the spectra.

n

|cn |

0

(a)

–3 –2 –1 1 2 3 4–4

0.320.32

0.160.16

0.110.11
0.80.8

n

un

0

(b)

–3

–2

–1 1

2

3

4–4

90°

−90°

Figure 16.32 For Practice Prob. 16.11: (a) amplitude spectrum, (b) phase spectrum.

16.7 FOURIER ANALYSIS WITH PSPICE
Fourier analysis is usually performed with PSpice in conjunction with
transient analysis. Therefore, we must do a transient analysis in order to
perform a Fourier analysis.

To perform the Fourier analysis of a waveform, we need a circuit
whose input is the waveform and whose output is the Fourier decomposi-
tion. A suitable circuit is a current (or voltage) source in series with a 1-*
resistor as shown in Fig. 16.33. The waveform is inputted as vs(t) using
VPULSE for a pulse or VSIN for a sinusoid, and the attributes of the
waveform are set over its period T . The output V(1) from node 1 is the
dc level (a0) and the first nine harmonics (An) with their corresponding
phases ψn; that is,

vo(t) = a0 +
9∑

n=1

An sin(nω0t + ψn) (16.73)

where

An =
√
a2
n + b2

n, ψn = φn − π

2
, φn = tan−1 bn

an

(16.74)

Notice in Eq. (16.74) that the PSpice output is in the sine and angle form
rather than the cosine and angle form in Eq. (16.10). The PSpice output
also includes the normalized Fourier coefficients. Each coefficient an

is normalized by dividing it by the magnitude of the fundamental a1 so
that the normalized component is an/a1. The corresponding phase ψn is
normalized by subtracting from it the phase ψ1 of the fundamental, so
that the normalized phase is ψn − ψ1.

vs vo

1

0

(b)

1 Ω+
−

+

−
is vo

1

0

(a)

1 Ω
+

−

Figure 16.33 Fourier analysis with PSpice
using: (a) a current source, (b) a voltage
source.
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There are two types of Fourier analyses offered by PSpice for Win-
dows: Discrete Fourier Transform (DFT) performed by the PSpice pro-
gram and Fast Fourier Transform (FFT) performed by the Probe program.
While DFT is an approximation of the exponential Fourier series, FTT
is an algorithm for rapid efficient numerical computation of DFT. A full
discussion of DFT and FTT is beyond the scope of this book.

16 . 7 . 1 D i s c r e t e Four i e r Tr an s fo rm
A discrete Fourier transform (DFT) is performed by the PSpice program,
which tabulates the harmonics in an output file. To enable a Fourier
analysis, we select Analysis/Setup/Transient and bring up the Transient
dialog box, shown in Fig. 16.34. The Print Step should be a small fraction
of the period T , while the Final Time could be 6T . The Center Frequency
is the fundamental frequency f0 = 1/T . The particular variable whose
DFT is desired, V(1) in Fig. 16.34, is entered in the Output Vars com-
mand box. In addition to filling in the Transient dialog box, DCLICK
Enable Fourier. With the Fourier analysis enabled and the schematic
saved, run PSpice by selecting Analysis/Simulate as usual. The pro-
gram executes a harmonic decomposition into Fourier components of the
result of the transient analysis. The results are sent to an output file which
you can retrieve by selecting Analysis/Examine Output. The output file
includes the dc value and the first nine harmonics by default, although
you can specify more in the Number of harmonics box (see Fig. 16.34).

Figure 16.34 Transient dialog box.

16 . 7 . 2 F a s t Four i e r Tr an s fo rm
A fast Fourier transform (FFT) is performed by the Probe program and
displays as a Probe plot the complete spectrum of a transient expression.
As explained above, we first construct the schematic in Fig. 16.33(b) and
enter the attributes of the waveform. We also need to enter the Print Step
and the Final Time in the Transient dialog box. Once this is done, we can
obtain the FFT of the waveform in two ways.

One way is to insert a voltage marker at node 1 in the schematic
of the circuit in Fig. 16.33(b). After saving the schematic and selecting
Analysis/Simulate, the waveform V(1) will be displayed in the Probe
window. Double clicking the FFT icon in the Probe menu will auto-
matically replace the waveform with its FFT. From the FFT-generated
graph, we can obtain the harmonics. In case the FFT-generated graph
is crowded, we can use the User Defined data range (see Fig. 16.35) to
specify a smaller range.

Another way of obtaining the FFT of V(1) is to not insert a voltage
marker at node 1 in the schematic. After selecting Analysis/Simulate, the
Probe window will come up with no graph on it. We select Trace/Add
and type V(1) in the Trace Command box and DCLICKL OK. We
now select Plot/X-Axis Settings to bring up the X Axis Setting dialog
box shown in Fig. 16.35 and then select Fourier/OK. This will cause
the FFT of the selected trace (or traces) to be displayed. This second
approach is useful for obtaining the FFT of any trace associated with the
circuit.

A major advantage of the FFT method is that it provides graphical
output. But its major disadvantage is that some of the harmonics may be
too small to see.
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Figure 16.35 X axis settings dialog box.

In both DFT and FFT, we should let the simulation run for a large
number of cycles and use a small value of Step Ceiling (in the Transient
dialog box) to ensure accurate results. The Final Time in the Transient
dialog box should be at least five times the period of the signal to allow
the simulation to reach steady state.

E X A M P L E 1 6 . 1 2

Use PSpice to determine the Fourier coefficients of the signal in Fig. 16.1.

Solution:

Figure 16.36 shows the schematic for obtaining the Fourier coefficients.
With the signal in Fig. 16.1 in mind, we enter the attributes of the voltage
source VPULSE as shown in Fig. 16.36. We will solve this example
using both the DFT and FFT approaches.

0

1
V1=0
V2=1
TD=0
TF=1u
TR=1u
PW=1
PER=2

1 R1V3−
+

V

Figure 16.36 Schematic for
Example 16.12.

METHOD 1 DFT Approach: (The voltage marker in Fig. 16.36 is
not needed for this method.) From Fig. 16.1, it is evident that T = 2 s,

f0 = 1

T
= 1

2
= 0.5 Hz

So, in the transient dialog box, we select the Final Time as 6T = 12 s,
the Print Step as 0.01 s, the Step Ceiling as 10 ms, the Center Frequency
as 0.5 Hz, and the output variable as V(1). (In fact, Fig. 16.34 is for
this particular example.) When PSpice is run, the output file contains the
following result.

FOURIER COEFFICIENTS OF TRANSIENT RESPONSE V(1)

DC COMPONENT = 4.989950E-01

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 5.000E-01 6.366E-01 1.000E+00 -1.809E-01 0.000E+00
2 1.000E+00 2.012E-03 3.160E-03 -9.226E+01 -9.208E+01
3 1.500E+00 2.122E-01 3.333E-01 -5.427E-01 -3.619E-01

(continued)
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(continued)

4 2.000E+00 2.016E-03 3.167E-03 -9.451E+01 -9.433E+01
5 2.500E+00 1.273E-01 1.999E-01 -9.048E-01 -7.239E-01
6 3.000E+00 2.024E-03 3.180E-03 -9.676E+01 -9.658E+01
7 3.500E+00 9.088E-02 1.427E-01 -1.267E+00 -1.086E+00
8 4.000E+00 2.035E-03 3.197E-03 -9.898E+01 -9.880E+01
9 4.500E+00 7.065E-02 1.110E-01 -1.630E+00 -1.449E+00

Comparing the result with that in Eq. (16.1.7) (see Example 16.1) or with
the spectra in Fig. 16.4 shows a close agreement. From Eq. (16.1.7), the
dc component is 0.5 while PSpice gives 0.498995. Also, the signal has
only odd harmonics with phase ψn = −90◦, whereas PSpice seems to
indicate that the signal has even harmonics although the magnitudes of
the even harmonics are small.

METHOD 2 FFT Approach: With voltage marker in Fig. 16.36 in
place, we run PSpice and obtain the waveform V(1) shown in Fig. 16.37(a)
on the Probe window. By double clicking the FFT icon in the Probe menu
and changing the X-axis setting to 0 to 10 Hz, we obtain the FFT of V(1)
as shown in Fig. 16.37(b). The FFT-generated graph contains the dc and
harmonic components within the selected frequency range. Notice that
the magnitudes and frequencies of the harmonics agree with the DFT-
generated tabulated values.

(a)

0 s 2 s 4 s 6 s

Time

8 s 10 s 12 s

1.0 V

0 V

(b)

0 Hz
V(1)

2 Hz 4 Hz 6 Hz 8 Hz 10 Hz

Frequency

1.0 V

0 V

V(1)

Figure 16.37 (a) Original waveform of Fig. 16.1, (b) FFT of the waveform.

P R A C T I C E P R O B L E M 1 6 . 1 2

Obtain the Fourier coefficients of the function in Fig. 16.7 using PSpice.
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Answer:

FOURIER COEFFICIENTS OF TRANSIENT RESPONSE V(1)

DC COMPONENT = 4.950000E-01

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 1.000E+00 3.184E-01 1.000E+00 -1.782E+02 0.000E+00
2 2.000E+00 1.593E-01 5.002E-01 -1.764E+02 1.800E+00
3 3.000E+00 1.063E-01 3.338E-01 -1.746E+02 3.600E+00
4 4.000E+00 7.979E-02 2.506E-03 -1.728E+02 5.400E+00
5 5.000E+00 6.392E-01 2.008E-01 -1.710E+02 7.200E+00
6 6.000E+00 5.337E-02 1.676E-03 -1.692E+02 9.000E+00
7 7.000E+00 4.584E-02 1.440E-01 -1.674E+02 1.080E+01
8 8.000E+00 4.021E-02 1.263E-01 -1.656E+02 1.260E+01
9 9.000E+00 3.584E-02 1.126E-01 -1.638E+02 1.440E+01

E X A M P L E 1 6 . 1 3

If vs in the circuit of Fig. 16.38 is a sinusoidal voltage source of amplitude
12 V and frequency 100 Hz, find current i(t).

vs

i (t)

1 H1 Ω

1 Ω

+
−

Figure 16.38 For Example 16.13.

Solution:

The schematic is shown in Fig. 16.39. We may use the DFT approach
to obtain the Fourier coefficents of i(t). Since the period of the input
waveform is T = 1/100 = 10 ms, in the Transient dialog box we select
Print Step: 0.1 ms, Final Time: 100 ms, Center Frequency: 100 Hz,
Number of harmonics: 4, and Output Vars: I(L1). When the circuit is
simulated, the output file includes the following.

FOURIER COEFFICIENTS OF TRANSIENT RESPONSE I(VD)

DC COMPONENT = 8.583269E-03

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 1.000E+02 8.730E-03 1.000E+00 -8.984E+01 0.000E+00
2 2.000E+02 1.017E-04 1.165E-02 -8.306E+01 6.783E+00
3 3.000E+02 6.811E-05 7.802E-03 -8.235E+01 7.490E+00
4 4.000E+02 4.403E-05 5.044E-03 -8.943E+01 4.054E+00

With the Fourier coefficients, the Fourier series describing the cur-
rent i(t) can be obtained using Eq. (16.73); that is,

i(t) = 8.5833 + 8.73 sin(2π · 100t − 89.84◦)
+ 0.1017 sin(2π · 200t − 83.06◦)
+ 0.068 sin(2π · 300t − 82.35◦) + · · · mA
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We can also use the FFT approach to cross-check our result. The
current marker is inserted at pin 1 of the inductor as shown in Fig. 16.39.
Running PSpice will automatically produce the plot of I(L1) in the Probe
window, as shown in Fig. 16.40(a). By double clicking the FFT icon and
setting the range of the X-axis from 0 to 200 Hz, we generate the FFT
of I(L1) shown in Fig. 16.40(b). It is clear from the FFT-generated plot
that only the dc component and the first harmonic are visible. Higher
harmonics are negligibly small.

R1

1

0

VAMPL=12
FREQ=100
VOFF=0

1H L1V1 R2 1−
+

I

Figure 16.39 Schematic of the circuit in
Fig. 16.38.

(a)

0 s
I (L1)

20 ms 40 ms 60 ms 80 ms 100 ms

Time

20 mA

–20 mA

(b)

0 Hz
I (L1)

40 Hz 80 Hz 120 Hz 160 Hz 200 Hz

Frequency

10 mA

0 A

Figure 16.40 For Example 16.13: (a) plot of i(t), (b) the FFT of i(t).

P R A C T I C E P R O B L E M 1 6 . 1 3

A sinusoidal current source of amplitude 4 A and frequency 2 kHz is ap-
plied to the circuit in Fig. 16.41. Use PSpice to find v(t). is(t) v(t) 2 F10 Ω

+

−

Figure 16.41 For Practice Prob. 16.14.

Answer: v(t) = −150.72 + 145.5 sin(4π · 103t + 90◦)+ · · · µV. The
Fourier components are shown below.

FOURIER COEFFICIENTS OF TRANSIENT RESPONSE V(R1:1)

DC COMPONENT = -1.507169E-04

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 2.000E+03 1.455E-04 1.000E+00 9.006E+01 0.000E+00
2 4.000E+03 1.851E-06 1.273E-02 9.597E+01 5.910E+00
3 6.000E+03 1.406E-06 9.662E-03 9.323E+01 3.167E+00
4 8.000E+03 1.010E-06 6.946E-02 8.077E+01 -9.292E+00
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†16.8 APPLICATIONS
We demonstrated in Section 16.4 that the Fourier series expansion per-
mits the application of the phasor techniques used in ac analysis to cir-
cuits containing nonsinusoidal periodic excitations. The Fourier series
has many other practical applications, particularly in communications
and signal processing. Typical applications include spectrum analysis,
filtering, rectification, and harmonic distortion. We will consider two of
these: spectrum analyzers and filters.

TABLE 16.4 Frequency ranges of
typical signals.

Signal Frequency Range

Audible sounds 20 Hz to 15 kHz
AM radio 540–1600 kHz
Short-wave radio 3–36 MHz
Video signals dc to 4.2 MHz

(U.S. standards)
VHF television, 54–216 MHz

FM radio
UHF television 470–806 MHz
Cellular telephone 824–891.5 MHz
Microwaves 2.4–300 GHz
Visible light 105–106 GHz
X-rays 108–109 GHz

16 . 8 . 1 Spec t rum Ana l y z e r s
The Fourier series provides the spectrum of a signal. As we have seen, the
spectrum consists of the amplitudes and phases of the harmonics versus
frequency. By providing the spectrum of a signal f (t), the Fourier series
helps us identify the pertinent features of the signal. It demonstrates
which frequencies are playing an important role in the shape of the output
and which ones are not. For example, audible sounds have significant
components in the frequency range of 20 Hz to 15 kHz, while visible
light signals range from 105 GHz to 106 GHz. Table 16.4 presents some
other signals and the frequency ranges of their components. A periodic
function is said to be band-limited if its amplitude spectrum contains only
a finite number of coefficients An or cn. In this case, the Fourier series
becomes

f (t) =
N∑

n=−N

cne
jnω0t = a0 +

N∑
n=1

An cos(nω0t + φn) (16.75)

This shows that we need only 2N+1 terms (namely, a0, A1, A2, . . . , AN,

φ1, φ2, . . . , φN ) to completely specify f (t) if ω0 is known. This leads to
the sampling theorem: a band-limited periodic function whose Fourier
series contains N harmonics is uniquely specified by its values at 2N + 1
instants in one period.

A spectrum analyzer is an instrument that displays the amplitude of
the components of a signal versus frequency. In other words, it shows the
various frequency components (spectral lines) that indicate the amount
of energy at each frequency. It is unlike an oscilloscope, which displays
the entire signal (all components) versus time. An oscilloscope shows the
signal in the time domain, while the spectrum analyzer shows the signal
in the frequency domain. There is perhaps no instrument more useful to a
circuit analyst than the spectrum analyzer. An analyzer can conduct noise
and spurious signal analysis, phase checks, electromagnetic interference
and filter examinations, vibration measurements, radar measurements,
and more. Spectrum analyzers are commercially available in various
sizes and shapes. Figure 16.42 displays a typical one.

16 . 8 . 2 F i l t e r s
Filters are an important component of electronics and communications
systems. Chapter 14 presented a full discussion on passive and active fil-
ters. Here, we investigate how to design filters to select the fundamental
component (or any desired harmonic) of the input signal and reject other
harmonics. This filtering process cannot be accomplished without the
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Figure 16.42 A typical spectrum analyzer.
(Courtesy of Hewlett-Packer.)

Fourier series expansion of the input signal. For the purpose of illustra-
tion, we will consider two cases, a lowpass filter and a bandpass filter. In
Example 16.6, we already looked at a highpass RL filter.

The output of a lowpass filter depends on the input signal, the trans-
fer function H(ω) of the filter, and the corner or half-power frequency
ωc. We recall that ωc = 1/RC for an RC passive filter. As shown in
Fig. 16.43(a), the lowpass filter passes the dc and low-frequency com-
ponents, while blocking the high-frequency components. By making ωc

sufficiently large (ωc � ω0, e.g., making C small), a large number of the

0 v0 2v0 3v0

vc

v 0 v0 2v0 3v0 v

0

dcLowpass
filter

vc << v0

A

(a)

(b)

v

1
1
2

|H |

A
2

Figure 16.43 (a) Input and output spectra of a lowpass filter, (b) the lowpass filter passes
only the dc component when ωc � ω0.
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harmonics can be passed. On the other hand, by making ωc sufficiently
small (ωc � ω0), we can block out all the ac components and pass only
dc, as shown typically in Fig. 16.43(b). (See Fig. 16.2(a) for the Fourier
series expansion of the square wave.)

Similarly, the output of a bandpass filter depends on the input signal,
the transfer function of the filter H(ω), its bandwidth B, and its center
frequency ωc. As illustrated in Fig. 16.44(a), the filter passes all the
harmonics of the input signal within a band of frequencies (ω1 < ω < ω2)
centered around ωc. We have assumed that ω0, 2ω0, and 3ω0 are within
that band. If the filter is made highly selective (B � ω0) and ωc = ω0,
whereω0 is the fundamental frequency of the input signal, the filter passes
only the fundamental component (n = 1) of the input and blocks out all
higher harmonics. As shown in Fig. 16.44(b), with a square wave as
input, we obtain a sine wave of the same frequency as the output. (Again,
refer to Fig. 16.2(a).)

In this section, we have used ωc for the center
frequency of the bandpass filter instead of ω0 as
in Chapter 14, to avoid confusing ω0 with the
fundamental frequency of the input signal.

0 v0 2v0 3v0

v1 v2vc

v 0 v0 2v0 3v0 v

0

Bandpass
filter

vc = v0
B << v0

(a)

(b)

v

1

|H |

1
2

T

T

Figure 16.44 (a) Input and output spectra of a bandpass filter, (b) the bandpass filter
passes only the fundamental component when B � ω0.

E X A M P L E 1 6 . 1 4

If the sawtooth waveform in Fig. 16.45(a) is applied to an ideal lowpass
filter with the transfer function shown in Fig. 16.45(b), determine the
output.

Solution:

The input signal in Fig. 16.45(a) is the same as the signal in Fig. 16.9.
From Practice Prob. 16.2, we know that the Fourier series expansion is

x(t) = 1

2
− 1

π
sinω0t − 1

2π
sin 2ω0t − 1

3π
sin 3ω0t − · · ·
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where the period is T = 1 s and the fundamental frequency is ω0 = 2π
rad/s. Since the corner frequency of the filter is ωc = 10 rad/s, only the
dc component and harmonics with nω0 < 10 will be passed. For n = 2,
nω0 = 4π = 12.566 rad/s, which is higher than 10 rad/s, meaning that
second and higher harmonics will be rejected. Thus, only the dc and
fundamental components will be passed. Hence the output of the filter is

y(t) = 1

2
− 1

π
sin 2πt

t

x(t)

2 3–1 0

1

1

(a)

v

|H |

0

1

10

(b)

Figure 16.45 For Example 16.14.

P R A C T I C E P R O B L E M 1 6 . 1 4

Rework Example 16.14 if the lowpass filter is replaced by the ideal band-
pass filter shown in Fig. 16.46.

v

|H |

15 350

1

Figure 16.46 For Practice Prob. 16.14.

Answer: y(t) = − 1

3π
sin 3ω0t − 1

4π
sin 4ω0t − 1

5π
sin 5ω0t .

16.9 SUMMARY
1. A periodic function is one that repeats itself every T seconds; that

is, f (t ± nT ) = f (t), n = 1, 2, 3, . . . .

2. Any nonsinusoidal periodic function f (t) that we encounter in
electrical engineering can be expressed in terms of sinusoids using
Fourier series:

f (t) = a0︸︷︷︸
dc

+
∞∑
n=1

(an cos nω0t + bn sin nω0t)︸ ︷︷ ︸
ac

where ω0 = 2π/T is the fundamental frequency. The Fourier series
resolves the function into the dc component a0 and an ac compo-
nent containing infinitely many harmonically related sinusoids. The
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Fourier coefficients are determined as

a0 = 1

T

∫ T

0
f (t) dt, an = 2

T

∫ T

0
f (t) cos nω0t dt

bn = 2

T

∫ T

0
f (t) sin nω0t dt

If f (t) is an even function, bn = 0, and when f (t) is odd, a0 = 0
and an = 0. If f (t) is half-wave symmetric, a0 = an = bn = 0 for
even values of n.

3. An alternative to the trigonometric (or sine-cosine) Fourier series is
the amplitude-phase form

f (t) = a0 +
∞∑
n=1

An cos(nω0t + φn)

where

An =
√
a2
n + b2

n, φn = − tan−1 bn

an

4. Fourier series representation allows us to apply the phasor method
in analyzing circuits when the source function is a nonsinusoidal
periodic function. We use phasor technique to determine the
response of each harmonic in the series, transform the responses to
the time domain, and add them up.

5. The average-power of periodic voltage and current is

P = VdcIdc + 1

2

∞∑
n=1

VnIn cos(θn − φn)

In other words, the total average power is the sum of the average
powers in each harmonically related voltage and current.

6. A periodic function can also be represented in terms of an expo-
nential (or complex) Fourier series as

f (t) =
∞∑

n=−∞
cne

jnω0t

where

cn = 1

T

∫ T

0
f (t)e−jnω0t dt

and ω0 = 2π/T . The exponential form describes the spectrum of
f (t) in terms of the amplitude and phase of ac components at posi-
tive and negative harmonic frequencies. Thus, there are three basic
forms of Fourier series representation: the trigonometric form, the
amplitude-phase form, and the exponential form.

7. The frequency (or line) spectrum is the plot of An and φn or |cn|
and θn versus frequency.

8. The rms value of a periodic function is given by

Frms =
√√√√a2

0 + 1

2

∞∑
n=1

A2
n
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The power dissipated by a 1-* resistance is

P1* = F 2
rms = a2

0 + 1

2

∞∑
n=1

(a2
n + b2

n) =
∞∑

n=−∞
|cn|2

This relationship is known as Parseval’s theorem.

9. Using PSpice, a Fourier analysis of a circuit can be performed in
conjunction with the transient analysis.

10. Fourier series find application in spectrum analyzers and filters.
The spectrum analyzer is an instrument that displays the discrete
Fourier spectra of an input signal, so that an analyst can determine
the frequencies and relative energies of the signal’s components.
Because the Fourier spectra are discrete spectra, filters can be
designed for great effectiveness in blocking frequency components
of a signal that are outside a desired range.

R E V I EW QU E S T I ON S

16.1 Which of the following cannot be a Fourier series?

(a) t − t2

2
+ t3

3
− t4

4
+ t5

5
(b) 5 sin t + 3 sin 2t − 2 sin 3t + sin 4t
(c) sin t − 2 cos 3t + 4 sin 4t + cos 4t
(d) sin t + 3 sin 2.7t − cosπt + 2 tanπt

(e) 1 + e−jπt + e−j2πt

2
+ e−j3πt

3
16.2 If f (t) = t, 0 < t < π, f (t + nπ) = f (t), the

value of ω0 is
(a) 1 (b) 2 (c) π (d) 2π

16.3 Which of the following are even functions?

(a) t + t2 (b) t2 cos t (c) et
2

(d) t2 + t4 (e) sinh t

16.4 Which of the following are odd functions?
(a) sin t + cos t (b) t sin t

(c) t ln t (d) t3 cos t
(e) sinh t

16.5 If f (t) = 10 + 8 cos t + 4 cos 3t + 2 cos 5t + · · ·,
the magnitude of the dc component is:
(a) 10 (b) 8 (c) 4
(d) 2 (e) 0

16.6 If f (t) = 10 + 8 cos t + 4 cos 3t + 2 cos 5t + · · ·,
the angular frequency of the 6th harmonic is
(a) 12 (b) 11 (c) 9
(d) 6 (e) 1

16.7 The function in Fig. 16.14 is half-wave symmetric.
(a) True (b) False

16.8 The plot of |cn| versus nω0 is called:
(a) complex frequency spectrum
(b) complex amplitude spectrum
(c) complex phase spectrum

16.9 When the periodic voltage 2 + 6 sinω0t is applied to
a 1-* resistor, the integer closest to the power (in
watts) dissipated in the resistor is:
(a) 5 (b) 8 (c) 20
(d) 22 (e) 40

16.10 The instrument for displaying the spectrum of a
signal is known as:
(a) oscilloscope (b) spectrogram
(c) spectrum analyzer (d) Fourier spectrometer

Answers: 16.1a,d, 16.2b, 16.3b,c,d, 16.4d,e, 16.5a, 16.6d, 16.7a,
16.8b, 16.9d ,16.10c.

P RO B L E M S

Section 16.2 Trigonometric Fourier Series

16.1 Evaluate each of the following functions and see if it
is periodic. If periodic, find its period.
(a) f (t) = cosπt + 2 cos 3πt + 3 cos 5πt

(b) y(t) = sin t + 4 cos 2πt

(c) g(t) = sin 3t cos 4t

(d) h(t) = cos2 t

(e) z(t) = 4.2 sin(0.4πt + 10◦)
+0.8 sin(0.6πt + 50◦)

(f) p(t) = 10
(g) q(t) = e−πt
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16.2 Determine the period of these periodic functions:
(a) f1(t) = 4 sin 5t + 3 sin 6t
(b) f2(t) = 12 + 5 cos 2t + 2 cos(4t + 45◦)
(c) f3(t) = 4 sin2 600πt

(d) f4(t) = ej10t

16.3 Give the Fourier coefficients a0, an, and bn of the
waveform in Fig. 16.47. Plot the amplitude and
phase spectra.

t

g(t)

4 5 60 1 2 3–2 –1–3–4

5

10

Figure 16.47 For Prob. 16.3.

16.4 Find the Fourier series expansion of the backward
sawtooth waveform of Fig. 16.48. Obtain the
amplitude and phase spectra.

t

f (t)

4 6–2–4 0

10

2

Figure 16.48 For Probs. 16.4 and 16.50.

16.5∗ A voltage source has a periodic waveform defined
over its period as

v(t) = t (2π − t) V, 0 < t < 2π

Find the Fourier series for this voltage.

16.6 A periodic function is defined over its period as

h(t) =
{

10 sin t, 0 < t < π

20 sin(t − π), π < t < 2π

Find the Fourier series of h(t).

16.7 Find the quadrature (cosine and sine) form of the
Fourier series

f (t) = 2 +
∞∑
n=1

10

n3 + 1
cos

(
2nt + nπ

4

)
16.8 Express the Fourier series

f (t) = 10 +
∞∑
n=1

4

n2 + 1
cos 10nt + 1

n3
sin 10nt

(a) in a cosine and angle form,
(b) in a sine and angle form.

*An asterisk indicates a challenging problem.

16.9 The waveform in Fig. 16.49(a) has the following
Fourier series:

v1(t) = 1

2
− 4

π 2

(
cosπt + 1

9
cos 3πt

+ 1

25
cos 5πt + · · ·

)
V

Obtain the Fourier series of v2(t) in Fig. 16.49(b).

t

v1(t)

0 1

(a)

(b)

–2 –1 2 3 4

1

t

v2(t)

0–1–2 2 31 4

1

–1

Figure 16.49 For Probs. 16.9 and 16.52.

Section 16.3 Symmetry Considerations

16.10 Determine if these functions are even, odd, or
neither.
(a) 1 + t (b) t2 − 1 (c) cos nπt sin nπt

(d) sin2 πt (e) e−t

16.11 Determine the fundamental frequency and specify
the type of symmetry present in the functions in Fig.
16.50.

t

f1(t)

2 3–2 –1 0

2

–2

1

(a)

t

f2(t)

2 3 54–2 0–1

2
1

1

(b)
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t

f3(t)

2 4–2–4 0

2

1

–2

–1

(c)

Figure 16.50 For Probs. 16.11 and 16.48.

16.12 Obtain the Fourier series expansion of the function
in Fig. 16.51.

t

f (t)

0–1–2–3 2 31

1

–1

Figure 16.51 For Prob. 16.12.

16.13 Find the Fourier series for the signal in Fig. 16.52.
Evaluate f (t) at t = 2 using the first three nonzero
harmonics.

t

f (t)

0 2 4 6 8–2–4

4

Figure 16.52 For Probs. 16.13 and 16.51.

16.14 Determine the trigonometric Fourier series of the
signal in Fig. 16.53.

t

f (t)

4 5–5 –4 –3 –2 –1 0

2

1 2 3

Figure 16.53 For Prob. 16.14.

16.15 Calculate the Fourier coefficients for the function in
Fig. 16.54.

t

f (t)

4 5–5 –4 –3 –2 –1 0

4

1 2 3

Figure 16.54 For Prob. 16.15.

16.16 Find the Fourier series of the function shown in Fig.
16.55.

t

f (t)

0–1–2 2 31

1

–1

Figure 16.55 For Prob. 16.16.

16.17 In the periodic function of Fig. 16.56,
(a) find the trigonometric Fourier series coefficients

a2 and b2,
(b) calculate the magnitude and phase of the

component of f (t) that has ωn = 10 rad/s,
(c) use the first four nonzero terms to estimate

f (π/2),
(d) show that

π

4
= 1

1
− 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ · · ·

t

f (t)

0–2π –π π 2π 3π 4π

2

1

–1

–2

Figure 16.56 For Prob. 16.17.
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16.18 Determine the Fourier series representation of the
function in Fig. 16.57.

t

f (t)

0–4 –2

–1

42

1

Figure 16.57 For Prob. 16.18.

16.19 Find the Fourier series representation of the signal
shown in Fig. 16.58.

t(s)

f (t)

0–4 –3 –2 –1 8 97654321

10

5

Figure 16.58 For Prob. 16.19.

16.20 For the waveform shown in Fig. 16.59 below,
(a) specify the type of symmetry it has,
(b) calculate a3 and b3,
(c) find the rms value using the first five nonzero

harmonics.

16.21 Obtain the trigonometric Fourier series for the
voltage waveform shown in Fig. 16.60.

t

v(t)

0 1 2–3 –1 3 4

2

–2

Figure 16.60 For Prob. 16.21.

16.22 Determine the Fourier series expansion of the
sawtooth function in Fig. 16.61.

t

f (t)

0 2pp–2p –p

p

–p

Figure 16.61 For Prob. 16.22.

Section 16.4 Circuit Applications

16.23 Find i(t) in the circuit of Fig. 16.62 given that

is(t) = 1 +
∞∑
n=1

1

n2
cos 3nt A

is

i(t)

2 H1 Ω

2 Ω

Figure 16.62 For Prob. 16.23.

16.24 Obtain vo(t) in the network of Fig. 16.63 if

v(t) =
∞∑
n=1

10

n2
cos

(
nt + nπ

4

)
V

v(t) vo(t)

2 Ω 1 H

0.5 F

+

−
+
−

Figure 16.63 For Prob. 16.24.

t

f (t)

0 1–4 –3 –2

–1

542

1

–5 3–1

Figure 16.59 For Prob. 16.20.
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16.25 If vs in the circuit of Fig. 16.64 is the same as
function f2(t) in Fig. 16.50(b), determine the dc
component and the first three nonzero harmonics of
vo(t).

vs vo

1 Ω

1 Ω

1 H

1 F+
−

+

−

Figure 16.64 For Prob. 16.25.

16.26 Determine io(t) in the circuit of Fig. 16.65 if

vs(t) =
∞∑

n = 1
n = odd

(−1

nπ
sin

nπ

2
cos nt + 3

nπ
sin nt

)

vs

io(t)

2 H1 Ω

1 Ω

+
−

Figure 16.65 For Prob. 16.26.

16.27 The periodic voltage waveform in Fig. 16.66(a) is
applied to the circuit in Fig. 16.66(b). Find the
voltage vo(t) across the capacitor.

t

vs(t)

3210–1–2

10

(a)

(b)

vs vo

20 Ω

10 mF+
−

+

−

Figure 16.66 For Prob. 16.27.

16.28 If the periodic voltage in Fig. 16.67(a) is applied to
the circuit in Fig. 16.67(b), find io(t).

t

vs(t)

3210

7.5

2.5

(a)

(b)

vs

20 Ω

100 mH50 mF

40 Ω

+
−

io(t)

Figure 16.67 For Prob. 16.28.

16.29∗ The signal in Fig. 16.68(a) is applied to the circuit in
Fig. 16.68(b). Find vo(t).

t

vs(t)

3 4 5210

2

(a)

(b)

vs vo

1 Ω
2vx

vx 3 Ω0.25 F+
−

+−

+

−

+

−

Figure 16.68 For Prob. 16.29.



756 PART 3 Advanced Circuit Analyses

16.30 The full-wave rectified sinusoidal voltage in Fig.
16.69(a) is applied to the lowpass filter in Fig.
16.69(b). Obtain the output voltage vo(t) of the
filter.

t

vin(t)

2pp–p 0

1

(a)

(b)

vin(t) vo

2 H

10 Ω0.1 F+
−

+

−

Figure 16.69 For Prob. 16.30.

Section 16.5 Average Power and RMS Values

16.31 The voltage across the terminals of a circuit is

v(t) = 30 + 20 cos(60πt + 45◦)
+ 10 cos(60πt − 45◦) V

If the current entering the terminal at higher
potential is

i(t) = 6 + 4 cos(60πt + 10◦)
− 2 cos(120πt − 60◦) A

find:
(a) the rms value of the voltage,
(b) the rms value of the current,
(c) the average power absorbed by the circuit.

16.32 A series RLC circuit has R = 10 *,L = 2 mH,
and C = 40 µF. Determine the effective current and
average power absorbed when the applied voltage is

v(t) = 100 cos 1000t + 50 cos 2000t

+ 25 cos 3000t V

16.33 Consider the periodic signal in Fig. 16.53. (a) Find
the actual rms value of f (t). (b) Use the first five
nonzero harmonics of the Fourier series to obtain an
estimate for the rms value.

16.34 Calculate the average power dissipated by the 10-*
resistor in the circuit of Fig. 16.70 if

is(t) = 3 + 2 cos(50t − 60◦)
+ 0.5 cos(100t − 120◦) A

is(t) 10 Ω5 Ω

80 mH

Figure 16.70 For Prob. 16.34.

16.35 For the circuit in Fig. 16.71,

i(t) = 20 + 16 cos(10t + 45◦)
+ 12 cos(20t − 60◦) mA

(a) find v(t), and
(b) calculate the average power dissipated in the

resistor.

i(t) v(t)2 kΩ100 mF
+

−

Figure 16.71 For Prob. 16.35.

Section 16.6 Exponential Fourier Series

16.36 Obtain the exponential Fourier series for f (t) = t,
−1 < t < 1, with f (t + 2n) = f (t).

16.37 Determine the exponential Fourier series for
f (t) = t2, −π < t < π , with f (t + 2πn) = f (t).

16.38 Calculate the complex Fourier series for f (t) =
et ,−π < t < π , with f (t + 2πn) = f (t).

16.39 Find the complex Fourier series for f (t) = e−t ,
0 < t < 1, with f (t + n) = f (t).

16.40 Find the exponential Fourier series for the function
in Fig. 16.72.

t

f (t)

–1

2

1

0 1 3 42 5 6–1–3–4

Figure 16.72 For Prob. 16.40.

16.41 Obtain the exponential Fourier series expansion of
the half-wave rectified sinusoidal current of Fig.
16.73.
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t

i(t)

3p2p–2p p–p 0

1 sin t

Figure 16.73 For Prob. 16.41.

16.42 The Fourier series trigonometric representation of a
periodic function is

f (t) = 10 +
∞∑
n=1

(
1

n2 + 1
cos nπt + n

n2 + 1
sin nπt

)

Find the exponential Fourier series representation of
f (t).

16.43 The coefficients of the trigonometric Fourier series
representation of a function are:

bn = 0, an = 6

n3 − 2
, n = 0, 1, 2, . . .

If ωn = 50n, find the exponential Fourier series for
the function.

16.44 Find the exponential Fourier series of a function
which has the following trigonometric Fourier series
coefficients

a0 = π

4
, bn = (−1)n

n
, an = (−1)n − 1

πn2

Take T = 2π .

16.45 The complex Fourier series of the function in Fig.
16.74(a) is

f (t) = 1

2
−

∞∑
n=−∞

je−j (2n+1)t

(2n + 1)π

Find the complex Fourier series of the function h(t)
in Fig. 16.74(b).

t

f (t)

3p2p–2p p–p 0

(a)

(b)

1

t

h(t)

2 3–2 –1 0

2

–2

1

Figure 16.74 For Prob. 16.45.

16.46 Obtain the complex Fourier coefficients of the signal
in Fig. 16.56.

16.47 The spectra of the Fourier series of a function are
shown in Fig. 16.75. (a) Obtain the trigonometric
Fourier series. (b) Calculate the rms value of the
function.

0 1 2 3 4

4

6

An

2

1

vn (rad/s)

0

1 2 3 4

–50°

fn

–35°

–25°
–20°

vn (rad/s)

1
2

Figure 16.75 For Prob. 16.47.

16.48 Plot the amplitude spectrum for the signal f2(t) in
Fig. 16.50(b). Consider the first five terms.

16.49 Given that

f (t) =
∞∑
n=1

n=odd

(
20

n2π 2
cos 2nt − 3

nπ
sin 2nt

)

plot the first five terms of the amplitude and phase
spectra for the function.

Section 16.7 Fourier Analysis with PSpice

16.50 Determine the Fourier coefficients for the waveform
in Fig. 16.48 using PSpice.

16.51 Calculate the Fourier coefficients of the signal in
Fig. 16.52 using PSpice.

16.52 Use PSpice to obtain the Fourier coefficients of the
waveform in Fig. 16.49(a).

16.53 Rework Prob. 16.29 using PSpice.

16.54 Use PSpice to solve Prob. 16.28.
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Section 16.8 Applications

16.55 The signal displayed by a medical device can be
approximated by the waveform shown in Fig. 16.76.
Find the Fourier series representation of the signal.

t

f (t)

0 2 4 6–6 –4 –2

–10

10

Figure 16.76 For Prob. 16.55.

16.56 A spectrum analyzer indicates that a signal is made
up of three components only: 640 kHz at 2 V,
644 kHz at 1 V, 636 kHz at 1 V. If the signal is
applied across a 10-* resistor, what is the average
power absorbed by the resistor?

16.57 A certain band-limited periodic current has only
three frequencies in its Fourier series representation:

dc, 50 Hz, and 100 Hz. The current may be
represented as

i(t) = 4 + 6 sin 100πt + 8 cos 100πt

− 3 sin 200πt − 4 cos 200πt A

(a) Express i(t) in amplitude-phase form.
(b) If i(t) flows through a 2-* resistor, how many

watts of average power will be dissipated?

16.58 The signal in Fig. 16.66(a) is applied to the
high-pass filter in Fig. 16.77. Determine the value of
R such that the output signal vo(t) has an average
power of least 70 percent of the average power of
the input signal.

Vs Vo

1 H

R10 Ω+
−

+

−

Figure 16.77 For Prob. 16.58.

COM P R E H EN S I V E P RO B L E M S

16.59 The voltage across a device is given by

v(t) = −2 + 10 cos 4t + 8 cos 6t + 6 cos 8t

− 5 sin 4t − 3 sin 6t − sin 8t V

Find:
(a) the period of v(t),
(b) the average value of v(t),
(c) the effective value of v(t).

16.60 A certain band-limited periodic voltage has only
three harmonics in its Fourier series representation.
The harmonics have the following rms values:
fundamental 40 V, third harmonic 20 V, fifth
harmonic 10 V.
(a) If the voltage is applied across a 5-* resistor,

find the average power dissipated by the resistor.
(b) If a dc component is added to the periodic

voltage and the measured power dissipated
increases by 5 percent, determine the value of
the dc component added.

16.61 Write a program to compute the Fourier coefficients
(up to the 10th harmonic) of the square wave in
Table 16.3 with A = 10 and T = 2.

16.62 Write a computer program to calculate the
exponential Fourier series of the half-wave rectified

sinusoidal current of Fig. 16.73. Consider terms up
to the 10th harmonic.

16.63 Consider the full-wave rectified sinusoidal current in
Table 16.3. Assume that the current is passed
through a 1-* resistor.
(a) Find the average power absorbed by the resistor.
(b) Obtain cn for n = 1, 2, 3, and 4.
(c) What fraction of the total power is carried by the

dc component?
(d) What fraction of the total power is carried by the

second harmonic (n = 2)?

16.64 A band-limited voltage signal is found to have the
complex Fourier coefficients presented in the table
below. Calculate the average power that the signal
would supply a 4-* resistor.

nω0 |cn| θn

0 10.0 0◦

ω 8.5 15◦

2ω 4.2 30◦

3ω 2.1 45◦

4ω 0.5 60◦

5ω 0.2 75◦
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C H A P T E R

FOURIER TRANSFORM

1 7

No human investigation can claim to be scientific if it doesn’t pass the
test of mathematical proof.

—Leonardo da Vinci

Enhancing Your Career
Career in Communications Systems Communications
systems apply the principles of circuit analysis. A com-
munication system is designed to convey information from
a source (the transmitter) to a destination (the receiver) via
a channel (the propagation medium). Communications en-
gineers design systems for transmitting and receiving infor-
mation. The information can be in the form of voice, data,
or video.

We live in the information age—news, weather,
sports, shopping, financial, business inventory, and other
sources make information available to us almost instantly
via communications systems. Some obvious examples of
communications systems are the telephone network, mobile
cellular telephones, radio, cable TV, satellite TV, fax, and
radar. Mobile radio, used by police and fire departments,
aircraft, and various businesses is another example.

The field of communications is perhaps the fastest
growing area in electrical engineering. The merging of
the communications field with computer technology in re-
cent years has led to digital data communications networks
such as local area networks, metropolitan area networks,
and broadband integrated services digital networks. For ex-
ample, the Internet (the “information superhighway”) al-
lows educators, business people, and others to send elec-
tronic mail from their computers worldwide, log onto remote
databases, and transfer files. The Internet has hit the world
like a tidal wave and is drastically changing the way people
do business, communicate, and get information. This trend
will continue.

A communications systems engineer designs sys-
tems that provide high-quality information services. The
systems include hardware for generating, transmitting, and
receiving information signals. Communications engineers
are employed in numerous communications industries and
places where communications systems are routinely used.
More and more government agencies, academic depart-
ments, and businesses are demanding faster and more
accurate transmission of information. To meet these needs,
communications engineers are in high demand. Therefore,
the future is in communications and every electrical
engineer must prepare accordingly.

Cordless phone. Source: M. Nemzow, Fast Ethernet Implemen-
tation and Migration Solutions [New York: McGraw-Hill, 1997],
p. 176.
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17.1 INTRODUCTION
Fourier series enable us to represent a periodic function as a sum of sinu-
soids and to obtain the frequency spectrum from the series. The Fourier
transform allows us to extend the concept of a frequency spectrum to non-
periodic functions. The transform assumes that a nonperiodic function is
a periodic function with an infinite period. Thus, the Fourier transform
is an integral representation of a nonperiodic function that is analogous
to a Fourier series representation of a periodic function.

The Fourier transform is anintegral transform like the Laplace
transform. It transforms a function in the time domain into the frequency
domain. The Fourier transform is very useful in communications systems
and digital signal processing, in situations where the Laplace transform
does not apply. While the Laplace transform can only handle circuits
with inputs fort > 0 with initial conditions, the Fourier transform can
handle circuits with inputs fort < 0 as well as those fort > 0.

We begin by using a Fourier series as a stepping stone in defining the
Fourier transform. Then we develop some of the properties of the Fourier
transform. Next, we apply the Fourier transform in analyzing circuits. We
discuss Parseval’s theorem, compare the Laplace and Fourier transforms,
and see how the Fourier transform is applied in amplitude modulation
and sampling.

17.2 DEFINITION OF THE FOURIER TRANSFORM
We saw in the previous chapter that a nonsinusoidal periodic function can
be represented by a Fourier series, provided that it satisfies the Dirichlet
conditions. What happens if a function is not periodic? Unfortunately,
there are many important nonperiodic functions—such as a unit step or
an exponential function—that we cannot represent by a Fourier series.
As we shall see, the Fourier transform allows a transformation from the
time to the frequency domain, even if the function is not periodic.

0 t t

A

p(t)

(a)

0 t T−T t

A

f (t)

(b)

Figure 17.1 (a) A nonperiodic function,
(b) increasing T to infinity makes f (t)
become the nonperiodic function in (a).

Suppose we want to find the Fourier transform of a nonperiodic
functionp(t), shown in Fig. 17.1(a). We consider a periodic functionf (t)
whose shape over one period is the same asp(t), as shown in Fig. 17.1(b).
If we let the period T → ∞, only a single pulse of width τ [the desired
nonperiodic function in Fig. 17.1(a)] remains, because the adjacent pulses
have been moved to infinity. Thus, the function f (t) is no longer periodic.
In other words, f (t) = p(t) as T → ∞. It is interesting to consider the
spectrum of f (t) forA = 10 and τ = 0.2 (see Section 16.6). Figure 17.2
shows the effect of increasing T on the spectrum. First, we notice that
the general shape of the spectrum remains the same, and the frequency at
which the envelope first becomes zero remains the same. However, the
amplitude of the spectrum and the spacing between adjacent components
both decrease, while the number of harmonics increases. Thus, over a
range of frequencies, the sum of the amplitudes of the harmonics remains
almost constant. Since the total “strength” or energy of the components
within a band must remain unchanged, the amplitudes of the harmonics
must decrease as T increases. Since f = 1/T , as T increases, f or ω
decreases, so that the discrete spectrum ultimately becomes continuous.
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T = 2

t = 0.2

T = 1

t = 0.2

t = 0.2

T = 5

2

0 5 Hz−5

1

0 5 Hz−5

0

0.4

5 Hz−5

Figure 17.2 Effect of increasing T on the spectrum of the periodic
pulse trains in Fig. 17.1(b).
(Source: L. Balmer, Signals and Systems: An Introduction
[London: Prentice-Hall, 1991], p. 229.)

