
Software
Metrics

A Rigorous and
Practical Approach

T H I R D E D I T I O N

Chapman & Hall/CRC Innovations in Software Engineering
and Software Development

Series Editor
Richard LeBlanc

Chair, Department of Computer Science and Software Engineering, Seattle University

AIMS AND SCOPE

This series covers all aspects of software engineering and software development. Books
in the series will be innovative reference books, research monographs, and textbooks at
the undergraduate and graduate level. Coverage will include traditional subject matter,
cutting-edge research, and current industry practice, such as agile software development
methods and service-oriented architectures. We also welcome proposals for books that
capture the latest results on the domains and conditions in which practices are most ef-
fective.

PUBLISHED TITLES

Software Essentials: Design and Construction
Adair Dingle

Software Test Attacks to Break Mobile and Embedded Devices
Jon Duncan Hagar

Software Designers in Action: A Human-Centric Look at Design Work
André van der Hoek and Marian Petre

Fundamentals of Dependable Computing for Software Engineers
John Knight

Introduction to Combinatorial Testing
D. Richard Kuhn, Raghu N. Kacker, and Yu Lei

Building Enterprise Systems with ODP: An Introduction to Open
Distributed Processing
Peter F. Linington, Zoran Milosevic, Akira Tanaka, and Antonio Vallecillo

Software Engineering: The Current Practice
Václav Rajlich

Software Development: An Open Source Approach
Allen Tucker, Ralph Morelli, and Chamindra de Silva

Software Metrics: A Rigorous and Practical Approach, Third Edition
Norman Fenton and James Bieman

CHAPMAN & HALL/CRC INNOVATIONS IN
SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT

Norman Fenton
Queen Mary University of London, UK

James Bieman
Colorado State University, Fort Collins, USA

Software
Metrics

A Rigorous and
Practical Approach

T H I R D E D I T I O N

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140728

International Standard Book Number-13: 978-1-4398-3823-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface, xvii

Acknowledgments, xix

Authors, xxi

Part I Fundamentals of Measurement and Experimentation

ChaPter 1 ◾ Measurement: What Is It and Why Do It? 3
1.1 MEASUREMENT IN EVERYDAY LIFE 4

1.1.1 What Is Measurement? 4
1.1.2 “What Is Not Measurable Make Measurable” 7

1.2 MEASUREMENT IN SOFTWARE ENGINEERING 11

1.2.1 Neglect of Measurement in Software Engineering 12
1.2.2 Objectives for Software Measurement 14

1.2.2.1 Managers 14
1.2.2.2 Developers 15

1.2.3 Measurement for Understanding, Control, and
Improvement 16

1.3 SCOPE OF SOFTWARE METRICS 17

1.3.1 Cost and Effort Estimation 18
1.3.2 Data Collection 18
1.3.3 Quality Models and Measures 19
1.3.4 Reliability Models 19
1.3.5 Security Metrics 20
1.3.6 Structural and Complexity Metrics 20
1.3.7 Capability Maturity Assessment 20

vi ◾ Contents

1.3.8 Management by Metrics 21
1.3.9 Evaluation of Methods and Tools 21

1.4 SUMMARY 22

EXERCISES 22

ChaPter 2 ◾ The Basics of Measurement 25
2.1 THE REPRESENTATIONAL THEORY OF MEASUREMENT 26

2.1.1 Empirical Relations 27
2.1.2 The Rules of the Mapping 32
2.1.3 The Representation Condition of Measurement 33

2.2 MEASUREMENT AND MODELS 40

2.2.1 Defining Attributes 42
2.2.2 Direct and Derived Measurement 44
2.2.3 Measurement for Prediction 47

2.3 MEASUREMENT SCALES AND SCALE TYPES 51

2.3.1 Nominal Scale Type 53
2.3.2 Ordinal Scale Type 54
2.3.3 Interval Scale Type 56
2.3.4 Ratio Scale Type 58
2.3.5 Absolute Scale Type 59

2.4 MEANINGFULNESS IN MEASUREMENT 61

2.4.1 Statistical Operations on Measures 65
2.4.2 Objective and Subjective Measures 68
2.4.3 Measurement in Extended Number Systems 70
2.4.4 Derived Measurement and Meaningfulness 75

2.5 SUMMARY 78

EXERCISES 79

REFERENCES 84

FURTHER READING 85

ChaPter 3 ◾ A Goal-Based Framework for Software
Measurement 87

3.1 CLASSIFYING SOFTWARE MEASURES 87

Contents ◾ vii

3.1.1 Processes 91
3.1.2 Products 92

3.1.2.1 External Product Attributes 93
3.1.2.2 Internal Product Attributes 93
3.1.2.3 The Importance of Internal Attributes 95
3.1.2.4 Internal Attributes and Quality Control

and Assurance 96
3.1.2.5 Validating Composite Measures 96

3.1.3 Resources 98
3.1.4 Change and Evolution 99

3.2 DETERMINING WHAT TO MEASURE 100

3.2.1 Goal-Question-Metric Paradigm 100
3.2.2 Measurement for Process Improvement 105
3.2.3 Combining GQM with Process Maturity 108

3.3 APPLYING THE FRAMEWORK 110

3.3.1 Cost and Effort Estimation 110
3.3.2 Productivity Measures and Models 112
3.3.3 Data Collection 112
3.3.4 Quality Models and Measures 113
3.3.5 Reliability Models 113
3.3.6 Structural and Complexity Metrics 114
3.3.7 Management by Metrics 115
3.3.8 Evaluation of Methods and Tools 116

3.4 SOFTWARE MEASUREMENT VALIDATION 117

3.4.1 Validating Prediction Systems 117
3.4.2 Validating Measures 119
3.4.3 A Mathematical Perspective of Metric Validation 120

3.5 PERFORMING SOFTWARE MEASUREMENT
VALIDATION 121

3.5.1 A More Stringent Requirement for Validation 122
3.5.2 Validation and Imprecise Definition 124
3.5.3 How Not to Validate 125
3.5.4 Choosing Appropriate Prediction Systems 126

viii ◾ Contents

3.6 SUMMARY 127

EXERCISES 129

FURTHER READING 131

ChaPter 4 ◾ Empirical Investigation 133
4.1 PRINCIPLES OF EMPIRICAL STUDIES 134

4.1.1 Control of Variables and Study Type 135
4.1.2 Study Goals and Hypotheses 139
4.1.3 Maintaining Control over Variables 141
4.1.4 Threats to Validity 143
4.1.5 Human Subjects 144

4.2 PLANNING EXPERIMENTS 145

4.2.1 A Process Model for Performing Experiments 145
4.2.1.1 Conception 146
4.2.1.2 Design 146
4.2.1.3 Preparation 150
4.2.1.4 Execution 150
4.2.1.5 Analysis 150
4.2.1.6 Dissemination and Decision-Making 150

4.2.2 Key Experimental Design Concepts 151
4.2.2.1 Replication 153
4.2.2.2 Randomization 154
4.2.2.3 Local Control 155

4.2.3 Types of Experimental Designs 157
4.2.3.1 Crossing 159
4.2.3.2 Nesting 159

4.2.4 Selecting an Experimental Design 161
4.2.4.1 Choosing the Number of Factors 162
4.2.4.2 Factors versus Blocks 164
4.2.4.3 Choosing between Nested and Crossed

Designs 165
4.2.4.4 Fixed and Random Effects 169

Contents ◾ ix

4.2.4.5 Matched- or Same-Subject Designs 170
4.2.4.6 Repeated Measurements 170

4.3 PLANNING CASE STUDIES AS QUASI-EXPERIMENTS 171

4.3.1 Sister Projects 172
4.3.2 Baselines 172
4.3.3 Partitioned Project 173
4.3.4 Retrospective Case Study 173

4.4 RELEVANT AND MEANINGFUL STUDIES 173

4.4.1 Confirming Theories and “Conventional Wisdom” 174
4.4.2 Exploring Relationships 175
4.4.3 Evaluating the Accuracy of Prediction Models 177
4.4.4 Validating Measures 178

4.5 SUMMARY 179

EXERCISES 180

FURTHER READING 181

REFERENCES 182

ChaPter 5 ◾ Software Metrics Data Collection 183
5.1 DEFINING GOOD DATA 184

5.2 DATA COLLECTION FOR INCIDENT REPORTS 185

5.2.1 The Problem with Problems 186
5.2.2 Failures 191
5.2.3 Faults 197
5.2.4 Changes 203

5.3 HOW TO COLLECT DATA 204

5.3.1 Data Collection Forms 208
5.3.2 Data Collection Tools 211

5.4 RELIABILITY OF DATA COLLECTION PROCEDURES 213

5.5 SUMMARY 214

EXERCISES 216

REFERENCES 222

FURTHER READING 222

x ◾ Contents

ChaPter 6 ◾ Analyzing Software Measurement Data 225
6.1 STATISTICAL DISTRIBUTIONS AND

HYPOTHESIS TESTING 226

6.1.1 Probability Distributions 226
6.1.2 Hypothesis Testing Approaches 231

6.2 CLASSICAL DATA ANALYSIS TECHNIQUES 232

6.2.1 Nature of the Data 233
6.2.1.1 Sampling, Population, and Data

Distribution 233
6.2.1.2 Distribution of Software Measurements 236
6.2.1.3 Statistical Inference and Classical

Hypothesis Testing 239
6.2.2 Purpose of the Experiment 241

6.2.2.1 Confirming a Theory 241
6.2.2.2 Exploring a Relationship 242

6.2.3 Decision Tree 243
6.3 EXAMPLES OF SIMPLE ANALYSIS TECHNIQUES 243

6.3.1 Box Plots 243
6.3.2 Bar Charts 247
6.3.3 Control Charts 248
6.3.4 Scatter Plots 250
6.3.5 Measures of Association 252
6.3.6 Robust Correlation 253
6.3.7 Linear Regression 255
6.3.8 Robust Regression 257
6.3.9 Multivariate Regression 259

6.4 MORE ADVANCED METHODS 259

6.4.1 Classification Tree Analysis 259
6.4.2 Transformations 261
6.4.3 Multivariate Data Analysis 264

6.4.3.1 Principal Component Analysis 264
6.4.3.2 Cluster Analysis 267
6.4.3.3 Discriminant Analysis 267

Contents ◾ xi

6.5 MULTICRITERIA DECISION AIDS 267

6.5.1 Basic Concepts of Multicriteria Decision-Making 268
6.5.2 Multiattribute Utility Theory 274
6.5.3 Outranking Methods 276
6.5.4 Bayesian Evaluation of Multiple Hypotheses 278

6.6 OVERVIEW OF STATISTICAL TESTS 279

6.6.1 One-Group Tests 279
6.6.1.1 Binomial Test 280
6.6.1.2 Chi-Squared Test for Goodness of Fit 280
6.6.1.3 Kolmogorov–Smirnov One-Sample Test 281
6.6.1.4 One-Sample Runs Test 281
6.6.1.5 Change-Point Test 281

6.6.2 Two-Group Tests 281
6.6.2.1 Tests to Compare Two Matched or

Related Groups 282
6.6.2.2 Tests to Compare Two Independent Groups 283

6.6.3 Comparisons Involving More than Two Groups 283
6.7 SUMMARY 284

EXERCISES 285

REFERENCE 289

FURTHER READING 289

ChaPter 7 ◾ Metrics for Decision Support: The Need
for Causal Models 291

7.1 FROM CORRELATION AND REGRESSION TO
CAUSAL MODELS 293

7.2 BAYES THEOREM AND BAYESIAN NETWORKS 301

7.3 APPLYING BAYESIAN NETWORKS TO THE PROBLEM
OF SOFTWARE DEFECTS PREDICTION 306

7.3.1 A Very Simple BN for Understanding Defect
Prediction 307

7.3.2 A Full Model for Software Defects and Reliability
Prediction 310

7.3.3 Commercial Scale Versions of the Defect
Prediction Models 314

xii ◾ Contents

7.4 BAYESIAN NETWORKS FOR SOFTWARE PROJECT
RISK ASSESSMENT AND PREDICTION 320

7.5 SUMMARY 328

EXERCISES 329

FURTHER READING 330

Part II Software Engineering Measurement

ChaPter 8 ◾ Measuring Internal Product Attributes: Size 335
8.1 PROPERTIES OF SOFTWARE SIZE 336

8.2 CODE SIZE 339

8.2.1 Counting Lines of Code to Measure Code Size 339
8.2.2 Halstead’s Approach 344
8.2.3 Alternative Code Size Measures 346
8.2.4 Dealing with Nontextual or External Code 347

8.3 DESIGN SIZE 348

8.4 REQUIREMENTS ANALYSIS AND SPECIFICATION
 SIZE 350

8.5 FUNCTIONAL SIZE MEASURES AND ESTIMATORS 351

8.5.1 Function Points 352
8.5.1.1 Function Points for Object-Oriented

Software 355
8.5.1.2 Function Point Limitations 356

8.5.2 COCOMO II Approach 358
8.6 APPLICATIONS OF SIZE MEASURES 360

8.6.1 Using Size to Normalize Other Measurements 360
8.6.2 Size-Based Reuse Measurement 361
8.6.3 Size-Based Software Testing Measurement 363

8.7 PROBLEM, SOLUTION SIZE, COMPUTATIONAL
COMPLEXITY 364

8.8 SUMMARY 365

EXERCISES 366

FURTHER READING 368

Contents ◾ xiii

ChaPter 9 ◾ Measuring Internal Product Attributes:
Structure 371

9.1 ASPECTS OF STRUCTURAL MEASURES 372

9.1.1 Structural Complexity Properties 373
9.1.2 Length Properties 373
9.1.3 Coupling Properties 374
9.1.4 Cohesion Properties 375
9.1.5 Properties of Custom Attributes 375

9.2 CONTROL FLOW STRUCTURE OF PROGRAM UNITS 376

9.2.1 Flowgraph Model and the Notion of Structured
Programs 377
9.2.1.1 Sequencing and Nesting 381
9.2.1.2 Generalized Notion of Structuredness 384
9.2.1.3 Prime Decomposition 386

9.2.2 Hierarchical Measures 388
9.2.2.1 McCabe’s Cyclomatic Complexity Measure 391
9.2.2.2 McCabe’s Essential Complexity Measure 393

9.2.3 Code Structure and Test Coverage Measures 394
9.2.3.1 Minimum Number of Test Cases 399
9.2.3.2 Test Effectiveness Ratio 401

9.3 DESIGN-LEVEL ATTRIBUTES 402

9.3.1 Models of Modularity and Information Flow 402
9.3.2 Global Modularity 404
9.3.3 Morphology 405
9.3.4 Tree Impurity 406
9.3.5 Internal Reuse 409
9.3.6 Information Flow 410
9.3.7 Information Flow: Test Coverage Measures 412

9.4 OBJECT-ORIENTED STRUCTURAL ATTRIBUTES
AND MEASURES 414

9.4.1 Measuring Coupling in Object-Oriented Systems 416
9.4.2 Measuring Cohesion in Object-Oriented Systems 418
9.4.3 Object-Oriented Length Measures 421

xiv ◾ Contents

9.4.4 Object-Oriented Reuse Measurement 422
9.4.5 Design Pattern Use 423

9.5 NO SINGLE OVERALL “SOFTWARE COMPLEXITY”
MEASURE 425

9.6 SUMMARY 428

EXERCISES 429

APPENDICES TO CHAPTER 9 433

A.1 McCabe’s Testing Strategy 433
A.1.1 Background 433
A.1.2 The Strategy 434

A.2 Computing Test Coverage Measures 436
FURTHER READING 437

ChaPter 10 ◾ Measuring External Product Attributes 441
10.1 MODELING SOFTWARE QUALITY 442

10.1.1 Early Models 443
10.1.2 Define-Your-Own Models 447
10.1.3 ISO/IEC 9126-1 and ISO/IEC 25010 Standard

Quality Models 447
10.2 MEASURING ASPECTS OF QUALITY 449

10.2.1 Defects-Based Quality Measures 450
10.2.1.1 Defect Density Measures 450
10.2.1.2 Other Quality Measures Based on Defect

Counts 455
10.3 USABILITY MEASURES 456

10.3.1 External View of Usability 457
10.3.2 Internal Attributes Affecting Usability 459

10.4 MAINTAINABILITY MEASURES 460

10.4.1 External View of Maintainability 462
10.4.2 Internal Attributes Affecting Maintainability 463

10.5 SECURITY MEASURES 466

10.5.1 External View of Security 467
10.5.2 Internal Attributes Affecting Security 470

Contents ◾ xv

10.6 SUMMARY 470

EXERCISES 471

FURTHER READING 473

ChaPter 11 ◾ Software Reliability: Measurement
and Prediction 475

11.1 BASICS OF RELIABILITY THEORY 476

11.2 THE SOFTWARE RELIABILITY PROBLEM 484

11.3 PARAMETRIC RELIABILITY GROWTH MODELS 490

11.3.1 The Jelinski–Moranda Model 492
11.3.2 Other Models Based on JM 494
11.3.3 The Littlewood Model 495
11.3.4 The Littlewood–Verrall Model 495
11.3.5 Nonhomogeneous Poisson Process Models 496
11.3.6 General Comments on the Models 497

11.4 PREDICTIVE ACCURACY 497

11.4.1 Dealing with Bias: The u-Plot 499
11.4.2 Dealing with Noise 502
11.4.3 Prequential Likelihood Function 503
11.4.4 Choosing the Best Model 508

11.5 RECALIBRATION OF SOFTWARE RELIABILITY
GROWTH PREDICTIONS 508

11.6 IMPORTANCE OF THE OPERATIONAL
 ENVIRONMENT 517

11.7 WIDER ASPECTS OF SOFTWARE RELIABILITY 518

11.8 SUMMARY 523

EXERCISES 523

FURTHER READING 526

APPENDIX: SOLUTIONS TO SELECTED EXERCISES, 529

BIBLIOGRAPHY, 555

INDEX, 577

xvii

Preface

Software metrics play a key role in good software engineering.
Measurement is used to assess situations, track progress, evaluate effec-

tiveness, and more. But the gap between how we do measure and how we
could measure remains larger than it should be. A key reason for this gap
between potential and practice was the lack of a coordinated, comprehen-
sive framework for understanding and using measurement. The rigorous
measurement framework introduced by the highly successful first edition
of Software Metrics: A Rigorous Approach in 1991 and second edition of
Software Metrics: A Rigorous and Practical Approach in 1997 has helped
to advance the role of measurement by inspiring discussion of important
issues, explaining essential concepts, and suggesting new approaches for
tackling long-standing problems.