To further understand this connection between a nonperiodic func-
tion and its periodic counterpart, consider the exponential form of a
Fourier series in Eq. (16.58), namely,

f (t) =
∞∑

n=−∞
cne

jnω0t (17.1)

where

cn = 1

T

∫ T/2

−T/2
f (t)e−jnω0t dt (17.2)

The fundamental frequency is

ω0 = 2π

T
(17.3)

and the spacing between adjacent harmonics is

�ω = (n+ 1)ω0 − nω0 = ω0 = 2π

T
(17.4)
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Substituting Eq. (17.2) into Eq. (17.1) gives

f (t) =
∞∑

n=−∞

[
1

T

∫ T/2

−T/2
f (t)e−jnω0t dt

]
ejnω0t

=
∞∑

n=−∞

[
�ω

2π

∫ T/2

−T/2
f (t)e−jnω0t dt

]
ejnω0t

= 1

2π

∞∑
n=−∞

[∫ T/2

−T/2
f (t)e−jnω0t dt

]
�ωejnω0t

(17.5)

If we let T → ∞, the summation becomes integration, the incremen-
tal spacing �ω becomes the differential separation dω, and the discrete
harmonic frequency nω0 becomes a continuous frequency ω. Thus, as
T → ∞,

∞∑
n=−∞

�⇒
∫ ∞

−∞
�ω �⇒ dω

nω0 �⇒ ω

(17.6)

so that Eq. (17.5) becomes

f (t) = 1

2π

∫ ∞

−∞

[∫ ∞

−∞
f (t)e−jωt dt

]
ejωt dω (17.7)

The term in the brackets is known as the Fourier transform of f (t) and
is represented by F(ω). Thus

F(ω) = F[f (t)] =
∫ ∞

−∞
f (t)e−jωt dt (17.8)

where F is the Fourier transform operator. It is evident from Eq. (17.8)
that:

The Fourier transform is an integral transformation of f (t) from the
time domain to the frequency domain.

Some authors use F( jω) instead of F(ω) to rep-
resent the Fourier transform.

In general, F(ω) is a complex function; its magnitude is called the
amplitude spectrum, while its phase is called the phase spectrum. Thus
F(ω) is the spectrum.

Equation (17.7) can be written in terms of F(ω), and we obtain the
inverse Fourier transform as

f (t) = F−1[F(ω)] = 1

2π

∫ ∞

−∞
F(ω)ejωt dω (17.9)

The function f (t) and its transform F(ω) form the Fourier transform
pairs:

f (t) ⇐⇒ F(ω) (17.10)

since one can be derived from the other.



CHAPTER 17 Fourier Transform 763

The Fourier transform F(ω) exists when the Fourier integral in Eq.
(17.8) converges. A sufficient but not necessary condition that f (t) has
a Fourier transform is that it be completely integrable in the sense that∫ ∞

−∞
|f (t)| dt < ∞ (17.11)

For example, the Fourier transform of the unit ramp function tu(t) does
not exist, because the function does not satisfy the condition above.

To avoid the complex algebra that explicitly appears in the Fourier
transform, it is sometimes expedient to temporarily replace jωwith s and
then replace s with jω at the end.

E X A M P L E 1 7 . 1

Find the Fourier transform of the following functions: (a) δ(t − t0),
(b) ejω0t , (c) cosω0t .

Solution:

(a) For the impulse function,

F(ω) = F[δ(t − t0)] =
∫ ∞

−∞
δ(t − t0)e−jωt dt = e−jωt0 (17.1.1)

where the sifting property of the impulse function in Eq. (7.32) has been
applied. For the special case t0 = 0, we obtain

F[δ(t)] = 1 (17.1.2)

This shows that the magnitude of the spectrum of the impulse function
is constant; that is, all frequencies are equally represented in the impulse
function.
(b) We can find the Fourier transform of ejω0t in two ways. If we let

F(ω) = δ(ω − ω0)

then we can find f (t) using Eq. (17.9), writing

f (t) = 1

2π

∫ ∞

−∞
δ(ω − ω0)e

jωt dω

Using the sifting property of the impulse function gives

f (t) = 1

2π
ejω0t

Since F(ω) and f (t) constitute a Fourier transform pair, so too must
2πδ(ω − ω0) and ejω0t ,

F[ejω0t ] = 2πδ(ω − ω0) (17.1.3)

Alternatively, from Eq. (17.1.2),

δ(t) = F−1[1]

Using the inverse Fourier transform formula in Eq. (17.9),

δ(t) = F−1[1] = 1

2π

∫ ∞

−∞
1ejωt dω
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or ∫ ∞

−∞
ejωt dω = 2πδ(t) (17.1.4)

Interchanging variables t and ω results in∫ ∞

−∞
ejωtdt = 2πδ(ω) (17.1.5)

Using this result, the Fourier transform of the given function is

F[ejω0t ] =
∫ ∞

−∞
ejω0t e−jωt dt =

∫ ∞

−∞
ej (ω0−ω) dt = 2πδ(ω0 − ω)

Since the impulse function is an even function, with δ(ω0 −ω) = δ(ω−
ω0),

F[ejω0t ] = 2πδ(ω − ω0) (17.1.6)

By simply changing the sign of ω0, we readily obtain

F[e−jω0t ] = 2πδ(ω + ω0) (17.1.7)

Also, by setting ω0 = 0,

F[1] = 2πδ(ω) (17.1.8)

(c) By using the result in Eqs. (17.1.6) and (17.1.7), we get

F[cosω0t] = F
[
ejω0t + e−jω0t

2

]

= 1

2
F[ejω0t ] + 1

2
F[e−jω0t ]

= πδ(ω − ω0)+ πδ(ω + ω0)

(17.1.9)

The Fourier transform of the cosine signal is shown in Fig. 17.3.

t

f (t)

1

00 vv0−v0

F(v)

p p

Figure 17.3 Fourier transform of f (t) = cosω0t .

P R A C T I C E P R O B L E M 1 7 . 1

Determine the Fourier transforms of the following functions: (a) gate
function g(t) = u(t − 1)− u(t − 2), (b) 4δ(t + 2), (c) sinω0t .

Answer: (a) (e−jω − e−j2ω)/jω, (b) 4ej2ω,
(c) jπ [δ(ω + ω0)− πδ(ω − ω0)].
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E X A M P L E 1 7 . 2

Derive the Fourier transform of a single rectangular pulse of width τ and
height A, shown in Fig. 17.4.

0 t

A

f (t)

t
2

t
2

−

Figure 17.4 A rectangular
pulse; for Example 17.2.

Solution:

F(ω) =
∫ τ/2

−τ/2
Ae−jωt dt = − A

jω
e−jωt

∣∣∣∣
τ/2

−τ/2

= 2A

ω

(
ejωτ/2 − e−jωτ/2

2j

)

= Aτ
sinωτ/2

ωτ/2
= Aτ sinc

ωτ

2

If we make A = 10 and τ = 2 as in Fig. 16.27 (like in Section 16.6),
then

F(ω) = 20 sinc ω

whose amplitude spectrum is shown in Fig. 17.5. Comparing Fig. 17.4
with the frequency spectrum of the rectangular pulses in Fig. 16.28, we
notice that the spectrum in Fig. 16.28 is discrete and its envelope has the
same shape as the Fourier transform of a single rectangular pulse.

v

20

|F(v)|

p 2p 3p−2p −p−3p 0

Figure 17.5 Amplitude spectrum
of the rectangular pulse in Fig. 17.4;
for Example 17.2.

P R A C T I C E P R O B L E M 1 7 . 2

Obtain the Fourier transform of the function in Fig. 17.6.

0 t

−1

1

−1

f (t)

1

Figure 17.6 For Practice Prob. 17.2.

Answer:
2(cosω − 1)

jω
.

E X A M P L E 1 7 . 3

Obtain the Fourier transform of the “switched-on” exponential function
shown in Fig. 17.7.

Solution:

From Fig. 17.7,

f (t) = e−atu(t) =
{
e−at , t > 0
0, t < 0
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Hence,

F(ω) =
∫ ∞

−∞
f (t)e−jωt dt =

∫ ∞

0
e−at e−jωt dt =

∫ ∞

0
e−(a+jω)t dt

= −1

a + jωe
−(a+jω)t

∣∣∣∣
∞

0

= 1

a + jω

0 t

1

f (t)

e−at

Figure 17.7 For Example 17.3.

P R A C T I C E P R O B L E M 1 7 . 3

Determine the Fourier transform of the “switched-off” exponential func-
tion in Fig. 17.8.

0 t

1

f (t)

eat

Figure 17.8 For Practice Prob. 17.3.

Answer:
1

a − jω .

17.3 PROPERTIES OF THE FOURIER TRANSFORM
We now develop some properties of the Fourier transform that are useful
in finding the transforms of complicated functions from the transforms
of simple functions. For each property, we will first state and derive it,
and then illustrate it with some examples.

Linearity

If F1(ω) and F2(ω) are the Fourier transforms of f1(t) and f2(t), respec-
tively, then

F[a1f1(t)+ a2f2(t)] = a1F1(ω)+ a2F2(ω) (17.12)

where a1 and a2 are constants. This property simply states that the Fourier
transform of a linear combination of functions is the same as the linear
combination of the transforms of the individual functions. The proof of
the linearity property in Eq. (17.12) is straightforward. By definition,

F[a1f1(t)+ a2f2(t)] =
∫ ∞

−∞
[a1f1(t)+ a2f2(t)]e

−jωt dt

=
∫ ∞

−∞
a1f1(t)e

−jωt dt +
∫ ∞

−∞
a2f2(t)e

−jωtdt

= a1F1(ω)+ a2F2(ω)
(17.13)
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For example, sinω0t = 1
2j (e

jω0t − e−jω0t ). Using the linearity
property,

F [sinω0t] = 1

2j
[F(ejω0t )− F(e−jω0t )]

= π

j
[δ(ω − ω0)− δ(ω + ω0)]

(17.14)

Time Scaling

If F(ω) = F[f (t)], then

F[f (at)] = 1

|a|F
(ω
a

)
(17.15)

where a is a constant. Equation (17.15) shows that time expansion
(|a| > 1) corresponds to frequency compression, or conversely, time
compression (|a| < 1) implies frequency expansion. The proof of the
time-scaling property proceeds as follows.

F[f (at)] =
∫ ∞

−∞
f (at)e−jωt dt (17.16)

If we let x = at, so that dx = a dt , then

F[f (at)] =
∫ ∞

−∞
f (x)e−jωx/a

dx

a
= 1

a
F
(ω
a

)
(17.17)

For example, for the rectangular pulse p(t) in Example 17.2,

F[p(t)] = Aτ sinc
ωτ

2
(17.18a)

Using Eq. (17.15),

F[p(2t)] = Aτ

2
sinc

ωτ

4
(17.18b)

It may be helpful to plot p(t) and p(2t) and their Fourier transforms.
Since

p(t) =


A, −τ

2
< t <

τ

2
0, otherwise

(17.19a)

then replacing every t with 2t gives

p(2t) =


A, −τ

2
< 2t <

τ

2
0, otherwise

=


A, −τ

4
< t <

τ

4
0, otherwise

(17.19b)

showing that p(2t) is time compressed, as shown in Fig. 17.9(b). To plot
both Fourier transforms in Eq. (17.18), we recall that the sinc function
has zeros when its argument is nπ , where n is an integer. Hence, for the
transform of p(t) in Eq. (17.18a), ωτ/2 = 2πf τ/2 = nπ → f = n/τ ,
and for the transform of p(2t) in Eq. (17.18b), ωτ/4 = 2πf τ/4 =
nπ → f = 2n/τ . The plots of the Fourier transforms are shown in Fig.
17.9, which shows that time compression corresponds with frequency
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expansion. We should expect this intuitively, because when the signal is
squashed in time, we expect it to change more rapidly, thereby causing
higher-frequency components to exist.

(a)

f

At

F[p(t)]

ft−t

0 t

A

p(t)

(b)

0 t

A

p(2t)
F[p(2t)]

0

0

t
2

t
2

At
2

t
4

t
2

− 3
t

−
t

−2 1
t

− 1
t

2
t

3
t

t
2

−t
4

−

Figure 17.9 The effect of time scaling: (a) transform of the pulse, (b) time compres-
sion of the pulse causes frequency expansion.

Time Shifting

If F(ω) = F[f (t)], then

F[f (t − t0)] = e−jωt0F(ω) (17.20)

that is, a delay in the time domain corresponds to a phase shift in the
frequency domain. To derive the time shifting property, we note that

F[f (t − t0)] =
∫ ∞

−∞
f (t − t0)e−jωt dt (17.21)

If we let x = t − t0 so that dx = dt and t = x + t0, then

F[f (t − t0)] =
∫ ∞

−∞
f (x)e−jω(x+t0) dx

= e−jωt0
∫ ∞

−∞
f (x)e−jωx dx = e−jωt0F(ω)

(17.22)

Similarly, F[f (t + t0)] = ejωt0F(ω).
For example, from Example 17.3,

F[e−atu(t)] = 1

a + jω (17.23)
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The transform of f (t) = e−(t−2)u(t − 2) is

F(ω) = F[e−(t−2)u(t − 2)] = e−j2ω

1 + jω (17.24)

Frequency Shifting (or Amplitude Modulation)

This property states that if F(ω) = F[f (t)], then

F[f (t)ejω0t ] = F(ω − ω0) (17.25)

meaning, a frequency shift in the frequency domain adds a phase shift to
the time function. By definition,

F[f (t)ejω0t ] =
∫ ∞

−∞
f (t)ejω0t e−jωt dt

=
∫ ∞

−∞
f (t)e−j (ω−ω0)t dt = F(ω − ω0)

(17.26)

For example, cosω0t = 1
2 (e

jω0t + e−jω0t ). Using the property in
Eq. (17.25),

F[f (t) cosω0t] = 1

2
F
[
f (t)ejω0t

]+ 1

2
F
[
f (t)e−jω0t

]
= 1

2
F(ω − ω0)+ 1

2
F(ω + ω0)

(17.27)

This is an important result in modulation where frequency components of
a signal are shifted. If, for example, the amplitude spectrum of f (t) is as
shown in Fig. 17.10(a), then the amplitude spectrum of f (t) cosω0t will
be as shown in Fig. 17.10(b). We will elaborate on amplitude modulation
in Section 17.7.1.

A

(a)

|F[ f (t)]|

(b)

−B B v

|F[ f (t) cos v0t]|

−v0 − B −v0 + B 0v0 v0 – B v0 + B vv0

F (v + v0) F (v − v0)
A
2

1
2

1
2

Figure 17.10 Amplitude spectra of: (a) signal f (t), (b) modulated signal f (t) cosωt .

Time Differentiation

Given that F(ω) = F[f (t)], then

F[f ′(t)] = jωF(ω) (17.28)

In other words, the transform of the derivative of f (t) is obtained by
multiplying the transform of f (t) by jω. By definition,

f (t) = F−1[F(ω)] = 1

2π

∫ ∞

−∞
F(ω)ejωt dω (17.29)
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Taking the derivative of both sides with respect to t gives

f ′(t) = jω

2π

∫ ∞

−∞
F(ω)ejωt dω = jωF−1[F(ω)]

or

F[f ′(t)] = jωF(ω) (17.30)

Repeated applications of Eq. (17.30) give

F[f (n)(t)] = (jω)nF (ω) (17.31)

For example, if f (t) = e−at , then

f ′(t) = −ae−at = −af (t) (17.32)

Taking the Fourier transforms of the first and last terms, we obtain

jωF(ω) = −aF(ω) �⇒ F(ω) = 1

a + jω (17.33)

which agrees with the result in Example 17.3.

Time Integration

Given that F(ω) = F[f (t)], then

F
[∫ t

−∞
f (t) dt

]
= F(ω)

jω
+ πF(0)δ(ω) (17.34)

that is, the transform of the integral of f (t) is obtained by dividing the
transform of f (t) by jω and adding the result to the impulse term that
reflects the dc component F(0). Someone might ask, “How do we know
that when we take the Fourier transform for time integration, we should
integrate over the interval [−∞, t] and not [−∞,∞]?” When we inte-
grate over [−∞,∞], the result does not depend on time anymore, and
the Fourier transform of a constant is what we will eventually get. But
when we integrate over [−∞, t], we get the integral of the function from
the past to time t , so that the result depends on t and we can take the
Fourier transform of that.

If ω is replaced by 0 in Eq. (17.8),

F(0) =
∫ ∞

−∞
f (t) dt (17.35)

indicating that the dc component is zero when the integral of f (t) over
all time vanishes. The proof of the time integration in Eq. (17.34) will be
given later when we consider the convolution property.

For example, we know that F[δ(t)] = 1 and that integrating the
impulse function gives the unit step function [see Eq. (7.39a)]. By ap-
plying the property in Eq. (17.34), we obtain the Fourier transform of the
unit step function as

F[u(t)] = F
[∫ t

−∞
δ(t) dt

]
= 1

jω
+ πδ(ω) (17.36)

Reversal

If F(ω) = F[f (t)], then
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F[f (−t)] = F(−ω) = F ∗(ω) (17.37)

where the asterisk denotes the complex conjugate. This property states
that reversing f (t) about the time axis reverses F(ω) about the frequency
axis. This may be regarded as a special case of time scaling for which
a = −1 in Eq. (17.15).

Duality

This property states that if F(ω) is the Fourier transform of f (t), then
the Fourier transform of F(t) is 2πf (−ω); we write

F[f (t)] = F(ω) �⇒ F[F(t)] = 2πf (−ω) (17.38)

This expresses the symmetry property of the Fourier transform. To derive
this property, we recall that

f (t) = F−1[F(ω)] = 1

2π

∫ ∞

−∞
F(ω)ejωt dω

or

2πf (t) =
∫ ∞

−∞
F(ω)ejωt dω (17.39)

Replacing t by −t gives

2πf (−t) =
∫ ∞

−∞
F(ω)e−jωt dω

If we interchange t and ω, we obtain

2πf (−ω) =
∫ ∞

−∞
F(t)e−jωt dt = F[F(t)] (17.40)

as expected.
For example, if f (t) = e−|t |, then

F(ω) = 2

ω2 + 1
(17.41)

By the duality property, the Fourier transform of F(t) = 2/(t2 + 1) is

2πf (ω) = 2πe−|ω| (17.42)

Figure 17.11 shows another example of the duality property. It illustrates
the fact that if f (t) = δ(t) so that F(ω) = 1, as in Fig. 17.11(a), then
the Fourier transform of F(t) = 1 is 2πf (ω) = 2πδ(ω) as shown in Fig.
17.11(b).

Since f (t) is the sum of the signals in Figs. 17.7 and
17.8, F(ω) is the sum of the results in Example
17.3 and Practice Prob. 17.3.

Convolution

Recall from Chapter 15 that if x(t) is the input excitation to a circuit with
an impulse function of h(t), then the output response y(t) is given by the
convolution integral

y(t) = h(t) ∗ x(t) =
∫ ∞

−∞
h(λ)x(t − λ) dλ (17.43)
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0 t

1

f(t)

(a)

0 v

F(v)

1

(b)

0 t 0 v

F(t)

1 2pf(v)

Figure 17.11 A typical illustration of the duality property of the Fourier transform: (a) transform of impulse,
(b) transform of unit dc level.

If X(ω), H(ω), and Y (ω) are the Fourier transforms of x(t), h(t), and
y(t), respectively, then

Y (ω) = F[h(t) ∗ x(t)] = H(ω)X(ω) (17.44)

which indicates that convolution in the time domain corresponds with
multiplication in the frequency domain.

To derive the convolution property, we take the Fourier transform
of both sides of Eq. (17.43) to get

Y (ω) =
∫ ∞

−∞

[∫ ∞

−∞
h(λ)x(t − λ) dλ

]
e−jωt dt (17.45)

Exchanging the order of integration and factoring h(λ), which does not
depend on t , we have

Y (ω) =
∫ ∞

−∞
h(λ)

[∫ ∞

−∞
x(t − λ)e−jωt dt

]
dλ

For the integral within the brackets, let τ = t − λ so that t = τ + λ and
dt = dτ. Then,

Y (ω) =
∫ ∞

−∞
h(λ)

[∫ ∞

−∞
x(τ)e−jω(τ+λ) dτ

]
dλ

=
∫ ∞

−∞
h(λ)e−jωλ dλ

∫ ∞

−∞
x(τ)e−jωτ dτ = H(ω)X(ω)

(17.46)

as expected. This result expands the phasor method beyond what was
done with the Fourier series in the previous chapter.The important relationship in Eq. (17.46) is the

key reason for using the Fourier transform in the
analysis of linear systems.

To illustrate the convolution property, suppose both h(t) and x(t)
are identical rectangular pulses, as shown in Fig. 17.12(a) and 17.12(b).
We recall from Example 17.2 and Fig. 17.5 that the Fourier transforms of
the rectangular pulses are sinc functions, as shown in Fig. 17.12(c) and
17.12(d). According to the convolution property, the product of the sinc
functions should give us the convolution of the rectangular pulses in the
time domain. Thus, the convolution of the pulses in Fig. 17.12(e) and the
product of the sinc functions in Fig. 17.12(f) form a Fourier pair.

In view of the duality property, we expect that if convolution in the
time domain corresponds with multiplication in the frequency domain,
then multiplication in the time domain should have a correspondence in
the frequency domain. This happens to be the case. If f (t) = f1(t)f2(t),
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Convolution

Multiplication

v

2AT0

H(v)

t

A

h(t)

−T0 T0

2A2T0

(2AT0)2

h(t) • x(t)

t

v

H(v)X(v)

(a)

t

A

x(t)

−T0 T0

(b)

(e)

−2T0 2T0

1
2T0

1
2T0

−

(f )

1
2T0

(c)

v

2AT0

X(v)

1
2T0

(d)

Figure 17.12 Graphical illustration of the convolution property.
(Source: E. O. Brigham, The Fast Fourier Transform [Englewood Cliffs, NJ: Prentice Hall, 1974], p. 60.)

then

F(ω) = F[f1(t)f2(t)] = 1

2π
F1(ω) ∗ F2(ω) (17.47)

or

F(ω) = 1

2π

∫ ∞

−∞
F1(λ)F2(ω − λ) dλ (17.48)

which is convolution in the frequency domain. The proof of Eq. (17.48)
readily follows from the duality property in Eq. (17.38).
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Let us now derive the time integration property in Eq. (17.34). If
we replace x(t) with the unit step function u(t) and h(t) with f (t) in Eq.
(17.43), then ∫ ∞

−∞
f (λ)u(t − λ) dλ = f (t) ∗ u(t) (17.49)

But by the definition of the unit step function,

u(t − λ) =
{

1, t − λ > 0
0, t − λ > 0

We can write this as

u(t − λ) =
{

1, λ < t

0, λ > t

Substituting this into Eq. (17.49) makes the interval of integration change
from [−∞,∞] to [−∞, t], and thus Eq. (17.49) becomes∫ t

−∞
f (λ) dλ = u(t) ∗ f (t)

Taking the Fourier transform of both sides yields

F
[∫ t

−∞
f (λ) dλ

]
= U(ω)F (ω) (17.50)

But from Eq. (17.36), the Fourier transform of the unit step function is

U(ω) = 1

jω
+ πδ(ω)

Substituting this into Eq. (17.50) gives

F
[∫ t

−∞
f (λ) dλ

]
=
(

1

jω
+ πδ(ω)

)
F(ω)

= F(ω)

jω
+ πF(0)δ(ω)

(17.51)

which is the time integration property of Eq. (17.34). Note that in Eq.
(17.51), F(ω)δ(ω) = F(0)δ(ω), since δ(ω) is only nonzero at ω = 0.

Table 17.1 lists these properties of the Fourier transform. Table
17.2 presents the transform pairs of some common functions. Note the
similarities between these tables and Tables 15.1 and 15.2.

TABLE 17.1 Properties of the Fourier transform.

Property f (t) F (ω)

Linearity a1f1(t)+ a2f2(t) a1F1(ω)+ a2F2(ω)

Scaling f (at)
1

|a|F
(ω
a

)
Time shift f (t − a)u(t − a) e−jωaF (ω)

Frequency shift ejω0t f (t) F (ω − ω0)

Modulation cos(ω0t) f (t)
1

2
[F(ω + ω0)+ F(ω − ω0)]
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TABLE 17.1 (continued)

Property f (t) F (ω)

Time differentiation
df

dt
jωF(ω)

dnf

dtn
(jω)nF (ω)

Time integration
∫ t

−∞
f (t) dt

F (ω)

jω
+ πF(0) δ(ω)

Frequency differentiation tnf (t) (j)n
dn

dωn
F (ω)

Reversal f (−t) F (−ω) or F ∗(ω)

Duality F(t) 2πf (−ω)
Convolution in t f1(t) ∗ f1(t) F1(ω)F2(ω)

Convolution in ω f1(t)f1(t)
1

2π
F1(ω) ∗ F2(ω)

TABLE 17.2 Fourier transform pairs.

f (t) F (ω)

δ(t) 1

1 2πδ(ω)

u(t) πδ(ω)+ 1

jω

u(t + τ)− u(t − τ) 2
sinωτ

ω

|t | −2

ω2

sgn(t)
2

jω

e−atu(t)
1

a + jω
eatu(−t) 1

a − jω
tne−atu(t)

n!

(a + jω)n+1

e−a|t |
2a

a2 + ω2

ejω0t 2πδ(ω − ω0)

sinω0t jπ [δ(ω + ω0)− δ(ω − ω0)]

cosω0t π [δ(ω + ω0)+ δ(ω − ω0)]

e−at sinω0tu(t)
ω0

(a + jω)2 + ω2
0

e−at cosω0tu(t)
a + jω

(a + jω)2 + ω2
0
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E X A M P L E 1 7 . 4

Find the Fourier transforms of the following functions: (a) signum func-
tion sgn(t), shown in Fig. 17.13, (b) the double-sided exponential e−a|t |,
and (c) the sinc function (sin t)/t .

0 t

1

sgn(t)

−1

Figure 17.13 The signum
function of Example 17.4.

Solution:

(a) We can obtain the Fourier transform of the signum function in three
ways. First, we can write the signum function in terms of the unit step
function as

sgn(t) = f (t) = u(t)− u(−t)
But from Eq. (17.36),

U(ω) = F[u(t)] = πδ(ω)+ 1

jω

Applying this and the reversal property, we obtain

F[sgn(t)] = U(ω)− U(−ω)

=
(
πδ(ω)+ 1

jω

)
−
(
πδ(−ω)+ 1

−jω
)

= 2

jω

Second, another way of writing the signum function in terms of the unit
step function is

f (t) = sgn(t) = −1 + 2u(t)

Taking the Fourier transform of each term gives

F(ω) = −2πδ(ω)+ 2

(
πδ(ω)+ 1

jω

)
= 2

jω

Third, we can take the derivative of the signum function in Fig. 17.13 and
obtain

f ′(t) = 2δ(t)

Taking the transform of this,

jωF(ω) = 2 �⇒ F(ω) = 2

jω

as obtained previously.
(b) The double-sided exponential can be expressed as

f (t) = e−a|t | = e−atu(t)+ eatu(−t) = y(t)+ y(−t)
where y(t) = e−atu(t) so that Y (ω) = 1/(a+jω). Applying the reversal
property,

F[e−a|t |] = Y (ω)+ Y (−ω) =
(

1

a + jω + 1

a − jω
)

= 2a

a2 + ω2

(c) From Example 17.2,

F
[
u
(
t + τ

2

)
− u

(
t − τ

2

)]
= τ

sin(ωτ/2)

ωτ/2
= τ sinc

ωτ

2
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Setting τ/2 = 1 gives

F[u(t + 1)− u(t − 1)] = 2
sinω

ω

Applying the duality property,

F
[

2
sin t

t

]
= 2π [U(ω + 1)− U(ω − 1)]

or

F
[

sin t

t

]
= π [U(ω + 1)− U(ω − 1)]

P R A C T I C E P R O B L E M 1 7 . 4

Determine the Fourier transforms of these functions: (a) gate function
g(t) = u(t) − u(t − 1), (b) f (t) = te−2t u(t), and (c) sawtooth pulse
f (t) = 10t[u(t)− u(t − 2)].

Answer: (a) (1 − e−jω)
[
πδ(ω)+ 1

jω

]
, (b)

1

(2 + jω)2 ,

(c)
10(e−j2ω − 1)

ω2
+ 20j

ω
e−j2ω.

E X A M P L E 1 7 . 5

Find the Fourier transform of the function in Fig. 17.14. f (t)

−1 0 1 t

1

Figure 17.14 For Example 17.5.

Solution:

The Fourier transform can be found directly using Eq. (17.8), but it is
much easier to find it using the derivative property. We can express the
function as

f (t) =
{

1 + t, −1 < t < 0
1 − t, 0 < t < 1

Its first derivative is shown in Fig. 17.15(a) and is given by

f ′(t) =
{

1, −1 < t < 0
−1, 0 < t < 1

0 t

−1

1

−1

f ′(t)

1

1 1

(a)

0 t

−2

−1

f ′′ (t)

(b)

1

Figure 17.15 First and second derivatives of f (t) in Fig. 17.14;
for Example 17.5.
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Its second derivative is in Fig. 17.15(b) and is given by

f ′′(t) = δ(t + 1)− 2δ(t)+ δ(t − 1)

Taking the Fourier transform of both sides,

(jω)2F(ω) = ejω − 2 + e−jω = −2 + 2 cosω

or

F(ω) = 2(1 − cosω)

ω2

P R A C T I C E P R O B L E M 1 7 . 5

Determine the Fourier transform of the function in Fig. 17.16.
2

f (t)

−2−4 20 4 t

Figure 17.16 For Practice Prob. 17.5.

Answer: (8 cos 3ω − 4 cos 4ω − 4 cos 2ω)/ω2.

E X A M P L E 1 7 . 6

Obtain the inverse Fourier transform of:

(a) F(ω) = 10jω + 4

(jω)2 + 6jω + 8
(b) G(ω) = ω2 + 21

ω2 + 9
Solution:

(a) To avoid complex algebra, we can replace jω with s for the moment.
Using partial fraction expansion,

F(s) = 10s + 4

s2 + 6s + 8
= 10s + 4

(s + 4)(s + 2)
= A

s + 4
+ B

s + 2

where

A = (s + 4)F (s)
∣∣
s=−4 = 10s + 4

(s + 2)

∣∣∣∣
s=−4

= −36

−2
= 18

B = (s + 2)F (s)
∣∣
s=−2 = 10s + 4

(s + 4)

∣∣∣∣
s=−2

= −16

2
= −8

Substituting A = 18 and B = −8 in F(s) and s with jω gives

F(jω) = 18

jω + 4
+ −8

jω + 2

With the aid of Table 17.2, we obtain the inverse transform as

f (t) = (18e−4t − 8e−2t )u(t)

(b) We simplify G(ω) as

G(ω) = ω2 + 21

ω2 + 9
= 1 + 12

ω2 + 9
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With the aid of Table 17.2, the inverse transform is obtained as

g(t) = δ(t)+ 2e−3|t |

P R A C T I C E P R O B L E M 1 7 . 6

Find the inverse Fourier transform of:

(a) H(ω) = 6(3 + j2ω)

(1 + jω)(4 + jω)(2 + jω)
(b) Y (ω) = πδ(ω)+ 1

jω
+ 2(1 + jω)
(1 + jω)2 + 16

Answer: (a) h(t) = (2e−t + 3e−2t − 5e−4t )u(t),
(b) y(t) = (1 + 2e−t cos 4t)u(t).

17.4 CIRCUIT APPLICATIONS
The Fourier transform generalizes the phasor technique to nonperiodic
functions. Therefore, we apply Fourier transforms to circuits with nonsi-
nusoidal excitations in exactly the same way we apply phasor techniques
to circuits with sinusoidal excitations. Thus, Ohm’s law is still valid:

V (ω) = Z(ω)I (ω) (17.52)

where V (ω) and I (ω) are the Fourier transforms of the voltage and cur-
rent and Z(ω) is the impedance. We get the same expressions for the
impedances of resistors, inductors, and capacitors as in phasor analysis,
namely,

R �⇒ R

L �⇒ jωL

C �⇒ 1

jωC

(17.53)

Once we transform the functions for the circuit elements into the fre-
quency domain and take the Fourier transforms of the excitations, we can
use circuit techniques such as voltage division, source transformation,
mesh analysis, node analysis, or Thevenin’s theorem, to find the un-
known response (current or voltage). Finally, we take the inverse Fourier
transform to obtain the response in the time domain.

Although the Fourier transform method produces a response that
exists for −∞ < t < ∞, Fourier analysis cannot handle circuits with
initial conditions.

The transfer function is again defined as the ratio of the output
response Y (ω) to the input excitation X(ω), that is,

H(ω) = Y (ω)

X(ω)
(17.54)
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or

Y (ω) = H(ω)X(ω) (17.55)

The frequency-domain input-output relationship is portrayed in Fig. 17.17.
Equation (17.55) shows that if we know the transfer function and the in-
put, we can readily find the output. The relationship in Eq. (17.54) is
the principal reason for using the Fourier transform in circuit analysis.
Notice that H(ω) is identical to H(s) with s = jω. Also, if the input
is an impulse function [i.e., x(t) = δ(t)], then X(ω) = 1, so that the
response is

Y (ω) = H(ω) = F[h(t)] (17.56)

indicating that H(ω) is the Fourier transform of the impulse response
h(t).

H(v)X(v) Y(v)

Figure 17.17 Input-output
relationship of a circuit in the
frequency-domain.

E X A M P L E 1 7 . 7

Find vo(t) in the circuit of Fig. 17.18 for vi(t) = 2e−3t u(t).2 Ω

+
− 1 Fvi(t) vo(t)

+

−

Figure 17.18 For Example 17.7.

Solution:

The Fourier transform of the input voltage is

Vi(ω) = 2

3 + jω
and the transfer function obtained by voltage division is

H(ω) = Vo(ω)

Vi(ω)
= 1/jω

2 + 1/jω
= 1

1 + j2ω

Hence,

Vo(ω) = Vi(ω)H(ω) = 2

(3 + jω)(1 + j2ω)
or

Vo(ω) = 1

(3 + jω)(0.5 + jω)
By partial fractions,

Vo(ω) = −0.4

3 + jω + 0.4

0.5 + jω
Taking the inverse Fourier transform yields

vo(t) = 0.4(e−0.5t − e−3t )u(t)

P R A C T I C E P R O B L E M 1 7 . 7

Determine vo(t) in Fig. 17.19 if vi(t) = 2 sgn(t) = −2 + 4u(t).1 H

4 Ω+
−vi(t) vo(t)

+

−

Figure 17.19 For Practice Prob. 17.7.

Answer: −2 + 4(1 − e−4t )u(t).
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E X A M P L E 1 7 . 8

Using the Fourier transform method, find io(t) in Fig. 17.20 when is(t) =
10 sin 2t A.

4 Ω

0.5 F

is(t) 2 Ω

io(t)

Figure 17.20 For Example 17.8.

Solution:

By current division,

H(ω) = Io(ω)

Is(ω)
= 2

2 + 4 + 2/jω
= jω

1 + jω3

If is(t) = 10 sin 2t , then

Is(ω) = jπ10[δ(ω + 2)− δ(ω − 2)]

Hence,

Io(ω) = H(ω)Is(ω) = 10πω[δ(ω − 2)− δ(ω + 2)]

1 + jω3

The inverse Fourier transform of Io(ω) cannot be found using Table 17.2.
We resort to the inverse Fourier transform formula in Eq. (17.9) and write

io(t) = F−1[Io(ω)] = 1

2π

∫ ∞

−∞

10πω[δ(ω − 2)− δ(ω + 2)]

1 + jω3
ejωt dω

We apply the sifting property of the impulse function, namely,

δ(ω − ω0)f (ω) = f (ω0)

or ∫ ∞

−∞
δ(ω − ω0)f (ω) dω = f (ω0)

and obtain

io(t) = 10π

2π

[
2

1 + j6
ej2t − −2

1 − j6
e−j2t

]

= 10

[
ej2t

6.082ej80.54◦ + e−j2t

6.082e−j80.54◦

]

= 1.644[ej (2t−80.54◦) + e−j (2t−80.54◦)]

= 3.288 cos(2t − 80.54◦) A

P R A C T I C E P R O B L E M 1 7 . 8

Find the current io(t) in the circuit in Fig. 17.21, given that is(t) =
20 cos 4t A.

10 Ωis(t) 

6 Ω

io(t)
2 H

Figure 17.21 For Practice Prob. 17.8.

Answer: 11.8 cos(4t + 26.57◦) A.
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17.5 PARSEVAL’S THEOREM
Parseval’s theorem demonstrates one practical use of the Fourier trans-
form. It relates the energy carried by a signal to the Fourier transform
of the signal. If p(t) is the power associated with the signal, the energy
carried by the signal is

W =
∫ ∞

−∞
p(t) dt (17.57)

In order to be able compare the energy content of current and voltage
signals, it is convenient to use a 1-0 resistor as the base for energy cal-
culation. For a 1-0 resistor, p(t) = v2(t) = i2(t) = f 2(t), where f (t)
stands for either voltage or current. The energy delivered to the 1-0 resis-
tor is

W10 =
∫ ∞

−∞
f 2(t) dt (17.58)

Parseval’s theorem states that this same energy can be calculated in the
frequency domain as

W10 =
∫ ∞

−∞
f 2(t) dt = 1

2π

∫ ∞

−∞
|F(ω)|2 dω (17.59)

Parseval’s theorem states that the total energy delivered to a 1-0 resistor equals
the total area under the square of f (t) or 1/2π times the total area under the

square of the magnitude of the Fourier transform of f (t).

Parseval’s theorem relates energy associated with a signal to its Fourier
transform. It provides the physical significance of F(ω), namely, that
|F(ω)|2 is a measure of the energy density (in joules per hertz) corre-
sponding to f (t).In fact, |F(ω)|2 is sometimes known as the energy

spectral density of signal f (t). To derive Eq. (17.59), we begin with Eq. (17.58) and substitute Eq.
(17.9) for one of the f (t)’s. We obtain

W10 =
∫ ∞

−∞
f 2(t) dt =

∫ ∞

−∞
f (t)

[
1

2π

∫ ∞

−∞
F(ω)ejωtdω

]
dt (17.60)

The function f (t) can be moved inside the integral within the brackets,
since the integral does not involve time:

W10 = 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (t)F (ω)ejωt dω dt (17.61)

Reversing the order of integration,

W10 = 1

2π

∫ ∞

−∞
F(ω)

[∫ ∞

−∞
f (t)e−j (−ω)t dt

]
dω

= 1

2π

∫ ∞

−∞
F(ω)F (−ω) dω = 1

2π

∫ ∞

−∞
F(ω)F ∗(ω) dω

(17.62)

But if z = x + jy, zz∗ = (x + jy)(x − jy) = x2 + y2 = |z|2. Hence,
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W10 =
∫ ∞

−∞
f 2(t) dt = 1

2π

∫ ∞

−∞
|F(ω)|2 dω (17.63)

as expected. Equation (17.63) indicates that the energy carried by a signal
can be found by integrating either the square of f (t) in the time domain
or 1/2π times the square of F(ω) in the frequency domain.

Since |F(ω)|2 is an even function, we may integrate from 0 to ∞
and double the result, that is,

W10 =
∫ ∞

−∞
f 2(t) dt = 1

π

∫ ∞

0
|F(ω)|2 dω (17.64)

We may also calculate the energy in any frequency band ω1 < ω < ω2

as

W10 = 1

π

∫ ω2

ω1

|F(ω)|2 dω (17.65)

Notice that Parseval’s theorem as stated here applies to nonperiodic
functions. Parseval’s theorem for periodic functions was presented in
Sections 16.5 and 16.6. As evident in Eq. (17.63), Parseval’s theorem
shows that the energy associated with a nonperiodic signal is spread over
the entire frequency spectrum, whereas the energy of the periodic signal
is concentrated at the frequencies of its harmonic components.

E X A M P L E 1 7 . 9

The voltage across a 10-0 resistor is v(t) = 5e−3t u(t) V. Find the total
energy dissipated in the resistor.

Solution:

We can find the energy using either f (t) = v(t) or F(ω) = V (ω). In the
time domain,

W100 = 10
∫ ∞

−∞
f 2(t) dt = 10

∫ ∞

0
25e−6t dt

= 250
e−6t

−6

∣∣∣∣
∞

0

= 250

6
= 41.67 J

In the frequency domain,

F(ω) = V (ω) = 5

3 + jω
so that

|F(ω)|2 = F(ω)F ∗(ω) = 25

9 + ω2

Hence, the energy dissipated is

W100 = 10

2π

∫ ∞

−∞
|F(ω)|2 dω = 10

π

∫ ∞

0

25

9 + ω2
dω

= 250

π

(
1

3
tan−1 ω

3

)∣∣∣∣
∞

0

= 250

π

(
1

3

)(π
2

)
= 250

6
= 41.67 J
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P R A C T I C E P R O B L E M 1 7 . 9

(a) Calculate the total energy absorbed by a 1-0 resistor with i(t) =
10e−2|t | A in the time domain. (b) Repeat (a) in the frequency domain.

Answer: (a) 50 J, (b) 50 J.

E X A M P L E 1 7 . 1 0

Calculate the fraction of the total energy dissipated by a 1-0 resistor in
the frequency band 0 < ω < 10 rad/s when the voltage across it is
v(t) = e−2t u(t).

Solution:

Given that f (t) = v(t) = e−2t u(t), then

F(ω) = 1

2 + jω �⇒ |F(ω)|2 = 1

4 + ω2

The total energy dissipated by the resistor is

W10 = 1

π

∫ ∞

0
|F(ω)|2 dω = 1

π

∫ ∞

0

dω

4 + ω2

= 1

π

(
1

2
tan−1 ω

2

∣∣∣∞
0

)
= 1

π

(
1

2

)
π

2
= 0.25 J

The energy in the frequencies 0 < ω < 10 is

W = 1

π

∫ 10

0
|F(ω)|2dω = 1

π

∫ 10

0

dω

4 + ω2
= 1

π

(
1

2
tan1 ω

2

∣∣∣10

0

)

= 1

2π
tan−1 5 = 1

2π

(
78.69◦

180◦ π
)

= 0.218 J

Its percentage of the total energy is

W

W10
= 0.218

0.25
= 87.4 %

P R A C T I C E P R O B L E M 1 7 . 1 0

A 2-0 resistor has i(t) = e−t u(t). What percentage of the total energy
is in the frequency band −4 < ω < 4 rad/s?

Answer: 84.4 percent.

17.6 COMPARING THE FOURIER AND LAPLACE
TRANSFORMS

It is worthwhile to take some moments to compare the Laplace and Fourier
transforms. The following similarities and differences should be noted:

1. The Laplace transform defined in Chapter 14 is one-sided in
that the integral is over 0 < t < ∞, making it only useful for
positive-time functions, f (t), t > 0. The Fourier transform is
applicable to functions defined for all time.
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2. For a function f (t) that is nonzero for positive time only (i.e.,

f (t) = 0, t < 0) and
∫ ∞

0
|f (t)| dt < ∞, the two transforms

are related by

F(ω) = F(s)
∣∣
s=jω (17.66)

This equation also shows that the Fourier transform can be re-
garded as a special case of the Laplace transform with s = jω.
Recall that s = σ + jω. Therefore, Eq. (17.66) shows that the
Laplace transform is related to the entire s plane, whereas the
Fourier transform is restricted to the jω axis. See Fig. 15.1.

3. The Laplace transform is applicable to a wider range of func-
tions than the Fourier transform. For example, the function
tu(t) has a Laplace transform but no Fourier transform. But
Fourier transforms exist for signals that are not physically
realizable and have no Laplace transforms.

4. The Laplace transform is better suited for the analysis of tran-
sient problems involving initial conditions, since it permits the
inclusion of the initial conditions, whereas the Fourier trans-
form does not. The Fourier transform is especially useful for
problems in the steady state.

5. The Fourier transform provides greater insight into the fre-
quency characteristics of signals than does the Laplace trans-
form.

In other words, if all the poles of F(s) lie in the
left-hand side of the s plane, then one can obtain
the Fourier transform F(ω) from the correspond-
ing Laplace transform F(s) by merely replacing s
by jω. Note that this is not the case, for example,
for u(t) or cos atu(t).

Some of the similarities and differences can be observed by comparing
Tables 15.1 and 15.2 with Tables 17.1 and 17.2.

†17.7 APPLICATIONS
Besides its usefulness for circuit analysis, the Fourier transform is used
extensively in a variety of fields such as optics, spectroscopy, acoustics,
computer science, and electrical engineering. In electrical engineering,
it is applied in communications systems and signal processing, where
frequency response and frequency spectra are vital. Here we consider
two simple applications: amplitude modulation (AM) and sampling.

1 7 . 7 . 1 A m p l i t u d e M o d u l a t i o n
Electromagnetic radiation or transmission of information through space
has become an indispensable part of a modern technological society.
However, transmission through space is only efficient and economical
at radio frequencies (above 20 kHz). To transmit intelligent signals—
such as for speech and music—contained in the low-frequency range
of 50 Hz to 20 kHz is expensive; it requires a huge amount of power
and large antennas. A common method of transmitting low-frequency
audio information is to transmit a high-frequency signal, called a carrier,
which is controlled in some way to correspond to the audio information.
Three characteristics (amplitude, frequency, or phase) of a carrier can
be controlled so as to allow it to carry the intelligent signal, called the
modulating signal. Here we will only consider the control of the carrier’s
amplitude. This is known as amplitude modulation.
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Amplitude modulation (AM) is a process whereby the amplitude of the
carrier is controlled by the modulating signal.