As one of the first texts on software metrics, the first edition broke new
ground by introducing software engineers to measurement theory, graph-
theoretic concepts, and new approaches to software reliability. The second
edition added material on practical applications and expanded the frame-
work to include notions of process visibility and goal-directed measure-
ment. The new third edition reflects the great progress in the development
and use of software metrics over the past decades. This progress includes
the acceptance of quantitative analysis and empirical evaluation of soft-
ware development methods in both research and practice. We have seen
the emergence of numerous research journals and conferences that focus
on quantitative and empirical methods applied to software engineering
problems. The SEI Capability Maturity Model Integration (CMMI) for
development, which relies on metrics, is now commonly used to evaluate
the maturity of development organizations.

This third edition contains new material relevant to object-oriented
design, design patterns, model-driven development, and agile develop-
ment processes. Of particular note is the new chapter on causal models

xviii ◾ Preface

and Bayesian networks and their application to software engineering. The
text also includes references to recent software metrics activities, includ-
ing research results, industrial case studies, and standards. Along with the
new material, the book contains numerous examples and exercises, and
thus continues to provide an accessible and comprehensive introduction
to software metrics.

This book is designed to suit several audiences. It is structured as the
primary textbook for an academic or industrial course on software met-
rics and quality assurance. But it is also a useful supplement for any course
in software engineering. Because of its breadth, the book is a major refer-
ence book for academics and practitioners, as it makes accessible impor-
tant and interesting results that have appeared only in research-oriented
publications. Researchers in software metrics will find special interest in
the material reporting new results, and in the extensive bibliography of
measurement-related information. Finally, the book offers help to software
managers and developers who seek guidance on establishing or expanding
a measurement program; they can focus on the practical guidelines for
selecting metrics and planning their use.

The book is arranged in two parts. Part I offers the reader a basic under-
standing of why and how we measure. It examines and explains the fun-
damentals of measurement, experimentation, and data collection and
analysis. Part II explores software engineering measurement in greater
detail, with comprehensive information about a range of specific metrics
and their uses, illustrated by many examples and case studies. The book
also includes a bibliography and answers to selected exercises from the
main chapters.

xix

Acknowledgments

This book has been fashioned and influenced by many people over
the last few years. We thank the reviewers of preliminary manu-

scripts, including Olga Ormandjieva and Salem N. Salloum. We thank our
editors Alan Apt and Randi Cohen for their patience and help throughout
this process.

We specially thank Shari Lawrence Pfleeger for her many contributions
as co-author of the second edition. We are still indebted to Bev Littlewood,
Barbara Kitchenham, and Peter Mellor for key contributions to the first
edition, and for allowing us to embellish their ideas. Sadly, Peter passed
away before this edition was completed.

Special thanks are also due to those who did so much to help with
the original edition, notably Martin Bush, Ros Herman, Agnes Kaposi,
David Mole, Meg Russell, and Robin Whitty. Other colleagues have
given us helpful advice, including Nick Ashley, Richard Bache, Bill Bail,
Albert Baker, Vic Basili, Sarah Brocklehurst, Tom DeMarco, Bob Grady,
Dave Gustafson, Les Hatton, Gillian Hill, Chuck Howell, Bob Lockhart,
Austin Melton, Steve Minnis, Margaret Myers, Martin Neil, Linda Ott,
Stella Page, Gerald Robinson, Dieter Rombach, Chuck Pfleeger, Suzanne
Robertson, James Robertson, Lorenzo Strigini, Alan Todd, Dave Wright,
and Marv Zelkowitz. We also appreciate the efforts of Armstrong Takang,
Faridah Yahya, Christof Ebert, Aimo Torn, Pim van den Broek, Rachel
Harrison, Alexander Chatzigeorgiou, Cem Kaner, Robin Laney, P. van
der Straaten, Metin Turan, and numerous others who have pointed out
problems with previous editions that we have corrected here. We also
thank the graduate teaching assistants, especially Aritra Bandyopadhyay
and Chris Wilcox, who helped to develop several of the exercises included
in this edition.

We continue to be indebted to the European Commission, whose
ESPRIT-funded METKIT and PDCS projects partly supported the

xx ◾ Acknowledgments

writing of the first edition; British Telecom Research Laboratories and
NATO also supported some of the initial work. We are grateful to the
UK Engineering and Physical Sciences Research Council and the UK
Department of Trade and Industry, whose DESMET, SMARTIE, and
DATUM projects supported some of the work.

xxi

Authors

Norman Fenton, PhD, is a professor of risk information management at
Queen Mary London University and is also the chief executive officer of
Agena, a company that specializes in risk management for critical systems.
His experience in risk assessment covers a wide range of application
domains such as critical software systems, legal reasoning (he has been
an expert witness in major criminal and civil cases), medical trials, vehi-
cle reliability, embedded software, transport systems, financial services,
and football prediction. He has published 6 books and more than 140
refereed articles and has provided consulting to many major companies
worldwide. His current projects are focused on using Bayesian methods
of analysis to risk assessment. In addition to his research on risk assess-
ment, he is renowned for his work in software engineering and software
metrics, including the pioneering work in previous editions of this book.
Further details can be found at http:// www. eecs. qmul. ac. uk/ ~norman/.

James M. Bieman, PhD, is a professor of computer science at Colorado State
University. He served as the founding director of the Software Assurance
Laboratory, a Colorado State University Research Center. His research focus
is on the evaluation of software designs and processes. His current research
is directed toward ways to test nontestable software—software without a test
oracle, which includes many scientific software systems. He is also studying
techniques that support automated software repair. His long-term research
involves studying the relationships between internal design attributes, such as
coupling, cohesion, architectural contexts, and the use of design patterns, and
external attributes such as maintainability, reliability, and testability. Professor
Bieman served as the editor-in-chief of the Software Quality Journal published
by Springer, from 2001 to 2009, and he serves on the editorial boards of the
Software Quality Journal and the Journal of Software and Systems Modeling.
Further details are available at http:/ / www. cs. colostate. edu/ ~bieman/.

http://www.eecs.qmul.ac.uk
http://

1

I
Fundamentals of Measurement and

Experimentation

3

C h a p t e r 1

Measurement
What Is It and Why Do It?

Software measurement is an essential component of good software
engineering. Many of the best software developers measure charac-

teristics of their software to get some sense of whether the requirements
are consistent and complete, whether the design is of high quality, and
whether the code is ready to be released. Effective project managers mea-
sure attributes of processes and products to be able to tell when soft-
ware will be ready for delivery and whether a budget will be exceeded.
Organizations use process evaluation measurements to select software
suppliers. Informed customers measure the aspects of the final product
to determine if it meets the requirements and is of sufficient quality. Also,
maintainers must be able to assess the current product to see what should
be upgraded and improved.

This book addresses these concerns and more. The first seven chapters
examine and explain the fundamentals of measurement and experimenta-
tion, providing you with a basic understanding of why we measure and how
that measurement supports investigation of the use and effectiveness of
software engineering tools and techniques. Chapters 8 through 11 explore
software engineering measurement in further detail, with information
about specific metrics and their uses. Collectively, the chapters offer broad
coverage of software engineering measurement with enough depth so that
you can apply appropriate metrics to your software processes, products,
and resources. Even if you are a student, not yet experienced in working
on projects with groups of people to solve interesting business or research

4 ◾ Software Metrics

problems, this book explains how measurement can become a natural and
useful part of your regular development and maintenance activities.

This chapter begins with a discussion of measurement in our every-
day lives. In the first section, we explain how measurement is a common
and necessary practice for understanding, controlling, and improving
our environment. In this section, the readers will see why measurement
requires rigor and care. In the second section, we describe the role of mea-
surement in software engineering. In particular, we look at how measure-
ment needs are directly related to the goals we set and the questions we
must answer when developing our software. Next, we compare software
engineering measurement with measurement in other engineering disci-
plines, and propose specific objectives for software measurement. The last
section provides a roadmap to the measurement topics discussed in the
remainder of the book.

1.1 MEASUREMENT IN EVERYDAY LIFE
Measurement lies at the heart of many systems that govern our
lives. Economic measurements determine price and pay increases.
Measurements in radar systems enable us to detect aircraft when direct
vision is obscured. Medical system measurements enable doctors to diag-
nose specific illnesses. Measurements in atmospheric systems are the
basis for weather prediction. Without measurement, technology cannot
function.

But measurement is not solely the domain of professional technologists.
Each of us uses it in everyday life. Price acts as a measure of value of an
item in a shop, and we calculate the total bill to make sure the shopkeeper
gives us correct change. We use height and size measurements to ensure
that our clothing will fit properly. When making a journey, we calculate
distance, choose our route, measure our speed, and predict when we will
arrive at our destination (and perhaps when we need to refuel). So, mea-
surement helps us to understand our world, interact with our surround-
ings, and improve our lives.

1.1.1 What Is Measurement?

These examples present a picture of the variety in how we use measure-
ment. But there is a common thread running through each of the described
activities: in every case, some aspect of a thing is assigned a descriptor that
allows us to compare it with others. In the shop, we can compare the price
of one item with another. In the clothing store, we contrast sizes. And on

Measurement ◾ 5

a journey, we compare distance traveled to distance remaining. The rules
for assignment and comparison are not explicit in the examples, but it is
clear that we make our comparisons and calculations according to a well-
defined set of rules. We can capture this notion by defining measurement
formally in the following way:

Measurement is the process by which numbers or symbols are
assigned to attributes of entities in the real world in such a way so
as to describe them according to clearly defined rules.

Thus, measurement captures information about attributes of entities.
An entity is an object (such as a person or a room) or an event (such as a
journey or the testing phase of a software project) in the real world. We
want to describe the entity by identifying characteristics that are impor-
tant to us in distinguishing one entity from another. An attribute is a fea-
ture or property of an entity. Typical attributes include the area or color (of
a room), the cost (of a journey), or the elapsed time (of the testing phase).
Often, we talk about entities and their attributes interchangeably, as in “It
is cold today” when we really mean that the air temperature is cold today,
or “she is taller than he” when we really mean “her height is greater than
his height.” Such loose terminology is acceptable for everyday speech, but
it is unsuitable for scientific endeavors. Thus, it is wrong to say that we
measure things or that we measure attributes; in fact, we measure attri-
butes of things. It is ambiguous to say that we “measure a room,” since
we can measure its length, area, or temperature. It is likewise ambiguous
to say that we “measure the temperature,” since we measure the tempera-
ture of a specific geographical location under specific conditions. In other
words, what is commonplace in common speech is unacceptable for engi-
neers and scientists.

When we describe entities by using attributes, we often define the attri-
butes using numbers or symbols. Thus, price is designated as a number
of dollars or pounds sterling, while height is defined in terms of inches or
centimeters. Similarly, clothing size may be “small,” “medium,” or “large,”
while fuel is “regular,” “premium,” or “super.” These numbers and symbols
are abstractions that we use to reflect our perceptions of the real world. For
example, in defining the numbers and symbols, we try to preserve certain
relationships that we see among the entities. Thus, someone who is 6 feet in
height is taller than someone who is 5 feet in height. Likewise, a “medium”
T-shirt is smaller than a “large” T-shirt. This number or symbol can be very

6 ◾ Software Metrics

useful and important. If we have never met Herman but are told that he is
7 feet tall, we can imagine his height in relation to ourselves without even
having seen him. Moreover, because of his unusual height, we know that he
will have to stoop when he enters the door of our office. Thus, we can make
judgments about entities solely by knowing and analyzing their attributes.

Measurement is a process whose definition is far from clear-cut. Many
different authoritative views lead to different interpretations about what
constitutes measurement. To understand what measurement is, we must
ask a host of questions that are difficult to answer. For example

• We have noted that color is an attribute of a room. In a room with
blue walls, is “blue” a measure of the color of the room?

• The height of a person is a commonly understood attribute that
can be measured. But what about other attributes of people, such as
intelligence? Does an IQ test score adequately measure intelligence?
Similarly, wine can be measured in terms of alcohol content (“proof”),
but can wine quality be measured using the ratings of experts?

• The accuracy of a measure depends on the measuring instrument as
well as on the definition of the measurement. For example, length can
be measured accurately as long as the ruler is accurate and used prop-
erly. But some measures are not likely to be accurate, either because
the measurement is imprecise or because it depends on the judgment
of the person doing the measuring. For instance, the proposed mea-
sures of human intelligence or wine quality appear to have likely error
margins. Is this a reason to reject them as bonafide measurements?

• Even when the measuring devices are reliable and used properly,
there is margin for error in measuring the best understood physi-
cal attributes. For example, we can obtain vastly different measures
for a person’s height, depending on whether we make allowances for
the shoes being worn or the standing posture. So how do we decide
which error margins are acceptable and which are not?

• We can measure height in terms of meters, inches, or feet. These dif-
ferent scales measure the same attribute. But we can also measure
height in terms of miles and kilometers—appropriate for measuring
the height of a satellite above the Earth, but not for measuring the
height of a person. When is a scale acceptable for the purpose to
which it is put?

Measurement ◾ 7

• Once we obtain measurements, we want to analyze them and draw
conclusions about the entities from which they were derived. What
kind of manipulations can we apply to the results of measurement?
For example, why is it acceptable to say that Fred is twice as tall as
Joe, but not acceptable to say that it is twice as hot today as it was
yesterday? And why is it meaningful to calculate the mean of a set of
heights (to say, e.g., that the average height of a London building is
200 m), but not the mean of the football jersey numbers of a team?

To answer these and many other questions, we examine the science of
measurement in Chapter 2. This rigorous approach lays the groundwork
for applying measurement concepts to software engineering problems.
However, before we turn to measurement theory, we examine first the
kinds of things that can be measured.

1.1.2 “What Is Not Measurable Make Measurable”

This phrase, attributable to Galileo Galilei (1564–1642), is part of the folk-
lore of measurement scientists (Finkelstein 1982). It suggests that one of the
aims of science is to find ways to measure attributes of interesting things.
Implicit in Galileo’s statement is the idea that measurement makes con-
cepts more visible and therefore more understandable and controllable.
Thus, as scientists, we should be creating ways to measure our world; where
we can already measure, we should be making our measurements better.

In the physical sciences, medicine, economics, and even some social
sciences, we can now measure attributes that were previously thought to
be unmeasurable. Whether we like them or not, measures of attributes
such as human intelligence, air quality, and economic inflation form the
basis for important decisions that affect our everyday lives. Of course,
some measurements are not as refined (in a sense to be made precise in
Chapter 2) as we would like them to be; we use the physical sciences as our
model for good measurement, continuing to improve measures when we
can. Nevertheless, it is important to remember that the concepts of time,
temperature, and speed, once unmeasurable by primitive peoples, are now
not only commonplace but also easily measured by almost everyone; these
measurements have become part of the fabric of our existence.

To improve the rigor of measurement in software engineering, we need
not restrict the type or range of measurements we can make. Indeed, mea-
suring the unmeasurable should improve our understanding of particular

8 ◾ Software Metrics

entities and attributes, making software engineering as powerful as other
engineering disciplines. Even when it is not clear how we might measure
an attribute, the act of proposing such measures will open a debate that
leads to greater understanding. Although some software engineers may
continue to claim that important software attributes like dependability,
quality, usability, and maintainability are simply not quantifiable, we pre-
fer to try to use measurement to advance our understanding of them.

We can learn strategies for measuring unmeasurable attributes from the
business community. Businesses often need to measure intangible attributes
that you might think are unmeasurable such as customer satisfaction, future
revenues, value of intellectual property, a company’s reputation, etc. A key
concern of the business community, including the software development
business community, is risk. Businesses want to reduce the risk of product
failures, late release of a product, loss of key employees, bankruptcy, etc.
Thus, Douglas Hubbard provides an alternative definition of measurement:

Measurement: A quantitatively expressed reduction of uncertainty
based on one or more observations.

HUBBARD 2010, P. 23

Observations that can reduce uncertainty can quantitatively measure
the risk of negative events or the likelihood of positive outcomes.

EXAMPLE 1.1

Douglas Hubbard lists the kinds of statements that a business executive might
want to make involving the use of measurement to reduce uncertainty, for
example (Hubbard 2010):

There is an 85% chance we will win our patent dispute.
We are 93% certain our public image will improve after the merger.

HUBBARD 2010, P. 24

He also shows that you need very little data to reduce uncertainty by
applying what he calls the Rule of Five:

There is a 93.75% chance that the median of a population is between
the smallest and largest values in any random sample of five from the
population.

HUBBARD 2010, P. 30

Measurement ◾ 9

We can apply the Rule of Five to measurements relevant to software engi-
neering. Assume that you want to learn whether your organization’s develop-
ers are writing class method bodies that are short, because you have heard
somewhere that shorter method bodies are better. Rather than examining all
methods in your code base, you could randomly select five methods and
count the lines of code in their bodies. Say that these methods have bodies
with 10, 15, 25, 45, and 50 lines of code. Using the Rule of Five, you know
that there is a 93.75% chance that the median size of all method bodies in
your code base is between 10 and 50 lines of code. With a sample of only
five methods, you can count lines of code manually—you may not need a
tool. Thus, using this method, you can easily find the median of a popula-
tion with a quantified level of uncertainty. Using a larger sample can further
reduce the uncertainty.