AM is used in ordinary commercial radio bands and the video portion of
commercial television.

Suppose the audio information, such as voice or music (or the mod-
ulating signal in general) to be transmitted is m(t) = Vm cosωmt , while
the high-frequency carrier is c(t) = Vc cosωct , where ωc >> ωm. Then
an AM signal f (t) is given by

f (t) = Vc[1 +m(t)] cosωct (17.67)

Figure 17.22 illustrates the modulating signal m(t), the carrier c(t), and
the AM signal f (t). We can use the result in Eq. (17.27) together with
the Fourier transform of the cosine function (see Example 17.1 or Table
17.1) to determine the spectrum of the AM signal:

F(ω) = F[Vc cosωct] + F[Vcm(t) cosωct]

= Vcπ [δ(ω − ωc)+ δ(ω + ωc)]

+ Vc

2
[M(ω − ωc)+M(ω + ωc)]

(17.68)

t

(a)

m(t)

Vm

t

(b)

c(t)

Vc

0 vvm−vm

|M(v)|

0 vvc−vc

|C(v)|

t

(c)

f (t)

0 vvc−vc

|F(v)|

2vm 2vm

| | | |

Figure 17.22 Time domain and frequency display of: (a) modulating signal,
(b) carrier signal, (c) AM signal.
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where M(ω) is the Fourier transform of the modulating signal m(t).
Shown in Fig. 17.23 is the frequency spectrum of the AM signal. Figure
17.23 indicates that the AM signal consists of the carrier and two other
sinusoids. The sinusoid with frequency ωc − ωm is known as the lower
sideband, while the one with frequency ωc + ωm is known as the upper
sideband.

Notice that we have assumed that the modulating signal is sinu-
soidal to make the analysis easy. In real life, m(t) is a nonsinusoidal,
band-limited signal—its frequency spectrum is within the range between
0 andωu = 2πfu (i.e., the signal has an upper frequency limit). Typically,
fu = 5 kHz for AM radio. If the frequency spectrum of the modulating
signal is as shown in Fig. 17.24(a), then the frequency spectrum of the
AM signal is shown in Fig. 17.24(b). Thus, to avoid any interference,
carriers for AM radio stations are spaced 10 kHz apart.

At the receiving end of the transmission, the audio information is
recovered from the modulated carrier by a process known as demodula-
tion.

0 v vc − vm  vc  vc + vm

Lower
sideband

Upper
sideband

Carrier

Figure 17.23 Frequency spectrum
of AM signal.

0 v

|M(v)|

vm

(a)

0 v

|F(v)|

vcvc − vm vc + vm

(b)

Carrier

Figure 17.24 Frequency spectrum of: (a) modulating signal, (b) AM signal.

E X A M P L E 1 7 . 1 1

A music signal has frequency components from 15 Hz to 30 kHz. If this
signal could be used to amplitude modulate a 1.2-MHz carrier, find the
range of frequencies for the lower and upper sidebands.

Solution:

The lower sideband is the difference of the carrier and modulating fre-
quencies. It will include the frequencies from

1,200,000 − 30,000 Hz = 1,170,000 Hz

to

1,200,000 − 15 Hz = 1,199,985 Hz

The upper sideband is the sum of the carrier and modulating frequencies.
It will include the frequencies from

1,200,000 + 15 Hz = 1,200,015 Hz

to

1,200,000 + 30,000 Hz = 1,230,000 Hz
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P R A C T I C E P R O B L E M 1 7 . 1 1

If a 2-MHz carrier is modulated by a 4-kHz intelligent signal, determine
the frequencies of the three components of the AM signal that results.

Answer: 2,004,000 Hz, 2,000,000 Hz, 1,996,000 Hz.

1 7 . 7 . 2 S a m p l i n g
In analog systems, signals are processed in their entirety. However, in
modern digital systems, only samples of signals are required for process-
ing. This is possible as a result of the sampling theorem given in Section
16.8.1. The sampling can be done by using a train of pulses or impulses.
We will use impulse sampling here.

Consider the continuous signal g(t) shown in Fig. 17.25(a). This
can be multiplied by a train of impulses δ(t − nTs) shown in Fig.
17.25(b), where Ts is the sampling interval and fs = 1/Ts is the sampling
frequency or the sampling rate. The sampled signal gs(t) is therefore

gs(t) = g(t)

∞∑
n=−∞

δ(t − nTs) =
∞∑

n=−∞
g(nTs)δ(t − nTs) (17.69)

The Fourier transform of this is

Gs(ω) =
∞∑

n=−∞
g(nTs)F[δ(t − nTs)] =

∞∑
n=−∞

g(nTs)e
−jnωTs (17.70)

It can be shown that
∞∑

n=−∞
g(nTs)e

−jnωTs = 1

Ts

∞∑
n=−∞

G(ω + nωs) (17.71)

where ωs = 2π/Ts . Thus, Eq. (17.70) becomes

Gs(ω) = 1

Ts

∞∑
n=−∞

G(ω + nωs) (17.72)

This shows that the Fourier transform Gs(ω) of the sampled signal is a
sum of translates of the Fourier transform of the original signal at a rate
of 1/Ts .

t

(a)

g(t)

(b)

(c)

0

0

d(t − nTs)

Ts−Ts 2Ts 3Ts ...

t

t

g(t)

0 Ts−Ts 2Ts 3Ts

Figure 17.25 (a) Continuous (analog) signal
to be sampled, (b) train of impulses,
(c) sampled (digital) signal.

In order to ensure optimum recovery of the original signal, what
must be the sampling interval? This fundamental question in sampling is
answered by an equivalent part of the sampling theorem:

A band-limited signal, with no frequency component higher than W hertz,
may be completely recovered from its samples taken at a frequency

at least twice as high as 2W samples per second.

In other words, for a signal with bandwidth W hertz, there is no loss of
information or overlapping if the sampling frequency is at least twice the
highest frequency in the modulating signal. Thus,

1

Ts
= fs ≥ 2W (17.73)
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The sampling frequency fs = 2W is known as the Nyquist frequency or
rate, and 1/fs is the Nyquist interval.

E X A M P L E 1 7 . 1 2

A telephone signal with a cutoff frequency of 5 kHz is sampled at a rate
60 percent higher than the minimum allowed rate. Find the sampling rate.

Solution:

The minimum sample rate is the Nyquist rate = 2W = 2 × 5 =
10 kHz. Hence,

fs = 1.60 × 2W = 16 kHz

P R A C T I C E P R O B L E M 1 7 . 1 2

An audio signal that is band-limited to 12.5 kHz is digitized into 8-bit
samples. What is the maximum sampling interval that must be used to
ensure complete recovery?

Answer: 40 µs.

17.8 SUMMARY
1. The Fourier transform converts a nonperiodic function f (t) into a

transform F(ω) where

F(ω) = F[f (t)] =
∫ ∞

−∞
f (t)e−jωt dt

2. The inverse Fourier transform of F(ω) is

f (t) = F−1[F(ω)] = 1

2π

∫ ∞

−∞
F(ω)ejωt dω

3. Important Fourier transform properties and pairs are summarized in
Tables 17.1 and 17.2, respectively.

4. Using the Fourier transform method to analyze a circuit involves
finding the Fourier transform of the excitation, transforming the
circuit element into the frequency domain, solving for the unknown
response, and transforming the response to the time domain using
the inverse Fourier transform.

5. If H(ω) is the transfer function of a network, then H(ω) is the
Fourier transform of the network’s impulse response; that is,

H(ω) = F[h(t)]

The output Vo(ω) of the network can be obtained from the input
Vi(ω) using

Vo(ω) = H(ω)Vi(ω)

6. Parseval’s theorem gives the energy relationship between a function
f (t) and its Fourier transform F(ω). The 1-0 energy is

W10 =
∫ ∞

−∞
f 2(t) dt = 1

2π

∫ ∞

−∞
|F(ω)|2 dω
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The theorem is useful in calculating energy carried by a signal either
in the time domain or in the frequency domain.

7. Typical applications of the Fourier transform are found in amplitude
modulation (AM) and sampling. For AM application, a way of deter-
mining the sidebands in an amplitude-modulated wave is derived
from the modulation property of the Fourier transform. For sampling
application, we found that no information is lost in sampling
(required for digital transmission) if the sampling frequency is at
least twice equal to the Nyquist rate.

R E V I E W Q U E S T I O N S

17.1 Which of these functions does not have a Fourier
transform?
(a) etu(−t) (b) te−3t u(t)

(c) 1/t (d) |t |u(t)
17.2 The Fourier transform of ej2t is:

(a)
1

2 + jω (b)
1

−2 + jω
(c) 2πδ(ω − 2) (d) 2πδ(ω + 2)

17.3 The inverse Fourier transform of
e−jω

2 + jω is

(a) e−2t (b) e−2t u(t − 1)
(c) e−2(t−1) (d) e−2(t−1)u(t − 1)

17.4 The inverse Fourier transform of δ(ω) is:
(a) δ(t) (b) u(t) (c) 1 (d) 1/2π

17.5 The inverse Fourier transform of jω is:
(a) 1/t (b) δ′(t)
(c) u′(t) (d) undefined

17.6 Evaluating the integral
∫ ∞

−∞

10δ(ω)

4 + ω2
dω results in:

(a) 0 (b) 2 (c) 2.5 (d) ∞

17.7 The integral
∫ ∞

−∞

10δ(ω − 1)

4 + ω2
dω gives:

(a) 0 (b) 2 (c) 2.5 (d) ∞
17.8 The current through a 1-F capacitor is δ(t) A. The

voltage across the capacitor is:
(a) u(t) (b) −1/2 + u(t)
(c) e−t u(t) (d) δ(t)

17.9 A unit step current is applied through a 1-H
inductor. The voltage across the inductor is:
(a) u(t) (b) sgn(t)
(c) e−t u(t) (d) δ(t)

17.10 Parseval’s theorem is only for nonperiodic functions.
(a) True (b) False

Answers: 17.1c, 17.2c, 17.3d, 17.4d, 17.5b, 17.6c, 17.7b, 17.8b,
17.9d, 17.10b

P R O B L E M S

Sections 17.2 and 17.3 Fourier Transform and
its Properties

17.1 Obtain the Fourier transform of the function in Fig.
17.26.

0 t

−1

1

−1−2

f (t)

1 2

Figure 17.26 For Prob. 17.1.
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17.2 What is the Fourier transform of the triangular pulse
in Fig. 17.27?

0 t

1

f (t)

1

Figure 17.27 For Prob. 17.2.

17.3 Calculate the Fourier transform of the signal in Fig.
17.28.

0 t

1

−1

f (t)

2

−2

Figure 17.28 For Prob. 17.3.

17.4 Find the Fourier transforms of the signals in Fig.
17.29.

0 t

−1

1

f1(t)

1

2

(a)

2

(b)

f2(t)

−1 10 t

Figure 17.29 For Prob. 17.4.

17.5 Determine the Fourier transforms of the functions in
Fig. 17.30.

0 t

1

f (t)

1 2

2

(a)

0 t

g(t)

1 2

2

(b)

Figure 17.30 For Prob. 17.5.

17.6 Obtain the Fourier transforms of the signals shown
in Fig. 17.31.

0 t

1

x(t)

e−t

(a)

0−1 1 t

1

y(t)

e−|t |

(b)

Figure 17.31 For Prob. 17.6.

17.7 Find the Fourier transform of the “sine-wave pulse”
shown in Fig. 17.32.

0 t

1

f (t)

1 2

sin pt

Figure 17.32 For Prob. 17.7.

17.8 Determine the Fourier transforms of these functions:
(a) f (t) = et [u(t)− u(t − 1)]
(b) g(t) = te−t u(t)
(c) h(t) = u(t + 1)− 2u(t)+ u(t − 1)

17.9 Find the Fourier transforms of these functions:
(a) f (t) = e−t cos(3t + π)u(t)
(b) g(t) = sinπt[u(t + 1)− u(t − 1)]
(c) h(t) = e−2t cosπtu(t − 1)
(d) p(t) = e−2t sin 4tu(−t)
(e) q(t) = 4 sgn(t − 2)+ 3δ(t)− 2u(t − 2)

17.10 Find the Fourier transforms of the following
functions:
(a) f (t) = δ(t + 3)− δ(t − 3)

(b) f (t) =
∫ ∞

−∞
2δ(t − 1) dt

(c) f (t) = δ(3t)− δ′(2t)

17.11∗ Determine the Fourier transforms of these functions:
(a) f (t) = 4/t2 (b) g(t) = 8/(4 + t2)

17.12 Find the Fourier transforms of:
(a) cos 2tu(t) (b) sin 10tu(t)

17.13 Obtain the Fourier transform of y(t) = e−t cos tu(t).

∗An asterisk indicates a challenging problem.
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17.14 Find the Fourier transform of
f (t) = cos 2πt[u(t)− u(t − 1)].

17.15 (a) Show that a periodic signal with exponential
Fourier series

f (t) =
∞∑

n=−∞
cne

jnω0t

has the Fourier transform

F(ω) =
∞∑

n=−∞
cnδ(ω − nω0)

where ω0 = 2π/T .
(b) Find the Fourier transform of the signal in Fig.

17.33.

0 t

f (t)

p 2p 3p

1

4p 5p

Figure 17.33 For Prob. 17.15(b).

17.16 Prove that if F(ω) is the Fourier transform of f (t),

F [f (t) sinω0t] = j

2
[F(ω + ω0)− F(ω − ω0)]

17.17 If the Fourier transform of f (t) is

F(ω) = 10

(2 + jω)(5 + jω)
determine the transforms of the following:
(a) f (−3t) (b) f (2t − 1) (c) f (t) cos 2t

(d)
d

dt
f (t) (e)

∫ t

−∞
f (t) dt

17.18 Given that F [f (t)] = (j/ω)(e−jω − 1), find the
Fourier transforms of:
(a) x(t) = f (t)+ 3 (b) y(t) = f (t − 2)
(c) h(t) = f ′(t)
(d) g(t) = 4f ( 2

3 t)+ 10f ( 5
3 t)

17.19 Obtain the inverse Fourier transforms of:

(a) F(ω) = 10

jω(jω + 2)

(b) F(ω) = 4 − jω
ω2 − 3jω − 2

17.20 Find the inverse Fourier transforms of the following
functions:

(a) F(ω) = 100

jω(jω + 10)

(b) G(ω) = 10jω

(−jω + 2)(ω + 3)

(c) H(ω) = 60

−ω2 + j40ω + 1300

(d) Y (ω) = δ(ω)

(jω + 1)(jω + 2)

17.21 Find the inverse Fourier transforms of:

(a)
πδ(ω)

(5 + jω)(2 + jω)

(b)
10δ(ω + 2)

jω(jω + 1)

(c)
20δ(ω − 1)

(2 + jω)(3 + jω)

(d)
5πδ(ω)

5 + jω + 5

jω(5 + jω)
17.22∗ Determine the inverse Fourier transforms of:

(a) F(ω) = 4δ(ω + 3)+ δ(ω)+ 4δ(ω − 3)
(b) G(ω) = 4u(ω + 2)− 4u(ω − 2)
(c) H(ω) = 6 cos 2ω

17.23∗ Determine the functions corresponding to the
following Fourier transforms:

(a) F1(ω) = ejω

−jω + 1
(b) F2(ω) = 2e|ω|

(c) F3(ω) = 1

(1 + ω2)2
(d) F4(ω) = δ(ω)

1 + j2ω

17.24∗ Find f (t) if:
(a) F(ω) = 2 sinπω[u(ω + 1)− u(ω − 1)]

(b) F(ω) = 1

ω
(sin 2ω− sinω)+ j

ω
(cos 2ω− cosω)

17.25 Determine the signal f (t) whose Fourier transform
is shown in Fig. 17.34.
(Hint: Use the duality property.)

0 t

10

F(v)

1−1−2 2

20

Figure 17.34 For Prob. 17.25.

Section 17.4 Circuit Applications

17.26 A linear system has a transfer function

H(ω) = 10

2 + jω
Determine the output vo(t) at t = 2 s if the input
vi(t) equals:
(a) 4δ(t) V (b) 6e−t u(t) V (c) 3 cos 2t V
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17.27 Find the transfer function Io(ω)/Is(ω) for the circuit
in Fig. 17.35.

1 H 4 Ω2 Ωis(t)

io(t)

Figure 17.35 For Prob. 17.27.

17.28 Obtain vo(t) in the circuit of Fig. 17.36 when
vi(t) = u(t) V.

2 H

10 Ω+
−vi(t) vo(t)

+

−

Figure 17.36 For Prob. 17.28.

17.29 Determine the current i(t) in the circuit of Fig.
17.37(b), given the voltage source shown in Fig.
17.37(a).

2 Ω

+
− 1 Fv (t)

(a) (b)

v (t)

0 1 t2

1 i(t)

Figure 17.37 For Prob. 17.29.

17.30 Obtain the current io(t) in the circuit in Fig. 17.38.
(a) Let i(t) = sgn(t) A.
(b) Let i(t) = 4[u(t)− u(t − 1)] A.

1 H2 Ωi(t)

io(t)

Figure 17.38 For Prob. 17.30.

17.31 Find current io(t) in the circuit of Fig. 17.39.

3 Ω 4d(t) A

io(t)

F1
6

Figure 17.39 For Prob. 17.31.

17.32 If the rectangular pulse in Fig. 17.40(a) is applied to
the circuit in Fig. 17.40(b), find vo at t = 1 s.

0 t

10

vs(t)

2

1 H2 Ω

2 Ω

+
−vs vo

(a) (b)

+

−

Figure 17.40 For Prob. 17.32.

17.33∗ Calculate vo(t) in the circuit of Fig. 17.41 if
vs(t) = 10e−|t | V.

1 H

12 Ω+
−vs vo

+

−

10 mF

Figure 17.41 For Prob. 17.33.

17.34 Determine the Fourier transform of io(t) in the
circuit of Fig. 17.42.

2 H

2 Ω

+
−e−tu(t)

+
−

io

3δ(t)

F1
4

Figure 17.42 For Prob. 17.34.

17.35 In the circuit of Fig. 17.43, let is = 4δ(t) A. Find
Vo(ω).

0.5 H

1 F

1 Ω2 Ωis

io

+ −vo

Figure 17.43 For Prob. 17.35.
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17.36 Find io(t) in the op amp circuit of Fig. 17.44.

20 kΩ2e−tu(t) V

io(t)+
−

+
−

20 kΩ

20 mF

Figure 17.44 For Prob. 17.36.

17.37 Use the Fourier transform method to obtain vo(t) in
the circuit of Fig. 17.45.

2 H 1 H

1 H

2 Ω 1 Ω+
−cos t V vo

+

−

Figure 17.45 For Prob. 17.37.

17.38 Determine vo(t) in the transformer circuit of Fig.
17.46.

1 H 1 H

0.5 H
1 Ω

+
−2d(t) 1 Ω vo

+

−

Figure 17.46 For Prob. 17.38.

Section 17.5 Parseval’s Theorem

17.39 For F(ω) = 1

3 + jω , find J =
∫ ∞

−∞
f 2(t) dt .

17.40 If f (t) = e−2|t |, find J =
∫ ∞

−∞
|F(ω)|2 dω.

17.41 Given the signal f (t) = 4e−t u(t), what is the total
energy in f (t)?

17.42 Let f (t) = 5e−(t−2)u(t). Find F(ω) and use it to
find the total energy in f (t).

17.43 A voltage source vs(t) = e−t sin 2t u(t) V is applied
to a 1-0 resistor. Calculate the energy delivered to
the resistor.

17.44 Let i(t) = 2etu(−t) A. Find the total energy carried
by i(t) and the percentage of the 1-0 energy in the
frequency range of −5 < ω < 5 rad/s.

Section 17.6 Applications

17.45 An AM signal is specified by

f (t) = 10(1 + 4 cos 200πt) cosπ × 104t

Determine the following:
(a) the carrier frequency,
(b) the lower sideband frequency,
(c) the upper sideband frequency.

17.46 A carrier wave of frequency 8 MHz is
amplitude-modulated by a 5-kHz signal. Determine
the lower and upper sidebands.

17.47 A voice signal occupying the frequency band of 0.4
to 3.5 kHz is used to amplitude-modulate a 10-MHz
carrier. Determine the range of frequencies for the
lower and upper sidebands.

17.48 For a given locality, calculate the number of stations
allowable in the AM broadcasting band (540 to
1600 kHz) without interference with one another.

17.49 Repeat the previous problem for the FM
broadcasting band (88 to 108 MHz), assuming that
the carrier frequencies are spaced 200 kHz apart.

17.50 The highest-frequency component of a voice signal
is 3.4 kHz. What is the Nyquist rate of the sampler
of the voice signal?

17.51 A TV signal is band-limited to 4.5 MHz. If samples
are to be reconstructed at a distant point, what is the
maximum sampling interval allowable?

17.52∗ Given a signal g(t) = sinc (200πt), find the
Nyquist rate and the Nyquist interval for the signal.

C O M P R E H E N S I V E P R O B L E M S

17.53 The voltage signal at the input of a filter is
v(t) = 50e−2|t | V. What percentage of the total 1-0
energy content lies in the frequency range of
1 < ω < 5 rad/s?

17.54 A signal with Fourier transform

F(ω) = 20

4 + jω
is passed through a filter whose cutoff frequency is 2
rad/s (i.e., 0 < ω < 2). What fraction of the energy
in the input signal is contained in the output signal?
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C H A P T E R

TWO-PORT NETWORKS

1 8

Research is to see what everybody else has seen, and think what nobody
has thought.

—Albert Szent-Gyorgyi

Enhancing Your Career
Career in Education While two thirds of all engineers
work in private industry, some work in academia and pre-
pare students for engineering careers. The course on circuit
analysis you are studying is an important part of the prepa-
ration process. If you enjoy teaching others, you may want
to consider becoming an engineering educator.

Engineering professors work on state-of-the-art re-
search projects, teach courses at graduate and undergradu-
ate levels, and provide services to their professional societies
and the community at large. They are expected to make orig-
inal contributions in their areas of specialty. This requires
a broad-based education in the fundamentals of electrical
engineering and a mastery of the skills necessary for com-
municating their efforts to others.

If you like to do research, to work at the frontiers
of engineering, to make contributions to technological ad-
vancement, to invent, consult, and/or teach, consider a career
in engineering education. The best way to start is by talking
with your professors and benefiting from their experience.

A solid understanding of mathematics and physics at
the undergraduate level is vital to your success as an engi-
neering professor. If you are having difficulty in solving
your engineering textbook problems, start correcting any
weaknesses you have in your mathematics and physics fun-
damentals.

Most universities these days require that engineering
professors have a Ph.D. degree. In addition, some universi-
ties require that they be actively involved in research leading

The lecture method is still regarded as the most effective mode of
teaching because of the personal contact with instructor and op-
portunity to ask questions. Source: c©PhotoDisc, Inc. Copyright
1999.

to publications in reputable journals. To prepare yourself
for a career in engineering education, get as broad an educa-
tion as possible, because electrical engineering is changing
rapidly and becoming interdisciplinary. Without doubt, en-
gineering education is a rewarding career. Professors get a
sense of satisfaction and fulfillment as they see their students
graduate, become leaders in the professions, and contribute
significantly to the betterment of humanity.
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18.1 INTRODUCTION
A pair of terminals through which a current may enter or leave a network
is known as aport. Two-terminal devices or elements (such as resistors,
capacitors, and inductors) result in one-port networks. Most of the circuits
we have dealt with so far are two-terminal or one-port circuits, represented
in Fig. 18.1(a). We have considered the voltage across or current through
a single pair of terminals—such as the two terminals of a resistor, a
capacitor, or an inductor. We have also studied four-terminal or two-port
circuits involving op amps, transistors, and transformers, as shown in Fig.
18.1(b). In general, a network may haven ports. A port is an access to
the network and consists of a pair of terminals; the current entering one
terminal leaves through the other terminal so that the net current entering
the port equals zero.

−

+

V

I

I

(a)

Linear
network

−

+

V1

−

+

V2

I1

I1

I2

I2

(b)

Linear
network

Figure 18.1 (a) One-port network,
(b) two-port network.

In this chapter, we are mainly concerned with two-port networks
(or, simply, two-ports).

A two-port network is an electrical network with two separate ports
for input and output.

Thus, a two-port network has two terminal pairs acting as access points.
As shown in Fig. 18.1(b), the current entering one terminal of a pair leaves
the other terminal in the pair. Three-terminal devices such as transistors
can be configured into two-port networks.

Our study of two-port networks is for at least two reasons. First,
such networks are useful in communications, control systems, power
systems, and electronics. For example, they are used in electronics to
model transistors and to facilitate cascaded design. Second, knowing the
parameters of a two-port network enables us to treat it as a “black box”
when embedded within a larger network.

To characterize a two-port network requires that we relate the ter-
minal quantities V1, V2, I1, and I2 in Fig. 18.1(b), out of which two are
independent. The various terms that relate these voltages and currents
are called parameters. Our goal in this chapter is to derive six sets of
these parameters. We will show the relationship between these parame-
ters and how two-port networks can be connected in series, parallel, or
cascade. As with op amps, we are only interested in the terminal behav-
ior of the circuits. And we will assume that the two-port circuits contain
no independent sources, although they can contain dependent sources.
Finally, we will apply some of the concepts developed in this chapter to
the analysis of transistor circuits and synthesis of ladder networks.

18.2 IMPEDANCE PARAMETERS
Impedance and admittance parameters are commonly used in the syn-
thesis of filters. They are also useful in the design and analysis of
impedance-matching networks and power distribution networks. We dis-
cuss impedance parameters in this section and admittance parameters in
the next section.
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A two-port network may be voltage-driven as in Fig. 18.2(a) or
current-driven as in Fig. 18.2(b). From either Fig. 18.2(a) or (b), the
terminal voltages can be related to the terminal currents as

V1 = z11I1 + z12I2

V2 = z21I1 + z22I2
(18.1)

or in matrix form as[
V1

V2

]
=
[

z11 z12

z21 z22

] [
I1

I2

]
= [z]

[
I1

I2

]
(18.2)

where the z terms are called the impedance parameters, or simply z

parameters, and have units of ohms.

Reminder: Only two of the four variables (V1,
V2, I1, and I2) are independent. The other two
can be found using Eq. (18.1).

V1 V2

I1 I2

(a)

Linear
network

+

−

+
−

+
− I1 I2V2

+

−

V1

(b)

Linear
network

Figure 18.2 The linear two-port network: (a) driven by voltage sources, (b) driven by current sources.

The values of the parameters can be evaluated by setting I1 = 0
(input port open-circuited) or I2 = 0 (output port open-circuited). Thus,

z11 = V1

I1

∣∣∣∣
I2=0

, z12 = V1

I2

∣∣∣∣
I1=0

z21 = V2

I1

∣∣∣∣
I2=0

, z22 = V2

I2

∣∣∣∣
I1=0

(18.3)

Since the z parameters are obtained by open-circuiting the input or out-
put port, they are also called the open-circuit impedance parameters.
Specifically,

z11 = Open-circuit input impedance

z12 = Open-circuit transfer impedance from port 1 to port 2

z21 = Open-circuit transfer impedance from port 2 to port 1

z22 = Open-circuit output impedance

(18.4)

V1

I1 I2 = 0

(a)

(b)

+
−

+

−

V2

z11 =
V1

I1

z21 =
V2

I1

I1 = 0 I2

+
−

+

−

V1 V2

z12 =
V1

I2

z22 =
V2

I2

Figure 18.3 Determination of the z

parameters: (a) finding z11 and z21,
(b) finding z12 and z22.

According to Eq. (18.3), we obtain z11 and z21 by connecting a
voltage V1 (or a current source I1) to port 1 with port 2 open-circuited as
in Fig. 18.3(a) and finding I1 and V2; we then get

z11 = V1

I1
, z21 = V2

I1
(18.5)
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Similarly, we obtain z12 and z22 by connecting a voltage V2 (or a current
source I2) to port 2 with port 1 open-circuited as in Fig. 18.3(b) and
finding I2 and V1; we then get

z12 = V1

I2
, z22 = V2

I2
(18.6)

The above procedure provides us with a means of calculating or measuring
the z parameters.

Sometimes z11 and z22 are called driving-point impedances, while
z21 and z12 are called transfer impedances. A driving-point impedance
is the input impedance of a two-terminal (one-port) device. Thus, z11 is
the input driving-point impedance with the output port open-circuited,
while z22 is the output driving-point impedance with the input port open-
circuited.

When z11 = z22, the two-port network is said to be symmetrical.
This implies that the network has mirrorlike symmetry about some center
line; that is, a line can be found that divides the network into two similar
halves.

When the two-port network is linear and has no dependent sources,
the transfer impedances are equal (z12 = z21), and the two-port is said to
be reciprocal. This means that if the points of excitation and response are
interchanged, the transfer impedances remain the same. As illustrated in
Fig. 18.4, a two-port is reciprocal if interchanging an ideal voltage source
at one port with an ideal ammeter at the other port gives the same ammeter
reading. The reciprocal network yields V = z12I according to Eq. (18.1)
when connected as in Fig. 18.4(a), but yields V = z21I when connected
as in Fig. 18.4(b). This is possible only if z12 = z21. Any two-port that is
made entirely of resistors, capacitors, and inductors must be reciprocal.
For a reciprocal network, the T-equivalent circuit in Fig. 18.5(a) can be
used. If the network is not reciprocal, a more general equivalent network
is shown in Fig. 18.5(b); notice that this figure follows directly from
Eq. (18.1).

V

I

(a)

1 2

1 2

I

Reciprocal
two-port

+
−

V

(b)

Reciprocal
two-port

A

A +
−

Figure 18.4 Interchanging a voltage source
at one port with an ideal ammeter at the
other port produces the same reading in a
reciprocal two-port.

V1

I1 I2

(a)

+

−

+

−

V2

z11 – z12 z22 – z12

z12 V1

I1 I2

(b)

+

−

+

−

V2

z22z11

z12 I2 z21 I1
+
−

+
−

Figure 18.5 (a) T-equivalent circuit (for reciprocal case only), (b) general equivalent circuit.

V1

1:n

I1 I2

+

−

+

−

V2

Figure 18.6 An ideal trans-
former has no z parameters.

It should be mentioned that for some two-port networks, the z pa-
rameters do not exist because they cannot be described by Eq. (18.1). As
an example, consider the ideal transformer of Fig. 18.6. The defining
equations for the two-port network are:

V1 = 1

n
V2, I1 = −nI2 (18.7)

Observe that it is impossible to express the voltages in terms of the cur-
rents, and vice versa, as Eq. (18.1) requires. Thus, the ideal transformer
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has no z parameters. However, it does have hybrid parameters, as we
shall see in Section 18.4.

E X A M P L E 1 8 . 1

Determine the z parameters for the circuit in Fig. 18.7.

40 Ω

30 Ω20 Ω

Figure 18.7 For Example 18.1.

Solution:

METHOD 1 To determine z11 and z21, we apply a voltage source V1

to the input port and leave the output port open as in Fig. 18.8(a). Then,

z11 = V1

I1
= (20 + 40)I1

I1
= 60 �

that is, z11 is the input impedance at port 1.

z21 = V2

I1
= 40I1

I1
= 40 �

To find z12 and z22, we apply a voltage source V2 to the output port and
leave the input port open as in Fig. 18.8(b). Then,

z12 = V1

I2
= 40I2

I2
= 40 �, z22 = V2

I2
= (30 + 40)I2

I2
= 70 �

Thus,

[z] =
[

60 � 40 �

40 � 70 �

]

V1 V2

I2 = 0I1

40 Ω

(a)

(b)

30 Ω20 Ω

+

−

+
−

V2V1

I2I1 = 0

40 Ω

30 Ω20 Ω

+

−

+
−

Figure 18.8 For Example 18.1: (a) finding
z11 and z21, (b) finding z12 and z22.

METHOD 2 Alternatively, since there is no dependent source in the
given circuit, z12 = z21 and we can use Fig. 18.5(a). Comparing Fig.
18.7 with Fig. 18.5(a), we get

z12 = 40 � = z21

z11 − z12 = 20 �⇒ z11 = 20 + z12 = 60 �

z22 − z12 = 30 �⇒ z22 = 30 + z12 = 70 �

P R A C T I C E P R O B L E M 1 8 . 1

Find the z parameters of the two-port network in Fig. 18.9.

6 Ω

8 Ω

Figure 18.9 For Practice
Prob. 18.1.

Answer: z11 = 14, z12 = z21 = z22 = 6 �.

E X A M P L E 1 8 . 2

Find I1 and I2 in the circuit in Fig. 18.10.
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I1 I2

+

−

10 ΩV2

+

−

V1

z11 = 40 Ω
z12 = j20 Ω
z21 = j30 Ω
z22 = 50 Ω

+
−100   0° V

Figure 18.10 For Example 18.2.

Solution:

This is not a reciprocal network. We may use the equivalent circuit in Fig.
18.5(b) but we can also use Eq. (18.1) directly. Substituting the given z

parameters into Eq. (18.1),

V1 = 40I1 + j20I2 (18.2.1)

V2 = j30I1 + 50I2 (18.2.2)

Since we are looking for I1 and I2, we substitute

V1 = 100 0◦, V2 = −10I2

into Eqs. (18.2.1) and (18.2.2), which become

100 = 40I1 + j20I2 (18.2.3)

− 10I2 = j30I1 + 50I2 �⇒ I1 = j2I2 (18.2.4)

Substituting Eq. (18.2.4) into Eq. (18.2.3) gives

100 = j80I2 + j20I2 �⇒ I2 = 100

j100
= −j

From Eq. (18.2.4), I1 = j2(−j) = 2. Thus,

I1 = 2 0◦ A, I2 = 1 − 90◦ A

P R A C T I C E P R O B L E M 1 8 . 2

Calculate I1 and I2 in the two-port of Fig. 18.11.

I1 I2

+

−

V2

+

−

V1

2 Ω

z11 = 6 Ω
z12 = −j4 Ω
z21 = −j4 Ω
z22 = 8 Ω

+
−2   30° V

Figure 18.11 For Practice Prob. 18.2.

Answer: 2 20◦ A, 1 − 60◦ A.
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18.3 ADMITTANCE PARAMETERS
In the previous section we saw that impedance parameters may not exist
for a two-port network. So there is a need for an alternative means of
describing such a network. This need is met by the second set of parame-
ters, which we obtain by expressing the terminal currents in terms of the
terminal voltages. In either Fig. 18.12(a) or (b), the terminal currents can
be expressed in terms of the terminal voltages as

I1 = y11V1 + y12V2

I2 = y21V1 + y22V2
(18.8)

or in matrix form as[
I1

I2

]
=
[

y11 y12

y21 y22

] [
V1

V2

]
= [y]

[
V1

V2

]
(18.9)

The y terms are known as the admittance parameters (or, simply, y pa-
rameters) and have units of siemens.

I1 I2

(a)

+

−

I1 V2 = 0

+

−

V1

y11 = 

y21 = 

I1
V1

I2
V1

I1 I2

(b)

+

−

I2V1 = 0

+

−

V2

y12 = 

y22 = 

I1
V2

I2
V2

Figure 18.12 Determination of the y param-
eters: (a) finding y11 and y21, (b) finding y12
and y22.

The values of the parameters can be determined by setting V1 = 0
(input port short-circuited) or V2 = 0 (output port short-circuited). Thus,

y11 = I1

V1

∣∣∣∣
V2=0

, y12 = I1

V2

∣∣∣∣
V1=0

y21 = I2

V1

∣∣∣∣
V2=0

, y22 = I2

V2

∣∣∣∣
V1=0

(18.10)

Since the y parameters are obtained by short-circuiting the input or out-
put port, they are also called the short-circuit admittance parameters.
Specifically,

y11 = Short-circuit input admittance

y12 = Short-circuit transfer admittance from port 2 to port 1

y21 = Short-circuit transfer admittance from port 1 to port 2

y22 = Short-circuit output admittance

(18.11)

Following Eq. (18.10), we obtain y11 and y21 by connecting a cur-
rent I1 to port 1 and short-circuiting port 2 as in Fig. 18.12(a), finding V1

and I2, and then calculating

y11 = I1

V1
, y21 = I2

V1
(18.12)

Similarly, we obtain y12 and y22 by connecting a current source I2 to port
2 and short-circuiting port 1 as in Fig. 18.12(b), finding I1 and V2, and
then getting

y12 = I1

V2
, y22 = I2

V2
(18.13)

This procedure provides us with a means of calculating or measuring the
y parameters. The impedance and admittance parameters are collectively
referred to as immittance parameters.
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For a two-port network that is linear and has no dependent sources,
the transfer admittances are equal (y12 = y21). This can be proved in the
same way as for the z parameters. A reciprocal network (y12 = y21) can
be modeled by the 	-equivalent circuit in Fig. 18.13(a). If the network
is not reciprocal, a more general equivalent network is shown in Fig.
18.13(b).

V1

I1 I2

(b)

+

−

+

−

V2
y12V2 y21V1

y22y11V1

I1 I2

(a)

+

−

+

−

V2
y22 + y12y11 + y12

–y12

Figure 18.13 (a) 	-equivalent circuit (for reciprocal case only), (b) general equivalent circuit.

E X A M P L E 1 8 . 3

Obtain the y parameters for the 	 network shown in Fig. 18.14.

4 Ω

2 Ω

8 Ω

Figure 18.14 For Example 18.3.

I1 I2

(a)

+

−

I1 V2 = 0

+

−

V1  4 Ω  8 Ω

 2 Ω

I1 I2

(b)

+

−

I2V1 = 0

+

−

V2 4 Ω  8 Ω

 2 Ω

Figure 18.15 For Example 18.3: (a) finding
y11 and y21, (b) finding y12 and y22.

Solution:

METHOD 1 To find y11 and y21, short-circuit the output port and con-
nect a current source I1 to the input port as in Fig. 18.15(a). Since the
8-� resistor is short-circuited, the 2-� resistor is in parallel with the 4-�
resistor. Hence,

V1 = I1(4 ‖ 2) = 4

3
I1, y11 = I1

V1
= I1

4
3 I1

= 0.75 S

By current division,

−I2 = 4

4 + 2
I1 = 2

3
I1, y21 = I2

V1
= − 2

3 I1

4
3 I1

= −0.5 S

To get y12 and y22, short-circuit the input port and connect a current source
I2 to the output port as in Fig. 18.15(b). The 4-� resistor is short-circuited
so that the 2-� and 8-� resistors are in parallel.

V2 = I2(8 ‖ 2) = 8

5
I2, y22 = I2

V2
= I2

8
5 I2

= 5

8
= 0.625 S

By current division,

−I1 = 8

8 + 2
I2 = 4

5
I2, y12 = I1

V2
= − 4

5 I2

8
5 I2

= −0.5 S

METHOD 2 Alternatively, comparing Fig. 18.14 with Fig. 18.13(a),

y12 = −1

2
S = y21

y11 + y12 = 1

4
�⇒ y11 = 1

4
− y12 = 0.75 S

y22 + y12 = 1

8
�⇒ y22 = 1

8
− y12 = 0.625 S

as obtained previously.
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P R A C T I C E P R O B L E M 1 8 . 3

Obtain the y parameters for the T network shown in Fig. 18.16.

4 Ω

6 Ω2 Ω

Figure 18.16 For Practice Prob. 18.3.

Answer: y11 = 0.2273 S, y12 = y21 = −0.0909 S, y22 = 0.1364 S.

E X A M P L E 1 8 . 4

Determine the y parameters for the two-port shown in Fig. 18.17.

2 Ω

4 Ω

2i

8 Ωi

Figure 18.17 For Example 18.4.

Solution:

We follow the same procedure as in the previous example. To get y11 and
y21, we use the circuit in Fig. 18.18(a), in which port 2 is short-circuited
and a current source is applied to port 1. At node 1,

V1 − Vo

8
= 2I1 + Vo

2
+ Vo − 0

4

But I1 = V1 − Vo

8
; therefore,

0 = V1 − Vo

8
+ 3Vo

4

0 = V1 − Vo + 6Vo �⇒ V1 = −5Vo

Hence,

I1 = −5Vo − Vo

8
= −0.75Vo

and

y11 = I1

V1
= −0.75Vo

−5Vo

= 0.15 S

At node 2,

Vo − 0

4
+ 2I1 + I2 = 0

I2

2I1

Vo

(a)

+

−

I1 V2 = 0

+

−

V2

+

−

V1  2 Ω

 8 Ω  1  2 4 Ω
I1

2I1

Vo

(b)

I2V1 = 0

+

−

 2 Ω

 8 Ω  1  2 4 Ω

Figure 18.18 Solution of Example 18.4: (a) finding y11 and y21, (b) finding y12 and y22.
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or

−I2 = 0.25Vo − 1.5Vo = −1.25Vo

Hence,

y21 = I2

V1
= 1.25Vo

−5Vo

= −0.25 S

Similarly, we get y12 and y22 using Fig. 18.18(b). At node 1,

0 − Vo

8
= 2I1 + Vo

2
+ Vo − V2

4

But I1 = 0 − Vo

8
; therefore,

0 = −Vo

8
+ Vo

2
+ Vo − V2

4
or

0 = −Vo + 4Vo + 2Vo − 2V2 �⇒ V2 = 2.5Vo

Hence,

y12 = I1

V2
= −Vo/8

2.5Vo

= −0.05 S

At node 2,

Vo − V2

4
+ 2I1 + I2 = 0

or

−I2 = 0.25Vo − 1

4
(2.5Vo) − 2Vo

8
= −0.625Vo

Thus,

y22 = I2

V2
= 0.625Vo

2.5Vo

= 0.25 S

Notice that y12 �= y21 in this case, since the network is not reciprocal.

P R A C T I C E P R O B L E M 1 8 . 4

Obtain the y parameters for the circuit in Fig. 18.19.

3 Ω

io

2 Ω6 Ω

2io

Figure 18.19 For Practice Prob. 18.4.

Answer: y11 = 0.625 S, y12 = −0.125 S, y21 = 0.375 S,
y22 = 0.125 S.

18.4 HYBRID PARAMETERS
The z and y parameters of a two-port network do not always exist. So
there is a need for developing another set of parameters. This third set of
parameters is based on making V1 and I2 the dependent variables. Thus,
we obtain
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V1 = h11I1 + h12V2

I2 = h21I1 + h22V2
(18.14)

or in matrix form,[
V1

I2

]
=
[

h11 h12

h21 h22

] [
I1

V2

]
= [h]

[
I1

V2

]
(18.15)

The h terms are known as the hybrid parameters (or, simply, h param-
eters) because they are a hybrid combination of ratios. They are very
useful for describing electronic devices such as transistors (see Section
18.9); it is much easier to measure experimentally the h parameters of
such devices than to measure their z or y parameters. In fact, we have
seen that the ideal transformer in Fig. 18.6, described by Eq. (18.7), does
not have z parameters. The ideal transformer can be described by the
hybrid parameters, because Eq. (18.7) conforms with Eq. (18.14).

The values of the parameters are determined as

h11 = V1

I1

∣∣∣∣
V2=0

, h12 = V1

V2

∣∣∣∣
I1=0

h21 = I2

I1

∣∣∣∣
V2=0

, h22 = I2

V2

∣∣∣∣
I1=0

(18.16)

It is evident from Eq. (18.16) that the parameters h11, h12, h21, and h22

represent an impedance, a voltage gain, a current gain, and an admittance,
respectively. This is why they are called the hybrid parameters. To be
specific,

h11 = Short-circuit input impedance

h12 = Open-circuit reverse voltage gain

h21 = Short-circuit forward current gain

h22 = Open-circuit output admittance

(18.17)

The procedure for calculating the h parameters is similar to that used
for the z or y parameters. We apply a voltage or current source to the
appropriate port, short-circuit or open-circuit the other port, depending
on the parameter of interest, and perform regular circuit analysis. For
reciprocal networks, h12 = −h21. This can be proved in the same way
as we proved that z12 = z21. Figure 18.20 shows the hybrid model of a
two-port network.

V1

I1 I2

+

−

+

−

V2h22

h11

h12V2 h21I1
+
−

Figure 18.20 The h-parameter equivalent
network of a two-port network.

A set of parameters closely related to the h parameters are the g

parameters or inverse hybrid parameters. These are used to describe the
terminal currents and voltages as

I1 = g11V1 + g12I2

V2 = g21V1 + g22I2
(18.18)

or [
I1

V2

]
=
[

g11 g12

g21 g22

] [
V1

I2

]
= [g]

[
V1

I2

]
(18.19)
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The values of the g parameters are determined as

g11 = I1

V1

∣∣∣∣
I2=0

, g12 = I1

I2

∣∣∣∣
V1=0

g21 = V2

V1

∣∣∣∣
I2=0

, g22 = V2

I2

∣∣∣∣
V1=0

(18.20)

Thus, the inverse hybrid parameters are specifically called

g11 = Open-circuit input admittance

g12 = Short-circuit reverse current gain

g21 = Open-circuit forward voltage gain

g22 = Short-circuit output impedance

(18.21)

Figure 18.21 shows the inverse hybrid model of a two-port network.

V1

I1 I2

+

−

+

−

V2g11

g22

g12I2 g21V1
+
−

Figure 18.21 The g-parameter model of a
two-port network.

E X A M P L E 1 8 . 5

Find the hybrid parameters for the two-port network of Fig. 18.22.

6 Ω

3 Ω2 Ω

Figure 18.22 For Example 18.5.

I1 V2 = 0

I2

6 Ω

(a)

(b)

3 Ω2 Ω

+

−

V1

+

−

V2
V1

I2I1 = 0

6 Ω

3 Ω2 Ω

+

−

+
−

Figure 18.23 For Example 18.5: (a) comput-
ing h11 and h21, (b) computing h12 and h22.