Software development involves activities and events under uncertain
conditions. Requirements and user communities change unpredictably.
Developers can leave a project at unpredictable times. We will examine
the use of metrics in decision-making under conditions of uncertainty in
Chapter 7.

Strictly speaking, we should note that there are two kinds of quantifica-
tion: measurement and calculation. Measurement is a direct quantifica-
tion, as in measuring the height of a tree or the weight of a shipment of
bricks. Calculation is indirect, where we take measurements and combine
them into a quantified item that reflects some attribute whose value we
are trying to understand. For example, when the city inspectors assign
a valuation to a house (from which they then decide the amount of tax
owed), they calculate it by using a formula that combines a variety of fac-
tors, including the number of rooms, the type of heating and cooling, the
overall floor space, and the sale prices of similar houses in comparable
locations. The valuation is quantification, not a measurement, and its
expression as a number makes it more useful than qualitative assessment
alone. As we shall see in Chapter 2, we use direct and derived to distin-
guish measurement from calculation.

Sport offers us many lessons in measuring abstract attributes like
quality in an objective fashion. Here, the measures used have been
accepted universally, even though there is often discussion about chang-
ing or improving the measures. In the following examples, we highlight
measurement concepts, showing how they may be useful in software
engineering:

10 ◾ Software Metrics

EXAMPLE 1.2

In the decathlon athletics event, we measure the time to run various dis-
tances as well as the length covered in various jumping activities. These
measures are subsequently combined into an overall score, computed using a
complex weighting scheme that reflects the importance of each component
measure. Over the years, the weights and scoring rules have changed as the
relative importance of an event or measure changes. Nevertheless, the over-
all score is widely accepted as a description of the athlete’s all-around ability.
In fact, the winner of the Olympic decathlon is generally acknowledged to
be the world’s finest athlete.

EXAMPLE 1.3

In European soccer leagues, a points system is used to select the best
 all-around team over the course of a season. Until the early 1980s, two
points were awarded for each win and one point was awarded for each draw.
Thereafter, the points system was changed; a win yielded three points instead
of two, while a draw still yielded one point. This change was made to reflect
the consensus view that the qualitative difference between a win and a draw
was greater than that between a draw and a defeat.

EXAMPLE 1.4

There are no universally recognized measures to identify the best individual
soccer players (although number of goals scored is a fairly accurate measure
of quality of a striker). Although many fans and players have argued that
player quality is an unmeasurable attribute, there are organizations (such as
optasports.com) that provide player ratings based on a wide range of measur-
able attributes such as tackles, saves, or interceptions made; frequency and
distance of passes (of various types), dribbles, and headers. Soccer clubs,
agents, betting, and media companies pay large sums to acquire these rat-
ings. Often clubs and players’ agents use the ratings as the basis for determin-
ing player value (both from a salary and transfer price perspective).

It is easy to see parallels in software engineering. In many instances, we
want an overall score that combines several measures into a “big picture”
of what is going on during development or maintenance. We want to be
able to tell if a software product is good or bad, based on a set of mea-
sures, each of which captures a facet of “goodness.” Similarly, we want to

Measurement ◾ 11

be able to measure an organization’s ability to produce good software, or a
model’s ability to make good predictions about the software development
process. The composite measures can be controversial, not only because
of the individual measures comprising it, but also because of the weights
assigned.

Likewise, controversy erupts when we try to capture qualitative infor-
mation about some aspect of software engineering. Different experts have
different opinions, and it is sometimes impossible to get consensus.

Finally, it is sometimes necessary to modify our environment or our
practices in order to measure something new or in a new way. It may mean
using a new tool (to count lines of code or evaluate code structure), add-
ing a new step in a process (to report on effort), or using a new method (to
make measurement simpler). In many cases, change is difficult for people
to accept; there are management issues to be considered whenever a mea-
surement program is implemented or changed.

1.2 MEASUREMENT IN SOFTWARE ENGINEERING
We have seen that measurement is essential to our daily lives, and mea-
suring has become commonplace and well accepted. In this section, we
examine the realm of software engineering to see why measurement is
needed.

Software engineering describes the collection of techniques that apply
an engineering approach to the construction and support of software
products. Software engineering activities include managing, costing,
planning, modeling, analyzing, specifying, designing, implementing,
testing, and maintaining. By “engineering approach,” we mean that each
activity is understood and controlled, so that there are few surprises as the
software is specified, designed, built, and maintained. Whereas computer
science provides the theoretical foundations for building software, soft-
ware engineering focuses on implementing the software in a controlled
and scientific way.

The importance of software engineering cannot be understated, since
software pervades our lives. From oven controls to automobiles, from
banking transactions to air traffic control, and from sophisticated power
plants to sophisticated weapons, our lives and the quality of life depend on
software. For such a young profession, software engineering has usually
done an admirable job of providing safe, useful, and reliable functional-
ity. But there is room for a great deal of improvement. The literature is rife
with examples of projects that have overrun their budgets and schedules.

12 ◾ Software Metrics

Worse, there are too many stories about software that has put lives and
businesses at risk.

Software engineers have addressed these problems by continually look-
ing for new techniques and tools to improve process and product. Training
supports these changes, so that software engineers are better prepared to
apply the new approaches to development and maintenance. But method-
ological improvements alone do not make an engineering discipline.

1.2.1 Neglect of Measurement in Software Engineering

Engineering disciplines use methods that are underpinned by models
and theories. For example, in designing electrical circuits, we appeal to
theories like Ohm’s law that describes the relationship between resistance,
current, and voltage in the circuit. But the laws of electrical behavior have
evolved by using the scientific method: stating a hypothesis, designing
and running an experiment to test its validity, and analyzing the results.
Underpinning the scientific process is measurement: measuring the vari-
ables to differentiate cases, measuring the changes in behavior, and mea-
suring the causes and effects. Once the scientific method suggests the
validity of a model or the truth of a theory, we continue to use measure-
ment to apply the theory to practice. Thus, to build a circuit with a spe-
cific current and resistance, we know what voltage is required and we use
instruments to measure whether we have such a voltage in a given battery.

It is difficult to imagine electrical, mechanical, and civil engineering
without a central role for measurement. Indeed, science and engineering
can be neither effective nor practical without measurement. But measure-
ment has been considered a luxury in software engineering. For many
development projects:

 1. We fail to set measurable targets for our software products. For
example, we promise that the product will be user-friendly, reliable,
and maintainable without specifying clearly and objectively what
these terms mean. As a result, from both is complete, we cannot tell
if we have met our goals.

 2. We fail to understand and quantify the component costs of software
projects. For example, many projects cannot differentiate the cost
of design from the cost of coding or testing. Since excessive cost is a
frequent complaint from our customers, we cannot hope to control
costs if we are not measuring the relative components of cost.

Measurement ◾ 13

 3. We do not quantify or predict the quality of the products we pro-
duce. Thus, we cannot tell a potential user how reliable a product will
be in terms of likelihood of failure in a given period of use, or how
much work will be needed to port the product to a different machine
environment.

 4. We allow anecdotal evidence to convince us to try yet another revo-
lutionary new development technology, without doing a carefully
controlled study to determine if the technology is efficient and effec-
tive. Promotional materials for software development tools and tech-
niques typically include the following types of claims:

 a. “Our new technique guarantees 100% reliability.”

 b. “Our tool improves productivity by 200%!!”

 c. “Build your code with half the staff in a quarter of the time.”

 d. “Cuts test time by 2/3.”

 These claims are generally not supported by scientific studies.

When measurements are made, they are often done infrequently,
inconsistently, and incompletely. The incompleteness can be frustrat-
ing to those who want to make use of the results. For example, a devel-
oper may claim that 80% of all software costs involve maintenance, or
that there are on average 55 faults in every 1000 lines of software code.
But often we are not told how these results were obtained, how experi-
ments were designed and executed, which entities were measured and
how, and what were the realistic error margins. Without this additional
information, we remain skeptical and unable to decide whether to apply
the results to our own situations. In addition, we cannot do an objective
study to repeat the measurements in our own environments. Thus, the
lack of measurement in software engineering is compounded by the lack
of a rigorous approach.

It is clear from other engineering disciplines that measurement can
be effective, if not essential, in making characteristics and relationships
more visible, in assessing the magnitude of problems, and in fashioning a
solution to problems. As the pace of hardware innovation has increased,
the software world has been tempted to relax or abandon its engineering
underpinnings and hope for revolutionary gains. But now that software,
playing a key role, involves enormous investment of energy and money,

14 ◾ Software Metrics

it is time for software engineering to embrace the engineering discipline
that has been so successful in other areas.

1.2.2 Objectives for Software Measurement

Even when a project is not in trouble, measurement is not only useful but
also necessary. After all, how can you tell if your project is healthy if you have
no measures of its health? So, measurement is needed at least for assessing
the status of your projects, products, processes, and resources. Since we do
not always know what derails a project, it is essential that we measure and
record characteristics of good projects as well as bad. We need to document
trends, the magnitude of corrective action, and the resulting changes. In
other words, we must control our projects, not just run them. In Chapter
3, you will see the key role that measurement plays in evaluating software
development organizations and their software development processes.

There are compelling reasons to consider the measurement process sci-
entifically, so that measurement will be a true engineering activity. Every
measurement action must be motivated by a particular goal or need that
is clearly defined and easily understandable. That is, it is not enough to
assert that we must measure to gain control. The measurement objectives
must be specific, tied to what the managers, developers, and users need to
know. Thus, these objectives may differ according to the kind of person-
nel involved and at which level of software development and use they are
generated. But it is the goals that tell us how the measurement information
will be used once it is collected.

We now describe the kinds of information needed to understand and
control a software development project, from both manager and developer
perspectives.

1.2.2.1 Managers
• What does each process cost? We can measure the time and effort

involved in the various processes that comprise software produc-
tion. For example, we can identify the cost to elicit requirements,
the cost to specify the system, the cost to design the system, and the
cost to code and test the system. In this way, we gain understanding
not only of the total project cost but also of the contribution of each
activity to the whole.

• How productive is the staff? We can measure the time it takes for
staff to specify the system, design it, code it, and test it. Then, using

Measurement ◾ 15

measures of the size of specifications, design, code, and test plans,
for example, we can determine how productive the staff is at each
activity. This information is useful when changes are proposed; the
manager can use the productivity figures to estimate the cost and
duration of the change.

• How good is the code being developed? By carefully recording faults,
failures, and changes as they occur, we can measure software qual-
ity, enabling us to compare different products, predict the effects of
change, assess the effects of new practices, and set targets for process
and product improvement.

• Will the user be satisfied with the product? We can measure function-
ality by determining if all of the requirements requested have actually
been implemented properly. And we can measure usability, reliability,
response time, and other characteristics to suggest whether our cus-
tomers will be happy with both functionality and performance.

• How can we improve? We can measure the time it takes to perform
each major development activity, and calculate its effect on quality
and productivity. Then we can weigh the costs and benefits of each
practice to determine if the benefit is worth the cost. Alternatively,
we can try several variations of a practice and measure the results to
decide which is best; for example, we can compare two design meth-
ods to see which one yields the higher-quality code.

1.2.2.2 Developers
• Are the requirements testable? We can analyze each requirement to

determine if its satisfaction is expressed in a measurable, objective
way. For example, suppose a requirement states that a web-based sys-
tem must be “fast”; the requirement can be replaced by one that states
that the mean response time to a set of specific of inputs must be less
than 2 s for specified browsers and number of concurrent users.

• Have we found all the faults? We can measure the number of faults in
the specification, design, code, and test plans and trace them back to
their root causes. Using models of expected detection rates, we can
use this information to decide whether inspections and testing have
been effective and whether a product can be released for the next
phase of development.

16 ◾ Software Metrics

• Have we met our product or process goals? We can measure charac-
teristics of the products and processes that tell us whether we have
met standards, satisfied a requirement, or met a process goal. For
example, certification may require that fewer than 20 failures have
been reported per beta-test site over a given period of time. Or a
standard may mandate that all modules must pass code inspections.
The testing process may require that unit testing must achieve 90%
statement coverage.

• What will happen in the future? We can measure attributes of exist-
ing products and current processes to make predictions about future
ones. For example, measures of size of specifications can be used to
predict the size of the target system, predictions about future main-
tenance problems can be made from measures of structural proper-
ties of the design documents, and predictions about the reliability
of software in operational use can be made by measuring reliability
during testing.

1.2.3 Measurement for Understanding, Control, and Improvement

The information needs of managers and developers show that measure-
ment is important for three basic activities. First, measurement can help us
to understand what is happening during development and maintenance.
We assess the current situation, establishing baselines that help us to set
goals for future behavior. In this sense, the measurements make aspects
of process and product more visible, giving us a better understanding of
relationships among activities and the entities they affect.

Second, the measurement allows us to control what is happening in our
projects. Using our baselines, goals, and understanding of relationships,
we predict what is likely to happen and make changes to processes and
products that help us to meet our goals. For example, we may monitor the
complexity of code modules, giving thorough review only to those that
exceed acceptable bounds.

Third, measurement encourages us to improve our processes and prod-
ucts. For instance, we may increase the number or type of design reviews
we do, based on measures of specification quality and predictions of likely
design quality.

No matter how measurements are used, it is important to manage the
expectations of those who will make measurement-based decisions. Users
of the data should always be aware of the limited accuracy of prediction

Measurement ◾ 17

and of the margin of error in the measurements. As with any other engi-
neering discipline, there is room in software engineering for abuse and
misuse of measurement. In particular, managers may pressure develop-
ers to produce precise measures with inadequate models, tools, and tech-
niques (see Figure 1.1).

It is wrong to expect measurement to provide instant, easy solutions
to your software engineering problems. Control and accurate prediction
both require careful sets of measurements.

1.3 SCOPE OF SOFTWARE METRICS
Software metrics is a term that embraces many activities, all of which
involve some degree of software measurement:

• Cost and effort estimation models and measures

• Data collection

• Quality models and measures

• Reliability models

• Security metrics

• Structural and complexity metrics

• Capability maturity assessment

How can I tell by
just looking at the

screen? I don’t
have any instruments

or context.

See that building
on the screen?

I want
to know

 its weight.

I don’t care. You’ve
got your eyes and

a thumb and I want
the answer to the
nearest milligram.

FIGURE 1.1 Software measurement—resource estimation.

18 ◾ Software Metrics

• Management by metrics

• Evaluation of methods and tools

Each of these activities will be covered in some detail. Our theoretical
foundations, to be described in Chapters 2 and 3, will enable us to con-
sider the activities in a unified manner, rather than as diverse, unrelated
topics.

The following brief introduction will give you a sense of the techniques
currently in use for each facet of measurement. It provides signposts to
where the material is covered in detail.

1.3.1 Cost and Effort Estimation

Managers provided the original motivation for deriving and using soft-
ware measures. They wanted to be able to predict project costs during early
phases in the software life cycle. As a result, numerous models for software
cost and effort estimation have been proposed and used. Examples include
Boehm’s COCOMO II model (Boehm et al. 2000) and Albrecht’s function
point model (Albrecht 1979). These and other models often share a com-
mon approach: effort is expressed as a (predefined) function of one or more
variables (such as size of the product, capability of the developers, and level
of reuse). Size is usually defined as (predicted) lines of code or number of
function points (which may be derived from the product specification).
These cost and effort prediction models are discussed in Chapter 8.

1.3.2 Data Collection

The quality of any measurement program is clearly dependent on care-
ful data collection. But collecting data is easier said than done, especially
when data must be collected across a diverse set of projects. Thus, data col-
lection is becoming a discipline in itself, where specialists work to ensure
that measures are defined unambiguously, that collection is consistent and
complete, and that data integrity is not at risk. But it is acknowledged that
metrics data collection must be planned and executed in a careful and
sensitive manner. We will see in Chapter 5 how useful data can be col-
lected. Chapter 6 shows how to analyze and display collected data in order
to draw valid conclusions and make decisions.

Data collection is also essential for scientific investigation of relation-
ships and trends. We will see in Chapter 4 how good experiments, surveys,
and case studies require carefully planned data collection, as well as thor-
ough analysis and reporting of the results.

Measurement ◾ 19

1.3.3 Quality Models and Measures

Since software quality involves many diverse factors, software engineers
have developed models of the interaction between multiple quality fac-
tors. These models are usually constructed in a tree-like fashion, similar to
Figure 1.2. The upper branches hold important high-level quality factors
of software products, such as reliability and usability, that we would like
to quantify. Each quality factor is composed of lower-level criteria, such as
modularity and data commonality. The criteria are easier to understand
and measure than the factors; thus, actual measures (metrics) are proposed
for the criteria. The tree describes the pertinent relationships between fac-
tors and their dependent criteria, so we can measure the factors in terms
of the dependent criteria measures. This notion of divide and conquer has
been implemented as a standard approach to measuring software quality
(IEEE 1061-2009). Quality models are described in Chapter 10.

1.3.4 Reliability Models

Most quality models include reliability as one of their component factors.
But the need to predict and measure reliability itself has led to a separate
specialization in reliability modeling and prediction. Chapter 11 describes

Accuracy

Consistency

Device efficiency

Accessibility

Completeness

Structuredness

Conciseness

Device independence

Legability

Self-descriptiveness

Traceability

Communicativeness

Reliability

Efficiency

Reusability

Maintainability

Portability

Testability

Usability

Product
operation

Product
revision

Metrics

Use Factor Criteria

FIGURE 1.2 Software quality model.