Solution:

To find h11 and h21, we short-circuit the output port and connect a current
source I1 to the input port as shown in Fig. 18.23(a). From Fig. 18.23(a),

V1 = I1(2 + 3 ‖ 6) = 4I1

Hence,

h11 = V1

I1
= 4 �

Also, from Fig. 18.23(a) we obtain, by current division,

−I2 = 6

6 + 3
I1 = 2

3
I1

Hence,

h21 = I2

I1
= −2

3
To obtain h12 and h22, we open-circuit the input port and connect a voltage
source V2 to the output port as in Fig. 18.23(b). By voltage division,

V1 = 6

6 + 3
V2 = 2

3
V2

Hence,

h12 = V1

V2
= 2

3
Also,

V2 = (3 + 6)I2 = 9I2

Thus,

h22 = I2

V2
= 1

9
S
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P R A C T I C E P R O B L E M 1 8 . 5

Determine the h parameters for the circuit in Fig. 18.24.

5 Ω

3 Ω

2 Ω

Figure 18.24 For Practice Prob. 18.5.

Answer: h11 = 1.2 �, h12 = 0.4, h21 = −0.4, h22 = 0.4 S.

60 V

40 Ω

h11 = 1 kΩ
h12 = –2
h21 = 10
h22 = 200 mS

+
−

Figure 18.25 For Example 18.6.

E X A M P L E 1 8 . 6

Determine the Thevenin equivalent at the output port of the circuit in
Fig. 18.25.

1 V40 Ω

+

−

V1

(a)

[h]

I1 I2

+
−

60 V

40 Ω

+

−

V1

+

−

V2

(b)

[h]

I1 I2 = 0

+
−

Figure 18.26 For Example 18.6: (a) finding
ZTh, (b) finding VTh.

Solution:

To find ZTh and VTh, we apply the normal procedure, keeping in mind
the formulas relating the input and output ports of the h model. To obtain
ZTh, remove the 60-V voltage source at the input port and apply a 1-V
voltage source at the output port, as shown in Fig. 18.26(a). From Eq.
(18.14),

V1 = h11I1 + h12V2 (18.6.1)

I2 = h21I1 + h22V2 (18.6.2)

But V2 = 1, and V1 = −40I1. Substituting these into Eqs. (18.6.1) and
(18.6.2), we get

− 40I1 = h11I1 + h12 �⇒ I1 = − h12

40 + h11
(18.6.3)

I2 = h21I1 + h22 (18.6.4)

Substituting Eq. (18.6.3) into Eq. (18.6.4) gives

I2 = h22 − h21h12

h11 + 40
= h11h22 − h21h12 + h2240

h11 + 40

Therefore,

ZTh = V2

I2
= 1

I2
= h11 + 40

h11h22 − h21h12 + h2240

Substituting the values of the h parameters,

ZTh = 1000 + 40

103 × 200 × 10−6 + 20 + 40 × 200 × 10−6

= 1040

20.21
= 51.46 �

To get VTh, we find the open-circuit voltage V2 in Fig. 18.26(b). At the
input port,

−60 + 40I1 + V1 = 0 �⇒ V1 = 60 − 40I1 (18.6.5)

At the output,

I2 = 0 (18.6.6)
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Substituting Eqs. (18.6.5) and (18.6.6) into Eqs. (18.6.1) and (18.6.2), we
obtain

60 − 40I1 = h11I1 + h12V2

or

60 = (h11 + 40)I1 + h12V2 (18.6.7)

and

0 = h21I1 + h22V2 �⇒ I1 = −h22

h21
V2 (18.6.8)

Now substituting Eq. (18.6.8) into Eq. (18.6.7) gives

60 =
[
−(h11 + 40)

h22

h21
+ h12

]
V2

or

VTh = V2 = 60

−(h11 + 40)h22/h21 + h12
= 60h21

h12h21 − h11h22 − 40h22

Substituting the values of the h parameters,

VTh = 60 × 10

−20.21
= −29.69 V

P R A C T I C E P R O B L E M 1 8 . 6

Find the impedance at the input port of the circuit in Fig. 18.27.

50 kΩ

h11 = 2 kΩ
h12 = 10–4

h21 = 100
h22 = 10–5 S

Zin

Figure 18.27 For Practice Prob. 18.6.

Answer: 1667 �.

E X A M P L E 1 8 . 7

Find the g parameters as functions of s for the circuit in Fig. 18.28.

1 Ω

1 F1 H

Figure 18.28 For Example 18.7.

Solution:

In the s domain,

1 H �⇒ sL = s, 1 F �⇒ 1

sC
= 1

s

To get g11 and g21, we open-circuit the output port and connect a voltage
source V1 to the input port as in Fig. 18.29(a). From the figure,

I1 = V1

s + 1
or

g11 = I1

V1
= 1

s + 1
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By voltage division,

V2 = 1

s + 1
V1

or

g21 = V2

V1
= 1

s + 1
To obtain g12 and g22, we short-circuit the input port and connect a current
source I2 to the output port as in Fig. 18.29(b). By current division,

I1 = − 1

s + 1
I2

or

g12 = I1

I2
= − 1

s + 1
Also,

V2 = I2

(
1

s
+ s ‖ 1

)
or

g22 = V2

I2
= 1

s
+ s

s + 1
= s2 + s + 1

s(s + 1)

Thus,

[g] =




1

s + 1
− 1

s + 1

1

s + 1

s2 + s + 1

s(s + 1)




V1 V2

I2 = 0I1

1 Ω

(a)

1/ss

+

−

+
−

V2 I2

I1

1 Ω

(b)

1/ss

+

−

V1 = 0

+

−

Figure 18.29 Determining the g parameters
in the s domain for the circuit in Fig. 18.28.

P R A C T I C E P R O B L E M 1 8 . 7

For the ladder network in Fig. 18.30, determine the g parameters in the s

domain.

Answer: [g] =




s + 2

s2 + 3s + 1
− 1

s2 + 3s + 1

1

s2 + 3s + 1

s(s + 2)

s2 + 3s + 1


 .

1 Ω

1 H

1 Ω

1 H

Figure 18.30 For Practice Prob. 18.7.

18.5 TRANSMISSION PARAMETERS
Since there are no restrictions on which terminal voltages and currents
should be considered independent and which should be dependent vari-
ables, we expect to be able to generate many sets of parameters. Another
set of parameters relates the variables at the input port to those at the
output port. Thus,

V1 = AV2 − BI2

I1 = CV2 − DI2
(18.22)
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or [
V1

I1

]
=
[

A B
C D

] [
V2

−I2

]
= [T]

[
V2

−I2

]
(18.23)

Equations (18.22) and (18.23) relate the input variables (V1 and I1) to the
output variables (V2 and −I2). Notice that in computing the transmission
parameters, −I2 is used rather than I2, because the current is considered
to be leaving the network, as shown in Fig. 18.31, as opposed to entering
the network as in Fig. 18.1(b). This is done merely for conventional
reasons; when you cascade two-ports (output to input), it is most logical
to think of I2 as leaving the two-port. It is also customary in the power
industry to consider I2 as leaving the two-port.−

+

V1

−

+

V2

I1 –I2

Linear
two-port

Figure 18.31 Terminal variables used to
define the ABCD parameters.

The two-port parameters in Eqs. (18.22) and (18.23) provide a mea-
sure of how a circuit transmits voltage and current from a source to a load.
They are useful in the analysis of transmission lines (such as cable and
fiber) because they express sending-end variables (V1 and I1) in terms of
the receiving-end variables (V2 and −I2). For this reason, they are called
transmission parameters. They are also known as ABCD parameters.
They are used in the design of telephone systems, microwave networks,
and radars.

The transmission parameters are determined as

A = V1

V2

∣∣∣∣
I2=0

, B = −V1

I2

∣∣∣∣
V2=0

C = I1

V2

∣∣∣∣
I2=0

, D = − I1

I2

∣∣∣∣
V2=0

(18.24)

Thus, the transmission parameters are called, specifically,

A = Open-circuit voltage ratio

B = Negative short-circuit transfer impedance

C = Open-circuit transfer admittance

D = Negative short-circuit current ratio

(18.25)

A and D are dimensionless, B is in ohms, and C is in siemens. Since the
transmission parameters provide a direct relationship between input and
output variables, they are very useful in cascaded networks.

Our last set of parameters may be defined by expressing the vari-
ables at the output port in terms of the variables at the input port. We
obtain

V2 = aV1 − bI1

I2 = cV1 − dI1
(18.26)

or [
V2

I2

]
=
[

a b
c d

] [
V1

−I1

]
= [t]

[
V1

−I1

]
(18.27)
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The parameters a, b, c, and d are called the inverse transmission param-
eters. They are determined as follows:

a = V2

V1

∣∣∣∣
I1=0

, b = −V2

I1

∣∣∣∣
V1=0

c = I2

V1

∣∣∣∣
I1=0

, d = − I2

I1

∣∣∣∣
V1=0

(18.28)

From Eq. (18.28) and from our experience so far, it is evident that these
parameters are known individually as

a = Open-circuit voltage gain

b = Negative short-circuit transfer impedance

c = Open-circuit transfer admittance

d = Negative short-circuit current gain

(18.29)

While a and d are dimensionless, b and c are in ohms and siemens, respec-
tively. In terms of the transmission or inverse transmission parameters, a
network is reciprocal if

AD − BC = 1, ad − bc = 1 (18.30)

These relations can be proved in the same way as the transfer impedance
relations for the z parameters. Alternatively, we will be able to use Table
18.1 a little later to derive Eq. (18.30) from the fact that z12 = z21 for
reciprocal networks.

E X A M P L E 1 8 . 8

Find the transmission parameters for the two-port network in Fig. 18.32.

20 Ω

3I1
10 ΩI1 I2

+ −

Figure 18.32 For Example 18.8.

Solution:

To determine A and C, we leave the output port open as in Fig. 18.33(a)
so that I2 = 0 and place a voltage source V1 at the input port. We have

V1 = (10 + 20)I1 = 30I1 and V2 = 20I1 − 3I1 = 17I1

Thus,

A = V1

V2
= 30I1

17I1
= 1.765, C = I1

V2
= I1

17I1
= 0.0588 S

I2
3I1I1

(a)

Va

a+

−

V1
V2 20 Ω

10 Ω
+ −

+
−

I2
3I1I1

(b)

V1
V2 = 0 20 Ω

10 Ω
+ −

+
−

Figure 18.33 For Example 18.8: (a) finding A and C, (b) finding B and D.
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To obtain B and D, we short-circuit the output port so that V2 = 0 as
shown in Fig. 18.33(b) and place a voltage source V1 at the input port.
At node a in the circuit of Fig. 18.33(b), KCL gives

V1 − Va

10
− Va

20
+ I2 = 0 (18.8.1)

But Va = 3I1 and I1 = (V1 − Va)/10. Combining these gives

V1 = 13I1 (18.8.2)

Substituting Eq. (18.8.2) into Eq. (18.8.1) and replacing the first term
with I1,

I1 − 3I1

20
+ I2 = 0 �⇒ 17

20
I1 = −I2

Therefore,

D = − I1

I2
= 20

17
= 1.176, B = −V1

I2
= −13I1

(−17/20) I1
= 15.29 �

P R A C T I C E P R O B L E M 1 8 . 8

Find the transmission parameters for the circuit in Fig. 18.16 (see Practice
Prob. 18.3).

Answer: A = 1.5, B = 11 �, C = 0.25 S, D = 2.5.

E X A M P L E 1 8 . 9

The ABCD parameters of the two-port network in Fig. 18.34 are[
4 20 �

0.1 S 2

]

The output port is connected to a variable load for maximum power trans-
fer. Find RL and the maximum power transferred.

50 V RL

10 Ω

[T ]+
−

Figure 18.34 For Example 18.9. Solution:

What we need is to find the Thevenin equivalent (ZTh and VTh) at the load
or output port. We find ZTh using the circuit in Fig. 18.35(a). Our goal is
to get ZTh = V2/I2. Substituting the given ABCD parameters into Eq.
(18.22), we obtain

V1 = 4V2 − 20I2 (18.9.1)

I1 = 0.1V2 − 2I2 (18.9.2)

RL
1 V

(a)

V2V1

10 Ω

[T ] +
−

I1 I2

+

−

+

−

50 V

(b)

V2 = VThV1

10 Ω

[T ]+
−

I1 I2 = 0

+

−

+

−

(c)

VTh
+
−

RTh

Figure 18.35 Solution of Example 18.9: (a) finding ZTh, (b) finding VTh, (c) finding RL for maximum power transfer.
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At the input port, V1 = −10I1. Substituting this into Eq. (18.9.1) gives

−10I1 = 4V2 − 20I2

or

I1 = −0.4V2 + 2I2 (18.9.3)

Setting the right-hand sides of Eqs. (18.9.2) and (18.9.3) equal,

0.1V2 − 2I2 = −0.4V2 + 2I2 �⇒ 0.5V2 = 4I2

Hence,

ZTh = V2

I2
= 4

0.5
= 8 �

To find VTh, we use the circuit in Fig. 18.35(b). At the output port
I2 = 0 and at the input port V1 = 50 − 10I1. Substituting these into Eqs.
(18.9.1) and (18.9.2),

50 − 10I1 = 4V2 (18.9.4)

I1 = 0.1V2 (18.9.5)

Substituting Eq. (18.9.5) into Eq. (18.9.4),

50 − V2 = 4V2 �⇒ V2 = 10

Thus,

VTh = V2 = 10 V

The equivalent circuit is shown in Fig. 18.35(c). For maximum power
transfer,

RL = ZTh = 8 �

From Eq. (4.24), the maximum power is

P = I 2RL =
(

VTh

2RL

)2

RL = V2
Th

4RL

= 100

4 × 8
= 3.125 W

P R A C T I C E P R O B L E M 1 8 . 9

Find I1 and I2 if the transmission parameters for the two-port in Fig. 18.36
are [

5 10 �

0.4 S 1

]

10 ΩV2

2 Ω

[T ]+
−

I1 I2

+

−

14   0° V

Figure 18.36 For Practice Prob. 18.9.

Answer: 1 A, −0.2 A.

†18.6 RELATIONSHIPS BETWEEN PARAMETERS
Since the six sets of parameters relate the same input and output terminal
variables of the same two-port network, they should be interrelated. If
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two sets of parameters exist, we can relate one set to the other set. Let us
demonstrate the process with two examples.

Given the z parameters, let us obtain the y parameters. From
Eq. (18.2), [

V1

V2

]
=
[

z11 z12

z21 z22

] [
I1

I2

]
= [z]

[
I1

I2

]
(18.31)

or [
I1

I2

]
= [z]−1

[
V1

V2

]
(18.32)

Also, from Eq. (18.9),[
I1

I2

]
=
[

y11 y12

y21 y22

] [
V1

V2

]
= [y]

[
V1

V2

]
(18.33)

Comparing Eqs. (18.32) and (18.33), we see that

[y] = [z]−1 (18.34)

The adjoint of the [z] matrix is[
z22 −z12

−z21 z11

]
and its determinant is

�z = z11z22 − z12z21

Substituting these into Eq. (18.34), we get

[
y11 y12

y21 y22

]
=

[
z22 −z12

−z21 z11

]
�z

(18.35)

Equating terms yields

y11 = z22

�z

, y12 = −z12

�z

, y21 = −z21

�z

, y22 = z11

�z

(18.36)

As a second example, let us determine the h parameters from the z

parameters. From Eq. (18.1),

V1 = z11I1 + z12I2 (18.37a)

V2 = z21I1 + z22I2 (18.37b)

Making I2 the subject of Eq. (18.37b),

I2 = −z21

z22
I1 + 1

z22
V2 (18.38)

Substituting this into Eq. (18.37a),

V1 = z11z22 − z12z21

z22
I1 + z12

z22
V2 (18.39)

Putting Eqs. (18.38) and (18.39) in matrix form,

[
V1

I2

]
=




�z

z22

z12

z22

−z21

z22

1

z22



[

I1

V2

]
(18.40)

From Eq. (18.15), [
V1

I2

]
=
[

h11 h12

h21 h22

] [
I1

V2

]
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Comparing this with Eq. (18.40), we obtain

h11 = �z

z22
, h12 = z12

z22
, h21 = −z21

z22
, h22 = 1

z22
(18.41)

Table 18.1 provides the conversion formulas for the six sets of two-
port parameters. Given one set of parameters, Table 18.1 can be used to
find other parameters. For example, given the T parameters, we find the
corresponding h parameters in the fifth column of the third row. Also,
given that z21 = z12 for a reciprocal network, we can use the table to
express this condition in terms of other parameters. It can also be shown
that

[g] = [h]−1 (18.42)

but

[t] �= [T]−1 (18.43)

TABLE 18.1 Conversion of two-port parameters.

z y h g T t

z z11 z12
y22

�y

−y12

�y

�h

h22

h12

h22

1

g11
−g12

g11

A
C

�T

C
d
c

1

c

z21 z22 −y21

�y

y11

�y

−h21

h22

1

h22

g21

g11

�g

g11

1

C
D
C

�t

c
a
c

y
z22

�z

− z12

�z

y11 y12
1

h11
−h12

h11

�g

g22

g12

g22

D
B

−�T

B
a
b

− 1

b

− z21

�z

z11

�z

y21 y22
h21

h11

�h

h11
−g21

g22

1

g22
− 1

B
A
B

−�t

b
d
b

h
�z

z22

z12

z22

1

y11
−y12

y11
h11 h12

g22

�g

−g12

�g

B
D

�T

D
b
a

1

a

− z21

z22

1

z22

y21

y11

�y

y11
h21 h22 −g21

�g

g11

�g

− 1

D
C
D

�t

a
c
a

g
1

z11
− z12

z11

�y

y22

y12

y22

h22

�h

−h12

�h

g11 g12
C
A

−�T

A
c
d

− 1

d

z21

z11

�z

z11
−y21

y22

1

y22
−h21

�h

h11

�h

g21 g22
1

A
B
A

�t

d
−b

d

T
z11

z21

�z

z21
−y22

y21
− 1

y21
−�h

h21
−h11

h21

1

g21

g22

g21
A B

d
�t

b
�t

1

z21

z22

z21
−�y

y21
−y11

y21
−h22

h21
− 1

h21

g11

g21

�g

g21
C D

c
�t

a
�t

t
z22

z12

�z

z12
−y11

y12
− 1

y12

1

h12

h11

h12
−�g

g12
−g22

g12

D
�T

B
�T

a b

1

z12

z11

z12
−�y

y12
−y22

y12

h22

h12

�h

h12
−g11

g12
− 1

g12

C
�T

A
�T

c d

�z = z11z22 − z12z21, �h = h11h22 − h12h21, �T = AD − BC

�y = y11y22 − y12y21, �g = g11g22 − g12g21, �t = ad − bc
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E X A M P L E 1 8 . 1 0

Find [z] and [g] of a two-port network if

[T] =
[

10 1.5 �

2 S 4

]
Solution:

If A = 10, B = 1.5, C = 2, D = 4, the determinant of the matrix is

�T = AD − BC = 40 − 3 = 37

From Table 18.1,

z11 = A
C

= 10

2
= 5, z12 = �T

C
= 37

2
= 18.5

z21 = 1

C
= 1

2
= 0.5, z22 = D

C
= 4

2
= 2

g11 = C
A

= 2

10
= 0.2, g12 = −�T

A
= −37

10
= −3.7

g21 = 1

A
= 1

10
= 0.1, g22 = B

A
= 1.5

10
= 0.15

Thus,

[z] =
[

5 18.5

0.5 2

]
�, [g] =

[
0.2 S −3.7

0.1 0.15 �

]

P R A C T I C E P R O B L E M 1 8 . 1 0

Determine [y] and [T] of a two-port network whose z parameters are

[z] =
[

6 4
4 6

]
�

Answer: [y] =
[

0.3 −0.2
−0.2 0.3

]
S, [T] =

[
1.5 5 �

0.25 S 1.5

]
.

E X A M P L E 1 8 . 1 1

Obtain the y parameters of the op amp circuit in Fig. 18.37. Show that
the circuit has no z parameters.

V1

I1 I2

+

−

V2Io

Io

R2

R1

R3

+

−

+
−

Figure 18.37 For Example 18.11.

Solution:

Since no current can enter the input terminals of the op amp, I1 = 0,
which can be expressed in terms of V1 and V2 as

I1 = 0V1 + 0V2 (18.11.1)

Comparing this with Eq. (18.8) gives

y11 = 0 = y12

Also,

V2 = R3I2 + Io(R1 + R2)
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where Io is the current through R1 and R2. But Io = V1/R1. Hence,

V2 = R3I2 + V1(R1 + R2)

R1

which can be written as

I2 = − (R1 + R2)

R1R3
V1 + V2

R3

Comparing this with Eq. (18.8) shows that

y21 = − (R1 + R2)

R1R3
, y22 = 1

R3

The determinant of the [y] matrix is

�y = y11y22 − y12y21 = 0

Since �y = 0, the [y] matrix has no inverse; therefore, the [z] matrix does
not exist according to Eq. (18.34). Note that the circuit is not reciprocal
because of the active element.

P R A C T I C E P R O B L E M 1 8 . 1 1

Find the z parameters of the op amp circuit in Fig. 18.38. Show that the
circuit has no y parameters.

V1

I1 I2

+

−
V2

R2

R1

+

−

+
−

Figure 18.38 For Practice Prob. 18.11.

Answer: [z] =
[

R1

−R2

0

0

]
. Since [z]−1 does not exist, [y] does not

exist.

18.7 INTERCONNECTION OF NETWORKS
A large, complex network may be divided into subnetworks for the pur-
poses of analysis and design. The subnetworks are modeled as two-port
networks, interconnected to form the original network. The two-port
networks may therefore be regarded as building blocks that can be in-
terconnected to form a complex network. The interconnection can be in
series, in parallel, or in cascade. Although the interconnected network
can be described by any of the six parameter sets, a certain set of parame-
ters may have a definite advantage. For example, when the networks are
in series, their individual z parameters add up to give the z parameters
of the larger network. When they are in parallel, their individual y pa-
rameters add up to give the y parameters the larger network. When they
are cascaded, their individual transmission parameters can be multiplied
together to get the transmission parameters of the larger network.

Consider the series connection of two two-port networks shown
in Fig. 18.39. The networks are regarded as being in series because
their input currents are the same and their voltages add. In addition,
each network has a common reference, and when the circuits are placed
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in series, the common reference points of each circuit are connected
together. For network Na ,

V1a = z11aI1a + z12aI2a

V2a = z21aI1a + z22aI2a

(18.44)

and for network Nb,

V1b = z11bI1b + z12bI2b

V2b = z21bI1b + z22bI2b

(18.45)

We notice from Fig. 18.39 that

I1 = I1a = I1b, I2 = I2a = I2b (18.46)

and that

V1 = V1a + V1b = (z11a + z11b)I1 + (z12a + z12b)I2

V2 = V2a + V2b = (z21a + z21b)I1 + (z22a + z22b)I2
(18.47)

Thus, the z parameters for the overall network are[
z11 z12

z21 z22

]
=
[

z11a + z11b z12a + z12b

z21a + z21b z22a + z22b

]
(18.48)

or

[z] = [za] + [zb] (18.49)

showing that the z parameters for the overall network are the sum of
the z parameters for the individual networks. This can be extended to
n networks in series. If two two-port networks in the [h] model, for
example, are connected in series, we use Table 18.1 to convert the h to z
and then apply Eq. (18.49). We finally convert the result back to h using
Table 18.1.

−

+

−

+

−

+
V1a

V2I2V1 I1

−

+
V2a

I1a I2aI1 I2

Na

−

+
V1b

−

+
V2b

I1b I2b

Nb

Figure 18.39 Series connection of two
two-port networks.

−

+
V1a

V2

−

+
V2a

I1a I2a

−

+

I2

V1

−

+

I1

Na

−

+
V1b

−

+
V2b

I1b I2b

Nb

Figure 18.40 Parallel connection of two
two-port networks.

Two two-port networks are in parallel when their port voltages are
equal and the port currents of the larger network are the sums of the
individual port currents. In addition, each circuit must have a common
reference and when the networks are connected together, they must all
have their common references tied together. The parallel connection of
two two-port networks is shown in Fig. 18.40. For the two networks,

I1a = y11aV1a + y12aV2a

I2a = y21aV1a + y22aV2a

(18.50)

and

I1b = y11bV1b + y12bV2b

I2a = y21bV1b + y22bV2b

(18.51)

But from Fig. 18.40,

V1 = V1a = V1b, V2 = V2a = V2b (18.52a)

I1 = I1a + I1b, I2 = I2a + I2b (18.52b)
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Substituting Eqs. (18.50) and (18.51) into Eq. (18.52b) yields

I1 = (y11a + y11b)V1 + (y12a + y12b)V2

I2 = (y21a + y21b)V1 + (y22a + y22b)V2
(18.53)

Thus, the y parameters for the overall network are[
y11 y12

y21 y22

]
=
[

y11a + y11b y12a + y12b

y21a + y21b y22a + y22b

]
(18.54)

or

[y] = [ya] + [yb] (18.55)

showing that the y parameters of the overall network are the sum of the
y parameters of the individual networks. The result can be extended to n

two-port networks in parallel.
Two networks are said to be cascaded when the output of one is the

input of the other. The connection of two two-port networks in cascade
is shown in Fig. 18.41. For the two networks,[

V1a

I1a

]
=
[

Aa Ba

Ca Da

] [
V2a

−I2a

]
(18.56)

[
V1b

I1b

]
=
[

Ab Bb

Cb Db

] [
V2b

−I2b

]
(18.57)

From Fig. 18.41,[
V1

I1

]
=
[

V1a

I1a

]
,

[
V2a

−I2a

]
=
[

V1b

I1b

]
,

[
V2b

−I2b

]
=
[

V2

−I2

]
(18.58)

Substituting these into Eqs. (18.56) and (18.57),[
V1

I1

]
=
[

Aa Ba

Ca Da

] [
Ab Bb

Cb Db

] [
V2

−I2

]
(18.59)

Thus, the transmission parameters for the overall network are the product
of the transmission parameters for the individual transmission parameters:[

A B
C D

]
=
[

Aa Ba

Ca Da

] [
Ab Bb

Cb Db

]
(18.60)

or

[T] = [Ta][Tb] (18.61)

It is this property that makes the transmission parameters so useful. Keep
in mind that the multiplication of the matrices must be in the order in
which the networks Na and Nb are cascaded.

V2aNa

I1a I2a

+

−

V1a

+

−

I1

V1

+

−

V2bNb

I1b I2b

+ +

−

V2

I2

−

V1b

+

−

Figure 18.41 Cascade connection of two two-port networks.
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E X A M P L E 1 8 . 1 2

Evaluate V2/Vs in the circuit in Fig. 18.42.

++

V2

I2I1

−

V1

−

20 ΩVs

5 Ω

z11 = 12 Ω
z12 = 8 Ω
z21 = 8 Ω
z22 = 20 Ω

+
−

10 Ω

Figure 18.42 For Example 18.12.

Solution:

This may be regarded as two two-ports in series. For Nb,

z12b = z21b = 10 = z11 = z22

Thus,

[z] = [za] + [zb] =
[

12 8
8 20

]
+
[

10 10
10 10

]
=
[

22 18
18 30

]
But

V1 = z11I1 + z12I2 = 22I1 + 18I2 (18.12.1)

V2 = z21I1 + z22I2 = 18I1 + 30I2 (18.12.2)

Also, at the input port

V1 = Vs − 5I1 (18.12.3)

and at the output port

V2 = −20I2 �⇒ I2 = −V2

20
(18.12.4)

Substituting Eqs. (18.12.3) and (18.12.4) into Eq. (18.12.1) gives

Vs − 5I1 = 22I1 − 18

20
V2 �⇒ Vs = 27I1 − 0.9V2 (18.12.5)

while substituting Eq. (18.12.4) into Eq. (18.12.2) yields

V2 = 18I1 − 30

20
V2 �⇒ I1 = 2.5

18
V2 (18.12.6)

Substituting Eq. (18.12.6) into Eq. (18.12.5), we get

Vs = 27 × 2.5

18
V2 − 0.9V2 = 2.85V2

And so,
V2

Vs

= 1

2.85
= 0.3509
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P R A C T I C E P R O B L E M 1 8 . 1 2

Find V2/Vs in the circuit in Fig. 18.43.

+

V2

−

40 Ω

50 Ω

–j15 Ω

–j20 Ω

j10 Ω

j40 Ω

Vs

5 Ω

20 Ω

+
−

Figure 18.43 For Practice Prob. 18.12.

Answer: 0.58 − 40◦.

E X A M P L E 1 8 . 1 3

Find the y parameters of the two-port in Fig. 18.44.

2 S 3 S

j4 S

4 S

–j2 S –j6 S

Figure 18.44 For Example 18.13.

Solution:

Let us refer to the upper network as Na and the lower one as Nb. The
two networks are connected in parallel. Comparing Na and Nb with the
circuit in Fig. 18.13(a), we obtain

y12a = −j4 = y21a, y11a = 2 + j4, y22a = 3 + j4

or

[ya] =
[

2 + j4 −j4

−j4 3 + j4

]
S

and

y12b = −4 = y21b, y11b = 4 − j2, y22b = 4 − j6

or

[yb] =
[

4 − j2 −4

−4 4 − j6

]
S

The overall y parameters are

[y] = [ya] + [yb] =
[

6 + j2 −4 − j4

−4 − j4 7 − j2

]
S
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P R A C T I C E P R O B L E M 1 8 . 1 3

Obtain the y parameters for the network in Fig. 18.45.

1 S

j5 S

2 S 2 S

–j5 S

–j10 S

Figure 18.45 For Practice Prob. 18.13.

Answer:
[

27 − j15

−25 + j10

−25 + j10

27 − j5

]
S.

E X A M P L E 1 8 . 1 4

Find the transmission parameters for the circuit in Fig. 18.46.

2 Ω

8 Ω 6 Ω4 Ω

1 Ω

Figure 18.46 For Example 18.14.

2 Ω

8 Ω4 Ω 6 Ω

1 Ω

(a)

Na Nb

R2

R1 R3

(b)

Figure 18.47 For Example 18.14:
(a) Breaking the circuit in Fig. 18.46
into two two-ports, (b) a general T
two-port.

Solution:

We can regard the given circuit in Fig. 18.46 as a cascade connection of
two T networks as shown in Fig. 18.47(a). We can show that a T network,
shown in Fig. 18.47(b), has the following transmission parameters [see
Prob. 18.42(b)]:

A = 1 + R1

R2
, B = R3 + R1(R2 + R3)

R2

C = 1

R2
, D = 1 + R3

R2

Applying this to the cascaded networks Na and Nb in Fig. 18.47(a), we
get

Aa = 1 + 4 = 5, Ba = 8 + 4 × 9 = 44 �

Ca = 1 S, Da = 1 + 8 = 9

or in matrix form,

[Ta] =
[

5 44 �

1 S 9

]

and

Ab = 1, Bb = 6 �, Cb = 0.5 S, Db = 1 + 6

2
= 4

i.e.,

[Tb] =
[

1 6 �

0.5 S 4

]

Thus, for the total network in Fig. 18.46,
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[T] = [Ta][Tb] =
[

5 44
1 9

] [
1 6

0.5 4

]

=
[

5 × 1 + 44 × 0.5 5 × 6 + 44 × 4
1 × 1 + 9 × 0.5 1 × 6 + 9 × 4

]

=
[

27 206 �

5.5 S 42

]

Notice that

�Ta
= �Tb

= �T = 1

showing that the network is reciprocal.

P R A C T I C E P R O B L E M 1 8 . 1 4

Obtain the ABCD parameter representation of the circuit in Fig. 18.48.

20 Ω

40 Ω30 Ω 60 Ω

50 Ω20 Ω

Figure 18.48 For Practice Prob. 18.14.

Answer: [T] =
[

29.25

0.425 S

2200 �

32

]
.

18.8 COMPUTING TWO-PORT PARAMETERS USING
PSPICE

Hand calculation of the two-port parameters may become difficult when
the two-port is complicated. We resort to PSpice in such situations. If
the circuit is purely resistive, PSpice dc analysis may be used; otherwise,
PSpice ac analysis is required at a specific frequency. The key to using
PSpice in computing a particular two-port parameter is to remember how
that parameter is defined and to constrain the appropriate port variable
with a 1-A or 1-V source while using an open or short circuit to impose
the other necessary constraints. The following two examples illustrate
the idea.

E X A M P L E 1 8 . 1 5

Find the h parameters of the network in Fig. 18.49.

10 Ω

6 Ω
4ix

ix

5 Ω

10 Ω

+ −

Figure 18.49 For Example 18.15.

Solution:

From Eq. (18.16),

h11 = V1

I1

∣∣∣∣
V2=0

, h21 = I2

I1

∣∣∣∣
V2=0

showing that h11 and h21 can be found by setting V2 = 0. Also by set-
ting I1 = 1 A, h11 becomes V1/1 while h21 becomes I2/1. With this in
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mind, we draw the schematic in Fig. 18.50(a). We insert a 1-A dc current
source IDC to take care of I1 = 1 A, the pseudocomponent VIEWPOINT
to display V1 and pseudocomponent IPROBE to display I2. After saving
the schematic, we run PSpice by selecting Analysis/Simulate and note
the values displayed on the pseudocomponents. We obtain

h11 = V1

1
= 10 �, h21 = I2

1
= −0.5

R2

IDC 5

I1 DC=1A

6H1

H GAIN=4

10.0000

R13

R8

10

10

–5.000E–01

R5

(a)

+
−

6H1

H GAIN=4

.8333 1.833E–01

R13

R8

10 1V

10

V8

R5

0 0
(b)

+
− +

−

Figure 18.50 For Example 18.15: (a) computing h11 and h21, (b) computing h12 and h22.

Similarly, from Eq. (18.16),

h12 = V1

V2

∣∣∣∣
I1=0

, h22 = I2

V2

∣∣∣∣
I1=0

indicating that we obtain h12 and h22 by open-circuiting the input port
(I1 = 0). By making V2 = 1 V, h12 becomes V1/1 while h22 becomes
I2/1. Thus, we use the schematic in Fig. 18.50(b) with a 1-V dc voltage
source VDC inserted at the output terminal to take care of V2 = 1 V. The
pseudocomponents VIEWPOINT and IPROBE are inserted to display the
values of V1 and I2, respectively. (Notice that in Fig. 18.50(b), the 5-�
resistor is ignored because the input port is open-circuited and PSpice
will not allow such. We may include the 5-� resistor if we replace the
open circuit with a very large resistor, say, 10 M�.) After simulating the
schematic, we obtain the values displayed on the pseudocomponents as
shown in Fig. 18.50(b). Thus,

h12 = V1

1
= 0.8333, h22 = I2

1
= 0.1833 S

P R A C T I C E P R O B L E M 1 8 . 1 5

Obtain the h parameters for the network in Fig. 18.51 using PSpice.

4 Ω

8 Ω

2vx

vx

3 Ω 6 Ω

4 Ω
+

−

Figure 18.51 For Practice Prob. 18.15.

Answer: h11 = 4.238 �, h21 = −0.6190, h12 = −0.7143,

h22 = −0.1429 S.
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E X A M P L E 1 8 . 1 6

Find the z parameters for the circuit in Fig. 18.52 at ω = 106 rad/s.

4 nF 20
vxvx 2 kΩ8 kΩ

2 mH

+

−

Figure 18.52 For Example 18.16.

Solution:

Notice that we used dc analysis in Example 18.15 because the circuit in
Fig. 18.49 is purely resistive. Here, we use ac analysis at f = ω/2π =
0.15915 MHz, because L and C are frequency dependent.

In Eq. (18.3), we defined the z parameters as

z11 = V1

I1

∣∣∣∣
I2=0

, z21 = V2

I1

∣∣∣∣
I2=0

This suggests that if we let I1 = 1 A and open-circuit the output port so
that I2 = 0, then we obtain

z11 = V1

1
and z21 = V2

1
We realize this with the schematic in Fig. 18.53(a). We insert a 1-A ac
current source IAC at the input terminal of the circuit and two VPRINT1
pseudocomponents to obtain V1 and V2. The attributes of each VPRINT1
are set as AC = yes, MAG = yes, and PHASE = yes to print the magnitude
and phase values of the voltages. We select Analysis/Setup/AC Sweep
and enter 1 as Total Pts, 0.1519MEG as Start Freq, and 0.1519MEG as
Final Freq in the AC Sweep and Noise Analysis dialog box. After saving
the schematic, we select Analysis/Simulate to simulate it. We obtain V1

R1

AC=yes
MAG=yes

PHASE=yes

AC=yes
MAG=yes
PHASE=yes

8k
I2

AC=1A

IAC

2uH

L1

GAIN=
0.05

4n C16

G1

G

(a)

R2 2k

0

−
+

+

−

R1

AC=yes
MAG=yes
PHASE=yes

AC=yes
MAG=yes

PHASE=yes

8k
I4

AC=1A

IAC

2uH

L1

GAIN=
0.05

4n C16

G1

G

(b)

R2 2k

0

−
+

+

−

Figure 18.53 For Example 18.16: (a) circuit for determining z11 and z21,
(b) circuit for determining z12 and z22.
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and V2 from the output file. Thus,

z11 = V1

1
= 19.70 175.7◦ �, z21 = V2

1
= 19.79 170.2◦ �

In a similar manner, from Eq. (18.3),

z12 = V1

I2

∣∣∣∣
I1=0

, z22 = V2

I2

∣∣∣∣
I1=0

suggesting that if we let I2 = 1 A and open-circuit the input port,

z12 = V1

1
and z22 = V2

1

This leads to the schematic in Fig. 18.53(b). The only difference between
this schematic and the one in Fig. 18.53(a) is that the 1-A ac current source
IAC is now at the output terminal. We run the schematic in Fig. 18.53(b)
and obtain V1 and V2 from the output file. Thus,

z12 = V1

1
= 19.70 175.7◦ �, z22 = V2

1
= 19.56 175.7◦ �

P R A C T I C E P R O B L E M 1 8 . 1 6

Obtain the z parameters of the circuit in Fig. 18.54 at f = 60 Hz.

10ix

ix

10 mF0.2 H

8 Ω4 Ω

+
−

Figure 18.54 For Practice Prob. 18.16.

Answer: z11 = 3.987 175.5◦, z21 = 0.0175 − 2.65◦,

z12 = 0, z22 = 0.2651 91.9◦ �.

†18.9 APPLICATIONS
We have seen how the six sets of network parameters can be used to
characterize a wide range of two-port networks. Depending on the way
two-ports are interconnected to form a larger network, a particular set of
parameters may have advantages over others, as we noticed in Section
18.7. In this section, we will consider two important application areas of
two-port parameters: transistor circuits and synthesis of ladder networks.

18 . 9 . 1 Tr an s i s to r C i r cu i t s
V2

Zin Zout

Two-port
network

+
−

I1 I2

+

−

V1

Zs

ZLVs

+

−

Figure 18.55 Two-port network isolating
source and load.

The two-port network is often used to isolate a load from the excitation
of a circuit. For example, the two-port in Fig. 18.55 may represent an
amplifier, a filter, or some other network. When the two-port represents
an amplifier, expressions for the voltage gain Av , the current gain Ai , the
input impedance Zin, and the output impedance Zout can be derived with
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ease. They are defined as follows:

Av = V2(s)

V1(s)
(18.62)

Ai = I2(s)

I1(s)
(18.63)

Zin = V1(s)

I1(s)
(18.64)

Zout = V2(s)

I2(s)

∣∣∣∣
Vs=0

(18.65)

Any of the six sets of two-port parameters can be used to derive the
expressions in Eqs. (18.62) to (18.65). Here, we will specifically use the
hybrid parameters to obtain them for transistor amplifiers.

The hybrid (h) parameters are the most useful for transistors; they
are easily measured and are often provided in the manufacturer’s data or
spec sheets for transistors. The h parameters provide a quick estimate of
the performance of transistor circuits. They are used for finding the exact
voltage gain, input impedance, and output impedance of a transistor.

The h parameters for transistors have specific meanings expressed
by their subscripts. They are listed by the first subscript and related to
the general h parameters as follows:

hi = h11, hr = h12, hf = h21, ho = h22 (18.66)

The subscripts i, r , f , and o stand for input, reverse, forward, and output.
The second subscript specifies the type of connection used: e for common
emitter (CE), c for common collector (CC), and b for common base (CB).
Here we are mainly concerned with the common-emitter connection.
Thus, the four h parameters for the common-emitter amplifier are:

hie = Base input impedance

hre = Reverse voltage feedback ratio

hf e = Base-collector current gain

hoe = Output admittance

(18.67)

These are calculated or measured in the same way as the general h pa-
rameters. Typical values are hie = 6 k�, hre = 1.5 × 10−4, hf e = 200,
hoe = 8 µS. We must keep in mind that these values represent ac char-
acteristics of the transistor, measured under specific circumstances.

Figure 18.56 shows the circuit schematic for the common-emitter
amplifier and the equivalent hybrid model. From the figure, we see that

Vb = hieIb + hreVc (18.68a)

Ic = hf eIb + hoeVc (18.68b)

Consider the transistor amplifier connected to an ac source and a
load as in Fig. 18.57. This is an example of a two-port network embedded
within a larger network. We can analyze the hybrid equivalent circuit as
usual with Eq. (18.68) in mind. (See Example 18.6.) Recognizing from
Fig. 18.57 that Vc = −RLIc and substituting this into Eq. (18.68b) gives

Ic = hf eIb − hoeRLIc
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hoe VcVb

Ib Ic CB

E E

(b)

hie

hreVc hfeIb
+
−

+

−

+

−

Vc
Vb

Ib

Ic C

B

E E

(a)

+

−

+

−

Figure 18.56 Common emitter amplifier: (a) circuit schematic, (b) hybrid model.

hoe RL

Rs

Two-port network

VcVs

Zin Zout

Vb

Ib Ichie

hreVc hfeIb
+
−

+

−

+

−

+
−

Figure 18.57 Transistor amplifier with source and load resistance.

or

(1 + hoeRL)Ic = hf eIb (18.69)

From this, we obtain the current gain as

Ai = Ic

Ib

= hf e

1 + hoeRL

(18.70)

From Eqs. (18.68b) and (18.70), we can express Ib in terms of Vc:

Ic = hf e

1 + hoeRL

Ib = hf eIb + hoeVc

or

Ib = hoeVc

hf e

1 + hoeRL

− hf e

(18.71)

Substituting Eq. (18.71) into Eq. (18.68a) and dividing by Vc gives

Vb

Vc

= hoehie

hf e

1 + hoeRL

− hf e

+ hre

= hie + hiehoeRL − hrehf eRL

−hf eRL

(18.72)

Thus, the voltage gain is

Av = Vc

Vb

= −hf eRL

hie + (hiehoe − hrehf e)RL

(18.73)
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Substituting Vc = −RLIc into Eq. (18.68a) gives

Vb = hieIb − hreRLIc

or
Vb

Ib

= hie − hreRL

Ic

Ib

(18.74)

Replacing Ic/Ib by the current gain in Eq. (18.70) yields the input impe-
dance as

Zin = Vb

Ib

= hie − hrehf eRL

1 + hoeRL

(18.75)

The output impedance Zout is the same as the Thevenin equivalent at the
output terminals. As usual, by removing the voltage source and placing
a 1-V source at the output terminals, we obtain the circuit in Fig. 18.58,
from which Zout is determined as 1/Ic. Since Vc = 1 V, the input loop
gives

hre(1) = −Ib(Rs + hie) �⇒ Ib = − hre

Rs + hie

(18.76)

For the output loop,

Ic = hoe(1) + hf eIb (18.77)

Substituting Eq. (18.76) into Eq. (18.77) gives

Ic = (Rs + hie)hoe − hrehf e

Rs + hie

(18.78)

From this, we obtain the output impedance Zout as 1/Ic; that is,

Zout = Rs + hie

(Rs + hie)hoe − hrehf e

(18.79)

hreVc Vc
hfeIb hoe 1 V

Ib

IcRs hie

+
−

+

−

+
−

Figure 18.58 Finding the output impedance of the amplifier
circuit in Fig. 18.57.

E X A M P L E 1 8 . 1 7

Consider the common-emitter amplifier circuit of Fig. 18.59. (a) Deter-
mine the voltage gain, current gain, input impedance, and output impe-
dance using these h parameters:

hie = 1 k�, hre = 2.5 × 10−4, hf e = 50, hoe = 20 µS

(b) Find the output voltage Vo.
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Vo1.2 kΩ3.2   0° mV

+

−

0.8 kΩ

+
−

Figure 18.59 For Example 18.17.

Solution:

(a) We note that Rs = 0.8 k� and RL = 1.2 k�. We treat the transistor
of Fig. 18.59 as a two-port network and apply Eqs. (18.70) to (18.79).

hiehoe − hrehf e = 103 × 20 × 10−6 − 2.5 × 10−4 × 50

= 7.5 × 10−3

Av = −hf eRL

hie + (hiehoe − hrehf e)RL

= −50 × 1200

1000 + 7.5 × 10−3 × 1200

= −59.46

Ai = hf e

1 + hoeRL

= 50

1 + 20 × 10−6 × 1200
= 48.83

Zin = hie − hreAiRL = 1000 − 2.5 × 10−4 × 48.83 × 1200 = 985.4 �

(Rs + hie)hoe − hrehf e

= (800 + 1000) × 20 × 10−6 − 2.5 × 10−4 × 50 = 23.5 × 10−3

Zout = Rs + hie

(Rs + hie)hoe − hrehf e

= 800 + 1000

23.5 × 10−3
= 76.6 k�

(b) The output voltage is

Vo = AvVs = −59.46(3.2 0◦) mV = 0.19 180◦ V

P R A C T I C E P R O B L E M 1 8 . 1 7

For the transistor amplifier of Fig. 18.60, find the voltage gain, current
gain, input impedance, and output impedance. Assume that

hie = 6 k�, hre = 1.5 × 10−4, hf e = 200, hoe = 8 µS
3.75 kΩ

150 kΩ

+
−2   0° mV

Figure 18.60 For Practice Prob. 18.17.

Answer: −123.61, 194.17, 6 k�, 128.08 k�.

18 . 9 . 2 L adde r Ne twork Syn the s i s
Another application of two-port parameters is the synthesis (or building)
of ladder networks which are found frequently in practice and have par-
ticular use in designing passive lowpass filters. Based on our discussion
of second-order circuits in Chapter 8, the order of the filter is the order
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of the characteristic equation describing the filter and is determined by
the number of reactive elements that cannot be combined into single el-
ements (e.g., through series or parallel combination). Figure 18.61(a)
shows an LC ladder network with an odd number of elements (to realize
an odd-order filter), while Fig. 18.61(b) shows one with an even number
of elements (for realizing an even-order filter). When either network is
terminated by the load impedance ZL and the source impedance Zs , we
obtain the structure in Fig. 18.62. To make the design less complicated,
we will assume that Zs = 0. Our goal is to synthesize the transfer func-
tion of the LC ladder network. We begin by characterizing the ladder
network by its admittance parameters, namely,

I1 = y11V1 + y12V2 (18.80a)

I2 = y21V1 + y22V2 (18.80b)

(Of course, the impedance parameters could be used instead of the ad-
mittance parameters.) At the input port, V1 = Vs since Zs = 0. At the
output port, V2 = Vo and I2 = −V2/ZL = −VoYL. Thus Eq. (18.80b)
becomes

−VoYL = y21Vs + y22Vo

or

H(s) = Vo

Vs

= −y21

YL + y22
(18.81)

We can write this as

H(s) = − y21/YL

1 + y22/YL

(18.82)

C4

(a)

C2

L1 L3 Ln

C4

(b)

C2

L1 L3 Ln – 1

Cn

Figure 18.61 LC ladder networks for
lowpass filters of: (a) odd order, (b) even
order.

We may ignore the negative sign in Eq. (18.82) because filter requirements
are often stated in terms of the magnitude of the transfer function. The
main objective in filter design is to select capacitors and inductors so that
the parameters y21 and y22 are synthesized, thereby realizing the desired
transfer function. To achieve this, we take advantage of an important
property of the LC ladder network: all z and y parameters are ratios of
polynomials that contain only even powers of s or odd powers of s—that
is, they are ratios of either Od(s)/Ev(s) or Ev(s)/Od(s), where Od and Ev
are odd and even functions, respectively. Let

H(s) = N(s)

D(s)
= No + Ne

Do + De

(18.83)

where N(s) and D(s) are the numerator and denominator of the transfer

V2

LC ladder
network

y11  y12
y21  y22

+
−

I1 I2

V1

Zs

ZL VoVs

+ + +

− − −

Figure 18.62 LC ladder network with terminating impedances.
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function H(s); No and Ne are the odd and even parts of N; Do and De are
the odd and even parts of D. Since N(s) must be either odd or even, we
can write Eq. (18.83) as

H(s) =




No

Do + De

, (Ne = 0)

Ne

Do + De

, (No = 0)

(18.84)

and can rewrite this as

H(s) =




No/De

1 + Do/De

, (Ne = 0)

Ne/Do

1 + De/Do

, (No = 0)

(18.85)

Comparing this with Eq. (18.82), we obtain the y parameters of the net-
work as

y21

YL

=




No

De

, (Ne = 0)

Ne

Do

, (No = 0)

(18.86)

and

y22

YL

=




Do

De

, (Ne = 0)

De

Do

, (No = 0)

(18.87)

The following example illustrates the procedure.

E X A M P L E 1 8 . 1 8

Design the LC ladder network terminated with a 1-� resistor that has the
normalized transfer function

H(s) = 1

s3 + 2s2 + 2s + 1
(This transfer function is for a Butterworth lowpass filter.)

Solution:

The denominator shows that this is a third-order network, so that the
LC ladder network is shown in Fig. 18.63(a), with two inductors and
one capacitor. Our goal is to determine the values of the inductors and
capacitor. To achieve this, we group the terms in the denominator into
odd or even parts:

D(s) = (s3 + 2s) + (2s2 + 1)

so that

H(s) = 1

(s3 + 2s) + (2s2 + 1)

Divide the numerator and denominator by the odd part of the denominator
to get

H(s) =
1

s3 + 2s

1 + 2s2 + 1

s3 + 2s

(18.18.1)
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From Eq. (18.82), when YL = 1,

H(s) = −y21

1 + y22
(18.18.2)

Comparing Eqs. (18.18.1) and (18.18.2), we obtain

y21 = − 1

s3 + 2s
, y22 = 2s2 + 1

s3 + 2s

Any realization of y22 will automatically realize y21, since y22 is the output
driving-point admittance, that is, the output admittance of the network
with the input port short-circuited. We determine the values of L and C

in Fig. 18.63(a) that will give us y22. Recall that y22 is the short-circuit
output admittance. So we short-circuit the input port as shown in Fig.
18.63(b). First we get L3 by letting

ZA = 1

y22
= s3 + 2s

2s2 + 1
= sL3 + ZB (18.18.3)

By long division,

ZA = 0.5s + 1.5s

2s2 + 1
(18.18.4)

Comparing Eqs. (18.18.3) and (18.18.4) shows that

L3 = 0.5 H, ZB = 1.5s

2s2 + 1

Next, we seek to get C2 as in Fig. 18.63(c) and let

YB = 1

ZB

= 2s2 + 1

1.5s
= 1.333s + 1

1.5s
= sC2 + YC

from which C2 = 1.33 F and

YC = 1

1.5s
= 1

sL1
�⇒ L1 = 1.5 H

Thus, the LC ladder network in Fig. 18.63(a) with L1 = 1.5 H, C2 =
1.333 F, and L3 = 0.5 H has been synthesized to provide the given transfer
function H(s). This result can be confirmed by finding H(s) = V2/V1

in Fig. 18.63(a) or by confirming the required y21.

V2 1 ΩC2

(a)

L1 L3

+

−

V1

+

−

C2

(b)

L1 L3

ZB

y22 = 

C2

(c)

L1 L3

YC

1
ZA

YB = 1
ZB

Figure 18.63 For Example 18.18.

P R A C T I C E P R O B L E M 1 8 . 1 8

Realize the following transfer function using an LC ladder network ter-
minated in a 1-� resistor:

H(s) = 2

s3 + s2 + 4s + 2
Answer: Ladder network in Fig. 18.63(a) with L1 = L3 = 1.0 H and
C2 = 0.5 F.

18.10 SUMMARY
1. A two-port network is one with two ports (or two pairs of access

terminals), known as input and output ports.
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2. The six parameters used to model a two-port network are the imped-
ance [z], admittance [y], hybrid [h], inverse hybrid [g], transmission
[T], and inverse transmission [t] parameters.

3. The parameters relate the input and output port variables as[
V1

V2

]
= [z]

[
I1

I2

]
,

[
I1

I2

]
= [y]

[
V1

V2

]
,

[
V1

I2

]
= [h]

[
I1

V2

]
[

I1

V2

]
= [g]

[
V1

I2

]
,

[
V1

I1

]
= [T]

[
V2

−I2

]
,

[
V2

I2

]
= [t]

[
V1

−I1

]

4. The parameters can be calculated or measured by short-circuiting or
open-circuiting the appropriate input or output port.

5. A two-port network is reciprocal if z12 = z21, y12 = y21, h12 = −h21,
g12 = −g21, �T = 1 or �t = 1. Networks that have dependent
sources are not reciprocal.

6. Table 18.1 provides the relationships between the six sets of param-
eters. Three important relationships are

[y] = [z]−1, [g] = [h]−1, [t] �= [T]−1

7. Two-port networks may be connected in series, in parallel, or in cas-
cade. In the series connection the z parameters are added, in the
parallel connection the y parameters are added, and in the cascade
connection the transmission parameters are multiplied in the correct
order.

8. One can use PSpice to compute the two-port parameters by con-
straining the appropriate port variables with a 1-A or 1-V source
while using an open or short circuit to impose the other necessary
constraints.

9. The network parameters are specifically applied in the analysis of
transistor circuits and the synthesis of ladder LC networks. Network
parameters are especially useful in the analysis of transistor circuits
because these circuits are easily modeled as two-port networks. LC

ladder networks, important in the design of passive lowpass filters,
resemble cascaded T networks and are therefore best analyzed as
two-ports.

R E V I EW QU E S T I ON S

18.1 For the single-element two-port network in Fig.
18.64(a), z11 is:
(a) 0 (b) 5 (c) 10
(d) 20 (e) nonexistent 10 Ω

(a)

10 Ω

(b)

Figure 18.64 For Review Questions.
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18.2 For the single-element two-port network in Fig.
18.64(b), z11 is:
(a) 0 (b) 5 (c) 10
(d) 20 (e) nonexistent

18.3 For the single-element two-port network in Fig.
18.64(a), y11 is:
(a) 0 (b) 5 (c) 10
(d) 20 (e) nonexistent

18.4 For the single-element two-port network in Fig.
18.64(b), h21 is:
(a) −0.1 (b) −1 (c) 0
(d) 10 (e) nonexistent

18.5 For the single-element two-port network in Fig.
18.64(a), B is:
(a) 0 (b) 5 (c) 10
(d) 20 (e) nonexistent

18.6 For the single-element two-port network in Fig.
18.64(b), B is:
(a) 0 (b) 5 (c) 10
(d) 20 (e) nonexistent

18.7 When port 1 of a two-port circuit is short-circuited,
I1 = 4I2 and V2 = 0.25I2. Which of the following
is true?
(a) y11 = 4 (b) y12 = 16
(c) y21 = 16 (d) y22 = 0.25

18.8 A two-port is described by the following equations:

V1 = 50I1 + 10I2

V2 = 30I1 + 20I2

Which of the following is not true?
(a) z12 = 10 (b) y12 = −0.0143
(c) h12 = 0.5 (d) B = 50

18.9 If a two-port is reciprocal, which of the following is
not true?
(a) z21 = z12 (b) y21 = y12

(c) h21 = h12 (d) AD = BC + 1

18.10 If the two single-element two-port networks in Fig.
18.64 are cascaded, then D is:
(a) 0 (b) 0.1 (c) 2
(d) 10 (e) nonexistent

Answers: 18.1c, 18.2e, 18.3e, 18.4b, 18.5a, 18.6c, 18.7b, 18.8d,
18.9c, 18.10c.

P RO B L E M S
Section 18.2 Impedance Parameters

18.1 Obtain the z parameters for the network in Fig.
18.65.

2 Ω

4 Ω1 Ω

6 Ω

Figure 18.65 For Probs. 18.1 and 18.22.

18.2∗ Find the impedance parameter equivalent of the
network in Fig. 18.66.

1 Ω

1 Ω 1 Ω 1 Ω1 Ω

1 Ω 1 Ω 1 Ω1 Ω

1 Ω 1 Ω

Figure 18.66 For Prob. 18.2.

18.3 Determine the z parameters of the two-ports shown
in Fig. 18.67.

1 Ωj1 Ω

–j1 Ω

(a)

1 Ω

j1 Ω

1 Ω

–j1 Ω

–j1 Ω

(b)

Figure 18.67 For Prob. 18.3.

∗An asterisk indicates a challenging problem.
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18.4 Calculate the z parameters for the circuit in Fig.
18.68.

–j5 Ω12 Ω

j10 Ω

Figure 18.68 For Prob. 18.4.

18.5 Obtain the z parameters for the network in Fig.
18.69 as functions of s.

1 F1 F

1 Ω 1 H

1 Ω

Figure 18.69 For Prob. 18.5.

18.6 Obtain the z parameters for the circuit in Fig. 18.70.

0.5V2 V2V1

20 Ω10 Ω

30 Ω

+

−

+

−

Figure 18.70 For Prob. 18.6.

18.7 Find the impedance-parameter equivalent of the
circuit in Fig. 18.71.

Vx

4 Ω1 Ω

2 Ω

1 Ω
2Vx

–
+

+

−

Figure 18.71 For Prob. 18.7.

18.8 Construct a circuit that realizes the following z
parameters

[z] =
[

10 4
4 6

]

18.9 Construct a two-port that realizes each of the
following z parameters.

(a) [z] =
[

25 20
5 10

]
�

(b) [z] =




1 + 3

s

1

s

1

s
2s + 1

s


�

18.10 For a two-port network,

[z] =
[

12 4

4 6

]
�

find V2/V1 if the network is terminated with a 2-�
resistor.

18.11 If [z] =
[

50

30

10

20

]
� in the two-port of Fig. 18.72,

calculate the average power delivered to the 100-�
resistor.

Two-port
network

40 Ω

100 Ω+
−120   0° V rms

Figure 18.72 For Prob. 18.11.

18.12 For the two-port network shown in Fig. 18.73, show
that

ZTh = z22 − z12z21

z11 + Zs

and

VTh = z21

z11 + Zs

Vs

V2
Two-port
network

+
−

I1 I2

+

−

V1

Zs

ZLVs

+

−

Figure 18.73 For Probs. 18.12 and 18.33.

18.13 For the circuit in Fig. 18.74, at ω = 2 rad/s,
z11 = 10 �, z12 = z21 = j6 �, z22 = 4 �. Obtain
the Thevenin equivalent circuit at terminals a-b and
calculate vo.

[z]

5 Ω

2 H

a

b

vo+
−15 cos 2t V

+

−

Figure 18.74 For Prob. 18.13.
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Section 18.3 Admittance Parameters

18.14∗ Determine the z and y parameters for the circuit in
Fig. 18.75.

4 Ω

6 Ω

2 Ω

8 Ω

Figure 18.75 For Prob. 18.14.

18.15 Calculate the y parameters for the two-port in Fig.
18.76.

3 Ω

3 Ω6 Ω

6 Ω

Figure 18.76 For Probs. 18.15 and 18.30.

18.16 Find the y parameters of the two-port in Fig. 18.77
in terms of s.

1 H

1 Ω

1 Ω

1 F

Figure 18.77 For Prob. 18.16.

18.17 Obtain the admittance parameter equivalent circuit
of the two-port in Fig. 18.78.

10 Ω V2V1

0.2V1

5 Ω

+

−

+

−

Figure 18.78 For Prob. 18.17.

18.18 Determine the y parameters for the two-ports in Fig.
18.79.

0.5VxVx 1 Ω

3 Ω2 Ω

(a)

+

−

–j1 Ω

j1 Ω

1 Ω1 Ω

(b)

Figure 18.79 For Prob. 18.18.

18.19 Find the resistive circuit that represents these y
parameters:

[y] =




1

2
−1

4

−1

4

3

8




18.20 Calculate [y] for the two-port in Fig. 18.80.

Vx 1 Ω

2Vx
2 Ω

4 Ω

+

−

Figure 18.80 For Prob. 18.20.

18.21 Find the y parameters for the circuit in Fig. 18.81.

V1

I1 I2

+

−

+

−

V210 Ω

4 Ω

0.1V2 20I1+
−

Figure 18.81 For Prob. 18.21.

18.22 In the circuit of Fig. 18.65, the input port is
connected to a 1-A dc current source. Calculate the
power dissipated by the 2-� resistor by using the y
parameters. Confirm your result by direct circuit
analysis.
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18.23 In the bridge circuit of Fig. 18.82, I1 = 10 A and
I2 = −4 A.
(a) Find V1 and V2 using y parameters.
(b) Confirm the results in part (a) by direct circuit

analysis.

I1 V21 Ω

3 Ω

3 Ω

3 Ω

+

−

V1

+

−

I2

Figure 18.82 For Prob. 18.23.

Section 18.4 Hybrid Parameters

18.24 Find the h parameters for the networks in Fig. 18.83.

60 Ω

40 Ω

(a)

20 Ω

(b)

10 Ω

Figure 18.83 For Prob. 18.24.

18.25 Determine the hybrid parameters for the network in
Fig. 18.84.

V1

I1 I2

+

−

+

−

V2

1 Ω

2 Ω 4I1

2 Ω 1 Ω

Figure 18.84 For Prob. 18.25.

18.26 Find the h and g parameters of the two-port network
in Fig. 18.85 as functions of s.

1 Ω 1 H 1 H

1 F

Figure 18.85 For Prob. 18.26.

18.27 Obtain the h and g parameters of the two-port in
Fig. 18.86.

10 Ω

100 ΩVx 10Vx
+
−

50 Ω

300 Ω

+

−

Figure 18.86 For Prob. 18.27.

18.28 Determine the h parameters for the network in Fig.
18.87.

1:2
1 Ω 4 Ω

Figure 18.87 For Prob. 18.28.

18.29 For the two-port in Fig. 18.88,

[h] =
[

16 � 3

−2 0.01 S

]

Find:
(a) V2/V1 (b) I2/I1

(c) I1/V1 (d) V2/I1

I1 I2

+

−

V2

+

−

V1

4 Ω

25 Ω[h]+
−10 V

Figure 18.88 For Prob. 18.29.

18.30 The input port of the circuit in Fig. 18.76 is
connected to a 10-V dc voltage source while the
output port is terminated by a 5-� resistor. Find the
voltage across the 5-� resistor by using h
parameters of the circuit. Confirm your result by
using direct circuit analysis.
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18.31 For the circuit in Fig. 18.89, h11 = 800 �,
h12 = 10−4, h21 = 50, h22 = 0.5 × 10−5 S. Find the
input impedance Zin.

200 Ω

50 kΩ[h]+
−Vs

Zin

Figure 18.89 For Prob. 18.31.

18.32 Find the g parameters for the circuit in Fig. 18.90.

–j6 Ω j10 Ω

12 Ω

Figure 18.90 For Prob. 18.32.

18.33 For the two-port in Fig. 18.73, show that

I2

I1
= −g21

g11ZL + �g

V2

Vs

= g21ZL

(1 + g11Zs )(g22 + ZL) − g21g12Zs

where �g is the determinant of [g] matrix.

18.34 Find the network which realizes each of the
following g parameters:

(a)

[
0.01 −0.5

0.5 20

]
(b)

[
0.1 0

12 s + 2

]

Section 18.5 Transmission Parameters

18.35 Find the transmission parameters for the
single-element two-port networks in Fig. 18.91.

Y

(b)

Z

(a)

Figure 18.91 For Prob. 18.35.

18.36 Determine the transmission parameters of the circuit
in Fig. 18.92.

–j10 Ω

j15 Ω

–j20 Ω

20 Ω

Figure 18.92 For Prob. 18.36.

18.37 Find the transmission parameters for the circuit in
Fig. 18.93.

1 Ω

2 Ω 4Ix

Ix

1 Ω

Figure 18.93 For Prob. 18.37.

18.38 For a two-port, let A = 4, B = 30 �, C = 0.1 S,
and D = 1.5. Calculate the input impedance
Zin = V1/I1, when:
(a) the output terminals are short-circuited,
(b) the output port is open-circuited,
(c) the output port is terminated by a 10-� load.

18.39 Using impedances in the s domain, obtain the
transmission parameters for the circuit in Fig. 18.94.

1 F

1 F

1 Ω 1 Ω1 F

Figure 18.94 For Prob. 18.39.

18.40 Find the t parameters of the network in Fig. 18.95 as
functions of s.

1 H

1 Ω

1 F

Figure 18.95 For Prob. 18.40.
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18.41 Obtain the t parameters for the network in Fig.
18.96.

j1 Ω
–j3 Ω

j1 Ωj2 Ω

1 Ω

Figure 18.96 For Prob. 18.41.

Section 18.6 Relationships between Parameters
18.42 (a) For the T network in Fig. 18.97, show that the h

parameters are:

h11 = R1 + R2R3

R1 + R3
, h12 = R2

R2 + R3

h21 = − R2

R2 + R3
, h22 = 1

R2 + R3

(b) For the same network, show that the
transmission parameters are:

A = 1 + R1

R2
, B = R3 + R1

R2
(R2 + R3)

C = 1

R2
, D = 1 + R3

R2

R2

R1 R3

Figure 18.97 For Prob. 18.42.

18.43 Through derivation, express the z parameters in
terms of the ABCD parameters.

18.44 Show that the transmission parameters of a two-port
may be obtained from the y parameters as:

A = −y22

y21
, B = − 1

y21

C = −�y

y21
, D = −y11

y21

18.45 Prove that the g parameters can be obtained from the
z parameters as

g11 = 1

z11
, g12 = − z12

z11

g21 = z21

z11
, g22 = �z

z11

18.46 Given the transmission parameters

[T] =
[

3 20
1 7

]

obtain the other five two-port parameters.

18.47 A two-port is described by

V1 = I1 + 2V2, I2 = −2I1 + 0.4V2

Find: (a) the y parameters, (b) the transmission
parameters.

18.48 Given that

[g] =
[

0.06 S −0.4
0.2 2 �

]

determine:
(a) [z] (b) [y] (c) [h] (d) [T]

18.49 Let [y] =
[

0.6

−0.1

−0.2

0.5

]
(S). Find:

(a) [z] (b) [h] (c) [t]

18.50 For the bridge circuit in Fig. 18.98, obtain:
(a) the z parameters
(b) the h parameters
(c) the transmission parameters

1 Ω

1 Ω1 Ω

1 Ω

Figure 18.98 For Prob. 18.50.

18.51 Find the z parameters of the op amp circuit in Fig.
18.99. Obtain the transmission parameters.

V1

I1 I2

+

−

+

−

V2

10 kΩ

30 kΩ

40 kΩ

50 kΩ

20 kΩ

+
−

Figure 18.99 For Prob. 18.51.
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18.52 Determine the y parameters at ω = 1,000 rad/s for
the op amp circuit in Fig. 18.100. Find the
corresponding h parameters.

V1

I1 I2

+

−

+

−
V2

20 kΩ

1 mF

10 kΩ

+
−

40 kΩ

Figure 18.100 For Prob. 18.52.

Section 18.7 Interconnection of Networks

18.53 What is the y parameter presentation of the circuit in
Fig. 18.101?

V1

I1 I2

+

−

+

−

V2

2 Ω

1 Ω
1 Ω

2 Ω

Figure 18.101 For Prob. 18.53.

18.54 In the two-port of Fig. 18.102, let y12 = y21 = 0,
y11 = 2 mS, and y22 = 10 mS. Find Vo/Vs .

100 Ω

+

−

Vo

60 Ω

300 Ω

[y]

+
−Vs

Figure 18.102 For Prob. 18.54.

18.55 Figure 18.103 shows two two-ports in series. Find
the transmission parameters.

1 Ω

1 Ω

1 Ω 1 Ω

Figure 18.103 For Prob. 18.55.

18.56 Obtain the h parameters for the network in Fig.
18.104.

2 Ω 2 Ω

1 Ω
1 Ω 1 Ω

2 Ω

Figure 18.104 For Prob. 18.56.

18.57 Determine the y parameters of the two two-ports in
parallel shown in Fig. 18.105.

–j10 Ω

j10 Ω –j5 Ω

j20 Ω30 Ω

20 Ω

Figure 18.105 For Prob. 18.57.

18.58∗ The circuit in Fig. 18.106 may be regarded as two
two-ports connected in parallel. Obtain the y
parameters as functions of s.

2:1

1 H

1 F2 Ω

2 Ω

Figure 18.106 For Prob. 18.58.
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18.59∗ For the parallel-series connection of the two
two-ports in Fig. 18.107, find the g parameters.

−

+
V1

−

+

V2

I1

I2

z11 = 25 Ω
z12 = 20 Ω
z21 = 5 Ω
z22 = 10 Ω

z11 = 50 Ω
z12 = 25 Ω
z21 = 25 Ω
z22 = 30 Ω

Figure 18.107 For Prob. 18.59.

18.60∗ A series-parallel connection of two two-ports is
shown in Fig. 18.108. Determine the z parameter
representation of the network.

−

+
V2

−

+

V1

I1

I2

h11 = 25 Ω
h12 = 4
h21 = –4
h22 = 1 S

h11 = 16 Ω
h12 = 1
h21 = –1
h22 = 0.5 S

Figure 18.108 For Prob. 18.60.

18.61 Find the transmission parameters for the cascaded
two-ports shown in Fig. 18.109. Obtain Zin = V1/I1

when the output is short-circuited.

1 Ω

1 Ω1 Ω 1 Ω

1 Ω

1 Ω

Figure 18.109 For Prob. 18.61.

18.62∗ Determine the ABCD parameters of the circuit in
Fig. 18.110 as functions of s.
(Hint: Partition the circuit into subcircuits and
cascade them using the results of Prob. 18.35.)

1 Ω1 F1 Ω

1 H

1 F

1 H

Figure 18.110 For Prob. 18.62.

Section 18.8 Computing Two-Port Parameters
Using PSpice

18.63 Use PSpice to compute the y parameters for the
circuit in Fig. 18.111.

30 Ω 50 Ω10 Ω

40 Ω20 Ω

Figure 18.111 For Prob. 18.63.

18.64 Using PSpice, find the h parameters of the network
in Fig. 18.112. Take ω = 1 rad/s.

1 Ω

2 Ω

1 F

1 H

Figure 18.112 For Prob. 18.64.

18.65 Use PSpice to determine the z parameters of the
circuit in Fig. 18.113. Take ω = 2 rad/s.

1 Ω

2 H

2 Ω 0.25 F

4 Ω

Figure 18.113 For Prob. 18.65.

18.66 Rework Prob. 18.7 using PSpice.

18.67 Repeat Prob. 18.20 using PSpice.

18.68 Use PSpice to rework Prob. 18.25.

18.69 Using PSpice, find the transmission parameters for
the network in Fig. 18.114.

1 Ω

2 Ω
2

Vo

Vo2 Ω

1 Ω 1 Ω

+ −

Figure 18.114 For Prob. 18.69.
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18.70 At ω = 1 rad/s, find the transmission parameters of
the network in Fig. 18.115 using PSpice.

1 Ω

1 H

1 F1 F1 H

1 Ω

Figure 18.115 For Prob. 18.70.

18.71 Obtain the g parameters for the network in Fig.
18.116 using PSpice.

ix

1 Ω 2 A 5ix

3 Ω2 Ω

Figure 18.116 For Prob. 18.71.

18.72 For the circuit shown in Fig. 18.117, use PSpice to
obtain the t parameters. Assume ω = 1 rad/s.

1 Ω1 Ω

j2 Ω

–j2 Ω –j2 Ω

1 Ω

Figure 18.117 For Prob. 18.72.

Section 18.9 Applications

18.73 Using the y parameters, derive formulas for Zin,
Zout, Ai , and Av for the common-emitter transistor
circuit.

18.74 A transistor has the following parameters in a
common-emitter circuit:

hie = 2640 �, hre = 2.6 × 10−4

hf e = 72, hoe = 16 µS, RL = 100 k�

What is the voltage amplification of the transistor?
How many decibels gain is this?

18.75 A transistor with

hf e = 120, hie = 2 k�

hre = 10−4, hoe = 20 µS

is used for a CE amplifier to provide an input
resistance of 1.5 k�.

(a) Determine the necessary load resistance RL.

(b) Calculate Av , Ai , and Zout if the amplifier is
driven by a 4 mV source having an internal
resistance of 600 �.

(c) Find the voltage across the load.

18.76 For the transistor network of Fig. 18.118,

hf e = 80, hie = 1.2 k�

hre = 1.5 × 10−4, hoe = 20 µS

Determine the following:
(a) voltage gain Av = Vo/Vs ,
(b) current gain Ai = Io/Ii ,
(c) input impedance Zin,
(d) output impedance Zout.

Vo

Vs

Io

Ii

2.4 kΩ
2 kΩ

+
−

+

−

Figure 18.118 For Prob. 18.76.

18.77∗ Determine Av , Ai , Zin, and Zout for the amplifier
shown in Fig. 18.119. Assume that

hie = 4 k�, hre = 10−4

hf e = 100, hoe = 30 µS

Vs

4 kΩ

240 Ω

1.2 kΩ

+
−

Figure 18.119 For Prob. 18.77.

18.78∗ Calculate Av , Ai , Zin, and Zout for the transistor
network in Fig. 18.120. Assume that

hie = 2 k�, hre = 2.5 × 10−4

hf e = 150, hoe = 10 µS

Vs

3.8 kΩ

0.2 kΩ

1 kΩ

+
−

Figure 18.120 For Prob. 18.78.
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18.79 A transistor in its common-emitter mode is specified
by

[h] =
[

200 � 0
100 10−6 S

]
Two such identical transistors are connected in
cascade to form a two-stage amplifier used at audio
frequencies. If the amplifier is terminated by a 4-k�
resistor, calculate the overall Av and Zin.

18.80 Realize an LC ladder network such that

y22 = s3 + 5s

s4 + 10s2 + 8
18.81 Design an LC ladder network to realize a lowpass

filter with transfer function

H(s) = 1

s4 + 2.613s2 + 3.414s2 + 2.613s + 1

18.82 Synthesize the transfer function

H(s) = Vo

Vs

= s3

s3 + 6s + 12s + 24

using the LC ladder network in Fig. 18.121.

Vo 1 ΩL2

C3C1

+

−

Vs

+

−

Figure 18.121 For Prob. 18.82.

COM P R E H EN S I V E P RO B L E M S

18.83 Assume that the two circuits in Fig. 18.122 are
equivalent. The parameters of the two circuits must
be equal. Using this factor and the z parameters,
derive Eqs. (9.67) and (9.68).

(a)

n
a

b

c
Z2

Z3

Z1

d

(b)

a

b

c
Zb

Zc Za

d

Figure 18.122 For Prob. 18.83.
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Appendix A
Solution of Simultaneous Equations Using Cramer’s Rule

In circuit analysis, we often encounter a set of simultaneous equations
having the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

an1x1 + an2x2 + · · · + annxn = bn

(A.1)

where there aren unknownx1, x2, . . . , xn to be determined. Equation
(A.1) can be written in matrix form as



a11

a21
...

an1

a12

a22
...

an2

. . .

. . .

. . .

. . .

a1n

a2n
...

ann





x1

x2
...

xn


 =



b2

b2
...

bn


 (A.2)

This matrix equation can be put in a compact form as

AX = B (A.3)

where

A =



a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...

an1 an2 · · · ann


 , X =



x1

x2
...
xn


 , B =



b1

b2
...
bn


 (A.4)

A is a square (n× n) matrix whileX andB are column matrices.
There are several methods for solving Eq. (A.1) or (A.3). These

include substitution, Gaussian elimination, Cramer’s rule, and numerical
analysis. In many cases, Cramer’s rule can be used to solve the simul-
taneous equations we encounter in circuit analysis. Cramer’s rule states
that the solution to Eq. (A.1) or (A.3) is

x1 = �1

�

x2 = �2

�
...

xn = �n

�

(A.5)
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where the�’s are the determinants given by

� =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
, �1 =

∣∣∣∣∣∣∣∣∣

b1 a12 · · · a1n

b2 a22 · · · a2n
...

... · · · ...

bn an2 · · · ann

∣∣∣∣∣∣∣∣∣
...

...

�2 =

∣∣∣∣∣∣∣∣∣

a11 b1 · · · a1n

a21 b2 · · · a2n
...

... · · · ...

an1 bn · · · ann

∣∣∣∣∣∣∣∣∣
, . . . , �n =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · b1

a21 a22 · · · b2
...

... · · · ...

an1 an2 · · · bn

∣∣∣∣∣∣∣∣∣

(A.6)

Notice that� is the determinant of matrixA and�k is the determinant
of the matrix formed by replacing thekth column ofA by B. It is evident
from Eq. (A.5) that Cramer’s rule applies only when� �= 0. When
� = 0, the set of equations has no unique solution, because the equations
are linearly dependent.

The value of the determinant�, for example, can be obtained by
expanding along the first row:

� =

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
... · · · ...

an1 an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣∣∣
= a11M11 − a12M12 + a13M13 + · · · + (−1)1+na1nM1n

(A.7)

where the minorMij is an(n − 1) × (n − 1) determinant of the matrix
formed by striking out theith row andj th column. The value of� may
also be obtained by expanding along the first column:

� = a11M11 − a21M21 + a31M31 + · · · + (−1)n+1an1Mn1 (A.8)

We now specifically develop the formulas for calculating the deter-
minants of 2×2 and 3×3 matrices, because of their frequent occurrence
in this text. For a 2× 2 matrix,

� =
∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21 (A.9)

For a 3× 3 matrix,

� =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ = a11(−1)2
∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣+ a21(−1)3
∣∣∣∣∣a12 a13

a32 a33

∣∣∣∣∣
+ a31(−1)4

∣∣∣∣∣a12 a13

a22 a23

∣∣∣∣∣
= a11(a22a33 − a32a23)− a21(a12a33 − a32a13)

+ a31(a12a23 − a22a13)

(A.10)
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An alternative method of obtaining the determinant of a 3× 3 matrix is
by repeating the first two rows and multiplying the terms diagonally as
follows.

= a11a22a33 + a21a32a13 + a31a12a23 − a13a22a31 − a23a32a11 − a33a12a21

−
−
− +

+
+

a11 a12 a13

a23

a33

a13

a23

a22

a32

a12

a22

a21

a31

a11

a21

=�

(A.11)

In summary:

The solution of linear simultaneous equations by Cramer’s rule boils down to finding

xk = �k

�
, k = 1, 2, . . . , n (A.12)

where � is the determinant of matrix A and �k is the determinant of the matrix
formed by replacing the kth column of A by B.

You may not find much need to use Cramer’s method described in
this appendix, in view of the availability of calculators, computers, and
software packages such as Matlab, which can be used easily to solve a
set of linear equations. But in case you need to solve the equations by
hand, the material covered in this appendix becomes useful. At any rate,
it is important to know the mathematical basis of those calculators and
software packages.

One may use other methods, such as matrix in-
version and elimination. Only Cramer’s method
is covered here, because of its simplicity and also
because of the availability of powerful calculators.

E X A M P L E A . 1

Solve the simultaneous equations

4x1 − 3x2 = 17, −3x1 + 5x2 = −21

Solution:

The given set of equations is cast in matrix form as

[
4 −3

−3 5

] [
x1

x2

]
=
[

17
−21

]
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The determinants are evaluated as

� =
∣∣∣∣ 4 −3
−3 5

∣∣∣∣ = 4 × 5 − (−3)(−3) = 11

�1 =
∣∣∣∣ 17 −3
−21 5

∣∣∣∣ = 17 × 5 − (−3)(−21) = 22

�2 =
∣∣∣∣ 4 17
−3 −21

∣∣∣∣ = 4 × (−21)− 17 × (−3) = −33

Hence,

x1 = �1

�
= 22

11
= 2, x2 = �2

�
= −33

11
= −3

P R A C T I C E P R O B L E M A . 1

Find the solution to the following simultaneous equations:

3x1 − x2 = 4, −6x1 + 18x2 = 16

Answer: x1 = 1.833, x2 = 1.5.

E X A M P L E A . 2

Determine x1, x2, and x3 for this set of simultaneous equations:

25x1 − 5x2 − 20x3 = 50

−5x1 + 10x2 − 4x3 = 0

−5x1 − 4x2 + 9x3 = 0

Solution:

In matrix form, the given set of equations becomes
 25 −5 −20

−5 10 −4
−5 −4 9




x1

x2

x3


 =


50

0
0




We apply Eq. (A.11) to find the determinants. This requires that we repeat
the first two rows of the matrix. Thus,

−
−
− +

+
+

= 25(10)9 + (−5)(−4)(−20) + (−5)(−5)(−4)

= 2250 − 400 − 100 − 1000 − 400 − 225 = 125 
− (−20)(10)(−5) − (−4)(−4)25 − 9(−5)(−5)

25

25

10

10−5
−5

−5
−5
−5== −5

−5

−5
−4

−4
−20

−20
−4

−20

−4
−4

9
9

25
10�
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Similarly,

−
−
− +

+
+

= 4500 + 0 + 0 − 0 − 800 − 0 = 3700 

50

50

10

100
−5

−5
0
0== 0

0

−5
−4

−4
−20

−20
−4

−20

−4
−4

9
9

50
10�1

−
−
− +

+
+

= 0 + 0 + 1000 − 0 − 0 + 2250 = 3250 

25

25

0

0−5
50

50
−5
−5== −5

−5

50
−4

−4
−20

−20
−4

−20

0
0

9
9

25
0�2

−
−
− +

+
+

= 0 + 1000 + 0 + 2500 − 0 − 0 = 3500 

25

25

10

10−5
−5

−5
−5
−5== −5

−5

−5
0

0
50

50
0

50

−4
−4

0
0

25
10�3

Hence, we now find

x1 = �1

�
= 3700

125
= 29.6

x2 = �2

�
= 3250

125
= 26

x3 = �2

�
= 3500

125
= 28

P R A C T I C E P R O B L E M A . 2

Obtain the solution of this set of simultaneous equations

3x1 − x2 − 2x3 = 1

−x1 + 6x2 − 3x3 = 0

−2x1 − 3x2 + 6x3 = 6

Answer: x1 = 3 = x3, x2 = 2.
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Appendix B
Complex Numbers

The ability to manipulate complex numbers is very handy in circuit anal-
ysis and in electrical engineering in general. Complex numbers are par-
ticularly useful in the analysis of ac circuits. Again, although calculators
and computer software packages are now available to manipulate com-
plex numbers, it is still advisable for a student to be familiar with how to
handle them by hand.

B.1 Representations of Complex Numbers

A complex number z may be written in rectangular form as

z = x + jy (B.1)

where j = √−1; x is the real part of z while y is the imaginary part of
z; that is,

x = Re(z), y = Im(z) (B.2)

The complex number z is shown plotted in the complex plane in Fig. B.1.
Since j = √−1,

1

j
= −j

j 2 = −1

j 3 = j · j 2 = −j
j 4 = j 2 · j 2 = 1

j 5 = j · j 4 = j
...

jn+4 = jn

(B.3)

The complex plane looks like the two-dimen-
sional curvilinear coordinate space, but it is not.

0 x

y

z

r

u

Re

jy

Im

Figure B.1 Graphical representation
of a complex number.

A second way of representing the complex number z is by speci-
fying its magnitude r and the angle θ it makes with the real axis, as Fig.
B.1 shows. This is known as the polar form. It is given by

z = |z| θ = r θ (B.4)

where
r =

√
x2 + y2, θ = tan−1 y

x
(B.5a)

or
x = r cos θ, y = r sin θ (B.5b)

that is,
z = x + jy = r θ = r cos θ + jr sin θ (B.6)

In converting from rectangular to polar form using Eq. (B.5), we must
exercise care in determining the correct value of θ . These are the four
possibilities:

z = x + jy, θ = tan−1 y

x
(1st Quadrant)

z = −x + jy, θ = 180◦ − tan−1 y

x
(2nd Quadrant)
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z = −x − jy, θ = 180◦ + tan−1 y

x
(3rd Quadrant)

z = x − jy, θ = 360◦ − tan−1 y

x
(4th Quadrant)

(B.7)

assuming that x and y are positive.
The third way of representing the complex z is the exponential form:

z = rejθ (B.8)

This is almost the same as the polar form, because we use the same
magnitude r and the angle θ .

In the exponential form, z = re j θ so that dz/dθ =
jre j θ = jz.

The three forms of representing a complex number are summarized
as follows.

z = x + jy, (x = r cos θ, y = r sin θ) Rectangular form

z = r θ,
(
r =

√
x2 + y2, θ = tan−1 y

x

)
Polar form

z = rejθ ,
(
r =

√
x2 + y2, θ = tan−1 y

x

)
Exponential form

(B.9)

The first two forms are related by Eqs. (B.5) and (B.6). In Section B.3
we will derive Euler’s formula, which proves that the third form is also
equivalent to the first two.

E X A M P L E B . 1

Express the following complex numbers in polar and exponential form:
(a) z1 = 6 + j8, (b) z2 = 6 − j8, (c) z3 = −6 + j8, (d) z4 = −6 − j8.

Solution:

Notice that we have deliberately chosen these complex numbers to fall in
the four quadrants, as shown in Fig. B.2.

0

r1r3

r2r4

z1

z4 z2

z3

u1

u3

u4

u2

Re

j8

j2

j4

j6

−j2
2 864−8 −2−4−6

−j8

−j6

−j4

Im

Figure B.2 For Example B.1.

(a) For z1 = 6 + j8 (1st quadrant),

r1 =
√

62 + 82 = 10, θ1 = tan−1 8

6
= 53.13◦

Hence, the polar form is 10 53.13◦ and the exponential form is 10ej53.13◦
.

(b) For z2 = 6 − j8 (4th quadrant),

r2 =
√

62 + (−8)2 = 10, θ2 = 360◦ − tan−1 8

6
= 306.87◦

so that the polar form is 10 306.87◦ and the exponential form is
10ej306.87◦

. The angle θ2 may also be taken as −53.13◦, as shown in
Fig. B.2, so that the polar form becomes 10 − 53.13◦ and the exponen-
tial form becomes 10e−j53.13◦

.
(c) For z3 = −6 + j8 (2nd quadrant),

r3 =
√
(−6)2 + 82 = 10, θ3 = 180◦ − tan−1 8

6
= 126.87◦
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Hence, the polar form is 10 126.87◦ and the exponential form is
10ej126.87◦

.
(d) For z4 = −6 − j8 (3rd quadrant),

r4 =
√
(−6)2 + (−8)2 = 10, θ4 = 180◦ + tan−1 8

6
= 233.13◦

so that the polar form is 10 233.13◦ and the exponential form is
10ej233.13◦

.

P R A C T I C E P R O B L E M B . 1

Convert the following complex numbers to polar and exponential forms:
(a) z1 = 3 − j4, (b) z2 = 5 + j12, (c) z3 = −3 − j9, (d) z4 = −7 + j .

Answer: (a) 5 306.9◦, 5ej306.9◦
, (b) 13 67.38◦, 13ej67.38◦

,

(c) 9.487 251.6◦, 9.487ej251.6◦
, (d) 7.071 171.9◦, 7.071ej171.9◦

.

E X A M P L E B . 2

Convert the following complex numbers into rectangular form:
(a) 12 − 60◦, (b) −50 285◦, (c) 8ej10◦

, (d) 20e−jπ/3.

Solution:

(a) Using Eq. (B.6),

12 − 60◦ = 12 cos(−60◦)+ j12 sin(−60◦) = 6 − j10.39

Note that θ = −60◦ is the same as θ = 360◦ − 60◦ = 300◦.
(b) We can write

−50 285◦ = −50 cos 285◦ − j50 sin 285◦ = −12.94 + j48.3

(c) Similarly,

8ej10◦ = 8 cos 10◦ + j8 sin 10◦ = 7.878 + j1.389

(d) Finally,

20e−jπ/3 = 20 cos(−π/3)+ j20 sin(−π/3) = 10 − j17.32

P R A C T I C E P R O B L E M B . 2

Find the rectangular form of the following complex numbers:
(a) −8 210◦, (b) 40 305◦, (c) 10e−j30◦

, (d) 50ejπ/2.

Answer: (a) 6.928 + j4, (b) 22.94 − j32.77, (c) 8.66 − j5, (d) j50.

B.2 Mathematical Operations

Two complex numbers z1 = x1 + jy1 and z2 = x2 + jy2 are equal if and
only if their real parts are equal and their imaginary parts are equal,

x1 = x2, y1 = y2 (B.10)

We have used lightface notation for complex
numbers—since they are not time- or frequency-
dependent—whereas we use boldface notation
for phasors.
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The complex conjugate of the complex number z = x + jy is

z∗ = x − jy = r − θ = re−jθ (B.11)

Thus the complex conjugate of a complex number is found by replacing
every j by −j .

Given two complex numbers z1 = x1 + jy1 = r1 θ1 and z2 =
x2 + jy2 = r2 θ2, their sum is

z1 + z2 = (x1 + x2)+ j (y1 + y2) (B.12)

and their difference is

z1 − z2 = (x1 − x2)+ j (y1 − y2) (B.13)

While it is more convenient to perform addition and subtraction of
complex numbers in rectangular form, the product and quotient of the
two complex numbers are best done in polar or exponential form. For
their product,

z1z2 = r1r2 θ1 + θ2 (B.14)

Alternatively, using the rectangular form,

z1z2 = (x1 + jy1)(x2 + jy2)

= (x1x2 − y1y2)+ j (x1y2 + x2y1)
(B.15)

For their quotient,
z1

z2
= r1

r2
θ1 − θ2 (B.16)

Alternatively, using the rectangular form,

z1

z2
= x1 + jy1

x2 + jy2
(B.17)

We rationalize the denominator by multiplying both the numerator and
denominator by z∗2.

z1

z2
= (x1 + jy1)(x2 − jy2)

(x2 + jy2)(x2 − jy2)
= x1x2 + y1y2

x2
2 + y2

2

+ j
x2y1 − x1y2

x2
2 + y2

2

(B.18)

E X A M P L E B . 3

If A = 2 + j5, B = 4 − j6, find: (a) A∗(A+B), (b) (A+B)/(A−B).

Solution:

(a) If A = 2 + j5, then A∗ = 2 − j5 and

A+ B = (2 + 4)+ j (5 − 6) = 6 − j

so that

A∗(A+ B) = (2 − j5)(6 − j) = 12 − j2 − j30 − 5 = 7 − j32
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(b) Similarly,

A− B = (2 − 4)+ j (5 − −6) = −2 + j11

Hence,

A+ B

A− B
= 6 − j

−2 + j11
= (6 − j)(−2 − j11)

(−2 + j11)(−2 − j11)

= −12 − j66 + j2 − 11

(−2)2 + 112
= −23 − j64

125
= −0.184 − j0.512

P R A C T I C E P R O B L E M B . 3

Given that C = −3 + j7 and D = 8 + j , calculate:
(a) (C −D∗)(C +D∗), (b) D2/C∗, (c) 2CD/(C +D).

Answer: (a) −103 − j26, (b) −5.19 + j6.776, (c) 6.054 + j11.53.