20 ◾ Software Metrics

software reliability models and measures starting with reliability theory.
Chapter 11 shows how to apply reliability theory to analyze and predict
software reliability.

1.3.5 Security Metrics

As computing has become part of almost every human activity, our con-
cerns about the security of software systems have grown. We worry that
attackers will steal or corrupt data files, passwords, and our accounts.
Security depends on both the internal design of a system and the nature of
the attacks that originate externally. In Chapter 10, we describe some stan-
dard ways to assess security risks in terms of impact, likelihood, threats,
and vulnerabilities.

1.3.6 Structural and Complexity Metrics

Desirable quality attributes like reliability and maintainability cannot be
measured until some operational version of the code is available. Yet, we
wish to be able to predict which parts of the software system are likely to be
less reliable, more difficult to test, or require more maintenance than oth-
ers, even before the system is complete. As a result, we measure structural
attributes of representations of the software that are available in advance
of (or without the need for) execution; then, we try to establish empiri-
cally predictive theories to support quality assurance, quality control, and
quality prediction. These representations include control flow graphs that
usually model code and various unified modeling language (UML) dia-
grams that model software designs and requirements. Structural metrics
can involve the arrangement of program modules, for example, the use
and properties of design patterns. These models and related metrics are
described in Chapter 9.

1.3.7 Capability Maturity Assessment

The US Software Engineering Institute (SEI) has developed and main-
tained a software development process evaluation technique, the
Capability Maturity Model Integration (CMMI®) for Development. The
original objective was to measure a contractor’s ability to develop qual-
ity software for the US government, but CMMI ratings are now used
by many other organizations. The CMMI assesses many different attri-
butes of development, including the use of tools, standard practices, and
more. A CMMI assessment is performed by an SEI certified assessor and
involves determining the answers to hundreds of questions concerning

Measurement ◾ 21

software development practices in the organization being reviewed.
The result of an assessment is a rating that is on a five-level scale, from
Level 1 (Initial—development is dependent on individuals) to Level 5
(Optimizing—a development process that can be optimized based on
quantitative process information).

The evaluation of process maturity has become much more common.
Many organizations require contracted software development vendors to
have CMMI certification at specified levels. In Chapter 3, we describe the
CMMI evaluation mechanism and how process maturity can be useful
in understanding what and when to measure, and how measurement can
guide process improvements.

1.3.8 Management by Metrics

Measurement is an important part of software project management.
Customers and developers alike rely on measurement-based charts and
graphs to help them decide if a project is on track. Many companies and
organizations define a standard set of measurements and reporting meth-
ods, so that projects can be compared and contrasted. This uniform collec-
tion and reporting is especially important when software plays a supporting
role in an overall project. That is, when software is embedded in a product
whose main focus is a business area other than software, the customer or
ultimate user is not usually well versed in software terminology, so mea-
surement can paint a picture of progress in general, understandable terms.
For example, when a power plant designer asks a software developer to
write control software, the power plant designer usually knows a lot about
power generation and control, but very little about software development
processes, programming languages, software testing, or computer hard-
ware. Measurements must be presented in a way that tells both customer
and developer how the project is doing. In Chapter 6, we will examine sev-
eral measurement analysis and presentation techniques that are useful and
understandable to all who have a stake in a project’s success.

1.3.9 Evaluation of Methods and Tools

The literature is rife with descriptions of new methods and tools that may
make your organization or project more productive and your products
better and cheaper. But it is difficult to separate the claims from the reality.
Many organizations perform experiments, run case studies, or administer
surveys to help them decide whether a method or tool is likely to make
a positive difference in their particular situations. These investigations

22 ◾ Software Metrics

cannot be done without careful, controlled measurement and analysis. As
we will see in Chapter 4, an evaluation’s success depends on good experi-
mental design, proper identification of the factors likely to affect the out-
come, and appropriate measurement of factor attributes.

1.4 SUMMARY
This introductory chapter has described how measurement pervades our
everyday life. We have argued that measurement is essential for good engi-
neering in other disciplines; it should likewise become an integral part of
software engineering practice. In particular

• Owing to the lessons of other engineering disciplines, measurement
now plays a significant role in software engineering.

• Software measurement is a diverse collection of topics that range
from models for predicting software project costs at the specification
stage to measures of program structure.

• General reasons for needing software engineering measurement are
not enough. Engineers must have specific, clearly stated objectives
for measurement.

• We must be bold in our attempts at measurement. Just because no
one has measured some attribute of interest does not mean that it
cannot be measured satisfactorily.

We have set the scene for a new perspective on software metrics. Our
foundation, introduced in Chapter 2, supports a scientific and effective
approach to constructing, calculating, and appropriately applying the
metrics that we derive.

EXERCISES

 1. Explain the role of measurement in determining the best players in
your favorite sport.

 2. Explain how measurement is commonly used to determine the best
students in a university. Describe any problems with these measure-
ment schemes.

 3. How would you begin to measure the quality of a software product?

Measurement ◾ 23

 4. Consider some everyday measurements. What entities and attributes
are being measured? What can you say about error margins in the
measurements? Explain how the measuring process may affect the
entity being measured.

 5. Consider the user’s viewpoint. What measurement objectives might
a software user have?

 6. A commonly used software quality measure in industry is the num-
ber of errors per thousand lines of product source code. Compare
the usefulness of this measure for developers and users. What are the
possible problems with relying on this measure as the sole expression
of software quality?

 7. Consider a web browsing client, such as Firefox, Chrome, Safari, or
Explorer. Suggest some good ways to measure the quality of such a
software system, from an end-user’s perspective.

25

C h a p t e r 2

The Basics of
Measurement

In Chapter 1, we saw how measurement pervades our world. We use
measurement everyday to understand, control, and improve what we

do and how we do it. In this chapter, we examine measurement in more
depth, trying to apply general measurement lessons learned in daily activ-
ities to the activities we perform as part of software development.

Ordinarily, when we measure things, we do not think about the scien-
tific principles we are applying. We measure attributes such as the length
of physical objects, the timing of events, and the temperature of liquids
or of the air. To do the measuring, we use both tools and principles that
we now take for granted. However, these sophisticated measuring devices
and techniques have been developed over time, based on the growth of
understanding of the attributes we are measuring. For example, using the
length of a column of mercury to capture information about temperature
is a technique that was not at all obvious to the first person who wanted to
know how much hotter it is in summer than in winter. As we understood
more about temperature, materials, and the relationships between them,
we developed a framework for describing temperature as well as tools for
measuring it.

Unfortunately, we have no comparably deep understanding of soft-
ware attributes. Nor do we have the associated sophisticated measure-
ment tools. Questions that are relatively easy to answer for non-software

26 ◾ Software Metrics

entities are difficult for software. For example, consider the following
questions:

 1. How much must we know about an attribute before it is reasonable
to consider measuring it? For instance, do we know enough about
“complexity” of programs to be able to measure it?

 2. How do we know if we have really measured the attribute we wanted
to measure? For instance, does a count of the number of “bugs”
found in a system during integration testing measure the quality of
the system? If not, what does the count tell us?

 3. Using measurement, what meaningful statements can we make
about an attribute and the entities that possess it? For instance, is it
meaningful to talk about doubling a design’s quality? If not, how do
we compare two different designs?

 4. What meaningful operations can we perform on measures? For
instance, is it sensible to compute average productivity for a group of
developers, or the average quality of a set of modules?

To answer these questions, we must establish the basics of a theory of
measurement. We begin by examining formal measurement theory, devel-
oped as a classical discipline from the physical sciences. We see how the
concepts of measurement theory apply to software, and we explore several
examples to determine when measurements are meaningful and useful in
decision-making. This theory tells us not only when and how to measure,
but also how to analyze and depict data, and how to tie the results back to
our original questions about software quality and productivity.

2.1 THE REPRESENTATIONAL THEORY OF MEASUREMENT
In any measurement activity, there are rules to be followed. The rules help
us to be consistent in our measurement, as well as providing a basis for
interpretation of data. Measurement theory tells us the rules, laying the
groundwork for developing and reasoning about all kinds of measure-
ment. This rule-based approach is common in many sciences. For example,
recall that mathematicians learned about the world by defining axioms for
a geometry. Then, by combining axioms and using their results to sup-
port or refute their observations, they expanded their understanding and
the set of rules that govern the behavior of objects. In the same way, we

The Basics of Measurement ◾ 27

can use rules about measurement to codify our initial understanding, and
then expand our horizons as we analyze our software.

However, just as there are several kinds of geometry (e.g., Euclidean
and non-Euclidean) with each depending on the set of rules chosen, there
are also several theories of measurement. In this book, we present an over-
view of the representational theory of measurement.

2.1.1 Empirical Relations

The representational theory of measurement seeks to formalize our intu-
ition about the way the world works. That is, the data we obtain as measures
should represent attributes of the entities we observe, and manipulation of
the data should preserve relationships that we observe among the entities.
Thus, our intuition is the starting point for all measurement.

Consider the way we perceive the real world. We tend to understand
things by comparing them, not by assigning numbers to them. For
example, Figure 2.1 illustrates how we learn about height. We observe

Frankie is taller than
Wonderman.

Frankie is tall. Wonderman is tall. Peter is not tall.

Frankie is not much taller than
Wonderman.

Frankie is much taller than
Peter.

Peter is higher than
Frankie if sitting on
Wonderman’s shoulders.

FIGURE 2.1 Some empirical relations for the attribute height.

28 ◾ Software Metrics

that certain people are taller than others without actually measuring
them. It is easy to see that Frankie is taller than Wonderman who in
turn is taller than Peter; anyone looking at this figure would agree with
this statement. However, our observation reflects a set of rules that we
are imposing on the set of people. We form pairs of people and define a
binary relation on them. In other words, taller than is a binary relation
defined on the set of pairs of people. Given any two people, x and y, we
can observe that

• x is taller than y, or

• y is taller than x

Therefore, we say that taller than is an empirical relation for height.
When the two people being compared are very close in height, we may

find a difference of opinion; you may think that Jack is taller than Jill,
while we are convinced that Jill is taller than Jack. Our empirical relations
permit this difference by requiring only a consensus of opinion about rela-
tionships in the real world. A (binary) empirical relation is one for which
there is a reasonable consensus about which pairs are in the relation.

We can define more than one empirical relation on the same set. For
example, Figure 2.1 also shows the relation much taller than. Most of us
would agree that both Frankie and Wonderman are much taller than Peter
(although there is less of a consensus about this relation than taller than).

Empirical relations need not be binary. That is, we can define a relation
on a single element of a set, or on collections of elements. Many empirical
relations are unary, meaning that they are defined on individual entities.
The relation is tall is an example of a unary relation in Figure 2.1; we can
say Frankie is tall but Peter is not tall. Similarly, we can define a ternary
relationship by comparing groups of three; Figure 2.1 shows how Peter sit-
ting on Wonderman’s shoulders is higher than Frankie.

We can think of these relations as mappings from the empirical, real
world to a formal mathematical world. We have entities and their attri-
butes in the real world, and we define a mathematical mapping that pre-
serves the relationships we observe. Thus, height (that is, tallness) can be
considered as a mapping from the set of people to the set of real numbers.
If we can agree that Jack is taller than Jill, then any measure of height
should assign a higher number to Jack than to Jill. As we shall see later in

The Basics of Measurement ◾ 29

this chapter, this preservation of intuition and observation is the notion
behind the representation condition of measurement.

EXAMPLE 2.1

Suppose we are evaluating the four best-selling contact management pro-
grams: A, B, C, and D. We ask 100 independent computer users to rank these
programs according to their functionality, and the results are shown on the
left-hand portion of Table 2.1. Each cell of the table represents the percentage
of respondents who preferred the row’s program to the column’s program;
for instance, 80% rated program A as having greater functionality than B.
We can use this survey to define an empirical relation greater functionality
than for contact management programs; we say that program x has greater
functionality than program y if the survey result for cell (x,y) exceeds 60%.
Thus, the relation consists of the pairs (C,A), (C,B), (C,D), (A,B), and (A,D).
This set of pairs tells us more than just five comparisons; for example, since C
has greater functionality than A, and A in turn has greater functionality than
B and D, then C has greater functionality than B and D. Note that neither pair
(B,D) nor (D,B) is in the empirical relation; there is no clear consensus about
which of B and D has greater functionality.

Suppose we administer a similar survey for the attribute user-friendliness,
with the results shown on the right-hand side of Table 2.1. In this case, there is
no real consensus at all. At best, we can deduce that greater user-friendliness is
an empty empirical relation. This statement is different from saying that all the
programs are equally user-friendly, since we did not specifically ask the respon-
dents about indifference or equality. Thus, we deduce that our understanding
of user-friendliness is so immature that there are no useful empirical relations.

Example 2.1 shows how we can start with simple user surveys to gain a
preliminary understanding of relationships. However, as our understand-
ing grows, we can define more sophisticated measures.

TABLE 2.1 Sampling 100 Users to Express Preferences among
Products A, B, C, and D

More Functionality More User-Friendly

A B C D A B C D
A — 80 10 80 — 45 50 44
B 20 — 5 50 55 — 52 50
C 90 95 — 96 50 48 — 51
D 20 50 4 — 54 50 49 —

30 ◾ Software Metrics

EXAMPLE 2.2

Table 2.2 shows that people had an initial understanding of temperature
thousands of years ago. This intuition was characterized by the notion of
hotter than. Thus, for example, by putting your hand into two different
containers of liquid, you could feel if one were hotter than the other. No
measurement is necessary for this determination of temperature difference.
However, people needed to make finer discriminations in temperature. In
1600, the first device was constructed to capture this comparative relation-
ship; the thermometer could consistently assign a higher number to liquids
that were hotter than others.

Example 2.2 illustrates an important characteristic of measurement.
We can begin to understand the world by using relatively unsophisticated
relationships that require no measuring tools. Once we develop an initial
understanding and have accumulated some data, we may need to measure
in more sophisticated ways and with special tools. Analyzing the results
often leads to the clarification and re-evaluation of the attribute and yet
more sophisticated empirical relations. In turn, we have improved accu-
racy and increased understanding.

Formally, we define measurement as the mapping from the empirical
world to the formal, relational world. Consequently, a measure is the num-
ber or symbol assigned to an entity by this mapping in order to character-
ize an attribute.

Sometimes, the empirical relations for an attribute are not yet agreed,
especially when they reflect personal preference. We see this lack of con-
sensus when we look at the ratings of wine or the preference for a design
technique, for example. Here, the raters have some notion of the attribute
they want to measure, but there is not always a common understanding.
We may find that what is tasteless or difficult for one rater is delicious or
easy for another rater. In these cases, we can still perform a subjective

TABLE 2.2 Historical Advances in Temperature Measurement

2000 bc Rankings, hotter than
1600 ad First thermometer measuring hotter than
1720 ad Fahrenheit scale
1742 ad Celsius scale
1854 ad Absolute zero, Kelvin scale

The Basics of Measurement ◾ 31

Likert Scale
Give the respondent a statement with which to agree or disagree. Example:

This software program is reliable.

Strongly
Agree Agree

Neither agree
nor disagree Disagree

Strongly
Disagree

Forced Ranking
Give n alternatives, ordered from 1 (best) to n (worst). Example:

Rank the following five software modules in order of maintenance diffi-
culty, with 1 = least complex, 5 = most complex:

— Module A
— Module B
— Module C
— Module D
— Module E

Verbal Frequency Scale
Example: How often does this program fail?

Always Often Sometimes Seldom Never

Ordinal Scale
List several ordered alternatives and have respondents select one. For example:

How often does the software fail?

 1. Hourly
 2. Daily
 3. Weekly
 4. Monthly
 5. Several times a year
 6. Once or twice a year
 7. Never

Comparative Scale

Very superior About the same Very inferior
1 2 3 4 5 6 7 8

Numerical Scale

Unimportant Important
1 2 3 4 5 6 7 8

FIGURE 2.2 Subjective rating schemes.

32 ◾ Software Metrics

assessment, but the result is not necessarily a measure, in the sense of
measurement theory. For example, Figure 2.2 shows several rating for-
mats, some of which you may have encountered in taking examinations or
opinion polls. These questionnaires capture useful data. They enable us to
establish the basis for empirical relations, characterizing properties so that
formal measurement may be possible in the future.

2.1.2 The Rules of the Mapping

We have seen how a measure is used to characterize an attribute. We begin
in the real world, studying an entity and trying to understand more about
it. Thus, the real world is the domain of the mapping, and the mathemati-
cal world is the range. When we map the attribute to a mathematical sys-
tem, we have many choices for the mapping and the range. We can use real
numbers, integers, or even a set of non-numeric symbols.

EXAMPLE 2.3

To measure a person’s height, it is not enough to simply specify a number.
If we measure height in inches, then we are defining a mapping from the set
of people into inches; if we measure height in centimeters, then we have a
different mapping. Moreover, even when the domain and range are the same,
the mapping definition may be different. That is, there may be many different
mappings (and hence different ways of measuring) depending on the conven-
tions we adopt. For example, we may or may not allow shoes to be worn, or
we may measure people standing or sitting.

Thus, a measure must specify the domain and range as well as the rule
for performing the mapping.

EXAMPLE 2.4

In some everyday situations, a measure is associated with a number, the
assumptions about the mapping are well known, and our terminology
is imprecise. For example, we say “Felix’s age is 11,” or “Felix is 11.” In
 expressing ourselves in this way, we really mean that we are measuring age
by mapping each person into years in such a way that we count only whole
years since birth. But there are many different rules that we can use. For
example, the Chinese measure age by counting from the time of conception;

The Basics of Measurement ◾ 33

their assumptions are therefore different, and the resulting number is differ-
ent. For this reason, we must make the mapping rules explicit.