E X A M P L E B . 4

Evaluate:

(a)
(2 + j5)(8ej10◦

)

2 + j4 + 2 − 40◦ (b)
j (3 − j4)∗

(−1 + j6)(2 + j)2

Solution:

(a) Since there are terms in polar and exponential forms, it may be best
to express all terms in polar form:

2 + j5 = √
22 + 52 tan−1 5/2 = 5.385 68.2◦

(2 + j5)(8ej10◦
) = (5.385 68.2◦)(8 10◦) = 43.08 78.2◦

2 + j4 + 2 − 40◦ = 2 + j4 + 2 cos(−40◦)+ j2 sin(−40◦)

= 3.532 + j2.714 = 4.454 37.54◦

Thus,

(2 + j5)(8ej10◦
)

2 + j4 + 2 − 40◦
= 43.08 78.2◦

4.454 37.54◦
= 9.672 40.66◦

(b) We can evaluate this in rectangular form, since all terms are in that
form. But

j (3 − j4)∗ = j (3 + j4) = −4 + j3

(2 + j)2 = 4 + j4 − 1 = 3 + j4

(−1 + j6)(2 + j)2 = (−1 + j6)(3 + j4) = −3 − 4j + j18 − 24

= −27 + j14
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Hence,

j (3 − j4)∗

(−1 + j6)(2 + j)2
= −4 + j3

−27 + j14
= (−4 + j3)(−27 − j14)

272 + 142

= 108 + j56 − j81 + 42

925
= 0.1622 − j0.027

P R A C T I C E P R O B L E M B . 4

Evaluate these complex fractions:

(a)
6 30◦ + j5 − 3

−1 + j + 2ej45◦ (b)

[
(15 − j7)(3 + j2)∗

(4 + j6)∗(3 70◦)

]∗

Answer: (a) 1.213 237.4◦, (b) 2.759 − 287.6◦.

B.3 Euler’s Formula

Euler’s formula is an important result in complex variables. We derive it
from the series expansion of ex , cos θ , and sin θ . We know that

ex = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · · (B.19)

Replacing x by jθ gives

ejθ = 1 + jθ − θ2

2!
− j

θ3

3!
+ θ4

4!
+ · · · (B.20)

Also,

cos θ = 1 − θ2

2!
+ θ4

4!
− θ6

6!
+ · · ·

sin θ = θ − θ3

3!
+ θ5

5!
− θ7

7!
+ · · ·

(B.21)

so that

cos θ + j sin θ = 1 + jθ − θ2

2!
− j

θ3

3!
+ θ4

4!
+ j

θ5

5!
− · · · (B.22)

Comparing Eqs. (B.20) and (B.22), we conclude that

ejθ = cos θ + j sin θ (B.23)

This is known as Euler’s formula. The exponential form of representing
a complex number as in Eq. (B.8) is based on Euler’s formula. From Eq.
(B.23), notice that

cos θ = Re(ejθ ), sin θ = Im(ejθ ) (B.24)

and that
|ejθ | =

√
cos2 θ + sin2 θ = 1
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Replacing θ by −θ in Eq. (B.23) gives

e−jθ = cos θ − j sin θ (B.25)

Adding Eqs. (B.23) and (B.25) yields

cos θ = 1

2
(ejθ + e−jθ ) (B.26)

Substracting Eq. (B.24) from Eq. (B.23) yields

sin θ = 1

2j
(ejθ − e−jθ ) (B.27)

B.4 Useful Identities

The following identities are useful in dealing with complex numbers. If
z = x + jy = r θ , then

zz∗ = x2 + y2 = r2 (B.28)
√
z =

√
x + jy = √

rejθ/2 = √
r θ/2 (B.29)

zn = (x + jy)n = rn nθ = rnejθ = rn(cos nθ + j sin nθ) (B.30)

z1/n = (x + jy)1/n = r1/n θ/n+ 2πk/n

k = 0, 1, 2, . . . , n− 1
(B.31)

ln(rejθ ) = ln r + ln ejθ = ln r + jθ + j2kπ

(k = integer)
(B.32)

1

j
= −j

e±jπ = −1

e±j2π = 1

ejπ/2 = j

e−jπ/2 = −j

(B.33)

Re(e(α+jω)t ) = Re(eαt ejωt ) = eαt cosωt

Im(e(α+jω)t ) = Im(eαt ejωt ) = eαt sinωt
(B.34)

E X A M P L E B . 5

If A = 6 + j8, find: (a)
√
A, (b) A4.

Solution:

(a) First, convert A to polar form:

r =
√

62 + 82 = 10, θ = tan−1 8

6
= 53.13◦, A = 10 53.13◦

Then √
A =

√
10 53.13◦/2 = 3.162 26.56◦
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(b) Since A = 10 53.13◦,

A4 = r4 4θ = 104 4 × 53.13◦ = 10,000 212.52◦

P R A C T I C E P R O B L E M B . 5

If A = 3 − j4, find: (a) A1/3 (3 roots), and (b) lnA.

Answer: (a) 1.71 102.3◦, 1.71 222.3◦, 1.71 342.3◦,
(b) 1.609 + j5.356.
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Appendix C
Mathematical Formulas

This appendix—by no means exhaustive—serves as a handy reference.
It does contain all the formulas needed to solve circuit problems in this
book.

C.1 Quadratic Formula

The roots of the quadratic equation ax2 + bx + c = 0 are

x1, x2 = −b ± √
b2 − 4ac

2a
C.2 Trigonometric Identities

sin(−x) = − sin x

cos(−x) = cos x

sec x = 1

cos x
, csc x = 1

sin x

tan x = sin x

cos x
, cot x = 1

tan x

sin(x ± 90◦) = ± cos x

cos(x ± 90◦) = ∓ sin x

sin(x ± 180◦) = − sin x

cos(x ± 180◦) = − cos x

cos2 x + sin2 x = 1

a

sinA
= b

sinB
= c

sinC
(law of sines)

a2 = b2 + c2 − 2bc cosA (law of cosines)

tan 1
2 (A− B)

tan 1
2 (A+ B)

= a − b

a + b
(law of tangents)

sin(x ± y) = sin x cos y ± cos x sin y

cos(x ± y) = cos x cos y ∓ sin x sin y

tan(x ± y) = tan x ± tan y

1 ∓ tan x tan y

2 sin x sin y = cos(x − y)− cos(x + y)

2 sin x cos y = sin(x + y)+ sin(x − y)

2 cos x cos y = cos(x + y)+ cos(x − y)

sin 2x = 2 sin x cos x
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cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x

tan 2x = 2 tan x

1 − tan2 x

sin2 x = 1

2
(1 − cos 2x)

cos2 x = 1

2
(1 + cos 2x)

K1 cos x +K2 sin x =
√
K2

1 +K2
2 cos

(
x + tan−1 −K2

K1

)
ejx = cos x + j sin x (Euler’s formula)

cos x = ejx + e−jx

2

sin x = ejx − e−jx

2j

1 rad = 57.296◦

C.3 Hyperbolic Functions

sinh x = 1

2
(ex − e−x)

cosh x = 1

2
(ex + e−x)

tanh x = sinh x

cosh x

coth x = 1

tanh x

csch x = 1

sinh x

sech x = 1

cosh x

sinh(x ± y) = sinh x cosh y ± cosh x sinh y

cosh(x ± y) = cosh x cosh y ± sinh x sinh y
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C.4 Derivatives

If U = U(x), V = V (x), and a = constant,

d

dx
(aU) = a

dU

dx

d

dx
(UV ) = U

dV

dx
+ V

dU

dx

d

dx

(
U

V

)
=
V
dU

dx
− U

dV

dx

V 2

d

dx
(aUn) = naUn−1

d

dx
(aU) = aU ln a

dU

dx

d

dx
(eU ) = eU

dU

dx

d

dx
(sinU) = cosU

dU

dx

d

dx
(cosU) = − sinU

dU

dx

C.5 Indefinite Integrals

If U = U(x), V = V (x), and a = constant,∫
a dx = ax + C

∫
U dV = UV −

∫
V dU (integration by parts)

∫
Un dU = Un+1

n+ 1
+ C, n �= 1

∫
dU

U
= lnU + C

∫
aU dU = aU

ln a
+ C, a > 0, a �= 1

∫
eax dx = 1

a
eax + C

∫
xeax dx = eax

a2
(ax − 1)+ C

∫
x2eax dx = eax

a3
(a2x2 − 2ax + 2)+ C
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∫
ln x dx = x ln x − x + C

∫
sin ax dx = −1

a
cos ax + C

∫
cos ax dx = 1

a
sin ax + C

∫
sin2 ax dx = x

2
− sin 2ax

4a
+ C

∫
cos2 ax dx = x

2
+ sin 2ax

4a
+ C

∫
x sin ax dx = 1

a2
(sin ax − ax cos ax)+ C

∫
x cos ax dx = 1

a2
(cos ax + ax sin ax)+ C

∫
x2 sin ax dx = 1

a3
(2ax sin ax + 2 cos ax − a2x2 cos ax)+ C

∫
x2 cos ax dx = 1

a3
(2ax cos ax − 2 sin ax + a2x2 sin ax)+ C

∫
eax sin bx dx = eax

a2 + b2
(a sin bx − b cos bx)+ C

∫
eax cos bx dx = eax

a2 + b2
(a cos bx + b sin bx)+ C

∫
sin ax sin bx dx = sin(a − b)x

2(a − b)
− sin(a + b)x

2(a + b)
+ C, a2 �= b2

∫
sin ax cos bx dx = −cos(a − b)x

2(a − b)
− cos(a + b)x

2(a + b)
+ C, a2 �= b2

∫
cos ax cos bx dx = sin(a − b)x

2(a − b)
+ sin(a + b)x

2(a + b)
+ C, a2 �= b2

∫
dx

a2 + x2
= 1

a
tan−1 x

a
+ C

∫
x2 dx

a2 + x2
= x − a tan−1 x

a
+ C

∫
dx

(a2 + x2)2
= 1

2a2

(
x

x2 + a2
+ 1

a
tan−1 x

a

)
+ C
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C.6 Definite Integrals

If m and n are integers,

∫ 2π

0
sin ax dx = 0

∫ 2π

0
cos ax dx = 0

∫ π

0
sin2 ax dx =

∫ π

0
cos2 ax dx = π

2∫ π

0
sinmx sin nx dx =

∫ π

0
cosmx cos nx dx = 0, m �= n

∫ π

0
sinmx cos nx dx =




0, m+ n = even

2m

m2 − n2
, m+ n = odd

∫ 2π

0
sinmx sin nx dx =

∫ π

−π
sinmx sin nx dx =

{
0, m �= n

π, m = n

∫ ∞

0

sin ax

x
dx =




π

2
, a > 0

0, a = 0

−π
2
, a < 0

C.7 L’Hopital’s Rule

If f (0) = 0 = h(0), then

lim
x→0

f (x)

h(x)
= lim

x→0

f ′(x)
h′(x)

where the prime indicates differentiation.
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Appendix D
PSpice for Windows

There are several computer software packages, such as Spice, Mathcad,
Quattro, Matlab, and Maple, which can be used for circuit analysis.
The most popular is Spice, which stands for Simulation Program with
Integrated-Circuit Emphasis. Spice was developed at the Department of
Electrical and Computer Engineering at the University of California at
Berkeley in the 1970s for mainframe computers. Since then about 20
versions have been developed. PSpice, a version of Spice for personal
computers, was developed by MicroSim Corporation in California and
made available in 1984 and later by OrCAD. PSpice has been made avail-
able in different operating systems (DOS, Windows, Unix, etc.). A copy
of PSpice can be obtained from:

OrCAD Inc.

9300 SW Nimbus Ave

Beaverton, OR 97008

Phone: (503) 671-9500 or (800) 671-9505

Website: http://www.orcad.com

Since the Windows version of PSpice is becoming more and more popular,
this is the version used throughout the text. Specifically, versions 6.3
and 8 of MicroSim PSpice for Windows is used throughout this book.
Assuming that you are using Windows 95 and have the PSpice software
installed in your computer, you can access PSpice by clicking the Start
icon on the left-hand corner of your PC; drag the cursor to Programs, to
MicroSimEval8, and to Schematics, and then click.1

The student version of PSpice can be obtained
free of charge.

The objective of this appendix is to provide a short tutorial on using
the Windows-based PSpice on an IBM PC or equivalent.

PSpice can analyze up to roughly 130 elements and 100 nodes. It is
capable of performing three major types of circuit analysis: dc analysis,
transient analysis, and ac analysis. In addition, it can also perform trans-
fer function analysis, Fourier analysis, and operating point analysis. The
circuit can contain resistors, inductors, capacitors, independent and de-
pendent voltage and current sources, op amps, transformers, transmission
lines, and semiconductor devices.

We will assume that you are familiar with using the Microsoft Win-
dows operating system and that PSpice for Windows is already installed
in your computer. As with any standard Windows application, PSpice
provides an on-line help system.

If you need help on any topic at any level, click Help, click Search for Help on . . .,
and type in the topic.

1We assume that the reader is familiar with using windows and dialog boxes. If this is
not the case, one can easily learn how to use them with this appendix.
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D.1 DESIGN CENTER FOR WINDOWS

In earlier versions of PSpice prior to Windows 95, PSpice for Windows
is formally known as the MicroSim Design Center, which is a computer
environment for simulating electric circuits. The Design Center for Win-
dows includes the following programs:

Schematics: This program is a graphical editor used to draw the
circuit to be simulated on the screen. It allows the user to
enter the components, wire the components together to form
the circuit, and specify the type of analysis to be performed.

PSpice: This program simulates the circuit created using
Schematics. By simulation, we mean a method of analysis
described in a program by which a circuit is represented by
mathematical models of the components comprising the
circuit.

Probe: This program provides a graphic display of the output
generated by the PSpice program. It can be used to observe
any voltage or current in the circuit.

Each of these programs is represented by an icon in Fig. D.1. One may
think of Schematics as the computer breadboard for setting up the cir-

Figure D.1 Accessing PSpice on Windows 95.
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cuit topology, PSpice as the simulator (performing the computation), and
Probe as the oscilloscope. Using the Schematics program is perhaps the
hardest part of circuit simulation using PSpice. The next section covers
the essential skills needed to operate the Schematics.

D.2 CREATING A CIRCUIT

For a circuit to be analyzed by PSpice, we must take three steps:
(1) create the circuit, (2) simulate it, and (3) print or plot the results.
In this section, we learn how to create the circuit using the Schematics
program.

Before we discuss how to use the Schematics capture, we need to
know how to use the mouse to select an object and perform an action. One
uses the mouse in Schematics in conjunction with the keyboard to carry
out various instructions. Throughout this text, we will use the following
terms to represent actions to be performed by the mouse:

• CLICKL : click the left button once to select an item.

• CLICKR : click the right button once to abort a mode.

• DCLICKL : double-click the left button to edit a selection or
end a mode.

• DCLICKR : double-click the right button to repeat an action.

• CLICKLH : click the left button, hold down, and move the
mouse to drag a selected item. Release the left button after the
item has been placed.

• DRAG : Drag the mouse (without clicking) to move an item.

When the term “click” is used, it means that you quickly press and release
the left mouse button. To select an item requires CLICKL, while to
perform an action requires DCLICKL. Also, to avoid writing “click”
several times, the menu to be clicked will be highlighted in bold. For
example, “click Draw, click Get New Part” will be written as Draw/Get
New Part. Of course, we can always press the <Esc> key to abort any
action.

Assuming that you are using Windows 95, you can access PSpice
by clicking the Start icon on the left-hand corner of your PC, drag the
cursor to Programs, to MicroSimEval8, and to Schematics, as shown in
Fig. D.1. To run the Schematic capture, DCLICKL on the Schematics
icon in Fig. D.1. The blank screen, with the Main Menu bar (from File to
Help) at the top, will appear as shown in Fig. D.2. The file name <new1>
or <Schematics 2.p.1> next to Schematics is assigned to a circuit which
is yet to be saved. You can change it by pulling down the File menu.

To create a circuit using Schematics requires three steps: (1) placing
the parts or components of the circuit, (2) wiring the parts together to form
the circuit, and (3) changing attributes of the parts.

Step 1: Placing the Parts

Each circuit part is retrieved by following this procedure:

• Select Draw/Get New Part to pull down the Draw menu and
open up the Part Browser Basic dialog box (or type <Ctrl G>).

• Use scroll bar to select the part (or type the part name, e.g., R
for resistor, in the PartName box). Figures D.3 to D.5 show
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Figure D.2 Schematics Window.

some part names and symbols for circuit elements and
independent voltage and current sources.

• Click Place & Close (or press <Enter>).

• DRAG part to the desired location on the screen.

• CLICKR to terminate the placement mode.

R2
C2

1k

(a)

1n

(b)

L2

10uH

(c)

Figure D.3 Part symbols and attributes for
circuit elements: (a) a resistor, (b) a capacitor,
(c) an inductor.

Sometimes, we want to rotate a part 90◦. To rotate a resistor, for example,
select the part R and click Edit/Rotate (or type <Ctrl R>). To delete a
part, CLICKL to select (highlight red) the part, then click Edit/Cut (or
press <Delete>).

OV VDC

(a) A dc only source

+

−
OV VAC

(b) An ac only source

−
+

VSIN

(c) An ac or dc source

−
+ VSRC

(d) An ac, dc, or transient source

+
−

Figure D.4 Part symbols and attributes for independent voltage sources.
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OA IDC

(a) A dc only source

OA IAC

(b) An ac only source

−
+

ISIN

(c) An ac or dc source

−
+

ISRC

(d) An ac, dc, or transient source

Figure D.5 Part symbols and
attributes for independent cur-
rent sources.

Step 2: Wiring Parts Together

We complete the circuit by wiring the parts together. We first select
Draw/Wire (or type <Ctrl-W>) to be in wiring mode. A pencil cursor
will appear in place of an arrow cursor. DRAG the pencil cursor to the
first point you want to connect and CLICKL. Next, DRAG the pencil
cursor to the second point and CLICKL to change the dashed line to a
solid line. (Only solid lines are wires.) CLICKR to end the wiring mode.
To resume the wiring mode, press the <Space bar>. Repeat the above
procedure for each connection in the circuit until all the parts are wired.
The wiring is not complete without adding a ground connection (part
AGND) to a schematic; PSpice will not operate without it. To verify that
the parts are actually connected together, the Junctions option available
in the Options/Set Display Level menu should be in the on position
when wiring the parts. By default, the Junctions option is marked with a
checksign (√) in the dialog box, indicating that it is on.

Some of the connections have a black dot indicating a connection.
Although it is not necessary to have a dot where a wire joins a pin, having
the dot shows the presence of a connection. To be sure a dot appears,
make sure the wire overlaps the pin.

If you make a mistake, you can delete the part or wire by high-
lighting it (select CLICKL) and pressing the <Delete> key. Typing
<Ctrl-L> will erase the fragments that are not really on the schematic.

Step 3: Changing Attributes of Parts

As shown in Figs. D.3 to D.5, each component has an attribute in addition
to its symbol. Attributes are the labels for parts. Each attribute consists
of a name and its designated value. For example, R and VSRC are the
names of resistor and voltage source (dc, ac, or transient source), while
2k and DC = +10V are the designated values of the resistor and voltage
source, respectively.

A component may have several attributes; some
are displayed by default. If need be, we may add
more attributes for display, but we should hide
unimportant attributes to avoid clutter.

(a)

(b)

Figure D.6 (a) Changing name R3 to RX,
(b) changing 1k to 10Meg.

As parts are placed on the screen, they are automatically assigned
names by successive numbers (R1, R2, R3, etc.). Also, some parts are
assigned some predetermined values. For example, all resistors are placed
horizontally and assigned a value of 1 k�. We may need to change the
attributes (names and values) of a part. Although there are several ways
of changing the attributes, the following is one simple way.

To change the name R3 to RX, for example, DCLICKL on the text
R3 to bring up the Edit Reference Designator dialog box of Fig. D.6(a).
Type the new name RX and click the OK button to accept the change.
The same procedure can be used to change VDC to V1 or whatever.

To change the value 1k to 10Meg, for example, DCLICKL on the
1k attribute (not the symbol) to open up the Set Attribute Value dialog
box of Fig. D.6(b). Type the new value 10Meg (no space between 10 and
Meg) and click the OK button to accept the change. Similarly, to change
the default value 0V to 15kV for voltage source VDC, DCLICKL the
symbol for VDC to bring up the PartName dialog box. DCLICKL on
the DC = attribute and type 15kV in the value box. For convenience, one
can express numbers with the scale factors in Table D.1. For example,
6.6 × 10−8 can be written as 66N or 0.066U.

Except for the ground, which is automatically assigned node 0,
every node is either given a name (or number) or is assigned one in the
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TABLE D.1 Scale factors.

Symbol Value Name of suffix

T 1012 tera
G 109 giga
MEG 106 mega
K 103 kilo
M 10−3 milli
U 10−6 micro
N 10−9 nano
P 10−12 pico
F 10−15 femto

netlist. A node is labeled by giving a name to a wire connected to that
node. DCLICKL the wire to open up the Set Attribute Value dialog box,
and type the label.

It is always expedient to number the nodes by
numbering the wires. Otherwise, Schematics
will label the nodes its own way, and one may
not understand which node is which in the out-
put results.

To obtain a hard copy of the screen/schematic, click File/Print/OK.
To save the schematic created, select File/Save As and type Filename.
Click OK or press <Enter>. This creates a file named “filename.sch”
and saves it.

E X A M P L E D . 1

Draw the circuit in Fig. D.7 using Schematics.

+
−12 V 2 kΩ

5 kΩ

Figure D.7 For Example D.1.

Solution:

We will follow the three steps mentioned above. We begin by double-
clicking the Schematics icon. This provides us with a blank screen as
a worksheet to draw the circuit on. We now take the following steps to
create the circuit in Fig. D.7.
To place the voltage source, we need to:

1. Click Draw/Get New Part (or type < Ctrl-G >).

2. Type VSRC in the Part Browser Basic box.

3. Click OK (or type <Enter>).

4. DRAG the part to the desired location on the screen.

5. CLICKL to place VSRC and CLICKR to terminate
placement mode.

At this point, only the voltage source V1 in Fig. D.8(a) is shown on the
screen, highlighted red. To place the resistors, we need to:

1. Click Draw/Get New Part.

2. Type R in the Part Browser Basic box.

3. Click OK.

4. DRAG resistor to R1’s location on the screen.

5. CLICKL to place R1.

6. CLICKL to place R2 and CLICKR to terminate placement
mode.



APPENDIX D PSpice for Windows 871

7. DRAG R2 to its location.

8. Edit/Rotate (or type <Ctrl-R>) to rotate R2.

At this point, the three parts have been created as shown in Fig. D.8(a).
The next step is to connect the parts by wiring. To do this:

1. Click Draw/Wire to be in wiring mode, indicated by the
pencil cursor.

2. DRAG the pencil cursor to the top of V1.

3. CLICKL to join the wire to the top of V1.

4. DRAG the dotted wire to the top corner.

5. CLICKL to turn wire segment solid, and anchor at corner.

6. DRAG dotted wire to left of R1.

7. CLICKL to turn wire segment solid and anchor to left of R1.

8. CLICKR to end placement mode.

+
− 1kV1 R2

R1

k1

(b)

+
− 1kV1 R2

R1

1k

(a)

+
− 2kV1 R212 V

R1

5k

(c)

0

0

Figure D.8 Creating the circuit in
Fig. D.7: (a) placing the parts,
(b) wiring the parts together,
(c) changing the attributes.

Follow the same steps to connect R1 with R2 and V1 with R2. (You
can resume the wiring mode by pressing <Space bar>.) At this point, we
have the circuit in Fig. D.8(b), except that the ground symbol is missing.
We insert the ground by taking the following steps:

1. Click Draw/Get New Part.

2. Type AGND in the Part Browser Basic box.

3. Click OK.

4. DRAG the part to the desired location on the screen.

5. CLICKL to place AGND and CLICKR to terminate
placement mode.

The last thing to be done is to change or assign values to the attributes.
To assign the attribute 12V to V1, we take these steps:

1. DCLICKL on the V1 symbol to open up the PartName dialog
box.

2. DCLICKL on the DC = attribute.

3. Type +12V (or simply 12) in the Value box.

4. Click Save Attr.

5. Click OK.

To assign 5k to R1, we follow these steps:

1. DCLICKL on 1k attribute of R1 to bring up the Set Attribute
Value dialog box.

2. Type 5k in the Value box.

3. Click OK.

Use the same procedure in assigning value 2k to R2. Figure D.8(c) shows
the final circuit.

P R A C T I C E P R O B L E M D . 1

Construct the circuit in Fig. D.9 with Schematics.
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Answer: See the schematic Fig. D.10.

+
− 1 MΩ5 V

3 kΩ

10 kΩ

Figure D.9 For Practice Prob. D.1.

+
− 1MegV1 R35 V

R1

0

3k

2kR2

Figure D.10 For Practice Prob. D.1.

D.3 DC ANALYSIS

DC analysis is one of the standard analyses that we can perform us-
ing PSpice. Other standard analyses include transient, AC, and Fourier.
Under DC analysis, there are two kinds of simulation that PSpice can
execute: DC nodal analysis and DC sweep.

1. DC Nodal Analysis

PSpice allows dc nodal analysis to be performed on sources with an
attribute of the form DC = value and provides the dc voltage at each node
of the circuit and dc branch currents if required. To view dc node voltages
and branch currents requires adding two kinds of additional parts, shown
in Fig. D.11. The symbol VIEWPOINT is connected to each node at
which the voltage is to be viewed, while the symbol IPROBE is connected
in the branch where the current is to be displayed. This necessitates
modifying the schematic. For example, let us consider placing voltage
VIEWPOINTS and current IPROBES to the schematic in Fig. D.8(c). To
add VIEWPOINTS, we take the following steps:

(a) (b)

Figure D.11 Symbols for:
(a) voltage VIEWPOINT,
(b) current IPROBE.

1. Click Draw/Get New Part (or type <Ctrl-G>).

2. Type VIEWPOINT in the Part Browser Basic box.

3. Click OK (or type <Enter>).

4. DRAG to locate VIEWPOINT above V1 and CLICKL.

5. DRAG to locate VIEWPOINT above R2 and CLICKL.

6. CLICKR to end placement mode.

+
−

2k

V1

R2

12 V

R1

5k

0

Figure D.12 Placing VIEWPOINTS
and IPROBES.

Figure D.12 shows the two voltage VIEWPOINTS. Since the IPROBE
symbol must be connected in series with a branch element, we need to
move R2 down by clicking and dragging R2 and the wires. Once this is
done, we add IPROBE as follows:

1. Click Draw/Get New Part (or type <Ctrl-G>).

2. Type IPROBE in the Part Browser Basic box.

3. Click OK (or type <Enter>).

4. DRAG to locate IPROBE above R2 and CLICKL.

5. CLICKR to end placement mode.

6. Use wiring to join all gaps.
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The schematic becomes that shown in Fig. D.12. We are ready to simulate
the circuit. At this point, we must save the schematic—PSpice will not
run without first saving the schematic to be simulated. Before learning
how to run PSpice, note the following points:

1. There must be a reference node or ground connection (part
AGND) in the schematic. Any node can be used as ground,
and the voltages at other nodes will be with respect to the
selected ground.

2. Dependent sources are found in the Parts library. Obtain them
by selecting Draw/Get New Part and typing the part name.
Figure D.13 shows the part name for each type, with the gain.
E is a voltage-controlled voltage source with gain e; F is a
current-controlled current source with gain f ; G is a voltage-
controlled current source with a transconductance gain g; and
H is a current-controlled voltage source with transresistance
gain h.

3. By convention, we assume in dc analysis that all capacitors are
open circuits and all inductors are short circuits.

(a)

e

E1

+

−

(d)

h

H1

(c)

g

G1

+

−

(b)

f

F1

+
−

+
−

Figure D.13 Dependent sources:
(a) voltage-controlled voltage source (VCVS),
(b) current-controlled current source (CCCS),
(c) voltage-controlled current source (VCCS),
(d) current-controlled voltage source (CCVS).

We run PSpice by clicking Analysis/Simulate. This invokes the
electric rule check (ERC), which generates the netlist. The ERC performs
a connectivity check on the schematic before creating the netlist. The
netlist is a list describing the operational behavior of each component
in the circuit and its connections. Each line in the netlist represents a
single component of the circuit. The netlist can be examined by clicking
Analysis/Examine Netlist from the Schematics window. If there are
errors in the schematic, an error window will appear. Click OK (or
type <Enter>) to display the error list. After noting the errors, exit
from the error list and go back to Schematics to correct the errors. If no
errors are found, the system automatically enters PSpice and performs the
simulation (nodal analysis). When the analysis is complete, the program
displays Bias point calculated, and creates the result/output file with
extension .out.

A netlist can be generated manually or automa-
tically by Schematics.

There are two kinds of common errors in PSpice:
(1) errors involving wiring of the circuit, and
(2) errors that occur during simulation.

To examine the output file, click Analysis/Examine Output from
the Schematics window (or click File/Examine Output from the PSpice
window). To print the output file, click File/Print, and to exit the output
file, click File/Exit.

We can also examine the results of the simulation by looking at
the values displayed on the VIEWPOINTS and IPROBES parts of the
schematics after the simulation is complete. The values displayed with
VIEWPOINTS and IPROBES should be the same as those in the output
file.

2. DC Sweep

DC nodal analysis allows simulation for DC sources with fixed voltages
or currents. DC sweep provides more flexibility in that it allows the
calculation of node voltages and branch currents of a circuit when a
source is swept over a range of values. As in nodal analysis, we assume
capacitors to be open circuits and inductors to be short circuits.

Suppose we desire to perform a DC sweep of voltage source V1 in
Fig. D.12 from 0 to 20 volts in 1-volt increments. We proceed as follows:
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1. Click Analysis/Setup.

2. CLICKL DC Sweep button.

3. Click Name box and type V 1.

4. Click Start Value box and type 0.

5. Click End Value box and type 20.

6. Click Increment box and type 1.

7. Click OK to end the DC Sweep dialog box and save
parameters.

8. Click Close to end the Analysis Setup menu.

Figure D.14 shows the DC Sweep dialog box. Notice that the default
setting is Voltage Source for the Swept Var. Type, while it is Linear for
Sweep Type. If needed, other options can be selected by clicking the
appropriate buttons.

Figure D.14 DC sweep analysis dialog box.

To run DC sweep analysis, click Analysis/Simulate. Schematics
will create a netlist and then run PSpice if no errors are found. If errors
are found in the schematic, check for them in the Error List and correct
them as usual. If no errors are found, the data generated by PSpice is
passed to Probe. The Probe window will appear, displaying a graph in
which the X axis is by default set to the DC sweep variable and range,
and the Y axis is blank for now. To display some specific plots, click
Trace/Add in the Probe menu to open the Add Traces dialog box. The
box contains traces, which are the output variables (node voltages and
branch currents) in the data file available for display. Select the traces
to be displayed by clicking or typing them, and click OK. The selected
traces will be plotted and displayed on the screen. As many traces as you
want may be added to the same plot or on different windows. Select a
new window by clicking Window/New. To delete a trace, click the trace
name in the legend of the plot to highlight it and click Edit/Delete (or
press <Delete>).

It is important to understand how to interpret the traces. We must
interpret the voltage and current variables according to the passive sign
convention. As parts are initially placed horizontally in a schematic as
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shown typically in Fig. D.3, the left-hand terminal is named pin 1 while
the right-hand terminal is pin 2. When a component (say R1) is rotated
counterclockwise once, pin 2 would be on the top, since rotation is about
pin 1. Therefore, if current enters through pin 2, the current I(R1) through
R1 would be negative. In other words, positive current implies that the
current enters through pin 1, and negative current means that the current
enters through pin 2. As for voltage variables, they are always with
respect to the ground. For example, V(R1:2) is the voltage (with respect
to the ground) at pin 2 of resistor R1; V(V1:+) is the voltage (with respect
to the ground) at the positive terminal of voltage source V1; and V(E2:1)
is the voltage at pin 1 of component E2 with respect to ground, regardless
of the polarity.

E X A M P L E D . 2

For the circuit in Fig. D.15, find the dc node voltages and the current io.

+
−28 V 7 mA4 kΩ 3 kΩ

12 kΩ 1 kΩ 321

io

Figure D.15 For Example D.2.

Solution:

We use Schematics to create the circuit. After saving the circuit, click
Analysis/Simulate to simulate the circuit. We obtain the results of the
dc analysis from the output file or from the VIEWPOINT AND IPROBE
parts, as shown in Fig. D.16. The netlist file is shown in Fig. D.17. Notice
that the netlist contains the name, value, and connection for each element
in the circuit. First example, the first line shows that the voltage source V1
has a value of 28 V and is connected between nodes 0 and 1. Figure D.18
shows the edited version of the output file. The output file also contains
the Netlist file, but this was removed from Fig. D.18. From IPROBE or
the output file, we obtain io as 3.25 mA.

28 V1

7 mA

4 k

3.250E − 03

R1
R4

l1
3 k

R2

12k 1k

R3 3
15.000

21
13.000

+

−

0

IDC

Figure D.16 For Example D.2; schematic for the circuit in Fig. D.15.

* Schematics Netlist *

V_V1     1 0 28
R_R1     0 $N_0001 4k
R_R2     1 2 12k
R_R3     2 3 1k
R_R4     0 3 3k
I_I1     0 3 DC 7mA
v_V2     2 $N_0001 0

Figure D.17 The Netlist file for
Example D.2.
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**** 07/26/97 20:56:05 ********* NT Evaluation PSpice (April 1996) *********

* C:\ MSIMEV63\ examd2.sch

**** CIRCUIT DESCRIPTION

****************************************************************************

* Schematics Version 6.3 - April 1996
* Sat Jul 26 20:56:04 1997

**** INCLUDING examd2.als ****
* Schematics Aliases *

.ALIASES
V_V1       V1(+=1 -=0 )
R_R1       R1(1=0 2=$N_0001 )
R_R2       R2(1=1 2=2 )
R_R3       R3(1=2 2=3 )
R_R4       R4(1=0 2=3 )
I_I1       I1(+=0 -=3 )
v_V2       V2(+-2 -=$N_0001 )
_ _(1=1)
_ _(2=2)
_ _(3=3)
.ENDALIASES

.probe

.END

NODE VOLTAGE    NODE VOLTAGE     NODE VOLTAGE    NODE VOLTAGE

( 1) 28.0000 ( 2) 13.0000 ( 3) 15.0000 ($N_0001) 13.0000

VOLTAGE SOURCE CURRENTS
NAME    CURRENT

V_V1     -1.250E-03
v_V2      3.250E-03

TOTAL POWER DISSIPATION 3.50E-02 WATTS

Figure D.18 Output file (edited version) for Example D.2.
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P R A C T I C E P R O B L E M D . 2

Use PSpice to determine the node voltages and the current ix in the circuit
of Fig. D.19.

+
−50 V 6 mA4 kΩ 9 kΩ

2 kΩ 3 kΩ 32

0

1

ix

Figure D.19 For Practice Prob. D.2.

Answer: V1 = 50, V2 = 37.2, V3 = 27.9, ix = 3.1 mA.

E X A M P L E D . 3

Plot I1 and I2 if the dc voltage source in Fig. D.20 is swept from 2 V to
10 V.

+
− 6 kΩ2–10 V

2 kΩ
4Vx

4 kΩ I2

+ −Vx

+−

I1

Figure D.20 For Example D.3.

Solution:

We draw the schematic of the circuit and set the attributes as shown in
Fig. D.21. Notice how the voltage-controlled voltage source E1 is con-

6kV1 R3OV

R1 312

0

2k

4kR2
+

−

E1

E

+−
+−

Figure D.21 The schematic for the circuit in Fig. D.20.
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nected. After completing the schematic, we select Analysis/Setup and
input the start, end, and increment values as 2, 10, and 0.5, respectively.
By selecting Analysis/Simulate, we bring up the Probe Menu. We select
Trace/Add and click I(R1) and −I(R3) to be displayed. (The negative
sign is needed to make the current through R3 positive.) Figure D.22
shows the result.

10 mA

5 mA

0 A
2 V 4 V 6 V 8 V 10 V

 I(R1)  –I(R3)

V_V1

I2

I1

Figure D.22 Plots of I1 and I2 against V1.

P R A C T I C E P R O B L E M D . 3

Use PSpice to obtain the plots of ix and io if the dc voltage source in Fig.
D.23 is swept from 2 V to 10 V.

Answer: The plots of ix and io are displayed in Fig. D.24.

+
−2–10 V 2ix5 kΩ 1 kΩ

2 kΩ 4 kΩ

ix io

Figure D.23 For Practice Prob. D.3.

4.0 mA

iO

ix

2.0 mA

0 A
2 V 4 V 6 V 8 V 10 V

 –I(R3)        –I(R4)

V_V1

Figure D.24 Plots of ix and io versus V1.

Transient analysis is used to view the transient
response of inductors and capacitors.

D.4 TRANSIENT ANALYSIS

In PSpice, transient analysis is generally used to examine the behavior of
a waveform (voltage or current) as time varies. Transient analysis solves
some differential equations describing a circuit and obtains voltages and
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currents versus time. Transient analysis is also used to obtain Fourier
analysis. To perform transient analysis on a circuit using PSpice usually
involves these steps: (1) drawing the circuit, (2) providing specifications,
and (3) simulating the circuit.

1. Drawing the Circuit

In order to run a transient analysis on a circuit, the circuit must first be
created using Schematics and the source must be specified. PSpice has
several time-varying functions or sources that enhance the performance
of transient analysis. Sources used in the transient analysis include:

• VSIN, ISIN: damped sinusoidal voltage or current source, e.g.,
v(t) = 10e−0.2t sin(120πt − 60◦)

• VPULSE, IPULSE: voltage or current pulse.

• VEXP, IEXP: voltage or current exponential source, e.g.,
i(t) = 6[1 − exp(−0.5t)].

• VPWL, IPWL: piecewise linear voltage or current function,
which can be used to create an arbitrary waveform.

It is expedient to take a close look at these functions.
VSIN is the exponentially damped sinusoidal voltage source, for

example,

v(t) = Vo + Vme−α(t−td ) sin[2πf (t − td) + φ] (D.1)

The VSIN source has the following attributes, which are illustrated in
Fig. D.25 and compared with Eq. (D.1).

VAMPL

VOFF

TD 1/FREQ

6.0 V

4.0 V

2.0 V

0 V
0 s 5.0s

Time

Figure D.25 Sinusoidal voltage source VSIN.
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VOFF = Offset voltage, Vo

VAMPL = Amplitude, Vm

TD = Time delay in seconds, td
FREQ = Frequency in Hz, f

DF = Damping factor (dimensionless), α

PHASE = Phase in degrees, φ

(D.2)

Attributes TD, DF, and PHASE are set to 0 by default but can be assigned
other values if necessary. What has been said about VSIN is also true for
ISIN.

The VPULSE source has the following attributes, which are por-
trayed in Fig. D.26.

V1 = Low voltage

V2 = High voltage

TD = Initial time delay in seconds

TR = Rise time in seconds

TF = Fall time in seconds

PW = Pulse width in seconds

PER = Period in seconds

(D.3)

Attributes V1 and V2 must be assigned values. By default, attribute TD
is assigned 0; TR and TF are assigned the print step value; and PW and
PER are assigned the final time value. The values of the print time and
final time are obtained as default values from the specifications provided
by the user in the Transient Analysis/Setup, to be discussed a little later.

TD

TR TF

V2

V1

PW

PER

3.0 V

4.0 V

2.0 V

1.0 V

0 V
0 s 10 s5 s

Time

Figure D.26 Pulse voltage source VPULSE.



APPENDIX D PSpice for Windows 881

The exponential voltage source VEXP has the following attributes,
typically illustrated in Fig. D.27.

V1 = Initial voltage

V2 = Final voltage

TD1 = Rise delay in seconds

TC1 = Rise time constant in seconds

TD2 = Fall delay in seconds

TC2 = Fall time in seconds

(D.4)

TC1

V2

V1

TD1
TD2

TC2

6.0 V

2.0 V

4.0 V

0 V
0 s 4.0 s 8.0 s

Time

Figure D.27 Exponential voltage source VEXP.

The piecewise linear voltage source VPWL, such as shown in Fig.
D.28, requires specifying pairs of TN, VN, where VN is the voltage at
time TN for N = 1, 2, . . . 10. For example, for the function in Fig. D.29,
we will need to specify the attributes T1 = 0, V1 = 0, T2 = 2, V2 = 4,
T3 = 6, V3 = 4, and T4 = 8, V4 = −2.

T1 T3T2 T4

V1

V2

t

f(t)

Figure D.28 Piecewise linear voltage source
VPWL.

0

−2

2 4 6 8 t

4

v(t)

Figure D.29 An example of a piece-
wise linear voltage source VPWL.

To obtain information about other sources, click Help/Search for
Help on . . . and type in the name of the source. To add a source to the
schematic, take the following steps:

1. Select Draw/Get New Part.

2. Type the name of the source.

3. Click OK and DRAG the symbol to the desired location.

4. DCLICKL the symbol of the source to open up the PartName
dialog box.

5. For each attribute, DCLICKL on the attribute, enter the value,
and click Save Attr to accept changes.

6. Click OK to accept new attributes.
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In step 5, the attributes may not be shown on the schematic after entering
their values. To display an attribute, select Change Display/Both Name
and Value in the PartName dialog box.

In addition to specifying the source to be used in transient analysis,
there may be need to set initial conditions on capacitors and inductors in
the circuit. To do so, DCLICKL the part symbol to bring up the PartName
dialog box, click IC = and type in the initial condition. The IC attribute
allows for setting the initial conditions on a capacitor or inductor. The
default value of IC is 0. The attributes of open/close switches (with part
names Sw tClose and Sw tOpen ) can be changed in a similar manner.

2. Providing Specifications

After the circuit is drawn and the source is specified with its attributes, we
need to add some specifications for the transient analysis. For example,
suppose we want the analysis to run from 0 to 10ms with a print interval
of 2ns; we enter these specifications as follows:

1. Select Analysis/Setup/Transient to open up the Transient
Analysis dialog box.

2. CLICKL Print Step and type 2ns.

3. CLICKL Final Time and type 10ms.

4. CLICKL Step Ceiling and type 5us.

5. CLICKL OK/Close to accept specifications.

These specifications control the simulation and the display of output vari-
ables. Final Time specifies how long the simulation should run. In other
words, the simulation runs from t = 0 to t = Final Time. Print Step
refers to the time interval the print part will print out; it controls how
often simulation results are written to the output file. The value of Print
Step can be any value less than the Final Time, but it cannot be zero. Step
Ceiling is the maximum time between simulation points; specifying its
value is optional. By selecting 10 ms as Final Time and 5 µs as Step
Ceiling, the simulation will have a minimum of 10 ms/5 µs = 2000
points. When Step Ceiling is unspecified, PSpice selects its own internal
time step—the time between simulation points. The time step is selected
as large as possible to reduce simulation time. If the user has no idea
of what the plot may look like, it is recommended that the value of Step
Ceiling be unspecified. If the plot is jagged as a result of a large time step
assumed by PSpice, the user may now specify a Step Ceiling that will
smooth the plot. Keep in mind that a smaller value gives more points in
the simulation but takes more time.

To obtain the Fourier component of a signal, we
enable the Fourier option in the Transient Analysis
dialog box. Chapter 16 has more on this.

3. Simulating the Circuit

After the circuit is drawn, the specifications for the transient analysis are
given, and the circuit is saved, we are ready to simulate it. To perform
transient analysis, we select Analysis/Simulate. If there are no errors,
the Probe window will automatically appear. As usual, the time axis (or
X axis) is drawn but no curves are drawn yet. Select Trace/Add and click
on the variables to be displayed.
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An alternative way of displaying the results is to use markers. Al-
though there are many types of markers, we will discuss only voltage and
current markers. A voltage marker is used to display voltage at a node
relative to ground; a current marker is for displaying current through a
component pin. To place a voltage marker at a node, take the following
steps while in the Schematics window:

1. Select Markers/Mark Voltage/Level.

2. DRAG the voltage marker to the desired node.

3. CLICKL to place the marker and CLICKR to end the
placement mode.

This will cause two things to happen immediately. The voltage marker
becomes part of the circuit and the appropriate node voltage is displayed
by Probe. To place a current marker at a component pin, take the following
steps in the Schematics window:

1. Select Markers/Mark current into pin.

2. DRAG the current marker to the desired pin.

3. CLICKL to place the marker and CLICKR to end the
placement mode.

This will automatically add the current through the pin to your graph. It is
important that the current marker be placed at the pin of the component;
otherwise the system would reject the marker. You can place as many
voltage and current markers as you want on a circuit. To remove the
markers from the circuit as well as the plots from the Probe window,
select Markers/Clear All from Schematics window.

E X A M P L E D . 4

Assuming that i(0) = 10 A, plot the zero-input response i(t) in the circuit
of Fig. D.30 for 0 < t < 4 s using PSpice.

3i0.5 H

i(t)

4 Ω

2 Ω +
−

Figure D.30 For Example D.4.

Solution:

The circuit is the same as the one for Example 7.3, where we obtained
the solution as

i(t) = 10e(−2/3)t

For PSpice analysis, the schematic is in Fig. D.31, where the current-
controlled source H1 has been wired to agree with the circuit in Fig.
D.30. The voltage of H1 is 3 times the current through inductor L1.
Therefore, for H1, we set GAIN = 3 and for the inductor L1, we set the
initial condition IC = 10. Using the Analysis/Setup/Transient dialog
box, we set Print Step = 0.25s and Final Time = 4s. After simulating the
circuit, the output is taken as the inductor current i(t), which is plotted
in Fig. D.32.
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4R1

0

0.5HL1

R2

2

h

H1

+
−

Figure D.31 The schematic of
the circuit in Fig. D.30.

10 A

5 A

0 A
0 s 4.0 s2.0 s 3.0 s1.0 s

 I(L1)

Time

Figure D.32 Output plot for Example D.4.

P R A C T I C E P R O B L E M D . 4

Using PSpice, plot the source-free response v(t) in the circuit of Fig. D.33,
assuming that v(0) = 10 V.

1 Ω2 H

1.6 F

+

−
v(t)

Figure D.33 For
Practice Prob. D.4.

Answer: Figure D.34 shows the plot. Note that
v(t) = 10e−0.25t cos 0.5t + 5e−0.25t sin 0.5t V.

2.0 KV

4.0 KV

0 V

−2.0 KV

−4.0 KV
0 s 600 ms200 ms 400 ms

 -V(R1:2)

Time

Figure D.34 Output plot for Practice Prob. D.4.