We encounter some of the same problems in measuring software. For
example, many organizations measure the size of their source code in
terms of the number of lines of code (LOC) in a program. But the defini-
tion of a line of code must be made clear. The US Software Engineering
Institute developed a checklist to assist developers in deciding exactly what
is included in a line of code (Park 1992). This standard is still used by major
organizations and metrics tool providers (see, e.g., the unified code counter
tool produced by University of Southern California in collaboration with
the Aerospace Corporation (Pfeiffer, 2012). Figure 2.3 illustrates part of the
checklist, showing how different choices result in different counting rules.
Thus, the checklist allows you to tailor your definition of lines-of-code to
your needs. We will examine the issues addressed by this checklist in more
depth in Chapter 8.

Many systems consist of programs in a variety of languages. For exam-
ple, the GNU/Linux distribution includes code written in at least 19 differ-
ent languages (Wheeler 2002). In order to deal with code written in such
a variety of languages, David Wheeler’s code analysis tool uses a simple
scheme for counting LOC: “a physical source line of code is a line ending
in a newline or end-of-file marker, and which contains at least one non-
whitespace non-comment character.”

2.1.3 The Representation Condition of Measurement

We saw that, by definition, each relation in the empirical relational system
corresponds via the measurement to an element in a number system. We
want the properties of the measures in the number system to be the same
as the corresponding elements in the real world, so that by studying the
numbers, we learn about the real world. Thus, we want the mapping to
preserve the relation. This rule is called the representation condition, and
it is illustrated in Figure 2.4.

The representation condition asserts that a measurement mapping M must
map entities into numbers and empirical relations into numerical relations
in such a way that the empirical relations preserve and are preserved by the
numerical relations. In Figure 2.4, we see that the empirical relation taller
than is mapped to the numerical relation >. In particular, we can say that

A is taller than B if and only if M(A) > M(B)

34 ◾ Software Metrics

Statement type
 Include Exclude
Executable
Nonexecutable
 Declarations
 Compiler directives
 Comments
 On their own lines
 On lines with source code
 Banners and nonblank spacers
 Blank (empty) comments
 Blank lines

How produced
 Include Exclude
Programmed
Generated with source code generators
Converted with automatic translators
Copied or reused without change
Modified
Removed

Origin
 Include Exclude
New work: no prior existence
Prior work: taken or adapted from
 A previous version, build, or release
 Commercial, off-the-shelf software, other than libraries
 Government furnished software, other than reuse libraries
 Another product
 A vendor-supplied language support library (unmodified)
 A vendor-supplied operating system or utility (unmodified)
 A local or modified language support library or operating system
 Other commercial library
 A reuse library (software designed for reuse)
 Other software component or library

FIGURE 2.3 Portion of US Software Engineering Institute checklist for lines-of-
code count.

The Basics of Measurement ◾ 35

This statement means that:

• Whenever Joe is taller than Fred, then M(Joe) must be a bigger num-
ber than M(Fred).

• We can map Jill to a higher number than Jack only if Jill is taller than
Jack.

EXAMPLE 2.5

In Section 2.1.1, we noted that there can be many relations on a given
set, and we mentioned several for the attribute height. The representa-
tion condition has implications for each of these relations. Consider these
examples:

For the (binary) empirical relation taller than, we can have the numerical
relation

 x > y

Then, the representation condition requires that for any measure M,

 A taller than B if and only if M(A) > M(B)

For the (unary) empirical relation is-tall, we might have the numerical
relation

 x > 70

The representation condition requires that for any measure M,

 A is-tall if and only if M(A) > 70

Joe taller than Fred

Empirical relation Preserved under M as Numerical relation

Joe

Real world Number system

Fred

M

63 72

M(Joe) > M(Fred)

FIGURE 2.4 Representation condition.

36 ◾ Software Metrics

For the (binary) empirical relation much taller than, we might have the
numerical relation

 x > y + 15

The representation condition requires that for any measure M,

 A much taller than B if and only if M(A) > M(B) + 15

For the (ternary) empirical relation x higher than y if sitting on z’s shoulders,
we could have the numerical relation

 0.7x + 0.8z > y

The representation condition requires that for any measure M,

A higher than B if sitting on C’s shoulders if and only if
0.7M(A) + 0.8M(C) > M(B)

Consider the actual assignment of numbers M given in Figure 2.5.
Wonderman is mapped to the real number 72 (i.e., M(Wonderman) = 72),
Frankie to 84 (M(Frankie) = 84), and Peter to 42 (M(Peter) = 42). With this
particular mapping M, the four numerical relations hold whenever the four
empirical relations hold. For example,

• Frankie is taller than Wonderman, and M(Frankie) > M(Wonderman).
• Wonderman is tall, and M(Wonderman) = 72 > 70.
• Frankie is much taller than Peter, and M(Frankie) = 84 > 57 = M(Peter) +

15. Similarly Wonderman is much taller than Peter and M(Wonderman) =
72 > 57 = M(Peter) + 15.

• Peter is higher than Frankie when sitting on Wonderman’s shoulders,
and 0.7M(Peter) + 0.8M(Wonderman) = 87 > 84 = M(Frankie)

Since all the relations are preserved in this way by the mapping, we can
define the mapping as a measure for the attribute. Thus, if we think of the

M

84
72
42

FIGURE 2.5 A measurement mapping.

The Basics of Measurement ◾ 37

measure as a measure of height, we can say that Frankie’s height is 84, Peter’s
is 42, and Wonderman’s is 72.

Not every assignment satisfies the representation condition. For instance,
we could define the mapping in the following way:

 M(Wonderman) = 72

 M(Frankie) = 84

 M(Peter) = 60

Then three of the above relations are satisfied, but much taller than is not.
This is because Wonderman is much taller than Peter is not true under this
mapping.

The mapping that we call a measure is sometimes called a representa-
tion or homomorphism, because the measure represents the attribute in
the numerical world. Figure 2.6 summarizes the steps in the measurement
process.

There are several conclusions we can draw from this discussion. First,
we have seen that there may be many different measures for a given attri-
bute. In fact, we use the notion of representation to define validity: any
measure that satisfies the representation condition is a valid measure.
Second, the richer the empirical relation system, the fewer the valid mea-
sures. We consider a relational system to be rich if it has a large number of

Identify the attribute
for some real-
world entities Identify empirical

relations for
attribute

Identify numerical
relations

corresponding
to each

empirical relation

Define mapping
from real-world

entities to numbers

Check that
numerical relations

preserve and are
preserved by

empirical relationsRepresentation
condition

FIGURE 2.6 Key stages of formal measurement.

38 ◾ Software Metrics

relations that can be defined. But as we increase the number of empirical
relations, we increase the number of conditions that a measurement map-
ping must satisfy in the representation condition.

EXAMPLE 2.6

Suppose we are studying the entity software failures, and we look at the attri-
bute criticality. Our initial description distinguishes among only three types
of failures:

• Delayed-response
• Incorrect output
• Data-loss

where every failure lies in exactly one failure class (based on which outcome
happens first). This categorization yields an empirical relation system that
consists of just three unary relations: R1 for delayed response, R2 for incorrect
output, and R3 for data loss. We assume every failure is in either R1, R2, or R3.
At this point, we cannot judge the relative criticality of these failure types; we
know only that the types are different.

To find a representation for this empirical relation system in the set of
real numbers, we need to choose only any three distinct numbers, and then
map members from different classes into different numbers. For example, the
mapping M, illustrated in Figure 2.7, assigns the mapping as:

 M(each delayed response) = 6

 M(each incorrect output) = 4

 M(each data loss) = 69

(Each point here
corresponds to a
delayed response failure)

R1

R2

R3

69

69
69

69

4
4

4

6

6

6

(Each point here
corresponds to an
incorrect output failure)

(Each point here
corresponds to a
data loss failure)

FIGURE 2.7 Measurement mapping.

The Basics of Measurement ◾ 39

This assignment is a representation, because we have numerical relations
corresponding to R1, R2, and R3. That is, the numerical relation correspond-
ing to R1 is the relation is 6; likewise, the numerical relation corresponding to
R2 is the relation is 4, and the numerical relation corresponding to R3 is the
relation is 69.

Suppose next we have formed a deeper understanding of failure criticality
in a particular environment. We want to add to the above relation system a
new (binary) relation, is more critical than. We now know that each data-
loss failure is more critical than each incorrect output failure and delayed
response failure; each incorrect output failure is more critical than each
delayed response failure. Thus, x more critical than y contains all those pairs
(x,y) of failures for which either

 x is in R3 and y is in R2 or R1, or

 x is in R2 and y is in R1

To find a representation in the real numbers for this enriched empirical
relation system, we now have to be much more careful with our assignment
of numbers. First of all, we need a numerical relation to correspond to more
critical than, and it is reasonable to use the binary relation >. However, it is
not enough to simply map different failure types to different numbers. To pre-
serve the new relation, we must ensure that data-loss failures are mapped to
a higher number than incorrect output failures, which in turn are mapped to
a higher number than delayed-response failures. One acceptable representa-
tion is the mapping:

 M(each delayed response) = 3

 M(each incorrect output) = 4

 M(each data-loss) = 69

Note that the mapping defined initially in this example would not be a
 representation, because > does not preserve is more critical than; incor-
rect output failures were mapped to a lower number than delayed response
failures.

There is nothing wrong with using the same representation in differ-
ent ways, or using several representations for the same attribute. Table
2.3 illustrates a number of examples of specific measures used in software
engineering. In it, we see that examples 1 and 2 in Table 2.3 give differ-
ent measures of program length, while examples 9 and 10 give different
measures of program reliability. Similarly, the same measure (although

40 ◾ Software Metrics

of course not the same measurement mapping), faults found per thousand
lines of code (KLOC), is used in examples 6, 7, and 8.

How good a measure is faults per KLOC? The answer depends entirely
on the entity–attribute pair connected by the mapping. Intuitively, most
of us would accept that faults per KLOC is a good measure of the rate at
which faults are found for the testing process (example 6). However, it is
not such a good measure of efficiency of the tester (example 7), because
intuitively we feel that we should also take into account the difficulty of
understanding and testing the program under scrutiny. This measure may
be reasonable when comparing two testers of the same program, though.
Faults per KLOC is not likely to be a good measure of quality of the pro-
gram code; if integration testing revealed program X to have twice as many
faults per KLOC than program Y, we would probably not conclude that
the quality of program Y was twice that of program X.

2.2 MEASUREMENT AND MODELS
In Chapter 1, we have discussed several types of models: cost estimation
models, quality models, capability maturity models, and more. In general,
a model is an abstraction of reality, allowing us to strip away detail and
view an entity or concept from a particular perspective. For example, cost

TABLE 2.3 Examples of Specific Measures Used in Software Engineering

Entity Attribute Measure
1 Completed project Duration Months from start to finish
2 Completed project Duration Days from start to finish
3 Program code Length Number of lines of code (LOC)
4 Program code Length Number of executable

statements
5 Integration testing

process
Duration Hours from start to finish

6 Integration testing
process

Rate at which faults
are found

Number of faults found per
KLOC (thousand LOC)

7 Test set Efficiency Number of faults found per
number of test cases

8 Test set Effectiveness Number of faults found per
KLOC (thousand LOC)

9 Program code Reliability Mean time to failure (MTTF) in
CPU hours

10 Program code Reliability Rate of occurrence of failures
(ROCOF) in CPU hours

The Basics of Measurement ◾ 41

models permit us to examine only those project aspects that contribute
to the project’s final cost. Models come in many different forms: as equa-
tions, mappings, or diagrams, for instance. These show us how the compo-
nent parts relate to one another, so that we can examine and understand
these relationships and make judgments about them.

In this chapter, we have seen that the representation condition requires
every measure to be associated with a model of how the measure maps
the entities and attributes in the real world to the elements of a numeri-
cal system. These models are essential in understanding not only how the
measure is derived, but also how to interpret the behavior of the numerical
elements when we return to the real world. But we also need models even
before we begin the measurement process.

Let us consider more carefully the role of models in measurement defi-
nition. Previous examples have made clear that if we are measuring height
of people, then we must understand and declare our assumptions to ensure
unambiguous measurement. For example, in measuring height, we would
have to specify whether or not we allow shoes to be worn, whether or not
we include hair height, and whether or not we specify a certain posture.
In this sense, we are actually defining a model of a person, rather than the
person itself, as the entity being measured. Thus, the model of the mapping
should also be supplemented with a model of the mapping’s domain—that
is, with a model of how the entity relates to its attributes.

EXAMPLE 2.7

To measure the length of programs using LOC, we need a model of a pro-
gram. The model would specify how a program differs from a subroutine,
whether or not to treat separate statements on the same line as distinct
LOC, whether or not to count comment lines, whether or not to count data
declarations, etc. The model would also tell us what to do when we have
programs written in different languages. It might also distinguish deliv-
ered operational programs from those under development, and it would
tell us how to handle situations where different versions run on different
platforms.

Process measures are often more difficult to define than product and
resource measures, in large part because the process activities are less
understood.

42 ◾ Software Metrics

EXAMPLE 2.8

Suppose we want to measure the attributes of the testing process. Depending
on our goals, we might measure the time or effort spent on this process, or
the number of faults found during the process. To do this, we need a care-
ful definition of what is meant by the testing process; at the very least, we
must be able to identify unambiguously when the process starts and ends.
A model of the testing process can show us which activities are included,
when they start and stop, and what inputs and outputs are involved.

2.2.1 Defining Attributes

When measuring, there is always a danger that we focus too much on the
formal, mathematical system, and not enough on the empirical one. We
rush to create mappings and then manipulate numbers, without given care-
ful thought to the relationships among entities and their attributes in the
real world. Figure 2.8 presents a whimsical view of what can happen when
we rush to manipulate numbers without considering their real meaning.

The dog in Figure 2.8 is clearly an exceptionally intelligent dog, but its
intelligence is not reflected by the result of an IQ test. It is clearly wrong to
define the intelligence of dogs in this way. Many people have argued that
defining the intelligence of people by using IQ tests is just as problematic.
What is needed is a comprehensive set of characteristics of intelligence,
appropriate to the entity (so that dog intelligence will have a different set
of characteristics from people intelligence) and associated by a model.

His IQ rating is
zero. He didn’t
manage a single
correct answer.

Well...I know he can’t
write yet, but I’ve always
regarded him as a rather

intelligent dog.

FIGURE 2.8 Using a suspect definition.

The Basics of Measurement ◾ 43

The model will show us how the characteristics relate. Then, we can try to
define a measure for each characteristic, and use the representation condi-
tion to help us understand the relationships as well as overall intelligence.

EXAMPLE 2.9

In software development, our intuition tells us that the complexity of a pro-
gram can affect the time it takes to code it, test it, and fix it; indeed, we sus-
pect that complexity can help us to understand when a module is prone to
contain faults. But there are few researchers who have built models of exactly
what it means for a module to be complex. Instead, we often assume that we
know what complexity is, and we measure complexity without first defining it
in the real world. For example, many software developers still define program
complexity as the cyclomatic number proposed by McCabe and illustrated in
Figure 2.9 (McCabe 1976). This number, based on a graph-theoretic concept,
counts the number of linearly independent paths through a program. We will
discuss this measure (and its use in testing) in more detail in Chapter 9.

McCabe felt that the number of such paths was a key indicator not just of
testability but also of complexity. Hence, he originally called this number, v,
the cyclomatic complexity of a program. On the basis of empirical research,
McCabe claimed that modules with high values of v were those most likely
to be fault-prone and unmaintainable. He proposed a threshold value of 10
for each module; that is, any module with v greater than 10 should be rede-
signed to reduce v. However, the cyclomatic number presents only a par-
tial view of complexity. It can be shown mathematically that the cyclomatic
number is equal to one more than the number of decisions in a program,
and there are many programs that have a large number of decisions but are
easy to understand, code, and maintain. Thus, relying only on the cyclomatic
number to measure actual program complexity can be misleading. A more
complete model of program complexity is needed.

If G is the control flowgraph of program P
and G has e edges (arcs) and n nodes

v(G) = e – n + 2

Here e = 16 n = 13 v(P) = 5

 v(G) = d + 1

v(G) is the number of linearly
independent paths in G

More simply, if d is the number of
decision nodes in G then

FIGURE 2.9 Computing McCabe’s cyclomatic number.

44 ◾ Software Metrics

Directed graphs are probably the most commonly used abstraction for
modeling software designs and implementations. To develop a measure of
software design attributes, we should establish relations relevant to design
attributes in terms of graph models of designs. Then we can use the rela-
tions to derive and validate a measure of the attributes.

EXAMPLE 2.10

To evaluate existing software design measures, Briand and his colleagues
developed relations on directed graph models of software designs, described
as properties, relevant to a set of attributes including module size, module
coupling, and system complexity (Briand et al. 1996).

One property of any module size measure is module additivity—the size
of a system is the sum of the sizes of its disjoint modules. One property of
any module coupling measure is that if you merge modules m1 and m2 to
create module M, then Coupling(M) ≤ (Coupling(m1) + Coupling(m2)). The
coupling of M may be less than Coupling(m1) + Coupling(m2) because m1
and m2 may have common intermodule relationships. Complexity proper-
ties are defined in terms of systems of modules, where complexity is defined
in terms of the number of relationships between elements in a system. One
complexity property is that the complexity of a system consisting of disjoint
modules is the sum of the complexity of its modules.

We can use the set of properties for a software attribute as an empirical
relation system to evaluate whether measures that are purported to be size,
coupling, or complexity measures are really consistent with the properties.
That is, we can determine if the measure satisfies the representation condi-
tion of measurement.

2.2.2 Direct and Derived Measurement

Once we have a model of the entities and attributes involved, we can define
the measure in terms of them. Many of the examples we have used employ
direct mappings from attribute to number, and we use the number to
answer questions or assess situations. But when there are complex rela-
tionships among attributes, or when an attribute must be measured by
combining several of its aspects, then we need a model of how to combine
the related measures. It is for this reason that we distinguish direct mea-
surement from derived measurement.

Direct measurement of an attribute of an entity involves no other attri-
bute or entity. For example, length of a physical object can be measured
without reference to any other object or attribute. On the other hand,
measures of the density of a physical object can be derived in terms of

The Basics of Measurement ◾ 45

mass and volume; we then use a model to show us that the relationship
between the three is

 Density = Mass/Volume

Similarly, the speed of a moving object is most accurately measured
using direct measures of distance and time. Thus, direct measurement
forms the building blocks for our assessment, but many interesting attri-
butes can be measured only by derived measurement.

The following direct measures are commonly used in software
engineering:

• Size of source code (measured by LOC)

• Schedule of the testing process (measured by elapsed time in hours)

• Number of defects discovered (measured by counting defects)

• Time a programmer spends on a project (measured by months
worked)

Table 2.4 provides examples of some derived measures that are com-
monly used in software engineering. The most common of all, and the
most controversial, is the measure for programmer productivity, as it
emphasizes size of output without taking into consideration the code’s
functionality or complexity. The defect detection efficiency measure is
computed with respect to a specific testing or review phase; the total num-
ber of defects refers to the total number discovered during the entire prod-
uct life cycle. Japanese software developers routinely compute the system
spoilage measure; it indicates how much effort is wasted in fixing faults,
rather than in building new code.

TABLE 2.4 Examples of Common Derived Measures Used in Software Engineering

Programmer productivity LOC produced/person-months of effort
Module defect density Number of defects/module size
Defect detection efficiency Number of defects detected/total number

of defects
Requirements stability Number of initial requirements/total

number of requirements
Test coverage Number of test requirements covered/total

number of test requirements
System spoilage Effort spent fixing faults/total project effort

46 ◾ Software Metrics

Derived measurement is often useful in making visible the interactions
between direct measurements. That is, it is sometimes easier to see what
is happening on a project by using combinations of measures. To see why,
consider the graph in Figure 2.10.

The graph shows the (anonymized) number of faults in each subsystem
of a large, important software system in the United Kingdom. From the
graph, it appears as if there are five subsystems that contain the most prob-
lems for the developers maintaining this system. However, Figure 2.11
depicts the same data with one big difference: instead of using the direct
measurement of faults, it shows fault density (i.e., the derived measure
defined as faults per KLOC). From the derived measurement, it is very
clear that one subsystem is responsible for the majority of the problems.

20
Faults per KLOC in subsystems

15

10

5

0
A H P B R E F C D K

Subsystem

I Q S J M N T O V UL

FIGURE 2.11 Using derived measurement to assess a product.

Faults in subsystems
100

80

60

40

20

0
A B C D E F G H I J K

Subsystem

L M N O P Q R S T U

FIGURE 2.10 Using direct measurement to assess a product (from a major
 system made up of several subsystems).

The Basics of Measurement ◾ 47

In fact, subsystem A is only 4000 LOC out of two million, but A is a big
headache for the maintainers. Here, the derived measurement helps the
project team to focus their maintenance efforts more effectively.

The representational theory of measurement, as described in this chap-
ter, is initially concerned with direct measurement of attributes. Where
no previous measurement has been performed, direct measurement con-
stitutes the natural process of trying to understand entities and the attri-
butes they possess. However, simple models of direct measurement do not
preclude the possibility of more accurate subsequent measurement that
will be achieved indirectly. For example, temperature can be measured as
the length of a column of mercury under given pressure conditions. This
measure is derived because we are examining the column, rather than the
entity whose temperature we want to know.

2.2.3 Measurement for Prediction

When we talk about measuring something, we usually mean that we wish
to assess some entity that already exists. This measurement for assessment
is very helpful in understanding what exists now or what has happened
in the past. However, in many circumstances, we would like to predict
an attribute of some entity that does not yet exist. For example, suppose
we are building a software system that must be highly reliable, such as
the control software for an aircraft, power plant, or x-ray machine. The
software construction may take some time, and we want to provide early
assurance that the system will meet reliability targets. However, reliabil-
ity is defined in terms of operational performance, something we clearly
cannot measure before the product is finished. To provide reliability indi-
cators before the system is complete, we can build a model of the factors
that affect reliability, and then predict the likely reliability based on our
understanding of the system while it is still under development.

Similarly, we often need to predict how much a development project
will cost, or how much time and effort will be needed, so that we can
allocate the appropriate resources to the project. Simply waiting for the
project to end, and then measuring cost and schedule attributes are clearly
not acceptable.

The distinction between measurement for assessment and prediction
is not always clear-cut. For example, suppose we use a globe to determine
the distance between London and Washington, DC. This derived mea-
surement helps us to assess how far apart the cities are. However, the same
activity is also involved when we want to predict the distance we will travel

48 ◾ Software Metrics

on a future journey. Notice that the action we take in assessing distance
involves the globe as a model of the real world, plus prediction procedures
that describe how to use the model.

In general, measurement for prediction always requires some kind of
mathematical model that relates the attributes to be predicted to some
other attributes that we can measure now. The model need not be complex
to be useful.

EXAMPLE 2.11

Suppose we want to predict the number of pages, m, that will print out as a
source code program, so that we can order sufficient paper or estimate the
time it will take to do the printing. We could use the very simple model

 m = x/a

where x is a variable representing a measure of source-code program length
in LOC, and a is a constant representing the average number of lines per
page.

Project managers universally need effort prediction.

EXAMPLE 2.12

A common generic model for predicting the effort required in software proj-
ects has the form

 E = aSb

where E is effort in person-months, S is the size (in LOC) of the system to
be constructed, and a and b are constants. We will examine many of these
models in Chapter 11.

Sometimes, the same model is used both for assessment and predic-
tion, as we saw with the example of the globe, above. The extent to which
it applies to each situation depends on how much is known about the
parameters of the model. In Example 2.11, suppose a is known to be 55 in a
specific environment. If a program exists with a known x, then the derived

The Basics of Measurement ◾ 49

measure of hard copy pages computed by the given formula is not really a
prediction problem (except in a very weak sense), particularly if the hard
copy already exists. However, if we have only a program specification, and
we wish to know roughly how many hard copy pages the final implemen-
tation will involve, then we would be using the model to solve a prediction
problem. In this case, we need some kind of procedure for determining
the unknown value of x based on our knowledge of the program specifi-
cation. The same is true in Example 2.12, where invariably we need some
means of determining the parameters a, b, and S based on our knowledge
of the project to be developed.

These examples illustrate that the model alone is not enough to perform
the required prediction. In addition, we need some means of determining
the model parameters, plus a procedure to interpret the results. Therefore,
we must think in terms of a prediction system, rather than of the model
itself. A prediction system consists of a mathematical model together with
a set of prediction procedures for determining unknown parameters and
interpreting results (Littlewood 1988).

EXAMPLE 2.13

Suppose we want to predict the cost of an automobile journey from London
to Bristol. The entity we want to predict is the journey and the attribute is its
cost. We begin by obtaining measures (in the assessment sense) of:

• a: the distance between London and Bristol
• b: the cost per gallon of fuel
• c: the average distance we can travel on a gallon of fuel in our car

Next, we can predict the journey’s cost using the formula

 cost = ab/c

In fact, we are using a prediction system that involves:

 1. A model: that is, the formula cost = ab/c.
 2. A set of procedures for determining the model parameters: that is, how

we determine the values of a, b, and c. For example, we may consult
with the local automobile association, or simply ask a friend.

 3. Procedures for interpreting the results: for example, we may use
Bayesian probability to determine likely margins of error.

50 ◾ Software Metrics

Using the same model will generally yield different results, if we use
different prediction procedures. For instance, in Example 2.13, the model
parameters supplied by a friend may be very different from those supplied
by the automobile association. This notion of changing results is especially
important when predicting software reliability.

EXAMPLE 2.14

A well-known reliability model is based on an exponential distribution for
the time to the ith failure of the product. This distribution is described by the
formula

 F t e N i at() ()= − − − +1 1

Here, N represents the number of faults initially residing in the program,
while a represents the overall rate of occurrence of failures. There are many
ways that the model parameters N and a can be estimated, including sophis-
ticated techniques such as maximum likelihood estimation. The details of
these prediction systems will be discussed in Chapter 11.

Accurate predictive measurement is always based on measurement in
the assessment sense, so the need for assessment is especially critical in
software engineering. Everyone wants to be able to predict key determi-
nants of success, such as the effort needed to build a new system, or the
reliability of the system in operation. However, there are no magic models.
The models are dependent on high-quality measurements of past projects
(as well as the current project during development and testing) if they are
to support accurate predictions. Since software development is more a
creative process than a manufacturing one, there is a high degree of risk
when we undertake to build a new system, especially if it is very different
from systems we have developed in the past. Thus, software engineering
involves risk, and there are some clear parallels with gambling.

Testing your methods on a sample of past data gets to the heart
of the scientific approach to gambling. Unfortunately this implies
some preliminary spadework, and most people skimp on that bit,
preferring to rely on blind faith instead. (Drapkin and Forsyth
1987)

We can replace “gambling” with software prediction, and then heed the
warning. In addition, we must recognize that the quality of our predictions

The Basics of Measurement ◾ 51

is based on several other assumptions, including the notion that the future
will be like the past, and that we understand how data are distributed. For
instance, many reliability models specify a particular distribution, such as
Gaussian or Poisson. If our new data does not behave like the distribution
in the model, our prediction is not likely to be accurate.

2.3 MEASUREMENT SCALES AND SCALE TYPES
We have seen how direct measurement of an attribute assigns a repre-
sentation or mapping M from an observed (empirical) relation system to
some numerical relation system. The purpose of performing the mapping
is to be able to manipulate data in the numerical system and use the results
to draw conclusions about the attribute in the empirical system. We do
this sort of analysis all the time. For example, we use a thermometer to
measure air temperature, and then we conclude that it is hotter today than
yesterday; the numbers tell us about the characteristic of the air.

But not all measurement mappings are the same. And the differences
among the mappings can restrict the kind of analysis we can do. To under-
stand these differences, we introduce the notion of a measurement scale, and
then we use the scale to help us understand which analyses are appropriate.

We refer to our measurement mapping, M, together with the empirical
and numerical relation systems, as a measurement scale. Where the rela-
tion systems (i.e., the domain and range) are obvious from the context, we
sometimes refer to M alone as the scale. There are three important ques-
tions concerning representations and scales:

 1. How do we determine when one numerical relation system is prefer-
able to another?

 2. How do we know if a particular empirical relation system has a rep-
resentation in a given numerical relation system?

 3. What do we do when we have several different possible representa-
tions (and hence many scales) in the same numerical relation system?

Our answer to the first question is pragmatic. Recall that the formal
relational system to which the scale maps need not be numeric; it can be
symbolic. However, symbol manipulation may be far more unwieldy than
numerical manipulation. Thus, we try to use the real numbers wherever
possible, since analyzing real numbers permits us to use techniques with
which we are familiar.

52 ◾ Software Metrics

The second question is known as the representation problem, and its
answer is sought not just by software engineers but also by all scientists
who are concerned with measurement. The representation problem is one
of the basic problems of measurement theory; it has been solved for vari-
ous types of relation systems characterized by certain types of axioms.
Rather than addressing it in this book, we refer the readers to the classical
literature on measurement theory.

Our primary concern in this chapter is with the third question. Called
the uniqueness problem, this question addresses our ability to determine
which representation is the most suitable for measuring an attribute of
interest.

In general, there are many different representations for a given empiri-
cal relation system. We have seen that the more relations there are, the
fewer are the representations. This notion of shrinking representations
can be best understood by a formal characterization of scale types. In this
section, we classify measurement scales as one of five major types:

 1. Nominal

 2. Ordinal

 3. Interval

 4. Ratio

 5. Absolute

There are other scales that can be defined (such as a logarithmic scale),
but we focus only on these five, as they illustrate the range of possibilities
and the issues that must be considered when measurement is done.

One relational system is said to be richer than another if all relations
in the second are contained in the first. Using this notion, the scale types
listed above are shown in increasing level of richness. That is, the richer
the empirical relation system, the more restrictive the set of representa-
tions, and so the more sophisticated the scale of measurement.

The idea behind the formal definition of scale types is quite simple. If
we have a satisfactory measure for an attribute with respect to an empiri-
cal relation system (i.e., it captures the empirical relations in which we are
interested), we want to know what other measures exist that are also accept-
able. For example, we may measure the length of physical objects by using a
mapping from length to inches. But there are equally acceptable measures

The Basics of Measurement ◾ 53

in feet, meters, furlongs, miles, and more. In this example, all of the accept-
able measures are very closely related, in that we can map one into another
by multiplying by a suitable positive constant (such as converting inches
into feet by multiplying by 1/12). A mapping from one acceptable measure
to another is called an admissible transformation. When measuring length,
the class of admissible transformations is very restrictive, in the sense that
all admissible transformations are of the form

 M′ = aM

where M is the original measure, M′ is the new one, and a is a constant.
In particular, transformations of the form

 M′ = b + aM (b ≠ 0)

or

 M′ = aMb (b ≠ 1)

are not acceptable. Thus, the set of admissible transformations for length is
smaller than the set of all possible transformations. We say that the more
restrictive the class of admissible transformations, the more sophisticated
the measurement scale.

2.3.1 Nominal Scale Type

Suppose we define classes or categories, and then place each entity in a
particular class or category, based on the value of the attribute. This cat-
egorization is the basis for the most primitive form of measurement, the
nominal scale. Thus, the nominal scale has two major characteristics:

 1. The empirical relation system consists only of different classes; there
is no notion of ordering among the classes.

 2. Any distinct numbering or symbolic representation of the classes is
an acceptable measure, but there is no notion of magnitude associ-
ated with the numbers or symbols.

In other words, nominal scale measurement places elements in a classifi-
cation scheme. The classes are not ordered; even if the classes are numbered
from 1 to n for identification, there is no implied ordering of the classes.

54 ◾ Software Metrics

EXAMPLE 2.15

Suppose that we are investigating the set of all known software faults in our
code, and we are trying to capture the location of the faults. Then we seek
a measurement scale with faults as entities and location as the attribute.
We can use a common but primitive mapping to identify the fault location:
we denote a fault as specification, design, or code, according to where the
fault was first introduced. Notice that this classification imposes no judg-
ment about which class of faults is more severe or important than another.
However, we have a clear distinction among the classes, and every fault
belongs to exactly one class. This is a very simple empirical relation system.
Any mapping, M, that assigns the three different classes to three different
numbers satisfies the representation condition and is therefore an acceptable
measure. For example, the mappings M1 and M2 defined by

M x

x

x1

1

2

3

()

,

,

,

=

if is specification fault

if is design fault

iff is code fault

if is specification fault

x

M x

x

⎧

⎨
⎪

⎩
⎪

=2

101

()

,

22 73

69

. ,

,

if is design fault

if is code fault

x

x

⎧

⎨
⎪

⎩
⎪

are acceptable. In fact, any two mappings, M and M’, will always be related
in a special way: M’ can be obtained from M by a one-to-one mapping. The
mappings need not involve numbers; distinct symbols will suffice. Thus, the
class of admissible transformations for a nominal scale measure is the set of
all one-to-one mappings.

2.3.2 Ordinal Scale Type

We can often augment the nominal scale with information about an order-
ing of the classes or categories creating an ordinal scale. The ordering leads
to analysis not possible with nominal measures. The ordinal scale has the
following characteristics:

• The empirical relation system consists of classes that are ordered
with respect to the attribute.

• Any mapping that preserves the ordering (i.e., any monotonic func-
tion) is acceptable.

• The numbers represent ranking only, so addition, subtraction, and
other arithmetic operations have no meaning.

The Basics of Measurement ◾ 55

However, classes can be combined, as long as the combination makes
sense with respect to the ordering.

EXAMPLE 2.16

Suppose our set of entities is a set of software modules, and the attribute we
wish to capture quantitatively is complexity. Initially, we may define five dis-
tinct classes of module complexity: trivial, simple, moderate, complex, and
incomprehensible. There is an implicit order relation of less complex than on
these classes; that is, all trivial modules are less complex than simple mod-
ules, which are less complex than moderate modules, etc. In this case, since
the measurement mapping must preserve this ordering, we cannot be as free
in our choice of mapping as we could with a nominal measure. Any map-
ping, M, must map each distinct class to a different number, as with nomi-
nal measures. But we must also ensure that the more complex classes are
mapped to bigger numbers. Therefore, M must be a monotonically increas-
ing function. For example, each of the mappings M1, M2, and M3 is a valid
measure, since each satisfies the representation condition.

M1()

1if is trivial

2 if is simple

3 if is moderate

4 if is complex
x

x

x

x

x

=

55 if is incomprehensible

1if is trivial

2 if is s

2

x

M x

x

x
⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

=()

iimple

3 if is moderate

4 if is complex

10 if is incomprehensible

x

x

x

⎧

⎨

⎪⎪
⎪⎪

⎩

⎪
⎪
⎪

=M x

x

x

x3()

0.1if is trivial

1001if is simple

1002 if is moderaate

4570 if is complex

4573 if is incomprehensible

x

x

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

However, neither M4 nor M5 is valid:

M x

x

x

x

x
4()

1if is trivial

1if is simple

3if is moderate

4 if is complex
=

55 if is incomprehensible

()

1if is trivial

3 if is s

5

x

M x

x

x
⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

=

iimple

2 if is moderate

4 if is complex

10 if is incomprehensible

x

x

x

⎧

⎨

⎪⎪
⎪⎪

⎩

⎪
⎪
⎪

Since the mapping for an ordinal scale preserves the ordering of
the classes, the set of ordered classes <C1, C2, …, Cn> is mapped to an

56 ◾ Software Metrics

increasing series of numbers < a1, a2, …, an> where ai is greater than aj
when i is greater than j. Any acceptable mapping can be transformed to
any other as long as the series of ai is mapped to another increasing series.
Thus, in the ordinal scale, any two measures can be related by a monotonic
mapping, so the class of admissible transformations is the set of all mono-
tonic mappings.