E X A M P L E D . 5

Plot the forced response vo(t) in the circuit of Fig. D.35(a) for 0 < t < 5s
if the source voltage is shown in Fig. D.35(b).
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10 kΩ1 2

(a) (b)

3210

12
3

20 kΩ50 mF vovs

vs(t)

30 mH

+
−

+

−

Figure D.35 For Example D.5.

Solution:

We draw the circuit and set the attributes as shown in Fig. D.36. We enter
in the data in Fig. D.35(b) by double-clicking the symbol of the voltage
source V1 and typing in T1 = 0, V1 = 0, T2 = 1ns, V2 = 12, T3 = 1s,
V3 = 12, T4 = 1.001s, V4 = 0, T5 = 2s, V5 = 0, T6 = 2.001s,
V6 = 12, T7 = 3s, V7 = 12, T8 = 3.001s, V8 = 0. In the Analysis/
Setup/Transient dialog box, we set Print Step = 0.2s and Final Time
= 5s. When the circuit is simulated and we are in the Probe window, we
press <Alt-Esc> to go back to the Schematics window. We place two
voltage markers as shown in Fig. D.36 to get the plots of input vs and
output vo. We press <Alt-Esc> to get into the Probe window and obtain
the plots shown in Fig. D.37.

20kV1 R2

R1 L1

0

10k 30mH

50uC1

V

+

−

V

Figure D.36 The schematic of the circuit in Fig. D.35.

15 V

10 V

5 V

0 V
0 s 6.0 s4.0 s2.0 s

 V(V1:+)

Time

 V(L1:2)

Figure D.37 Output plot for Example D.5.

P R A C T I C E P R O B L E M D . 5

Obtain the plot of v(t) in the circuit in Fig. D.38 for 0 < t < 0.5s if
is = 2e−t sin 2π(5)t A.
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Answer: See Fig. D.39.

is 10 mF 10 mF 5 kΩ

20 mH

+

−
v(t)

Figure D.38 For Practice Prob. D.5.

5.0 KV

0 V

-5.0 KV
0 s 600 ms400 ms200 ms

 -V(R1:2)

Time

Figure D.39 Output plot for Practice Prob. D.5.

D.5 AC ANALYSIS/FREQUENCY RESPONSE

Using AC sweep, PSpice can perform ac analysis of a circuit for a single
frequency or over a range of frequencies in increments that can vary
linearly, by decade, or by octave. In AC sweep, one or more sources are
swept over a range of frequencies while the voltages and currents of the
circuit are calculated. Thus, we use AC sweep both for phasor analysis
and for frequency response analysis: it will output Bode gain and phase
plots. (Keep in mind that a phasor is a complex quantity with real and
imaginary parts or with magnitude and phase.)

While transient analysis is done in the time domain, AC analysis is
performed in the frequency domain. For example, if vs = 10 cos(377t +
40◦), transient analysis can be used to display vs as a function of time,
whereas AC sweep will give the magnitude as 10 and phase as 40◦. To
perform AC sweep requires taking three steps similar to those for transient
analysis: (1) drawing the circuit, (2) providing specifications, and (3)
simulating the circuit.

1. Drawing the Circuit

We first draw the circuit using Schematics and specify the source(s).
Sources used in AC sweep are AC sources VAC and IAC. The sources
and attributes are entered into the Schematics as stated in the previous
section. For each independent source, we must specify its magnitude and
phase.

2. Providing Specifications

Before simulating the circuit, we need to add some specifications for AC
sweep. For example, suppose we want a linear sweep at frequencies 50,
100, and 150 Hz. We enter these parameters as follows:

1. Select Analysis/Setup/AC Sweep and Noise Analysis to open
up the dialog box for AC Sweep.
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2. CLICKL Linear for the X axis to have a linear scale.

3. Type 3 in the Total Pts box.

4. Type 50 in the Start Freq box.

5. Type 150 in the End Freq box.

6. CLICKL OK/Close to accept specifications.

A linear sweep implies that simulation points are spread uniformly be-
tween the starting and ending frequencies. Note that the Start Freq cannot
be zero because 0 Hz corresponds to DC analysis. If we want the simu-
lation to be done at a single frequency, we enter 1 in step 3 and the same
frequency in steps 4 and 5. If we want the AC sweep to simulate the
circuit from 1 Hz to 10 MHz at 10 points per decade, we CLICKL on
Decade in step 2 to make the X axis logarithmic, enter 10 in the Total
Pts box in step 3, enter 1 in the Start Freq box, and enter 10Meg in the
End Freq box. Keep in mind that a decade is a factor of 10. In this case,
a decade is from 1 Hz to 10 Hz, from 10 Hz to 100, from 100 to 1 kHz,
and so forth.

3. Simulating the Circuit

After providing the necessary specifications and saving the circuit, we
perform the AC sweep by selecting Analysis/Simulate. If no errors are
encountered, the circuit is simulated. At the end of the simulation, the
system displays AC analysis finished and creates an output file with
extension .out. Also, the Probe program will automatically run if there
are no errors. The frequency axis (or X axis) is drawn but no curves
are shown yet. Select Trace/Add from the Probe menu bar and click
on the variables to be displayed. We may also use current or voltage
markers to display the traces as explained in the previous section. To
use advanced markers such as vdb, idb, vphase, iphase, vreal, and ireal,
select Markers/Mark Advanced.

In case the resolution of the trace is not good enough, we may
need to check the data points to see if they are enough. To do so, select
Tools/Options/Mark Data Points/OK in the Probe menu and the data
points will be displayed. If necessary, we can improve the resolution
by increasing the value of the entry in the Total Pts box in the Analy-
sis/Setup/AC Sweep and Noise Analysis dialog box for AC Sweep.

Bode plots are separate plots of magnitude and phase versus fre-
quency. To obtain Bode plots, it is common to use an AC source, say
V1, with 1 volt magnitude and zero phase. After we have selected Anal-
ysis/Simulate and have the Probe program running, we can display the
magnitude and phase plots as mentioned above. Suppose we want to
display a Bode magnitude plot of V(Vo). We select Trace/Add and
type dB(V(Vo)) in Trace Command box. dB(V(Vo)) is equivalent to
20log(V(Vo)), and because the magnitude of V1 or V(R1:1) is unity,
dB(V(Vo)) actually corresponds to dB(V(Vo)/V(R1:1)), which is the gain.
Adding the trace dB(V(Vo)) will give a Bode magnitude/gain plot with
the Y axis in dB.

To generate Bode plots involves using the AC
sweep and the dB command in Probe.

Once a plot is obtained in the Probe window, we can add labels to it
for documentation purposes. To add a title to the plot, select Edit/Modify
Title in the Probe menu and type the title in the dialog box. To add a label
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to the Y axis, select Plot/Y Axis Settings, type the label, and CLICKL
OK. Add a label to the X axis in the same manner.

As an alternative approach, we can avoid running the Probe program
by using pseudocomponents to send results to the output file. Pseudo-
components are like parts that can be inserted into a schematic as if
they were circuit elements, but they do not correspond to circuit ele-
ments. We can add them to the circuit for specifying initial conditions
or for output control. In fact, we have already used two pseudocompo-
nents, VIEWPOINT AND IPROBE, for DC analysis. Other important
pseudocomponents and their usage are shown in Fig. D.40 and listed
in Table D.2. The pseudocomponents are added to the schematic. To
add a pseudocomponent, select Draw/Get New Parts in the Schemat-
ics window, select the pseudocomponent, place it at the desired location,
and add the appropriate attributes as usual. Once the pseudocomponents
are added to the schematic, we select Analysis/Setup/AC Sweep and
Noise Analysis and enter the specifications for the AC Sweep, and fi-
nally, select Analysis/Simulate to perform AC Sweep. If no errors are
encountered, the voltages and currents specified in the pseudocomponents
will be saved in the output file. Since Probe is not used in this case, we
do not get any graphical output. We obtain the output file by selecting
Analysis/Examine Output.

VPRINT1
PRINTDGTLCHG

VPRINT2
IPRINT

VPLOT1 VPLOT2
IPLOT

| }| }

Figure D.40 Print and plot pseudocomponents.

TABLE D.2 Print and plot pseudocomponents.

Symbol Description

IPLOT Plot showing branch current;
symbol must be placed in series

IPRINT Table showing branch current;
symbol must be placed in series

VPLOT1 Plot showing voltages at the node
to which the symbol is connected

VPLOT2 Plot showing voltage differentials between
two points to which the symbol is connected

VPRINT1 Table showing voltages at the node
to which the symbol is connected

VPRINT2 Table showing voltage differentials between
two points to which the symbol is connected

E X A M P L E D . 6

Find current i in the circuit in Fig. D.41.



APPENDIX D PSpice for Windows 889

2 Ω1 2

0

3

2i 4 Ω0.25 F

0.5 H

5 cos 2t A

20 sin 2t V +
−

i

Figure D.41 For Example D.6.

Solution:

Recall that 20 sin 2t = 20 cos(2t − 90◦) and that f = ω/2π = 2/2π =
0.31831. The schematic is shown in Fig. D.42. The attributes of V1 are
set as ACMAG = 20, ACPHASE = −90; while the attributes of IAC are
set as AC = 5. The current-controlled current source is connected in
such a way as to conform with the original circuit in Fig. D.41; its gain is
set equal to 2. The attributes of the pseudocomponent IPRINT are set as
AC = yes, MAG = yes, PHASE = ok, REAL =, and IMAG =. Since this
is a single-frequency ac analysis, we select Analysis/Setup/AC Sweep
and enter Total Pts = 1, Start Freq = 0.31831, and Final Freq = 0.31831.
We save the circuit and select Analysis/Simulate for simulation. The
output file includes

FREQ IM(V_PRINT3) IP(V_PRINT3)

3.183E-01 7.906E+00 4.349E+01

0

R1

2

L1

5A

I1

IAC

0.5 H

GAIN = 2

V120

0.25C1

4R2

− +

−
+

AC = yes
MAG = yes
PHASE = ok

IPRINT

F

F1

Figure D.42 The schematic of the circuit in Fig. D.41.
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From the output file, we obtain I = 7.906 43.49◦ A or i(t) = 7.906 cos
(2t + 43.49◦) A. This example is for a single-frequency ac analysis;
Example D.7 is for AC Sweep over a range of frequencies.

P R A C T I C E P R O B L E M D . 6

Find ix(t) in the circuit in Fig. D.43.

10 Ω

2ix 0.5 H0.1 F

1 H

20 cos 4t V +
−

ix

Figure D.43 For Practice Prob. D.6.

Answer: From the output file, Ix = 7.59 108.43◦ or
ix = 7.59 cos(4t + 108.43◦) A.

E X A M P L E D . 7

For the RC circuit shown in Fig. D.44, obtain the magnitude plot of the
output voltage vo for frequencies from 1 Hz to 10 kHz. Let R = 1 k�
and C = 4 µF.

Solution:

The schematic is shown in Fig. D.45. We assume that the magnitude of
V1 is 1 and its phase is zero; we enter these as the attributes of V1. We
also assume 10 points per decade. For the AC sweep specifications, we
select Analysis/Setup/AC Sweep and enter 10 in the Total Pts box, 1 in
the Start Freq box, and 10k in the Final Freq box. After saving the circuit,
we select Analysis/Simulate. From the Probe menu, we obtain the plot
in Fig. D.46(a) by selecting Traces/Add and clicking V(2). Also, by
selecting Trace/Add and typing dB(V(2)) in the Trace Command box,
we obtain the Bode plot in Fig. D.46(b). The two plots in Fig. D.46
indicate that the circuit is a lowpass filter: low frequencies are passed
while high frequencies are blocked by the circuit.

R

Cvi(t) +
− vo(t)

+

−

Figure D.44 For Example D.7.

R11 2

1k

C1V1
ACMAG = 1V
ACPHASE = 0

4u

0

−
+

Figure D.45 The schematic of the
circuit in Fig. D.44.
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1.0 V

0.5 V

0 V
1.0 Hz 10 Hz 100 Hz 1.0 KHz 10 KHz

 V(2)
Frequency

(a)

0

-50
1.0 Hz 10 Hz 100 Hz 1.0 KHz 10 KHz

 dB(V(2))
Frequency

(b)

Figure D.46 Result of Example D.7: (a) linear, (b) Bode plot.

P R A C T I C E P R O B L E M D . 7

For the circuit in Fig. D.44, replace the capacitor C with an inductor
L = 4 mH and obtain the magnitude plot (both linear and Bode) for vo

for 10 < f < 100 MHz.

Answer: See the plots in Fig. D.47.

1.0 V

0.5 V -40

0 V
10 Hz 1.0 Hz 100 KHz 10 MHz

 V(2)
Frequency

(a)

0

-80
10 Hz 1.0 Hz 100 KHz 10 MHz

 dB(V(2))
Frequency

(b)

Figure D.47 Result of Practice Prob. D.7: (a) linear plot, (b) Bode plot.
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Appendix E
Answers to Odd-Numbered Problems

Chapter 1

1.1 (a) −0.1038 C, (b) −0.19865 C, (c) −3.941 C, (d) −26.08 C

1.3 (a) 3t + 1 C, (b) t2 + 5t mC, (c) 2 sin(10t + π/6) + 2 µC,
(d) −e−30t [0.16 cos 40t + 0.12 sin 40t] C

1.5 490 µC

1.7 i =



25 A, 0 < t < 2
−25 A, 2 < t < 6

25 A, 6 < t < 8

See the sketch in Fig. E.1.

0

−25

2 4 6 8 t (s)

25

i(t) A

Figure E.1 For Prob. 1.7.

1.9 (a) 10 C, (b) 22.5 C, (c) 30 C

1.11 (a) 2.131 C, (b) −8.188 W

1.13 916.7 mJ

1.15 P1 = −300 W, P2 = 100 W, P3 = 200 W, P4 = −32 W, P5 = −48 W

1.17 18 V

1.19 (a) 60 W, 100 W, (b) 4 W, (c) 110 W, (d) 700 W, (h) 350 W

1.21 21.6 cents

1.23 (a) 43 kC, (b) 475.2 kJ, (c) 1.188 cents

1.25 39.6 cents

1.27 750 ks

1.29 (a) 10.4 kWh, (b) 433.3 W/h

1.31 (a) 4 A, (b) 1.852 days

1.33 13.43 × 106 J

Chapter 2

2.1 3.2 mA

2.3 20.8 µS
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2.5 n = 9, b = 15, l = 7

2.7 7 branches and 5 nodes

2.9 11 A, 4 A, 1 A

2.11 −4 V, −6 V, 4 V, −2 V

2.13 14 V, 22 V

2.15 4 A, 28 V

2.17 4 A

2.19 −4.444 V, 98.75 W

2.21 0.1 A, 2 kV, 0.2 kW

2.23 6 V, 18 V

2.25 12 V, 3 A, 0 A, 0 V

2.27 10 V, 1 A, 4 W

2.29 3 V, 6 A

2.31 8 V, 0.2 A

2.33 12 �

2.35 (a) 0 A, (b) R, (c) R, (d) R, (e)
6

11
R

2.37 16 �

2.39 (a) 12 �, (b) 16 �

2.41 (a) 76 �, (b) 54 �

2.43 (a) Ra = Rb = Rc = 30 �, (b) Ra = 103.3 �, Rb = 155 �, Rc = 62 �

2.45 889 �

2.47 (a) 125 �, (b) 275 �

2.49 0.9974 A

2.51 12.21 �, 1.64 A

2.53 1.2 A

2.55 Use R1 and R2 bulbs

2.57 11 �, 99 �

2.59 (a) 800 k�, (b) 2 mW

2.61 (a) 100 mA, (b) 975.6 mA, (c) 2.44 %

2.63 45 �

2.65 (a) 19.9 k�, (b) 20 k�
2.67 (a) Four 20-� resistors in parallel.

(b) One 300-� resistor in series with a 1.8-� resistor and a parallel
combination of two 20-� resistor.

(c) Two 24-k� resistors in parallel connected in series with two 56-k�
resistors in parallel.

(d) A series combination of a 20-� resistor, 300-� resistor, 24-k�
resistor and a parallel combination of two 56-k� resistors.

2.69 75 �

2.71 38 k�, 3.33 k�

2.73 375 �, 257.1 �
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Chapter 3

3.1 9.143 V, −10.286 V, p8� = 10.45 W, p4� = 94.37 W, p2� = 52.9 W

3.3 4 A, 2 A, 1.333 A, 0.667 A, 40 V

3.5 20 V

3.7 2.778 V

3.9 −4 A

3.11 1.072 A, 2.041 A

3.13 20 V

3.15 18.86 V, 6.286 V, 13 V

3.17 10 V, 20 V, 20 V

3.19 −10.91 V, −100.36 V

3.21 20 V, 0 A

3.23 −1.344 kV, −5.6 A

3.25 2 V, 12 V, −8 V

3.27 (a) planar, redrawn as shown in Fig. E.2, (b) nonplanar

+
−

7 Ω

4 Ω

2 Ω

6 Ω10 V 3 Ω
5 Ω

1 Ω

Figure E.2 For Prob. 3.27(a).

3.29 8.727 V

3.31 3.652 V

3.33 1.188 A

3.35 −1.733 A

3.37 33.78 V, 10.67 A

3.39 20 V

3.41 1.072 A, 2.041 A

3.43 6 V, 6 V

3.45 −1.344 kV, −5.6 A

3.47 −0.3

3.49 −4 V, 2.105 A

3.51
[

1.25 −1
−1 1.5

] [
V1

V2

]
=
[

3
−1

]
V1 = 4 V, V2 = 2 V
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3.53


 1.75 −0.25 −1

−0.25 1 −0.25
−1 −0.25 1.25




V1

V2

V3


 =


20

5
5




3.55


 6 −2 −0

−2 12 −2
0 −2 7




i1i2
i3


 =


 12

−8
−20


 , 6.52 W

3.57




9 −3 −4 0
−3 8 0 0
−4 0 6 −1

0 0 −1 2





i1
i2
i3
i4


 =




6
4
2

−3




3.59 −1 A, 0 A, 2 A

3.61 −3 A, 0 A, 3 A

3.63 26.667 V, 6.667 V, 173.3 V, −46.67 V

3.65 See Fig. E.3; −12.5 V

20 Ω 70 Ω1 2 3

0

2 A 30 Ω20 V 50 Ω+
−

Figure E.3 For Prob. 3.65.

3.67 −0.187 V

3.69 −80

3.71 5.23 V

3.73 12.296 µA, 5.791 V

Chapter 4

4.1 0.1, 1 A

4.3 (a) 0.5 V, 0.5 A, (b) 5 V, 5 A, (c) 5 V, 0.5 A

4.5 4.5 V

4.7 −1.32 A, 17.43 W

4.9 3 A

4.11 8 V

4.13 0.1111 A

4.15 −0.1176 A

4.17 3 A

4.19 0.555 A

4.21 −8.57 V

4.23 0.1111 A

4.25 3.652 V
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4.27 (a) 8 �, 16 V, (b) 20 �, 50 V

4.29 −0.125 V

4.31 2.5 �, 6 V

4.33 10 �, 10 V

4.35 (a) 3.857 �, 4 V, (b) 3.214 �, 15 V

4.37 (a) 8 �, 2 A, (b) 20 �, 2.5 A

4.39 28 �, 3.286 A

4.41 (a) 2 �, 7A, (b) 1.5 �, 12.67 A

4.43 3 �, 1A

4.45 1.875 A

4.47 −R2[R1(1 + β)R2]

β(R1 + R2)

4.49 RTh = RN = 3.333 �, VTh = 10 V, IN = 3 A

4.51 31.73 �, 0 V

4.53 −1 � V, 0 V

4.55 7.2 �, 1.25 W

4.57 −1.187 kW

4.59 (a) 12 �, 40 V, (b) 2 A, (c) 12 �, (d) 33.33 W

4.61 1 k�

4.63 (a) 3.8 �, 4 V, (b) 3.2 �, 15 V

4.65 10 �, 167 V

4.67 3.333 �, 10 V

4.69 8 �, 12 V

4.71 (a) 10 mA, 8 k�, (b) 9.926 A

4.73 (a) 100 �, 20 �, (b) 100 �, 200 �

4.75
Vs

Rs + (1 + β)Ro

4.77 5.333 V, 66.67 k�

4.79 2.4 k�, 4.8 V

Chapter 5

5.1 (a) 1.5 M�, (b) 60 �, (c) 98.06 dB

5.3 10 V

5.5 0.9999990

5.7 −100 nV, −10 mV

5.9 (a) 2 V, (b) 2 V

5.11 −2 V, −1 mA

5.13 2.7 V, 288 µA

5.15 (a) Proof, (b) −35
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5.17 −11.764

5.19 −1.6364

5.21 If R1 = 10 k�, then Rf = 150 k�

5.23 (a) 10.2, (b) 1.471 cos 120πt

5.25 100 µA, 2 µW

5.27 600 nA, 12 mV, 2.4 nW

5.29 If R1 = 10 k�, then Rf = 90 k�

5.31 −120 mV

5.33 3 k�

5.35 See Fig. E.4, where R ≤ 100 k�.

+
−

R

+
−

RR
v1

v2

vo

R
3

R
2

Figure E.4 For Prob. 5.35.

5.37 −2 V, −2.4 mA

5.39 R1 = R3 = 10 k�, R2 = R4 = 20 k�

5.41 See Fig. E.5.

+
−

R

+
−

RR
v1

v2

vo

R

R

Figure E.5 For Prob. 5.41.

5.43 (a) 300, (b) 3.333

5.45 (a) 36 µA, (b) 30 cos 377t µA

5.47 −1.333

5.49
R2R4

R1R5
v1 − R4

R5
v2

5.51
R2R4/R1R3 − R4/R6

1 − R2R4/R3R5

5.53 2.4 V

5.55 −17.14 mV

5.57 −1 V
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5.59 100 µA

5.61 −374.8 µA

5.63 0.6677 V

5.65 12 V

5.67 0.25 V

5.69 (a) Proof, (b) 0.825 V, (c) 0.375 V

5.71 (a) −3.2 V, (b) 1.8 V

5.73 14.67

5.75 5

5.77 5.5

Chapter 6

6.1 10(1 − 3t)e−3t A, 20t (1 − 3t)e−6t W

6.3 0.48 A

6.5 v =
{

100t2 kV, 0 < t < 1
100(4t − t2 − 2) kV, 1 < t < 2

6.7 0.04t2 + 10 V

6.9 See Fig. E.6.

0

−5

2 4 6531 7 t (s)

5

i(t) A

Figure E.6 For Prob. 6.9.

6.11 −0.72π sin 4πt A, −5.4 J

6.13 (a) 120 mF, (b) 7.5 mF

6.15 (a) 3 F, (b) 8 F, (c) 1 F

6.17 4 mF

6.19 50 µF

6.21 (a) V30 = 90 V, V60 = 30 V, V14 = 60 V, V20 = 48 V, V80 = 12 V,
(b) W30 = 121.5 mJ, W60 = 27 mJ, W14 = 25.2 mJ, W20 = 23.04 mJ,
W80 = 5.76 mJ

6.23 (a) 35 µF, (b) 0.75 mF, 1.5 mC, 3 mC, (c) 393.4 J

6.25 22.39 µF

6.27 vo(t) =
{

10t2 kV, 0 < t < 1
40t − 10t2 − 20 kV, 1 < t < 2
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6.29 (a) 8 V, (b) −480e−3t µA, −6 + 8e−3t µA, (c) −480e−3t µA,
−180e−3t µA, −300e−3t µA

6.31 0.2 H

6.33 4.8 cos 100t , 96 mJ

6.35 5.977 A, 35.72 J

6.37 144 µJ

6.39 i(t) =
{

0.25t2 kA, 0 < t < 1
1 − t + 0.25t2 kA, 1 < t < 2

6.41 5 �

6.43 (a) 7 H, (b) 3 H, (c) 2 H

6.45 7.778 H

6.47 7 H

6.49
5

8
L

6.51 See Fig. E.7.

0

−6

2 4 531 6 t (s)

6

v(t)

Figure E.7 For Prob. 6.51.

6.53 (a) 2 mA, (b) 2.4e−2t mA, 3.6e−2t mA, (c) −0.12e−2t mV,
−0.144e−2t mV, (d) W10 = 24.36 nJ, W30 = 11.693 nJ,
W20 = 17.54 nJ

6.55 50(1 − cos 4t) mA, 4.8 sin 4t mV

6.57 6s

6.59 One possibility is letting R = 100 k�, then C = 0.2 µF

6.61 5.625 mV

6.63 See Fig. E.8.

0

−6

2 31 4 t (ms)

6

vo (V)

Figure E.8 For Prob. 6.63.
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6.65 See Fig. E.9.

0

−10

10 15 t (ms)

5

vi (V)

5

Figure E.9 For Prob. 6.65.

6.67 See Fig. E.10.

+
−

C

+
−

R
R

R

R

C

2 V

+
−

t = 0

+
−

R

R

R
2

+
−

R

R

R
10

+
−

+−

dvo
dt

d2vo

dt2

−sin 2t sin 2t 

Figure E.10 For Prob. 6.67.

6.69
d2vo

dt2
+ 5

dvo

dt
+ 2vo = f (t)

6.71 150 nF

6.73 (a) 1250 µF, (b) 400 J

Chapter 7

7.1 Proof

7.3 6 ms

7.5 1.195 V

7.7 (a) 50 �, 5 mF, (b) 0.25 s, (c) 250 mJ, (d) 86.6 ms

7.9 3e−10t A

7.11 4e−2t A
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7.13 2 µs

7.15 −2e−16t V

7.17 2e−5t A

7.19 13.33 �

7.21 2e−4t V, t > 0, 0.5e−4t V, t > 0

7.23 (a) u(t + 1) − 2u(t) + u(t − 1),
(b) 2u(t − 2) − r(t − 2) + r(t − 4),
(c) 2u(t − 2) + 2u(t − 4) − 4u(t − 6),
(d) −r(t − 1) − u(t − 1) + r(t − 2) + 2u(t − 2)

7.25 See Fig. E.11.

0
2 31 4 t 

i(t)

Figure E.11 For Prob. 7.25.

7.27 (a) 112 × 10−9, (b) 7

7.29 (a) −2e−5t/3 V, (b) 5e2t/3 V

7.31 (a) 4 V, t < 0, 20 − 12e−t/8, t > 0, (b) 4 V, t < 0, 12 − 8e−t/6 V

7.33 10(1 − e−0.2t ) V

7.35 0.8 A, 0.8e−t/160 A

7.37 1.25(1 − e−t/5) V, 0.125e−t/5 A

7.39 10e−t/3 V, −1

3
e−t/3 A

7.41 7.5(3 − e−4t ) mA, t > 0

7.43 2 A

7.45 (a) 1 A,
1

7
(6 − e−2t ) A, (b) 2 A, 3 − e−9t/4 A

7.47 −4e−20t V

7.49 15 + 5e−16t V

7.51 16e−0.5t V

7.53 i(t) =



1

6
(1 − e−t ) A, 0 < t < 1

0.5 − 0.3746e−(t−1) A, t > 1

7.55 1.667(1 − e−t ) V

7.57 0.4e−50t mA, t > 0

7.59 8(1 − e−4t ) V, t > 0

7.61 20(1 + 10t) mV
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7.63 0.5e−10t mA, t > 0

7.65 0.1(2e−10t − 1) V

7.67 See Fig. E.12.

0.5 s 1.0 s 1.5 s 2.0 s0 s
0 V

2.0 V

 –V(C1:2)

Figure E.12 For Prob. 7.67.

7.69 See Fig. E.13.

12 A

8 A

10 A

6 A
0 s 0.4 s 0.8 s 1.2 s 1.6 s 2.0 s

 I(L1)

Time

Figure E.13 For Prob. 7.69.

7.71 30 �

7.73 0.2197 < t0 < 2.197

7.75 (a) 0.6 ms, (b) 6 µs

7.77
2

3
M�, 25 pF

7.79 See Fig. E.14.

−8 mA

2 ms

5 ms

20 mA

t 

i(t)

Figure E.14 For Prob. 7.79 (not to scale).
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Chapter 8

8.1 (a) 2 A, 12 V, (b) −4 A/s, −5 V/s, (c) 0 A, 0 V

8.3 (a) 0 A, −10 V, 20 V, (b) 0 A/s, 0 V/s, 0 V/s, (c) 0.4 A, 6 V, 16 V

8.5 (a) 0 A, 0 V, (b) 0.25 A/s, 0 V/s, (c) 2.4 A, 9.6 V

8.7 s2 + 4s + 4 = 0, (1 + t)e−2t

8.9 (10 + 50t)e−5t A

8.11 10(1 + t)e−t V

8.13 120 �

8.15 750 �, 200 µF, 25 H

8.17 24 sin 0.5t V

8.19 18e−t − 2e−9t V

8.21 40 mF

8.23 (24 cos 1.984t + 3.024 sin 1.984t)e−t/4 V

8.25 3 − 3(cos 2t + sin 2t)e−2t V

8.27 (a) 3 − 3 cos 2t + sin 2t V, (b) 2 − 4e−t + 4e−4t A,
(c) 3 + (2 + 3t)e−t V, (d) 2 + 2 cos 2te−t A

8.29 50 − e−3t (62 cos 4t + 46.5 sin 4t) V

8.31 −10 sin 8t A

8.33 35 − (15 cos 0.6t + 20 sin 0.67t)e−0.8t V, 5 sin 0.6te−0.8t A

8.35 2.46e−0.903t − 0.667e−4.3t A

8.37 (3 − 9t)e−5t A

8.39 −12 + (4 cos 4t + 3 sin 4t)e−3t V

8.41 6 − 6e−50t (cos 5000t + 0.01 sin 5000t) mA

8.43 −2(1 + t)e−2t A, (2 + 4t)e−2t V

8.45 9 + 2e−10t − 8e−2.5t A

8.47 R1C1R2C2
d2vo

dt2
+ (R1C1 + R2C2 + R1C2)

dvo

dt
= R1C1

dvs

dt

8.49 7.45 − 3.45e−7.25t V, t > 0

8.51 (a) s2 + 20s + 36 = 0, (b) −3

4
e−2t − 5

4
e−18t A, 6e−2t + 10e−18t V

8.53 2.4 − 2.667e−2t + 0.2667e−5t A, 9.6 − 16e−2t + 6.4e−5t V

8.55
d2vo

dt2
+
(

1

R2
+ 1

R1C1

)
dvo

dt
+ vo

R1R2C1C2
= − 1

R1C2

dvs

dt

8.57
d2vo

dt2
+ vo

R2C2
= 0, 2 sin 10t

8.59 −te−t u(t) V
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8.61 See Fig. E.15.

0 s
0 A

10 A

5 s 10 s 15 s 20 s
 I(L1)

Figure E.15 For Prob. 8.61.

8.63 See Fig. E.16.

40

-40
0 s 1.0 s 2.0 s 3.0 s 4.0 s

 I(C2)  V(C2:1)

Figure E.16 For Prob. 8.63.

8.65 See Fig. E.17.

0.1 Ω

0.25 Ω

24 A

2 F

12 A

0.5 H

Figure E.17 For Prob. 8.65.

8.67 See Fig. E.18.

12 A

1 Ω

5 V+
−

F1
4

1 H

Ω1
2

Ω1
3

Figure E.18 For Prob. 8.67.
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8.69 14.26-� resistor in parallel with a 176-µF capacitor

8.71 2.5 µM, 625 µF

8.73
d2v

dt2
+ R

L

dv

dt
+ R

LC
iD + 1

C

diD

dt
= vs

LC

Chapter 9

9.1 (a) 103 rad/s, (b) 159.2 Hz, (c) 6.283 ms, (d) 12 cos(103t − 66◦) V,
(e) 2.65 V

9.3 (a) 4 cos(ωt − 120◦), (b) 2 cos(6t + 90◦), (c) 10 cos(ωt + 110◦)

9.5 20◦, v1 lags v2

9.7 Proof

9.9 (a) 1.809 + j0.4944, (b) 4.201 − j1.392, (c) −0.5042 − j2.243

9.11 (a) 118.3 − 39.45◦, (b) 10.45 − 10.4◦, (c) 1.849 − 39.45◦

9.13 (a) 10 − 105◦, (b) 5 − 100◦, (c) 5 − 36.87◦

9.15 (a) 60 cos(t + 15◦), (b) 10 cos(40t + 53.13◦), (c) 2.8 cos(377t − π/3),
(d) 1.3 cos(103t + 247.4◦)

9.17 (a) 40 cos(ωt − 60◦), (b) 38.36 sin(ωt + 96.8◦), (c) 6 cos(ωt + 80◦),
(d) 11.5 cos(ωt − 52.06◦)

9.19 (a) 0.8 cos(2t − 98.13◦), (b) 0.745 cos(2t − 4.56◦)

9.21 0.289 cos(377t − 92.45◦) V

9.23 2 sin(106t − 65◦)

9.25 6.5-� resistor

9.27 69.82 V

9.29 −5 sin 2t V

9.31 (a) 4.472 cos(3t − 18.43◦) A, 17.89 cos(3t − 18.43◦) V,
(b) 10 cos(4t + 36.87◦) A, 41.6 cos(4t + 33.69◦) V

9.33 (a) 1.872 cos(t − 22.05◦) A, (b) 0.89 cos(5t − 69.14◦) A,
(c) 0.4417 cos(10t − 83.66◦) A

9.35 17.14 cos 200t V

9.37 0.96 cos(200t − 7.956◦) A

9.39 2.325 cos(10t + 94.46◦) A

9.41 25 cos(2t − 53.13◦) A

9.43 8.485 135◦ A

9.45 (a) 0.75 + j0.25 �, (b) 20 + j30 �

9.47 1 + j0.5 �

9.49 17.35 0.9◦ A, 6.83 + j1.094 �

9.51 (a) 0.0148 − 20.22◦ S, (b) 0.0197 74.57◦ S

9.53 1.661 + j0.6647 S

9.55 1.058 − j2.235 �

9.57 0.3796 + j1.46 �



APPENDIX E Answers to Odd-Numbered Problems 907

9.59 Can be achieved by the RL circuit shown in Fig. E.19.

Vi

+

−

10 Ω 10 Ω

Voj10 Ωj10 Ω
+

−

Figure E.19 For Prob. 9.59.

9.61 (a) 140.2◦, (b) leading, (c) 18.43 V

9.63 1.8 k�, 0.1 µF

9.65 104.2 mH

9.67 Proof

9.69 38.21 − 8.975◦ �

9.71 2 mH

9.73 235 pF

Chapter 10

10.1 15.73 cos(t + 247.9◦) V

10.3 3.835 cos(4t − 35.02◦) V

10.5 6.154 cos(103t + 70.26◦) V

10.7 35.74 sin(1000t − 116.6◦) A

10.9 7.906 43.49◦ A

10.11 10.58 − 112.4◦ A

10.13 16.64 56.31◦ V

10.15 (a) 1, 0, − j

R

√
L

C
, (b) 0, 1,

j

R

√
L

C

10.17
Vs (R + jωL + 1/jωC2)

(1/jωC1 + 1/jωC2)(R + jωL + 1/jωC1) + 1/ω2C1C2
,

Vs/jωC2

(1/jωC1 + 1/jωC2)(R + jωL + 1/jωC1) + 1/ω2C1C2

10.19 6.154 cos(103t + 70.25◦) V

10.21 4.67 − 20.17◦ A, 1.79 37.35◦ A

10.23 2.179 61.44◦ A

10.25 7.906 43.49◦ A

10.27 1.971 − 2.1◦ A

10.29 3.35 174.3◦ A

10.31 9.902 cos(2t − 129.17◦) A

10.33 10 + 21.45 sin(2t + 26.56◦) + 10.73 cos(3t − 26.56◦) V
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10.35 0.1 + 0.217 cos(2000t + 134.1◦) − 1.365 sin(4000t + 14.21◦) A

10.37 3.615 cos(105t − 40.6◦) V

10.39 5.238 17.35◦ A

10.41 (a) ZN = ZTh = 22.63 − 63.43◦ �, VTh = −50 30◦ V,

IN = 2.236 273.4◦ A, (b) ZN = ZTh = 10 26◦ �,

VTh = 33.92 58◦ V, IN = 3.392 32◦ A

10.43 ZN = ZTh = 21.633 − 33.7◦ �, VTh = 107.3 146.56◦ V,

IN = 4.961 − 179.7◦ A

10.45 15.73 cos(t + 247.9◦) V

10.47 3.855 cos(4t − 35.02◦) V

10.49 1 k�, 5.657 cos(200t + 75◦) A

10.51 0.542 cos(2t − 77.47◦) A

10.53 −jωRC, −Vm cosωt

10.55 35.76 cos(104t − 26.56◦) µA

10.57
C1

C2

(
1 + jωR2C2

1 + jωR1C1

)
,
C1

C2
,
R2

R1
,
C1

C2

(
1 + jR2C2/R1C1

1 + j

)
,

C1

C2

(
1 + j

1 + jR1C1/R2C2

)

10.59
R2 + R3 + jωC2R2R3

(1 + jωR1C1)(R3 + jωC2R2R3)

10.61 35.78 cos(1000t + 26.56◦) V

10.63 1.465 79.59◦ A

10.65 1.664 − 146.4◦ V

10.67 15.91 169.6◦, 5.172 − 138.6◦, 2.27 − 152.4◦ V

10.69 Proof

10.71 (a) 180 kHz, (b) 40 k�

10.73 Proof

10.75 Proof

Chapter 11

11.1 800 + 1600 cos(100t + 60◦), 800 W

11.3 7.5 W, 5 W, 0 W, 2.5 W, 0 W

11.5 12.48 W

11.7 43.78 W

11.9 0 W

11.11 (a) 0.471 + j1.882 �, 15.99 W, (b) 2.5 − j1.167 �, 1.389 W

11.13 0.5 − j0.5 �, 90 W

11.15 21.23 − j10.15 �

11.17 6.792 �, 6.569 W
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11.19 9.574 V

11.21 7.906 V

11.23 2.92 V, 4.267 W

11.25 1.08 V

11.27 6.667 A

11.29 275.6 VA, 0.1876 (lagging)

11.31 (a) 0.5547 (leading), (b) 0.9304 (lagging)

11.33 (a) 95.26 − j55 VA, 110 VA, 95.26 W, 55 VAR, leading pf
(b) 1497.2 + j401.2 VA, 1550 VA, 1497.2 W, 401.2 VAR, lagging pf
(c) 278.2 + j74.54 VA, 288 VA, 278.2 W, 74.54 VAR, lagging pf
(d) −961.7 − j961.7 VA, 1360 V, −961.7 W, −961.7 VAR, leading pf

11.35 (a) 269 − j150 VA, (b) 4129 − j2000 VA, (c) 396.9 + j450 VA,
(d) 1000 + j681.2 VA

11.37 (a) 30.98 − j23.23 �, (b) 10.42 + j13.89 �, (c) 0.8 + j1.386 �

11.39 −j3.84 VA (capacitor), 5.12 VA (resistor), j6.4 VA (inductor)

11.41 4.543 + j1.396 VA

11.43 51.2 mVA

11.45 7.098 32.29◦, 0.8454 (lagging)

11.47 120.1 0.03145◦ V

11.49 80 µW

11.51 No power across the capacitors, S10 = 4 × 10−4, S20 = 8 × 10−4,
S40 = 4 × 10−4 VA

11.53 (a) 0.6402, (b) 295.1 W, (c) 130.4 µF

11.55 (a) 2.734 mF, (b) 6.3 mF

11.57 (a) 0.8992, (b) 5.74 mF

11.59 9.476 W

11.61 4.691 W

11.63 $76.26

11.65 75 − j103.55 �

11.67 (a) 126.2 W, (b) 220 VA

11.69 968.2 kVAR

11.71 (a) 32.91 kVAR, 86.51 kVA, (b) 0.9248, (c) 157.3 A

11.73 (a) $ 14,521.80, (b) $ 31,579.2, (c) Yes

11.75 (a) 40 − j8 �, (b) 66.61 W

Chapter 12

12.1 (a) 231 − 30◦, 231 − 150◦, 231 − 270◦ V,

(b) 231 30◦, 231 150◦, 231 − 90◦ V

12.3 acb sequence, 208 250◦ V

12.5 242.5 − 30◦, 242.5 − 150◦, 242.5 90◦ V
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12.7 44 53.13◦, 44 − 66.87◦, 44 173.1◦ A

12.9 4.8 − 36.87◦, 4.8 − 156.9◦, 4.8 83.13◦ A

12.11 127 100◦ V, 220 130◦ V, 17.32 150◦ A, 12.7 − 80◦ �

12.13 13.66 A

12.15 172.6 34.76◦, 172.6 − 85.24◦, 172.6 154.8◦ V, 11.51 − 18.37◦,

11.51 − 138.4◦, 11.51 101.6◦ A

12.17 5.47 − 18.43◦, 5.47 − 138.43◦, 5.47 101.57◦ A,

9.474 − 48.43◦, 9.474 − 168.43◦, 9.474 71.57◦ A

12.19 15.53 − 28.4◦, 15.53 − 148.4◦, 15.53 91.6◦ A

12.21 17.74 4.78◦, 17.74 − 115.2◦, 17.74 124.8◦ A

12.23 5.081 − 46.87◦, 5.081 − 166.87◦, 5.081 73.13◦ A

12.25 4.15 − j5.53 �, 5000 − j6667 VA

12.27 7.69 A, 360.3 V

12.29 55.51 A, 1.298 − j1.731 �

12.31 423.1 W

12.33 9.021 A

12.35 4.373 − j1.145 kVA

12.37 6346 28.92◦ V

12.39 40.42 A (rms), 0.9677 (lagging)

12.41 5.75 220◦ A

12.43 3.464 30◦, 3.464 0◦, 3.464 60◦ A

12.45 (a) 132 30◦ A, 47.23 143.8◦ A, 120.9 230.9◦ A, (b) 29.04 kW,

(c) 29.04 − j58.08 kVA

12.47 220.6 − 34.56◦, 214.1 − 81.49◦, 49.91 − 50.59◦ V, assuming
that N is grounded.

12.49 11.15 37◦ A, 230.8 − 133.4◦ V, assuming N is grounded.

12.51 IaA = 4.71 71.38◦, IbB = 6.781 − 142.6◦,

IcC = 3.898 − 5.076◦ V, IAB = 3.547 61.57◦,

IBC = 3.831 − 164.9◦, IAC = 1.357 97.8◦ V

12.53 (a) 120 V, (b) 2.5, 3, 2, 0.866 A, (c) 300, 360, 240 W, (d) 900 W

12.55 (a) 4801 VA, (b) 0.9372, (c) 8.4 A, (d) 190.5 V

12.57 (a) 2590 W, 4808 W, (b) 8335 VA

12.59 −2995 W, 2995 W

12.61 (a) 20 mA, (b) 200 mA

12.63 320 W

12.65 17.15 − 19.65◦, 15.14 − 139.6◦, 15.14 100.3◦ A,

196.8 2.97◦, 196.8 − 117◦, 196.82 123◦ V

12.67 516 V
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12.69 ZY = 2.133 �

12.71 1.448 − 176.6◦ A, 1252 + j711.6 VA, 1085 + j721.2 VA

Chapter 13

13.1 10 H

13.3 150 mH, 50 mH, 25 mH, 0.2887

13.5 (R1 + jωL1)I1 − jωMI2, −jωMI1 + (R2 + jωL2)I2

13.7 2.392 94.57◦ V

13.9
jIm(ωL − 1/ωc)

R + jωL + 1/jωC

13.11 VTh = 5.349 34.11◦ V, ZTh = 2.332 50◦ �

13.13 2.462 72.18◦ A, 0.878 − 97.48◦ A, 3.329 74.89◦ A, 43.67 mJ

13.15 3.199 − 175.2◦ A

13.17 (a) 0.3535, (b) 0.3217 cos(4t + 57.6◦) V, (c) 1.168 J

13.19 3.755 − 36.34◦ A, 3.755 143.7◦ A

13.21 0.984, 130.5 mJ

13.23 (a) La = 10 H, Lb = 15 H, Lc = 5 H, (b) LA = 18.33 H, LB = 27.5 H,
LC = 55 H

13.25 12.77 + j7.15 �

13.27 1.324 − 53.05◦ k�

13.29 0.5 A, −1.5 A

13.31
Vm

nR
cosωt A, − Vm

n2R
cosωt

13.33 2.963 32.9◦ V, 2.963 − 147.1◦ V

13.35 8 − j1.5 �, 2.95 10.62◦ A

13.37 (a) 5, (b) 8 W

13.39 1054 W

13.41 (a) 25.9 69.96◦, 12.95 69.96◦ A (rms), (b) 21.06 147.4◦,

42.12 147.4◦, 42.12 147.4◦ V(rms), (c) 1554 20.04◦ VA

13.43 P8� = 2.778 W, P2� = 11.11 W, P4� = 5.556 W

13.45 6 A, 0.36 A, −60 V

13.47 3.795 18.43◦, 1.897 18.43◦, 0.6325 161.6◦

13.49 1.245 − 33.76◦, 0.8893 − 33.76◦, 0.3557 146.2◦ A, 7.51 W

13.51 74.9 W

13.53 (a)
1

3
, (b) 1604, 2778 A, (c) 2778, 4812 A

13.55 (a) delta-delta connection, (b) 66.67, 13.05 A, (c) 16.67, 28.87 A,
(d) 55 kVA

13.57 (a) 144.3 A, (b) 238.7, (c) 13.05 A

13.59 4.253 − 8.526◦ A, 1.564 27.49◦ A, 4.892 W
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13.61 1.304 62.92◦ A

13.63 19.55 83.32◦ V, 68.47 46.4◦ V, 0.4434 − 92.6◦ A

13.65 4.028 − 52.38◦, 2.019 − 52.11◦, 1.338 − 52.2◦ A

13.67 7.5 k�

13.69 315 W

13.71 (a) 0.1, (b) 25 turns, (c) 1.667 A, 16.67 A

13.73 (a) 112 V, (b) 0.2613 A, 11.2 A, (c) 1254 W

13.75 (a) 733.4 V, (b) 440 V

Chapter 14

14.1
jω/ωo

1 + jω/ωo

, ωo = 1

RC

14.3 (a)
1

s2R2C2 + 3sRC + 1
, (b) −4.787, −32.712

14.5 (a)
1

1 + jωRC − ω2LC
, (b)

jωL − ω2RLC

R + jωL − ω2RLC

14.7 (a) 1.005773, (b) 0.4898, (c) 1.718 × 105

14.9 See Fig. E.20.

1 10 1000.1

−20

−40

v (rad/s)

|H |

1 10 1000.1

−90°

−180°

v (rad/s)

arg H

Figure E.20 For Prob. 14.9.
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14.11 See Fig. E.21.