2.3.3 Interval Scale Type

We have seen how the ordinal scale carries more information about the
entities than does the nominal scale, since ordinal scales preserve order-
ing. The interval scale carries more information still, making it more pow-
erful than nominal or ordinal. This scale captures information about the
size of the intervals that separate the classes, so that we can in some sense
understand the size of the jump from one class to another. Thus, an inter-
val scale can be characterized in the following way:

• An interval scale preserves order, as with an ordinal scale.

• An interval scale preserves differences but not ratios. That is, we
know the difference between any two of the ordered classes in the
range of the mapping, but computing the ratio of two classes in the
range does not make sense.

• Addition and subtraction are acceptable on the interval scale, but
not multiplication and division.

To understand the difference between ordinal and interval measures,
consider first an example from everyday life.

EXAMPLE 2.17

We can measure air temperature on a Fahrenheit or Celsius scale. Thus, we
may say that it is usually 20° Celsius on a summer’s day in London, while it
may be 30° Celsius on the same day in Washington, DC. The interval from
one degree to another is the same, and we consider each degree to be a class
related to heat. That is, moving from 20° to 21° in London increases the heat
in the same way that moving from 30° to 31° does in Washington. However,
we cannot say that it is two-third as hot in London as Washington; neither
can we say that it is 50% hotter in Washington than in London. Similarly, we
cannot say that a 90° Fahrenheit day in Washington is twice as hot as a 45°
Fahrenheit day in London.

The Basics of Measurement ◾ 57

There are fewer examples of interval scales in software engineering
than of nominal or ordinal.

EXAMPLE 2.18

Recall the five categories of complexity described in Example 2.16. Suppose
that the difference in complexity between a trivial and simple system is the
same as that between a simple and moderate system. Then any interval mea-
sure of complexity must preserve these differences. Where this equal step
applies to each class, we have an attribute measurable on an interval scale. The
following measures have this property and satisfy the representation condition:

M x

x

x

x

x
1()

1if is trivial

2 if issimple

3 if is moderate

4 if is complex
=

55 if is incomprehensible

()

0 if is trivial

2 if is s

2

x

M x

x

x
⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

=

iimple

4 if is moderate

6 if is complex

8 if is incomprehensible

x

x

x

⎧

⎨

⎪
⎪⎪⎪

⎩

⎪
⎪
⎪

=M x

x

x

x3()

3.1if is trivial

5.1if is simple

7.1if is moderate

99.1if is complex

11.1if is incomprehensible

x

x

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

Suppose an attribute is measurable on an interval scale, and M and
M′ are mappings that satisfy the representation condition. Then we can
always find numbers a and b such that

 M = aM′ + b

We call this type of transformation an affine transformation. Thus, the
class of admissible transformations of an interval scale is the set of affine
transformations. In Example 2.17, we can transform Celsius to Fahrenheit
by using the transformation

 F = 9/5C + 32

Likewise, in Example 2.18, we can transform M1 to M3 by using the
formula

 M3 = 2M1 + 1.1

mule
Typewriter
Property-oriented measurement

58 ◾ Software Metrics

EXAMPLE 2.19

The timing of an event’s occurrence is a classic use of interval scale measure-
ment. We can measure the timing in units of years, days, hours, or some
other standard measure, where each time is noted relative to a given fixed
event. We use this convention everyday by measuring the year with respect
to an event (i.e., by saying “2014 ad”), or by measuring the hour from mid-
night. Software development projects can be measured in the same way,
by referring to the project’s start day. We say that we are on day 87 of the
project, when we mean that we are measuring 87 days from the first day of
the project. Thus, using these conventions, it is meaningless to say “Project X
started twice as early as project Y” but meaningful to say “the time between
project X’s beginning and now is twice the time between project Y’s begin-
ning and now.”

On a given project, suppose the project manager is measuring time in
months from the day work started: April 1, 2013. But the contract manager
is measuring time in years from the day that the funds were received from
the customer: January 1, 2014. If M is the project manager’s scale and M’ the
contract manager’s scale, we can transform the contract manager’s time into
the project manager’s by using the following admissible transformation:

 M = 12M’ + 9

2.3.4 Ratio Scale Type

Although the interval scale gives us more information and allows more
analysis than either nominal or ordinal, we sometimes need to be able to
do even more. For example, we would like to be able to say that one liquid
is twice as hot as another, or that one project took twice as long as another.
This need for ratios gives rise to the ratio scale, the most useful scale of
measurement, and one that is common in the physical sciences. A ratio
scale has the following characteristics:

• It is a measurement mapping that preserves ordering, the size of
intervals between entities, and ratios between entities.

• There is a zero element, representing total lack of the attribute.

• The measurement mapping must start at zero and increase at equal
intervals, known as units.

• All arithmetic can be meaningfully applied to the classes in the
range of the mapping.

The Basics of Measurement ◾ 59

The key feature that distinguishes ratio from nominal, ordinal, and
interval scales is the existence of empirical relations to capture ratios.

EXAMPLE 2.20

The length of physical objects is measurable on a ratio scale, enabling us to
make statements about how one entity is twice as long as another. The zero
element is theoretical, in the sense that we can think of an object as having
no length at all; thus, the zero-length object exists as a limit of things that
get smaller and smaller. We can measure length in inches, feet, centimeters,
meters, and more, where each different measure preserves the relations about
length that we observe in the real world. To convert from one length measure
into another, we can use a transformation of the form M = aM’, where a is a
constant. Thus, to convert feet into inches, we use the transformation I = 12F.

In general, any acceptable transformation for a ratio scale is a mapping
of the form

 M = aM′

where a is a positive scalar. This type of transformation is called a ratio
transformation.

EXAMPLE 2.21

The length of software code is also measurable on a ratio scale. As with other
physical objects, we have empirical relations like twice as long. The notion
of a zero-length object exists—an empty piece of code. We can measure
program length in a variety of ways, including LOC, thousands of LOC, the
number of characters contained in the program, the number of executable
statements, and more. Suppose M is the measure of program length in LOC,
while M’ captures length as number of characters. Then we can transform
one to the other by computing M’ = aM, where a is the average number of
characters per line of code.

2.3.5 Absolute Scale Type

As the scales of measurement carry more information, the defining classes
of admissible transformations have become increasingly restrictive. The
absolute scale is the most restrictive of all. For any two measures, M and M′,

60 ◾ Software Metrics

there is only one admissible transformation: the identity transformation.
That is, there is only one way in which the measurement can be made, so
M and M′ must be equal. The absolute scale has the following properties:

• The measurement for an absolute scale is made simply by counting
the number of elements in the entity set.

• The attribute always takes the form “number of occurrences of x in
the entity.”

• There is only one possible measurement mapping, namely the actual
count, and there is only one way to count elements.

• All arithmetic analysis of the resulting count is meaningful.

There are many examples of absolute scale in software engineering. For
instance, the number of failures observed during integration testing can
be measured only in one way: by counting the number of failures observed.
Hence, a count of the number of failures is an absolute scale measure for
the number of failures observed during integration testing. Likewise, the
number of people working on a software project can be measured only in
one way: by counting the number of people.

Since there is only one possible measure of an absolute attribute, the set
of acceptable transformations for the absolute scale is simply the identity
transformation. The uniqueness of the measure is an important difference
between the ratio scale and absolute scale.

EXAMPLE 2.22

We saw in Example 2.21 that the number of LOC is a ratio scale measure
of length for source code programs. A common mistake is to assume that
LOC is an absolute scale measure of length, because it is obtained by count-
ing. However, it is the attribute (as characterized by empirical relations) that
determines the scale type. As we have seen, the length of programs cannot
be absolute, because there are many different ways to measure it (such as
LOC, thousands of LOC, number of characters, and number of bytes). It is
incorrect to say that LOC is an absolute scale measure of program length.
However, LOC is an absolute scale measure of the attribute “number of lines
of code” of a program. For the same reason, “number of years” is a ratio scale
measure of a person’s age; it cannot be an absolute scale measure of age,
because we can also measure age in months, hours, minutes, or seconds.

The Basics of Measurement ◾ 61

Table 2.5 summarizes the key elements distinguishing the measure-
ment scale types discussed in this chapter. This table is similar to those
found in other texts on measurement. However, most texts do not point
out the possible risk of mis-interpretation of the examples column. Since
scale types are defined with respect to the set of admissible transforma-
tions, we should never give examples of attributes without specifying the
empirical relation system that characterizes an attribute. We have seen
that as we enrich the relation system for an attribute by preserving more
information with the measurement mapping, so we may arrive at a more
restrictive (and hence different) scale type. Thus, when Table 2.5 says that
the attributes length, time interval, and (absolute) temperature are on
the ratio scale, what it really means is that we have developed sufficiently
refined empirical relation systems to allow ratio scale measures for these
attributes.

2.4 MEANINGFULNESS IN MEASUREMENT
There is more than just academic interest in scale types. Understanding
scale types enables one to determine when statements about measurement
make sense. For instance, we have seen how it is inappropriate to compute
ratios with nominal, ordinal, and interval scales. In general, measures
often map attributes to real numbers, and it is tempting to manipulate the
real numbers in familiar ways: adding, averaging, taking logarithms, and
performing sophisticated statistical analysis. But we must remember that
the analysis is constrained by the scale type. We can perform only those
calculations that are permissible for the given scale, reflecting the type of

TABLE 2.5 Scales of Measurement

Scale Type
Admissible Transformations (How

Measures M and M′ must be Related) Examples
Nominal 1–1 mapping from M to M′ Labeling, classifying entities
Ordinal Monotonic increasing function from

M to M′, that is, M(x) M(y) implies
M′(x) M′(y)

Preference, hardness, air quality,
intelligence tests (raw scores)

Interval M′ = aM + b (a > 0) Relative time, temperature
(Fahrenheit, Celsius), intelligence
tests (standardized scores)

Ratio M′ = aM (a > 0) Time interval, length, temperature
(Kelvin)

Absolute M′ = M Counting entities

62 ◾ Software Metrics

attribute and mapping that generated the data. In other words, knowledge
of scale type tells us about limitations on the kind of mathematical manip-
ulations that can be performed. Thus, the key question we should ask after
having made our measurements is: can we deduce meaningful statements
about the entities being measured?

This question is harder to answer than it first appears. To see why, con-
sider the following statements:

 1. The number of errors discovered during the integration testing of
program X was at least 100.

 2. The cost of fixing each error in program X is at least 100.

 3. A semantic error takes twice as long to fix a syntactic error.

 4. A semantic error is twice as complex as a syntactic error.

Intuitively, Statement 1 seems to make sense, but Statement 2 does not;
the number of errors may be specified without reference to a particular
scale, but the cost of fixing an error cannot be. Statement 3 seems to make
sense (even if we think it cannot possibly be true) because the ratio of time
taken is the same, regardless of the scale of measurement used (i.e., if a
semantic error takes twice as many minutes to repair as a syntactic error,
it also takes twice as many hours, seconds, or years to repair). Statement
4 does not appear to be meaningful, and we require clarification. If “com-
plexity” means time to understand, then the statement makes sense. But
other definitions of complexity may not admit measurement on a ratio
scale; in those instances, Statement 4 is meaningless.

Our intuitive notion of a statement’s meaningfulness involving mea-
surement is quite distinct from the notion of the statement’s truth. For
example, the statement

The President of the United States is 125 years old

is a meaningf ul statement about the age measure, even though it is clearly
false. We can define meaningfulness in a formal way.

We say that a statement involving measurement is meaningful if its truth
value is invariant of transformations of allowable scales.

The Basics of Measurement ◾ 63

EXAMPLE 2.23

We can examine the transformations to decide on meaningfulness. Consider
these statements:

Fred is twice as tall as Jane

This statement implies that the measures are at least on the ratio scale,
because it uses scalar multiplication as an admissible transformation. The
statement is meaningful because no matter which measure of height we use
(inches, feet, centimeters, etc.), the truth or falsity of the statement remains
consistent. In other words, if the statement is true and if M and M’ are differ-
ent measures of height, then both the statements

 M(Fred) = 2M(Jane)

and

 M’(Fred) = 2M’(Jane)

are true. This consistency of truth is due to the relationship M = aM’ for some
positive number a.

The temperature in Tokyo today is twice that in London

This statement also implies ratio scale but is not meaningful, because we mea-
sure (air) temperature only on two scales, Fahrenheit and Celsius. Suppose
that the temperature in Tokyo is 40°C and in London 20°C. Then on the
Celsius scale, the statement is true. However, on the Fahrenheit scale, Tokyo
is 104°F while London is 68°F.

The difference in temperature between Tokyo and London today is
twice what it was yesterday

This statement implies that the distance between two measures is mean-
ingful, a condition that is part of the interval scale. The statement is
meaningful, because Fahrenheit and Celsius are related by the affine trans-
formation F = 9/5C + 32, ensuring that ratios of differences (as opposed to
just ratios) are preserved. For example, suppose yesterday’s temperatures
on the Celsius scale were 35°C in Tokyo and 25°C (a difference of 10) in
London, while today it is 40°C in Tokyo and 20°C in London (a difference
of 20). If we transform these temperatures to the Fahrenheit scale, we
find that yesterday’s temperatures were 95°F in Tokyo and 77°F London (a
difference of 18); today’s are 104°F in Tokyo and 68°F in London (a dif-
ference of 36). Thus, the truth value of the statement is preserved with the
transformation.

64 ◾ Software Metrics

Failure x is twice as critical as failure y

This statement is not meaningful, since we have only an ordinal scale for
failure criticality. To see why, suppose we have four classes of failures, classi,
for i from 1 to 4. We can define two mappings, M and M’, to be valid ordinal
measures as follows:

Failure Class Mapping M Mapping M’
Class1 1 3
Class2 3 4
Class3 6 5
Class4 7 10

Suppose y is in class2 and x in class3. Notice that M(x) = 6 and M(y) = 3 while
M’(x) = 5 and M’(y) = 4. In this case, the statement is true under M but false
under M’.

Meaningfulness is often clear when we are dealing with measures with
which we are familiar. But sometimes we define new measures, and it is
not as easy to tell if the statements about them are meaningful.

EXAMPLE 2.24

Suppose we define a crude notion of speed of software programs, and
we rank three programs A, B, and C with respect to a single empirical
binary relation faster than. Suppose further that the empirical relation is
such that A is faster than B, which is faster than C. This notion of program
speed is measurable on an ordinal scale, and any mapping M in which
M(A) > M(B) > M(C) is an acceptable measure. Now consider the statement
“Program A is faster than both Programs B and C” where we mean that
A is faster than B and A is faster than C. We can show that this statement
is meaningful in the following way. Let M and M’ be any two acceptable
measures. Then we know that, for any pair of programs x and y, M(x) > M(y)
if and only if M’(x) > M’(y). Using the scale M, the statement under scrutiny
corresponds to

 M(A) > M(B) and M(A) > M(C)

which is true. But then

 M’(A) > M’(B) and M’(A) > M’(C)

is also true because of the relationship between M and M’.

The Basics of Measurement ◾ 65

By similar argument, we can show that the statement “Program B is faster
than both Programs A and C” is meaningful even though it is false.

However, consider the statement “Program A is more than twice as fast as
Program C.” This statement is not meaningful. To see why, define acceptable
measures M and M’ as follows:

 M(A) = 3; M(B) = 2; M(C) = 1

 M(A) = 3; M(B) = 2.5; M(C) = 2

Using scale M the statement is true, since 3 = M(A) > 2M(C) = 2. However,
using M’ the statement is false. Although the statement seems meaningful
given our understanding of speed, the sophistication of the notion twice as
fast was not captured in our over-simplistic empirical relation system, and
hence was not preserved by all measurement mappings.

The terminology often used in software engineering can be imprecise
and misleading. Many software practitioners and researchers mistakenly
think that to be meaningful, a measure must be useful, practical, worth-
while, or easy to collect. These characteristics are not part of meaningful-
ness. Indeed, such issues are difficult to address for any measure, whether
it occurs in software or in some other scientific discipline. For example,
carbon-dating techniques for measuring the age of fossils may not be
practical or easy to do, but the measures are certainly valid and mean-
ingful! Thus, meaningfulness should be viewed as only one attribute of a
measure.

2.4.1 Statistical Operations on Measures

The scale type of a measure affects the types of operations and statistical
analyses that can be sensibly applied to the data. Many statistical analyses
use arithmetic operators:

 +, −, ÷, ×

The analysis need not be sophisticated. At the very least, we would like
to know something about how the whole data set is distributed. We use
two basic measures to capture this information: measures of central ten-
dency and measures of dispersion. A measure of central tendency, usually
called an average, tells us something about where the “middle” of the set is

66 ◾ Software Metrics

likely to be, while a measure of dispersion tells us how far the data points
stray from the middle.

Figure 2.12 shows the computation of measures of central tendency
for a given set of data. Measures of dispersion include the maximum and
minimum values, as well as the variance and standard deviation; these
measures give us some indication of how the data are clustered around a
measure of central tendency.

But even these simple analytical techniques cannot be used universally.
In particular, nominal and ordinal measures do not permit computation
of mean, variance, and standard deviation. That is, the notion of mean is
not meaningful for nominal and ordinal measures.

EXAMPLE 2.25

Suppose the data points {x1, …, xn} represent a measure of understandability
for each module in system X, while {y1, …, ym} represent the understandabil-
ity values for each module in system Y. We would like to know which of the
two systems has the higher average understandability. The statement “The
average of the xis is greater than the average of the yjs” must be meaningful;
that is, the statement’s truth value should be invariant with respect to the
particular measure used.