1 10 1000.1

−20

20

−40

v (rad/s)

| G |

1 10 1000.1

−90°

−180°

v (rad/s)

arg G

Figure E.21 For Prob. 14.11.

14.13 See Fig. E.22.

0.1 1 2 10 100

6.021

H (dB)

v (rad ⁄s)

v (rad ⁄s)0.1 0.2 1 2 20 10010

−90°

f

(a)

(b)

Figure E.22 For Prob. 14.13: (a) magnitude plot, (b) phase plot.
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14.15 See Fig. E.23.

10.1 2 5 10 100 v (rad ⁄s)

−20

G (dB)

(a)

(b)

0.1 0.2 0.5 1 10 20 50 100 v (rad ⁄s)

−90°

f

Figure E.23 For Prob. 14.15: (a) magnitude plot, (b) phase plot.

14.17 See Fig. E.24.

1 10 1000.1

20

40

v (rad/s)

|H |

1 10 1000.1

45°

v (rad/s)

f

Figure E.24 For Prob. 14.17.

14.19
104(2 + jω)

(20 + jω)(100 + jω)

14.21
Kjω

(1 + jω)(100 + jω)
, K = constant

14.23 R = 10 �, L = 16 H, C = 25 µF, 0.625 rad/s

14.25 0.7861 rad/s

14.27 50 rad/s, 5.975 × 106 rad/s, 6.025 × 106 rad/s



APPENDIX E Answers to Odd-Numbered Problems 915

14.29 2 k�, 0.6154 + j0.923 k�, 1.471 + j0.8824 k�, 1.471 − j0.8824 k�,
0.6154 − j0.923 k�

14.31 (a) 5 rad/s, 0.625, 8 rad/s, (b) 5 krad/s, 20, 250 rad/s

14.33 (a) 3.333 krad/s, (b) 0.9997 1.205◦ �

14.35 (a)
jω

2(1 + jω)2
, (b) 0.25

14.37
R

R + jωL − ω2RLC
, Proof

14.39 Highpass filter, 318.3 Hz

14.41 31.42 k�

14.43 1.56 kHz < f < 1.59 kHz, 25

14.45 (a) 1 rad/s, 3 rad/s, (b) 1 rad/s, 3 rad/s

14.47 9.6 krad/s, 5 krad/s

14.49 (a) 23.53 mV, (b) 107.3 mV, (c) 119.4 mV

14.51
(

1 + Rf

Ri

)
,

1

RC

14.53 If Rf = 20 k�, then Ri = 80 k� and C = 31.83 nF.

14.55 Let R = 10 k�, then Rf = 25 k�, C = 7.96 nF.

14.57 Kf = 2 × 10−4, Km = 5 × 10−3

14.59 9.6 M�, 32 µH, 0.375 pF

14.61 See Fig. E.25.

1 kΩ 1 kΩ

1 kΩ

0.1 mF

+

−
Vo0.1 H I

Figure E.25 For Prob. 14.61.

14.63 (a) See Fig. E.26, (b) 894.4 26.7◦ �

b

a

400 Ω

20 mH

0.5Ix 0.25 mF

Ix

Figure E.26 For Prob. 14.63.
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14.65 See Fig. E.27.

200 mV

100 mV

0 V
1.0 Hz 10 Hz 100 Hz 1.0 KHz

 V(R2:1)

Frequency

(a)

100 d

50 d

0 d
1.0 Hz 3.0 Hz 10 Hz 30 Hz 100 Hz 300 Hz 1.0 KHz

 VP(R2:1)

Frequency

(b)

Figure E.27 For Prob. 14.65.

14.67 See Fig. E.28; high pass filter, f0 = 1.2 Hz.

1.0 V

0.5 V

0 V
100 mHz 300 mHz 1.0 Hz 3.0 Hz 10 Hz 30 Hz 100 Hz

 VP(R3:1)

Frequency

Figure E.28 For Prob. 14.67.
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14.69 See Fig. E.29.

10 V

0 V
100 Hz 200 Hz 300 Hz 400 Hz 500 Hz 600 Hz 800 Hz

  V(L1:1)
Frequency

Figure E.29 For Prob. 14.69.

14.71 See Fig. E.30; fo = 800 Hz.

1.0 KV

0.5 KV

0 V
10 Hz 100 Hz 1.0 KHz 10 KHz

 V(C1:1)

Frequency

Figure E.30 For Prob. 14.71.

14.73 938 kHz, remains the same

14.75
RL(RL + sL + s2RLLC2)

(RL + sL + s2RLC2L)(sL + RL + s2RLLC2 + Ri + sRiRLC2 + s3RiRLC2 + sRiRLC1 + s3RiRLLC1C2)

14.77 440 Hz

14.79 15.91 �

14.81 (a) 2 kHz, (b) 1.59 kHz
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14.83 See Fig. E.31.

300 mV

100 mV

400 mV

200 mV

0 V
100 Hz 10 KHz 1.0 MHz

 V(R2:1)

Frequency

Figure E.31 For Prob. 14.83.

Chapter 15

15.1 (a)
s

s2 − a2
, (b)

a

s2 − a2

15.3 (a)
s + 2

(s + 2)2 + 9
, (b)

4

(s + 2)2 + 16
, (c)

s + 3

(s + 3)2 − 4
(d)

1

(s + 4)2 − 1
,

(e)
4(s + 1)

[(s + 1)2 − 4]4

15.5 (a) 2e−s , (b)
10

s
e−2s , (c)

1

s2
+ 1

s
, (d)

2e−4s

e4(s + 1)

15.7 (a)
3

2
+ 6

s
+ 4

s + 2
− 10

s + 3
, (b)

e−(s+1)

(s + 1)2
+ e−(s+1)

s + 1
, (c)

se−s

s2 + 4
,

(d)
4

s2 + 16
(1 − e−πs)

15.9 (a) − (s + 2)

s2 + 2s + 2
, (b)

−(s + 2)

s2 + 2s + 2

15.11
5

s2
(1 − 2e−s + e−2s )

15.13
1

s
(5 − 3e−s + 3e−3s − 5e−4s )
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15.15 (a)
1

s
(1 + e−s + e−2s − 3e−3s ), (b)

2

s2
(1 − e−s − e−3s + e−4s )

15.17
π(1 + e−s )

(s2 + π 2)(1 − e−2s )

15.19 (a)
2(1 − e−s + se−s )

s2(1 − e−s )
, (b)

1

s
+ 2

s2

(1 − e−s )2

(1 − e−2s )

15.21 (a) ∞, 0, (b) f (0) = 1, f (∞) does not exist, (c) 0, 0

15.23 (a) 1, 0, (b) f (0) = 1, f (∞) does not exist

15.25 (a) −5e−t + 20e−2t − 15e−3t (b) −e−t +
(

1 + 3t − t2

2

)
e−2t ,

(c) e−t (−0.2 + 0.2 cos 2t + 0.4 sin 2t)

15.27 (a) 3 sin t − cos t + 3e−t , (b) cos(t − π)u(t − π),
(c) 8u(t)[1 − e−t − te−t − 0.5t2e−t ]

15.29 (a) [2e−(t−6) − e−2(t−6)]u(t − 6),

(b)
4

3
u(t)[e−t − e−4t ] − 1

3
u(t − 2)[e−(t−2) − e−4(t−2)],

(c)
1

13
u(t)[−3e−3(t−1) + 3 cos 2(t − 1) + 2 sin 2(t − 1)]

15.31 (a) 3[1 − cos 2(t − 2)]u(t − 2),

(b)
1

4
cos t + 1

8
sin t − 1

4
cos 3t − 1

24
sin 3t ,

(c) 4e−2t (−1 + t + cos 3t − 5 sin 3t)

15.33 (a) −3.138e−t cos 4t − 2.358e−t sin 4t + 5.138e−2t cos 4t + 1.142e−2t sin 4t,

(b)

[
1

4
cos 3t + 1

12
sin 4t − 1

8
e−0.551t + 1

8
e−5.449t

]
u(t)

15.35 2e−t − 2e−3t cos t − 4e−3t sin t V

15.37 (0.5 + 2.887e−t sin 1.732t)u(t) A, −1.732e−t sin 1.732tu(t) A

15.39 [2e−2t − e−t ]u(t) A

15.41 0.7143e−2t − 1.714e−0.5t cos 1.118t + 2.3e−0.5t sin 1.118t A

15.43 −(2 + 4.333e−t/2 + 1.333e−2t )u(t) V

15.45 (5e−4t cos 2t + 230e−4t sin 2t)u(t) V,
6u(t) − 6e−4t cos 2t − 11.37e−4t sin 2t A, t > 0

15.47 (e−5t − e−2t )u(t)

15.49 2.91(e−4.581t − e−0.438t )u(t)

15.51 12u(t)

15.53 (a) [0.6 − 0.6e−2t cos t − 0.2e−2t sin t]u(t),
(b) [6e−2t + 6te−2t − 6e−2t cos t − 6e−2t sin t]u(t)

15.55
20

2s2 + 9s + 30

15.57 9

15.59 (a)
1

s3 + 2s2 + 3s + 2
, (b)

1

s3 + s2 + 2s + 2
, (c)

1

s3 + s2 + 3s + 2
,

(d)
1

s3 + 2s2 + 3s + 2
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15.61 (a)
R

L
e−Rt/Lu(t), (b) (1 − e−Rt/L)u(t)

15.63 0.5e−t/2u(t)

15.65 (a) y(t) =




1

2
t2, 0 < t < 1

−1

2
t2 + 2t − 1, 1 < t < 2

1, t > 2

0, otherwise

(b) y(t) = 2(1 − e−t ), t > 0,

(c) y(t) =




1

2
t2 + t + 1

2
, −1 < t < 0

1

2
t2 − 3t + 9

2
, 2 < t < 3

0, otherwise

15.67 Proof

15.69
1

2
t cos t + 1

2
sin t

15.71
9

26
cos 2t + 6

26
sin 2t + 17

26
e−t cos 3t − 47

78
e−t sin 2t

15.73
27

4
e−2t − 75

13
e−3t + 1

52
cos 2t + 5

52
sin 2t

15.75
[

1

10
e−2t − 1

26
e−4t − 4

65
e−t cos 2t − 1

130
e−t sin 2t

]
u(t)

15.77 −0.4 sin 2t + cos 3t + 0.6 sin 3t

15.79 −6.235e−t + 7.329e−1.5t − 0.0935 cos 4t − 0.06445 sin 4t

15.81 (a) (e−t − e−4t )u(t), (b) stable

15.83 L = 0.333 H, C = 0.5 F

15.85 C1 = C2 = 100 µF

15.87 a = −100, b = 400, c = 20,000

15.89 Proof

Chapter 16

16.1 (a) periodic, 2, (b) not periodic, (c) periodic, 2, (d) periodic, π ,
(e) periodic, 10, (f) not periodic, (g) not periodic

16.3 a0 = 3, 75, an =

− 5

nπ
(−1)n−1/2, n = odd

0, n = even
,

bn = 5

nπ

[
3 − 2 cos nπ − cos

nπ

2

]

16.5
2π 2

3
−

∞∑
n=1

4

n2
cos nt

16.7 2 +
∞∑
n=1

[
10

n3 + 1
cos

nπ

4
cos nπt − 10

n3 + 1
sin

nπ

4
sin 2nt

]
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16.9
8

π 2

[
sin

πt

2
− 1

9
sin

3πt

2
+ 1

25
sin

5πt

2
+ · · ·

]

16.11 (a) π , odd, (b) 2π/3, even, (c) π/2, even and half-wave symmetric

16.13 2 + 24

π 2

∞∑
n=1

1

n2

(
cos

2nπ

3
− cos

nπ

3

)
cos

nπt

3
, 3.756

16.15 a0 = 1, bn = 0, an = 16

n2π 2

(
cos

nπ

2
− 1

)
+ 8

nπ
sin

nπ

2

16.17 (a) a2 = 0, b2 = −0.3183, (b) 0.06366 − 90◦, (c) 1.384, which is 8%
off the exact value of 1.5, (d) Proof

16.19 1 +
∞∑
n=1

4

nπ

[(
sin

3nπ

2
− sin

nπ

2

)
cos

nπt

2
+ (cos nπ − 1) sin

nπt

2

]

16.21
∞∑
k=1

[
8

n2π 2
cos nπt + 4

nπ
sin nπt

]
, n = 2k − 1

16.23
1

3
+

∞∑
n=1

1

3n2
√

1 + 4n2
cos(3n − tan−1 2n) A

16.25
3

8
+

∞∑
n=odd

An cos

(
2πn

3
+ θn

)
, where

An =
6

nπ
sin

2nπ

3√
9π 2n2 + (2π 2n2/3 − 3)2

, θn = π

2
− tan−1

(
2nπ

9
− 1

nπ

)

16.27
100

π

∞∑
k=1

sin(nπt − 90◦ + tan−1 5/nπ)

n
√

25 + n2π 2
, n = 2k − 1 V

16.29
3

4
+

∞∑
n=1

Vn cos(nπt + θn) V, where

Vn = 12√
64 + n2π 2

√
4

n2π 2
+ 16

π 4(2n − 1)4
,

θn = tan−1 nπ

8
− tan−1 π(2n − 1)2

2n

16.31 (a) 33.91 V, (b) 6.782 A, (c) 203.1 W

16.33 (a) 1.155, (b) 0.8162

16.35 (a) 40 + 0.01431 cos(10t − 18.43◦) + 0.05821 cos(20t − 136◦) V,
(b) 800 mW

16.37 (a)
π 2

3
+

∞∑
n=−∞,n 
=0

2(−1)n

n2
ejnt

16.39
∞∑

n=−∞

0.6321ej2nπt

1 + j2nπ

16.41
∞∑

n=−∞

1 + e−jnπ

2π(1 − n2)
ejnt

16.43 −3 +
∞∑

n=−∞,n 
=0

3

n3 − 2
ej50nt
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16.45
1

2
−

∞∑
n=−∞,n 
=0

j5ej(2n+1)πt

(2n + 1)π

16.47 (a) 6 + 2.571 cos t − 3.83 sin t + 1.638 cos 2t − 1.147 sin 2t +
0.906 cos 3t − 0.423 sin 3t + 0.47 cos 4t − 0.171 sin 4t , (b) 6.828

16.49 See Fig. E.32.

vn

vn

fn

An

0

0

−90°

8

10

12

14

164

62

10 1462

12.88

2.881

−38.45°

−75.71° −79.69°
−67°

−81.95°

1.642
1.155

0.893
18

18

Figure E.32 For Prob. 16.49.

16.51 DC COMPONENT = 4.950000E-01

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 1.667E-01 2.432E+00 1.000E+00 -8.996E+01 0.000E+00
2 3.334E-01 6.576E-04 2.705E-04 -8.932E+01 6.467E-01
3 5.001E-01 5.403E-01 2.222E-01 9.011E+01 1.801E+02
4 6.668E+00 3.343E-04 1.375E-04 9.134E+01 1.813E+02
5 8.335E-01 9.716E-02 3.996E-02 -8.982E+01 1.433E-01
6 1.000E+00 7.481E-06 3.076E-06 -9.000E+01 -3.581E-02
7 1.167E+00 4.968E-02 2.043E-01 -8.975E+01 2.173E-01
8 1.334E+00 1.613E-04 6.634E-05 -8.722E+01 2.748E+00
9 1.500E+00 6.002E-02 2.468E-02 -9.032E+01 1.803E+02
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16.53 DC COMPONENT = 7.658051E-01

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 5.000E-01 1.070E+00 1.000E+00 1.004E+01 0.000E+00
2 1.000E+00 3.758E-01 3.512E-01 -3.924E+01 -4.928E+01
3 1.500E+00 2.111E-01 1.973E-01 -3.985E+01 -4.990E+01
4 2.000E+00 1.247E-01 1.166E-01 -5.870E+01 -6.874E+01
5 2.500E+00 8.538E-02 7.980E-02 -5.680E+01 -6.685E+01
6 3.000E+00 6.139E-02 5.738E-02 -6.563E+01 -7.567E+01
7 3.500E+00 4.743E-02 4.433E-02 -6.520E+01 -7.524E+01
8 4.000E+00 3.711E-02 3.469E-02 -7.222E+01 -8.226E+01
9 4.500E+00 2.997E-02 2.802E-02 -7.088E+01 -8.092E+01

16.55
20

π

∞∑
n=1

1

n

(
1 − cos

2nπ

5

)
sin

2nπt

5

16.57 (a) 4 + 10 cos(100πt − 36.87◦)− 5 cos(200πt − 36.87◦) A, (b) 157 W

16.59 (a) π , (b) 2 V, (c) 11.02 V

16.61 See below for the program in Fortran and the results.

C FOR PROBLEM 16.16
DIMENSION B(20)

A = 10
PIE = 3.142
C = 4.*A/PIE
DO 10 N=1, 10
B(N) = C/(2.*FLOAT(N) - 1.)
PRINTS *, N, B(N)

10 CONTINUE
STOP
END

n bn

1 12.7307
2 4.2430
3 2.5461
4 1.8187
5 1.414
6 1.1573
7 0.9793
8 0.8487
9 0.7488

10 0.6700

16.63 (a)
A2

2
, (b) c1 = 8A2

9π 2
, c2 = 2A2

225π 2
, c3 = 8A2

1225π2
, c4 = 8A2

3969π2
,

(c) 81.1%, (d) 0.72%
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Chapter 17

17.1
2(cos 2ω − cosω)

jω

17.3
j

ω2
(sin 2ω − 2ω cos 2ω)

17.5 (a)
1

jω
(2 − e−jω − e−j2ω), (b)

2

ω2
[e−jω + jωe−jω2 − 1]

17.7
π

ω2 − π 2
(e−jω2 − 1)

17.9 (a)
−(1 + jω)

(1 + jω)2 + 9
, (b)

2jπ sinω

π 2 − ω2
, (c)

−(2 + jω)ejω−2

(2 + jω)2 + π 2
,

(d)
jω − 2

(ω − 2)2 + 16
, (e)

6

jω
e−jω2 + 3 − 2πδ(ω)e−jω2

17.11 (a) −4π |ω|, (b) 4πe−2|ω|

17.13
1 + jω

2 + j2ω − ω2

17.15 (a) Proof, (b)
1

2
δ(ω) −

∞∑
n = −∞

n 
= 0
n = odd

j

nπ
δ(ω − n)

17.17 (a)
30

(6 − jω)(15 − jω)
, (b)

20e−jω/2

(4 + jω)(10 + jω)
,

(c)
5

[2 + j (ω + 2)][5 + j (ω + 2)]
+ 5

[2 + j (ω − 2)][5 + j (ω − 2)]
,

(d)
jω10

(2 + jω)(5 + jω)
, (e)

10

jω(2 + jω)(5 + jω)
+ πδ(ω)

17.19 (a)
5

2
sgn(t) − 5e−2t u(t), (b) (−5e−t + 6e−2t )u(t)

17.21 (a) 0.05, (b)
(−2 + j)

2π
e−j2t , (c)

(1 − j)

π
ejt , (d) u(t) − e−5t

17.23 (a) e(t+1)u(−t − 1), (b)
2

π(t2 + 1)
,

(c)
1

4
(t + 1)e−t u(t) + 1

4
(t − 1)etu(t), (d)

1

2π

17.25
20

π
sinc 2t + 10

π
sinc t

17.27
jω

4 + j3ω

17.29
1

2
[sgn(t) + sgn(t − 2) − 2 sgn(t − 1)] − e−0.5t u(t)

−e−0.5(t−2)u(t − 2) − 2e−0.5(t−1)u(t − 1)

17.31 4δ(t) − 8e−2t u(t) A

17.33 −3e−2t + 1.875e2t u(−t) − 1.125e−6t cos 8tu(t)
+ 0.375e−6t sin 8tu(t) V
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17.35
8(2 + jω)

2 + jω5 − 3ω2

17.37 0.542 cos(t + 13.64◦) V

17.39
1

6

17.41 8 J

17.43 0.15 J

17.45 (a) 5 kHz, (b) 4.9 kHz, (c) 5.1 kHz

17.47 6.5 < f < 9.6 kHz, 10.4 < f < 13.5 kHz

17.49 100 stations

17.51 111 ns

17.53 21.37%

Chapter 18

18.1
[

4 1
1 1.667

]
�

18.3 (a)

[
1 + j j

j 0

]
�, (b)

[
1.5 + j0.5 1.5 − j0.5

1.5 − j0.5 1.5 − j1.5

]
�

18.5




s2 + s + 1

s3 + 2s2 + 3s + 1

1

s3 + 2s2 + 3s + 1
1

s3 + 2s2 + 3s + 1

s2 + 2s + 2

s3 + 2s2 + 3s + 1


�

18.7
[

1.6667 0.2222

−0.6667 1.111

]
�

18.9 See Fig. E.33.

(a)

I1 I2

V1 V220I1 5I1

1 F

25 Ω 10 Ω

+

−

+

−

+
−

+
−

(b)

1 Ω 2 H0.5 F

Figure E.33 For Prob. 18.9.
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18.11 5.877 kW

18.13 ZTh = 6.4 �, VTh = 6 90◦ V, 3.18 cos(2t + 148◦) V

18.15




1

8
− 1

12

− 1

12

1

2


 S

18.17 See Fig. E.34.

I1 I1

V1 V2
0.4 S 0.2V1

+

−

+

−

0.1 S

Figure E.34 For Prob. 18.17.

18.19 See Fig. E.35.

4 Ω

4 Ω

8 Ω

Figure E.35 For Prob. 18.19.

18.21
[

0.25 0.25
5 0.6

]
�

18.23 (a) 8 V, 22 V, (b) same

18.25
[

3.8 � 0.4
−3.6 0.2 S

]

18.27
[

85 � 0.25
14.75 0.0725 S

]
,

[
0.02929 S −0.101

−5.96 34.34 �

]

18.29 (a) 0.2941, (b) −1.6, (c) 7.353 × 10−3 S, (d) 40 �

18.31 800 �

18.33 Proof

18.35 (a)

[
1 Z
0 1

]
, (b)


 1 0

1

Y
1




18.37


−3.5

5

6
�

−2.5 S 0.5
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18.39




2

2s + 1

1

s

(s + 1)(3s + 1)

s
2 + 1

s




18.41
[

2 2 + j5

j −2 + j

]

18.43 z11 = A

C
, z12

AD − BC

C
, z21 = 1

C
, z22 = D

C

18.45 Proof

18.47 (a)

[
1 −2

−2 4.4

]
S, (b)

[
2.2 0.5 �

0.2 S 0.5

]

18.49 (a)

[
1.786 0.7143

0.3571 2.143

]
�, (b)

[
1.667 � 0.3333

−0.1667 0.4667 S

]
,

(c)

[
3 5 �

1.4 S 2.5

]

18.51
[

40 0

105 40

]
k�,

[
0.381 15.24 k�

9.52 µS 0.381

]

18.53




1

3
−1

3

−1

3

2

3


 S

18.55
[

1.25 0.75 �

0.75 S 1.25

]

18.57
[

0.063 + j0.1954 −0.103 + j0.144

−0.103 + j0.1446 0.183 − j0.205

]
S

18.59
[

0.06 S −1.3

0.7 23.5 �

]

18.61
[

7 12 �

4 S 7

]
,

12

7
�

18.63
[

0.1269 0.01154

0.01154 −0.03923

]
S

18.65

[
4.669 − 136.7◦ 2.53 − 108.4◦

2.53 − 108.4◦ 1.789 − 153.4◦

]
�

18.67
[

1.5 −0.5

3.5 1.5

]
S

18.69
[

1.4 −0.8 �

1.4 S −1.8

]

18.71
[

2.727 S 0

0 0

]



928 APPENDIX E Answers to Odd-Numbered Problems

18.73 Zin = y22 + YL

4y + y11YL
, Zout = y11 + Ys

4y + y22Ys
, Ai = −y21YL

4y + y11YL
,

Av = −y21

y22 + YL

18.75 (a) 250 k�, (b) −3333, 20, 65 k�, (c) −13.33 V

18.77 −17.1, 89.29, 25.63 k�, 182.9 k�

18.79 2 × 105, 200 �

18.81 See Fig. E.36.

1 Ω

1.082 H

1.577 F 0.383 F

1.531 H

Figure E.36 For Prob. 18.81.

18.83 Proof
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I ndex

A

ABC sequence, 480, 509, 516
AC; see Alternating current
AC bridges, 381, 382, 391; see also Bridge circuit
AC circuits, 354
AC sweep, 886
ACB sequence, 480
Active filters, 613

advantages of, 614
Admittance, 370, 384, 672

definition of, 371
Aidela, J. B., 929
Alley, R. E., 930
Alternating current (ac), 354, 477, 514, 568

definition of, 7
Ammeter, 57, 58
Ampere, Andre-Marie, 3
Amplifier

averaging type, 194
bridge type, 200
current type, 200
difference type, 177, 190
inverting type, 171, 172, 189, 220, 416
noninverting type, 174, 189, 419
summing type, 176, 189
transresistance type, 173

Amplitude, 355, 384, 880
Amplitude modulation (AM), 769, 785, 790

definition of, 786
Amplitude spectrum, 711, 735, 762; see also

Frequency spectrum
Analog computer, 222
Angerbaur, G. J., 929
Angular frequency, 355, 384
Apparent power, 447, 451, 465, 495, 510, 556

definition of, 447
Argument, 355, 356, 384
Attributes, 869
Autotransformer, 552, 570

definition of, 553
Average power, 435, 445, 464, 495, 509, 730, 750; see also

Real power
Average value, 444, 708, 710

B

Balabanian, N., 929
Balanced load, definition of, 481
Balanced �-� system, 488, 557
Balanced �-Y system, 490, 557
Balanced Y-� system, 486, 557

Balanced Y-Y system, 482, 556
Bandpass filter, 609–611, 615

definition of, 611
Bandstop filter, 609, 611, 616

definition of, 611
Bandwidth, 602, 616, 620, 632
Bandwidth of rejection, 611
Barkhausen criteria, 418
Barkowiak, R. A., 929
Bell, Alexander G., 588, 707
Bell, D. A., 929
Beloved, C., 929
Blackwell, W. A., 929
Bobrow, L. S., 929
Boctor, S. A., 929
Bode, Henrick W., 589
Bode plots, 589, 632

definition of, 589
Boylestad, R. L., 929
Branch, 60

definition of, 33
Break frequency; see Corner frequency
Bridge circuit, 50, 381, 430

types of, 391
Budak, A., 929

C

Capacitance, 202
definition of, 202
for parallel combination, 209
for series combination, 209

Capacitance multiplier, 416, 420
Capacitor, 202, 205, 225

applications of, 202–204, 220
definition of, 202
in parallel, 229
properties of, 205, 219
in series, 229
types of, 203, 205
values of, 203

Carlson, B. A., 929
Cascade connection, 181, 819
Cathode-ray tube, 15, 16
Center frequency, 616
Characteristic equation, 302
Charge

conservation of, 6
definition, 6

Chattergy, R., 929
Chen, W. K., 929
Choudhury, D. R., 929
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Cilentti, M. D., 929
Circuit, 4, 21

analysis of, 4
definition of, 4

Coefficient of coupling; see Coupling coefficient
Communication skill, 119
Communication system, 759
Complete response, 259, 260, 283, 303, 315, 320, 668, 695
Completing the square, 661
Complex conjugate, 361, 854
Complex numbers, 359–361, 851–858

in exponential form, 852
in polar form, 851
in rectangular form, 851

Complex power, 449, 451, 465, 495, 517, 548, 553
Computer; see Analog computer
Computer engineering, 237
Conductance, 31, 60, 371

definition of, 31
Conductance matrix, 95
Conservation of charge, 6, 35
Conservation of energy, 11, 37
Conservation of power, 11, 453, 454
Control systems, 583
Convolution, 677, 695, 771

definition of, 677
properties of, 678

Convolution integral, 677, 695
steps for evaluating, 679

Corner frequency, 591
Coupling; see Magnetic coupling
Coupling coefficient, 537, 569

definition of, 537
Cramer’s rule, 76, 845

definition of, 847
Critically damped response; see Response
Crossover network, 630, 633
Cunningham, D. R., 929
Current

alternating, 7, 21
definition, 7
direct, 7

Current divider, 29, 33, 44, 45
Current division, 44, 61, 374
Current gain, 585, 672
Cutoff frequency, 609

D

Damping, 305
Damping factor, 305, 340, 880
Damping ratio, 303
d’Arsonval meter movement, 57
Davis, A., 929
DeCarlo, R. A., 929
Decibel (dB), 588
Delay circuit, 276
Delta function; see Unit impulse

Delta-connected load, 492, 486, 489
Delta-connected source, 492, 489, 490
Delta-wye transformation, 50, 61, 375
Del Toro, V., 929
Demodulation, 787
Derivatives, 861
Determinant, 846
Direct current, 7, 477, 568

definition of, 7
DC; see Current, direct
DC meters, 56
DC sweep, 873
Difference amplifier; see Amplifier
Differentiator, 221, 426
Digital-to-analog converter, 185
Dirichlet, P. G. L., 709
Dirichlet conditions, 709
Discrete Fourier transform (DFT), 741
Dorf, R. C., 929
Dot convention, 530, 531, 569
Dual circuits, 333, 340
Duality, 332, 606, 668, 771
Duality principle, 333
Durney, C. H., 929

E

Edison, Thomas A., 477, 478
Edminster, J., 929
Education, 795
Effective value, 443, 464

definition of, 443, 444
Electric circuit; see Circuit
Electric current; see Current
Electric shock, 516
Electrical isolation, 553, 564
Electricity bill, 17, 22, 462
Electromagnetics, 527
Electromotive force, 6, 9
Electronic instrument, 165
Electronics, 75
Element, 4

active, 13
passive, 13

Energy, 10, 11
conservation of, 11
consumption of, 17
for coupled coils, 535

Equivalence, 127, 132
Equivalent circuit, 42, 62, 128, 131, 147, 208, 218, 250,

541, 549
of current sources, 37
of op amp, 167
of voltage sources, 38

Euler’s formula, 856
Even function, 720
Excitation, 120, 677
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F

Faraday, Michael, 201, 202
Fast Fourier transform (FFT), 741
Filters, 584, 632, 746, 751

active types, 613
applications of, 626, 628, 630
bandpass, 609, 610
bandstop, 609, 611
definition of, 608
highpass, 609, 610
lowpass, 609
passive types, 608, 613

Final value, 296, 297, 654
Final-value theorem, 655
First-order circuit, 238, 282

definition of, 238
for op amp, 268

Flash unit, 278
Floyd, T. L., 929
Forced response, 259, 314, 315, 320

definition of, 260
Fourier, J. B. Joseph, 707, 708
Fourier analysis, 709

with PSpice, 740
Fourier coefficients, 708, 750
Fourier series, 708, 749

amplitude-phase form, 711, 730, 750
for circuit applications, 727
cosine type, 717
definition of, 709
exponential form, 734, 735, 750, 761
sine type, 719
trigonometric form, 708, 750

Fourier theorem, 708
Fourier transform, 760, 762, 789

applications of, 785
circuit applications of, 779
conditions for existence, 763
definition of, 762
properties of, 766

Franco, S., 929
Franklin, Benjamin, 6
Frequency

damping, 305
fundamental, 708
natural, 303
neper, 303
resonant, 303
undamped natural, 303, 305, 340
unit of, 353

Frequency differentiation, 653
Frequency domain, 363
Frequency of rejection, 611
Frequency response, 584, 631

using PSpice, 622, 632, 886
Frequency shifting, 651, 769
Frequency spectrum, 584, 711, 750

definition of, 711
Fundamental frequency, 708

G

Gain
closed-loop, 168
open-loop, 167

Gate function, 253
Gibbs, Joseph W., 713
Gibbs phenomenon, 713
Goody, R. W., 929
Grigsby, L. L., 929
Grob, B., 929
Ground, 76, 77, 515, 516; see also Reference node

H

Half-power frequencies, 602, 632
Harmonics, 708
Harrison, C. A., 929
Harter, J. J., 929
Hassul, M., 930
Hayt, W. H., 929
Hazen, M. E., 929
Heaviside, Oliver, 660
Heaviside’s theorem, 660
Henry, Joseph, 201
Hernite, M. E., 929
Hertz, H. Rudorf, 353, 356
Highpass filter, 609, 610, 614, 629, 630

definition of, 610
Hostetter, G. H., 929
Hubert, C. I., 929
Huelsman, L. P., 929
Hyperbolic functions, 860

I

IEEE, 295, 353
Ignition circuit, 281, 336, 340
Impedance, 370, 384, 672

definition of, 370
Impedance matching, 548, 566
Impulse response, 673, 695, 780
Induced voltage; see Mutual voltage
Inductance, 528

definition of, 212
parallel combination, 333, 217
series combination, 333, 216

Inductance simulator, 430
Inductor, 202, 211, 226

applications of, 211, 219
definition of, 212
properties of, 213, 214, 219
values of, 212

Initial conditions, 667
Initial value, 296, 297, 654
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Initial-value theorem, 655
Instantaneous power, 10, 434, 494, 517
Instrumentation amplifier, 177, 187
Integrals, 861–863
Integration by parts, 861
Integrator, 220, 428
Integrodifferential equations, 685, 695
International System of Units, 4, 5, 21
Inverse Fourier transform, 762, 789
Inverse Laplace transform, 647, 648, 695

steps for finding, 659
Inverting amplifier; see Amplifier
Irwin, J. D., 929

J

Jackson, H. W., 929
Johnson, D. E., 929

K

Karni, S., 929
Katz, L., 929
Kemmerly, J. E., 929
Kinariwala, B. K., 930
Kirchhoff, G. Robert, 27, 35
Kirchhoff’s laws, 35
Kirchhoff’s current law (KCL), 36, 61, 372, 394

definition of, 36
in frequency domain, 372

Kirchhoff’s voltage law (KVL), 37, 61, 373, 397
definition of, 37

Kraus, A. D., 929

L

Ladder method, 673
Ladder network, 831, 834
Lagging, 356, 368, 370

power factor, 448
Laplace, P. Simon, 645
Laplace transform, 645, 646, 694

applications of, 687
definition of, 646
properties of, 649–656
steps for applying, 667

Lawson, W., 929
Leach, D. P., 929
Leading, 356, 368, 370

power factor, 448
L’Hopital’s rule, 863
Lighting system, 55
Lin, P. M., 929
Lin, P. Y., 929
Line current, 484, 487, 489, 491, 492, 500, 517

Line spectra, 736
Line voltage, 483, 484, 486, 489, 490, 492
Linear circuit, 120, 153

definition of, 121
Linear capacitor, 204
Linearity, 120, 333, 649, 766
Load, 57

balanced type, 481
three-phase type, 481
unbalanced type, 481

Loading effect, 148
Logarithm, 588
Loop, 34, 87

definition of, 34
Loop analysis; see Mesh analysis
Lowpass filter, 609, 614, 629, 630

definition of, 610

M

Madhu, S., 929
Magnetic coupling, 528, 529

loosely type, 537
perfect type, 537, 545
tightly type, 537

Magnitude, 585
Maloney, T. J., 929
Maximum power transfer, 153, 556

for AC circuits, 440, 441
for DC circuits, 142–144

Mayergoyz, I. D., 929
Mesh, 87

definition of, 88
Mesh analysis, 87, 92, 397

by inspection, 95–96
versus nodal analysis, 99
steps for, 89

Method of algebra, 662
Morse, Samuel, 150, 645
Mottershead, A., 930
Multimeter, 57
Mutual inductance, 528–530, 539, 569

definition of, 530
Mutual voltage, 529, 530, 569

N

Napier, John, 303
Nasar, S. A., 930
National Electrical Code (NEC), 515
Natural response, 239, 259, 282, 301, 303, 314, 320, 340

definition of, 239
Negative sequence; see ACB sequence
Netlist, 873
Network, 33

balanced type, 52, 375
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Network stability, 687, 695
definition of, 688

Network synthesis, 691, 695, 630
definition of, 691

Network topology, 33, 34
Neudorfer, P. O., 930
Nilsson, J. W., 930
Nodal analysis, 76, 82, 394

by inspecton, 95
versus mesh analysis, 99
steps for, 76

Node, 33
Noninverting amplifier; see Amplifier
Norton’s theorem, 137, 138, 153, 406

definition of, 137
derivation of, 140
with PSpice, 144

Notch filter; see Bandstop filter
Nyquist frequency/rate, 789, 790

O

Odd function, 720
Ohm, Georg, 27, 29
Ohm’s law, 28, 779

definition of, 29
Ohmmeter, 59
O’Malley, J. R., 930
Op amp, 166

applications of, 185
definition of, 166
first-order ciruit, 268
ideal type, 170, 189
properties of, 170, 411
with PSpice, 183
second-order circuit, 327

Open circuit, 30, 60
definition of, 30

Operational amplifier; see Op amp
Oscillation, 305, 306
Oscillator, 418, 420, 627, 689

definition of, 418
types of, 431

Oscilloscope, 223, 746, 867
Overdamped response; see Response

P

Papoulis, A., 930
Parallel combination, 61

of capacitors, 229, 208
definition of, 34
of impedances, 374
of inductors, 233, 215
of resistors, 43
of two-ports, 818

Parameters, 796
admittance or y type, 801
computation with PSpice, 823
hybrid or h type, 805, 827
immittance type, 801
impedance or z type, 796, 797
inverse hybrid or g type, 805
inverse transmission or abcd type, 811
transmission or ABCD type, 810

Parrett, R., 930
Parseval, Marc-Antonie, 732
Parseval theorem, 732, 735, 751, 782, 789
Partial fraction expansion, 659
Passive filters, 608

limitations of, 613
Passive sign convention, 10, 22, 874

for capacitor, 203
definition of, 10
for inductor, 212
for mutual voltage, 530
for resistor, 29

Paul, C. R., 930
Period, 355, 356
Periodic function, 355, 654, 708, 746, 749

definition, 355
Phase, 356, 384, 585
Phase current, 484, 485, 487, 491, 492, 494, 517
Phase diagram, 481
Phase voltage, 480, 484, 486, 489, 490, 492, 494, 517

balanced type, 480
Phase sequence, 481, 516

definition of, 481
Phase-shifters, 379
Phase spectrum, 711, 735, 762
Phasor, 359, 361–363, 384

definition of, 359
Phasor diagram, 362, 368, 369, 487
Phasor domain, 363
Phasor representation, 361

of circuit elements, 367–368
Poles, 585, 591, 631, 659, 688

definition of, 585
Polyphase, 478
Port, 796
Positive sequence; see ABC sequence
Pot; see Potentiometer
Potential difference; see Voltage
Potentiometer, 56
Poularikas, A. D., 930
Power, 10, 22, 31, 121,123, 333, 731, 732

apparent power, 447, 451, 465
average, 435, 445, 464
complex, 449, 465
conservation of, 11, 453
definition of, 10
instantaneous, 10, 434, 464
reactive, 450, 451, 465

Power distribution, 567
Power factor, 447, 451, 462, 464, 509, 510

definition of, 448
Power factor angle, 447, 450, 451, 510
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Power factor correction, 457, 458, 465
definition of, 457

Power grid, 568
Power measurement, 459

for three-phase systems, 508
Power spectrum, 735
Power systems, 433, 567
Power triangle, 451
Probe, 866
Problem solving, 18–21
PSpice, 100, 107, 144, 153, 865

for AC analysis, 413
for coupled circuits, 559
for DC analysis, 872
for Fourier analysis, 740
for frequency response, 622
for op amp, 183
for three-phase systems, 504
for two-port parameters, 823
transient analysis, 273, 283, 330, 340

Q

Quadratic formula, 859
Quality factor, 603, 616, 620, 632

definition of, 603

R

Radio receiver, 626, 632
Reactance, 370
Reactive power, 450, 451, 465, 495, 510, 556
Real power, 451, 464, 517, 556; see also Average power
Rectifier, 564
Reference node, 76
Reflected impedance, 541, 548
Relay circuit, 280
Residential wiring, 514
Residue method, 660
Resistance, 28, 60

definition of, 29, 390
Resistance matrix, 96
Resistance measurement, 150, 153
Resistivity, 28
Resistor, 28,

applications of, 54
types of, 30

Resonance
definition of, 601
parallel type, 605
series type, 600

Resonant circuit, 601, 603, 604
applications of, 626

Resonant frequency, 601, 620, 632
Response, 120, 677

critically damped, 303, 315, 340

overdamped, 303, 315, 340
underdamped, 304. 315, 340

Reversal, 770
RC circuit, 238

applications of, 276, 278
Ringing, 305, 306
Ridsdale, R. E., 930
Riedel, S. A., 930
RL circuit, 243

applications of, 280, 281
RLC circuit, 296, 340

applications of, 336, 338
parallel type, 308, 319
properties of, 305
series type, 301, 314

RMS; see Root-mean-square
Root-mean-square (rms) value, 730, 731, 750; see also

Effective value
Rosa, A. J., 930

S

Sampling, 338, 788, 790
Sampling function, 736
Sampling rate, 788
Sampling theorem, 746, 788
Sander, K. F., 930
Sawtooth function, 254
Scaling, 619, 632, 649, 767

frequency type, 620, 621
magnitude type, 619, 621

Schematics, 866, 867
Scott, D., 930
Second-order circuits, 296, 302, 322, 327, 340

definition of, 296
Selectivity, 603
Self-inductance, 529
Series combination, 61

of capacitors, 229, 209
defintion of, 34
impedances, 373
of inductors, 233, 216
of resistors, 42
of two-ports, 817

Short circuit, 29, 60
definition of, 30

SI unit; see International System of Units
Signal, 9
Signum function, 776
Simulation, 865, 866, 882, 887
Sinc function, 736
Singularity functions, 249

definition of, 249
Sinor, 361
Sinusoid, 354

definition of, 354
Smith, K. C., 930
Smoothing circuit, 338, 340
Software engineering, 393
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Source
dependent type, 13, 22
ideal type, 13, 14, 22
independent type, 13, 22

Source-free circuits, 238
RC type, 238
RL type, 243
RLC type, 301, 308

Source modeling, 147, 153, 154
Source resistance, 148
Source transformation, 127, 128, 129, 138, 153, 404
Spectrum analyzer, 746, 747, 751
Stanley, W. D., 930
Steady-state response, 259; see also Forced response
Steinmetz, C. Proteus, 353, 359
Step response, 257, 283, 322

definition of, 258
of RC circuit, 257
of RL circuit, 263
of RLC circuit, 314, 319

Storage elements, 202
Strum, R. D., 930
Stuller, J. A., 929
Subtractor, 177, 178
Summing amplifier; see Amplifier
Summer, 176; see also Amplifier, summing type
Supermesh, 92,107, 399

definition of, 92
properties of, 93

Supernode, 83, 107, 396
definition of, 83
properties of, 84

Superposition, 122, 140, 153, 400, 420
definition of, 123

Susceptance, 371
Svoboda, J. A., 929
Sweeps, 622

types of, 622
Switching functions; see Singularity functions
Symmetry, 717

even type, 717
half-wave type, 720
odd type, 719

Synthesis; see Network synthesis

T

Tesla, Nikola, 447
Thevenin theorem, 131–133, 137, 153, 406

definition of, 131
derivation of, 140
with PSpice, 144

Thomas, R. E., 930
Three-phase system, 478, 479, 496
Three-wattmeter method, 508
Three-wire system, 478, 496
Time constant, 239–241, 244, 277, 278, 281, 282

definition of, 240

Time differentiation, 651, 769
Time integration, 652, 770
Time periodicity, 654
Time scaling, 767
Time shifting, 650, 768
Tocci, R. J., 930
Total response, 400; see also Complete response
Touch-tone telephone, 628, 633
Transfer admittance, 585, 672
Transfer function, 584, 589, 631, 672–673, 691, 695,

779, 789
definition of, 584, 672, 673

Transfer impedance, 585, 672
Transformer, 338, 528, 569

air-core type, 540, 569
applications of, 528, 546
definition of, 539
ideal type, 545, 546, 570, 798
isolation type, 547, 564
linear type, 539, 540, 569
matching type, 566
step-down type, 547
step-up type, 547
three-phase type, 556, 570
types of, 564

Transient response, 259, 282
with PSpice, 273

Transistor, 102–104, 107, 826, 834
Transmission lines, 479
Trigonometric identities, 859
Tuinenga, P. W., 930
Turns ratio, 546
TV picture tube, 15, 22
Two-phase system, 478
Two-port network, 796, 833

applications of, 826, 830
definition of, 796
interconnection of, 817
reciprocal type, 798, 834
symmetrical type, 798

Two-port network parameters; see Parameters
Two-wattmeter method, 509, 517
Two-wire system, 478, 495

U

Unbalanced load, 481
Unbalanced system, 500, 517

definition of, 500
Underdamped response; see Response
Unit impulse, 251, 283

definition of, 251
sifting property of, 252

Unit ramp, 252, 283
definition of, 252

Unit step, 250, 282
definition of, 250
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V

Van Valkenburg, M. E., 930
Varmeter, 459
Volta, Alessandro Antonio, 3, 9
Voltage, 9, 22
Voltage divider, 42
Voltage division, 229, 233, 42, 56, 61, 373
Voltage follower, 174, 189, 416
Voltage gain, 585, 672
Voltmeter, 57

sensitivity of, 60

W

Ward, J. R., 930
Wattmeter, 435, 459, 465, 508

definition of, 460

Wheatstone, Charles, 150
Wheatstone bridge, 150, 153
White, P. A., 929
Whitehouse, J. E., 930
Wye-connected load, 492, 482, 490
Wye-connected source, 482, 486
Wye-delta transformation, 50, 51, 61, 375

Y

Yorke, R., 930

Z

Zeros, 585, 591, 631, 659, 688
definition of, 585