Suppose we assess every module’s understandability according to the fol-
lowing classification: trivial, simple, moderate, complex, and incomprehensi-
ble. In this way, our notion of understandability is representable on an ordinal
scale. From this, we can define two valid measures of understandability, M
and M’, as in Table 2.6.

Suppose that X consists of exactly five modules, and the understandability
of each is rated as:

We have measured an attribute for 13 entities, and the resulting data
points in ranked order are:

2, 2, 4, 5, 5, 8, 8, 10,11, 11, 11, 15, 16

The mean of this set of data (i.e., the sum divided by the number of
items) is 8.3.

The median (i.e., the value of the middle-ranked item) is 8.
The mode (i.e., the value of the most commonly occurring item) is 11.

FIGURE 2.12 Different ways to compute the average of a set of numbers.

The Basics of Measurement ◾ 67

x1 trivial
x2 simple
x3 simple
x4 moderate
x5 incomprehensible

while Y’s seven modules have understandability

y1 simple
y2 moderate
y3 moderate
y4 moderate
y5 complex
y6 complex
y7 complex

Using M, the mean of the X values is 2.6, while the mean of the Y values
is 3.1; thus, the “average” of the Y values is greater than the average of the X
values. However, using M’, the mean of the X values is 3.6, while the mean of
the Y values is 3.1. Since the definition of meaningfulness requires the relation
to be preserved, then mean is not a meaningful measure of central tendency
for ordinal scale data.

On the other hand, the median (i.e., the middle-ranked item) is a mean-
ingful measure of central tendency. Using both M and M’, the median of the
Y values (in both cases 3) is greater than the median of the X values (in both
cases 2). Similarly, if we define M’’ as a radically different measure according
to Table 2.7, the median of the Y values, 69, is still greater than the median
of the X values, 3.8.

Example 2.25 confirms that the mean cannot be used as a measure of
central tendency for ordinal scale data. However, the mean is acceptable
for interval and ratio scale data. To see why, let {X1,…,Xn} and {Y1,…,Yn}

TABLE 2.6 Measures of Understandability

Trivial Simple Moderate Complex Incomprehensible

M 1 2 3 4 5
M′ 1 2 3 4 10

TABLE 2.7 Different Measure M′′
Trivial Simple Moderate Complex Incomprehensible

M′′ 0.5 3.8 69 104 500

68 ◾ Software Metrics

be two sets of entities for which some attribute can be measured on a
ratio scale. We must show that the statement “The mean of the Xis is
greater than the mean of Yjs” is meaningful. To do so, let M and M′ be
two measures for the attribute in question. Then we want to show that
the means preserve the relation. In mathematical terms, we must dem-
onstrate that

1 1 1 1

11 1n
M x

m
M y

n
M x

m
M yi j

j

m

i

n

i j
j

m

() () () ()> >
== =
∑∑ ∑if and only if ʹ ʹ

ii

n

=
∑

1

The ratio scale gives us the extra information we need to show that the
assertion is valid. Thanks to the relationship between acceptable trans-
formations for a ratio scale, we know that M = aM′ for some a > 0. When
we substitute aM′ for M in the above equation, we get a statement that is
clearly valid.

The same investigation can be done for any statistical technique, using
scale and transformation properties to verify that a certain analysis is
valid for a given scale type. Table 2.8 presents a summary of the mean-
ingful statistics for different scale types. The entries are inclusive reading
downwards. That is, every meaningful statistic of a nominal scale type is
also meaningful for an ordinal scale type; every meaningful statistic of
an ordinal scale type is also meaningful for an interval scale type, etc. We
will return to the appropriateness of analysis when we discuss experimen-
tal design and analysis in Chapter 4, and again when we investigate the
analysis of software measurement data in Chapter 6.

2.4.2 Objective and Subjective Measures

When measuring attributes of entities, we strive to keep our measure-
ments objective. By doing so, we make sure that different people produce
the same measurement results, regardless of whether they are measuring
product, process, or resource. This consistency of measurement is very
important. Subjective measures depend on the environment in which
they are made. The measures can vary with the person measuring, and
they reflect the judgment of the measurer. What one judge considers bad,
another may consider good, and it may be difficult to reach consensus on
attributes such as process, product, or resource quality.

Nevertheless, it is important to recognize that subjective measurements
can be useful, as long as we understand their imprecision. For example,

The Basics of Measurement ◾ 69

suppose we want to measure the quality of requirements before we turn
the specification over to the test team, who will then define test plans from
them. Any of the techniques shown in Figure 2.2 would be acceptable. For
example, we may ask the test team to read and rate each requirement on
a scale from 1 to 5, where ‘1’ means “I understand this requirement com-
pletely and can write a complete test script to determine if this require-
ment is met,” to ‘5:’ “I do not understand this requirement and cannot
begin to write a test script.” Suppose the results of this assessment look like
the chart in Table 2.9.

Even though the measurement is subjective, the measures show us that
we may have problems with our interface requirements; perhaps the inter-
face requirements should be reviewed and rewritten before proceeding
to test plan generation or even to design. It is the general picture that is
important, rather than the exactness of the individual measure, so the
subjectivity, although a drawback, does not prevent us from gathering use-
ful information about the entity. We will see other examples throughout

TABLE 2.8 Summary of Measurement Scales and Statistics Relevant to Each

Scale
Type Defining Relations

Examples of Appropriate
Statistics

Appropriate
Statistical Tests

Nominal Equivalence Mode Nonparametric
Frequency

Ordinal Equivalence Median Nonparametric
Greater than Percentile

Spearman rS

Kendall τ
Kendall W

Interval Equivalence Mean Non-parametric
Greater than Standard deviation
Known ratio of any
intervals

Pearson product-moment
correlation

Multiple product-moment
correlation

Ratio Equivalence Geometric mean Nonparametric
and parametric

Greater than Coefficient of variation
Known ratio of any
intervals

Known ratio of any two
scale values

Source: Siegel S. and Castellan N.J. Jr., Nonparametrics Statistics for the Behavioral Sciences,
2nd Edition. McGraw-Hill, New York, 1988.

70 ◾ Software Metrics

this book where measurement is far from ideal but still paints a useful
picture of what is going on in the project.

2.4.3 Measurement in Extended Number Systems

In many situations we cannot measure an attribute directly. Instead, we must
derive a measure in terms of the more easily understood sub-attributes. For
example, suppose that we wish to assess the quality of the different types of
transport available for traveling from our home to another city. We may not
know how to measure quality directly, but we know that quality involves at
least two significant sub-attributes, journey time and cost per mile. Hence,
we accumulate data in Table 2.10 to describe these attributes.

Intuitively, given two transport types, A and B, we would rank A supe-
rior to B (i.e., A is of higher quality than B) if

 journey time (A) < journey time (B) AND cost per mile
 (A) < cost per mile (B)

Using this rule with the data collected for each journey type, we can
depict the relationships among the candidates as shown in Figure 2.13. In
the figure, an arrow from transport type B to transport type A indicates the
superiority of A to B. Thus, Car is superior to both Train and Plane because,
in each case, the journey time is shorter and the cost per mile is less. Figure
2.13 also shows us that Car, Train, and Plane are all superior to Coach.

Notice that in this relation Train and Plane are incomparable; that is,
neither is superior to the other. Train is slower but cheaper than Plane.

TABLE 2.9 Results of Requirements Assessment

Requirement Type 1 (good) 2 3 4 5 (bad)

Performance requirements 12 7 2 1 0
Database requirements 16 12 2 0 0
Interface requirements 3 4 6 7 1
Other requirements 14 10 1 0 0

TABLE 2.10 Transportation Attributes

Option Journey Time (h) Cost Per Mile ($)

Car 3 1.5
Train 5 2.0
Plane 3.5 3.5
Executive coach 7 4.0

The Basics of Measurement ◾ 71

It would be inappropriate to force an ordering because of the different
underlying attributes. We could impose an ordering only if we had addi-
tional information about the relative priorities of cost and timing. If cost is
more important to us, then Train is preferable; if speed is more important,
we would prefer Plane.

Now suppose we wish to use the representation condition to define a mea-
sure to characterize the notion of journey quality given by the above relation
system. It is easy to prove that there is no possible measure that is a single-
valued real number. Suppose that such a measure exists, then Plane would
be mapped to some real number m(Plane), while Train would be mapped to
some real number m(Train). Then, exactly one of the following must be true:

 1. m(Plane) < m(Train)

 2. m(Plane) > m(Train)

 3. m(Plane) = m(Train)

If the first statement were true, then the representation condition
implies that Plane must be superior to Train. This is false, because Train
is cheaper. Similarly, the second statement is false because Train is slower
than Plane. But the third statement is also false, since it implies an equality
relation that does not exist.

The reason we cannot find a measure satisfying the representation con-
dition is because we are looking at too narrow a number system. When we
have genuinely incomparable entities, we have a partial order, as opposed
to what is called a strict weak order, so we cannot measure in the set of
real numbers. (A strict weak order has two properties: it is asymmetric
and negatively transitive. By asymmetric, we mean that if the pair (x,y)
is in the relation, then (y,x) is not in the relation. A relation is negatively
transitive if, whenever (x,y) is in the relation, then for every z, either (x,z)

Coach

PlaneTrain

Car

FIGURE 2.13 Quality relationships based on rule and collected data.

72 ◾ Software Metrics

or (z,y) is in the relation.) What we need instead is a mapping into pairs of
real numbers, that is, into the set . In the transport example, we can define
a representation in the following way. First, we define a measure m that
takes a transport type into a pair of elements:

 m(Transport) = (Journey time, Cost per mile)

Then, we define the actual pairs:

 m(Car) = (3, 1.5)

 m(Train) = (5, 2)

 m(Plane) = (3.5, 3.5)

 m(Coach) = (7, 4)

The numerical binary relation over that corresponds to the empirical
superiority relation is defined as:

 (x,y) superior to (x′,y′) if x < x′ and y < y′

The numerical relation preserves the empirical relation. That too is only
a partial order in because it contains incomparable pairs. For example, the
pair (5,2) is not superior to (3.5,3.5); nor is (3.5,3.5) superior to (5,2).

EXAMPLE 2.26

Suppose we wish to assess the quality of four different C compilers. We
determine that our notion of quality is defined in terms of two sub-attributes:
speed (average KLOC compiled per second) and resource (minimum Kbytes
of RAM required). We collect data about each compiler, summarized in
Table 2.11.

Using the same sort of analysis as above, we can show that it is not pos-
sible to find a measure of this attribute in the real numbers that satisfies the
representation condition.

These examples are especially relevant to software engineering. The
International Standards Organization has published a standard, (ISO/IEC

The Basics of Measurement ◾ 73

25010:2011), for measuring software quality that explicitly defines software
quality as the combination of eight distinct sub-attributes. We will dis-
cuss the details of this standard in Chapter 10. However, it is important to
note here that the standard reflects a widely held view that no single real-
valued number can characterize such a broad attribute as quality. Instead,
we look at n-tuples that characterize a set of n sub-attributes. The same
observation can be made for complexity of programs.

EXAMPLE 2.27

Many attempts have been made to define a single, real-valued metric to
characterize program complexity. For instance, in Example 2.9, we were
introduced to one of the most well known of these metrics, the cyclomatic
number. This number, originally defined by mathematicians on graphs, is the
basis of an intuitive notion of program complexity. The number corresponds
to an intuitive relation, more complex than, that allows us to compare pro-
gram flowgraphs and then make judgments about the programs from which
they came. That is, the cyclomatic number is a mapping from the flowgraphs
into real numbers, intended to preserve the complexity relation. As we have
seen in examining journey quality, if the relation more complex than is not a
strict weak order, then cyclomatic number cannot be an ordinal scale mea-
sure of complexity. (Indeed, a theorem of measurement theory asserts that a
strict weak order is a necessary and sufficient condition for an ordinal scale
representation in .) We contend that no general notion of complexity can
give rise to such an order. To see why, consider the graphs depicted in Figure
2.14. Flowgraph y represents a conditional choice structure, x represents
a sequence of two such structures, and z represents a looping construct.
Intuitively, it seems reasonable that graph x is more complex than graph y. If
more complex than produced a strict weak order, we should be able to show
that this relation is negatively transitive. That is, we should be able to show
that for any z, either x is related to z or z is related to y. But neither of the fol-
lowing statements is obviously true:

 x is more complex than z

TABLE 2.11 Comparing Four Compilers

Speed Resource

A 45 200
B 30 400
C 20 300
D 10 600

74 ◾ Software Metrics

and

 z is more complex than y

Some programmers would argue that x is more complex than z; for
instance, while others would say that z is more complex than x; we cannot
reach consensus. In other words, some of the graphs are not comparable, so
the relation is not a strict weak order and the cyclomatic number cannot be
on an ordinal scale. Notice that the cyclomatic number for x is 3, for y is 2,
and for z is 2, forcing us to conclude that x should be more complex than z.
Thus, the cyclomatic number, clearly useful in counting the number of lin-
early independent paths in the program flowgraph, should not be used as a
comprehensive measure of complexity.

In spite of theoretical problems, there are many situations when we must
combine sub-attributes to impose a strict ranking, and hence an ordinal
scale. That is, we need to define a single real-valued number as a measure.
For example, if we are buying a coat, we may take into account the price,
quality of material, fit, and color. But in the end, we are forced to deter-
mine preference. Consciously or subconsciously, we must define some
combination of component measures to arrive at a preference ranking.

EXAMPLE 2.28

We want to buy a contact management program. It is likely that the deci-
sion will be based on a collection of attributes, such as price, reliability, and
usability. If the program is for a single user’s home PC, we may give price a
heavier weighting than reliability when ranking the programs. However, if we
are buying it for network use in a major organisation, it is likely that reliability
would get a larger weighting than price.

Y ZX

FIGURE 2.14 Three program flowgraphs.

The Basics of Measurement ◾ 75

Other, similar problems can arise. We may need to determine which
program is safest, based on a set of criteria. Or we may wish to choose
from among a variety of design techniques, based on survey data that
captures developer preferences, design quality assessments, and cost of
training and tools. Each of these instances presents a problem in mak-
ing a decision with multiple criteria. There is an extensive literature on
multi-criteria decision theory, and the measurement theory that relates
to it. We discuss this type of analysis in Chapter 6, when we address
data analysis techniques. However, here we must look at how to com-
bine measures in a way that remains true to the spirit of measurement
theory.

2.4.4 Derived Measurement and Meaningfulness

When we measure a complex attribute in terms of simpler sub-attributes,
we are measuring indirectly. In doing so, we must adhere to the same basic
rules of measurement theory that apply to direct measures. We must pay
particular attention to issues of scale types and meaningfulness.

Scale types for derived measures are similar to those for direct ones.
Our concerns include the uniqueness of the representation, as well as the
admissible transformations for each scale type. We call an admissible
transformation a rescaling, and we define rescaling in the following way.
Suppose that we measure each of n sub-attributes with measure Mi. Let
M be a derived measure involving components M1, M2, …, Mn. That is,
M = f(M1, M2, …, Mn) for some function f. We say that M′ is a rescaling
of M if there are rescalings M1′, M2′, …, Mn′, of M1, M2, …, Mn, respectively,
such that M′ = f(M1′, M2′, …, Mn′).

Strictly speaking, this defines rescaling in the wide sense. Rescaling in
the narrow sense requires us to verify that M′ = f(M1, M2, …, Mn).

EXAMPLE 2.29

Density d is a derived measure of mass m and volume V. The specific rela-
tionship is expressed as

 d = m/V

Every rescaling of d is of the form d’ = αd (for α >0). To see why, we must
demonstrate two things: that a function of this form is a rescaling, and that
every rescaling has this form. For the first part, we have to find rescalings m’
and V’ of m and V, respectively, such that αd = m’/V’. Both m and V are ratio

76 ◾ Software Metrics

scale measures, so αm and V are acceptable rescalings of m and V, respec-
tively. Since

 α α
α

d
m
V

m
V=

⎛
⎝⎜

⎞
⎠⎟
=

therefore we have a rescaling.
To show that every rescaling is of the appropriate form, notice that since

m and V are ratio scale measures, every rescaling of m must be of the form
α1m for some α1 and every rescaling of V must be of the form α2V for some
α2. Therefore, every rescaling of d has the form

 α
α

α
α

α
α

α α
α
α

1

2

1

2

1

2

1

2

m
V

m
V d d=

⎛
⎝⎜

⎞
⎠⎟
= = =

⎛
⎝⎜

⎞
⎠⎟

where

Now, we can define scale types for derived scales in exactly the same
way as for direct scales. Example 2.29 shows us that the scale for density d
is ratio, because all the admissible transformations have the form d ← αd.
In the same way, we can show that the scale type for a derived measure
M will generally be no stronger than the weakest of the scale types of the
Mis. Thus, if the Mis contain a mixture of ratio, interval, and nominal scale
types, then the scale type for M will at best be nominal, since it is weakest.

EXAMPLE 2.30

A derived measure of testing efficiency T is D/E, where D is the number
of defects discovered and E is effort in person-months. Here D is an abso-
lute scale measure, while E is on the ratio scale. Since absolute is stronger
than ratio scale, it follows that T is a ratio scale measure. Consequently, the
acceptable rescalings of T arise from rescalings of E into other measures of
effort (person-days, person-years, etc.)

Many of the measures we have used in our examples are assessment
measures. But derived measures proliferate as prediction measures, too.

EXAMPLE 2.31

In Example 2.12, we saw that many software resource prediction models pre-
dict effort E (in person-months) by using an equation of the form

 E = aSb

The Basics of Measurement ◾ 77

where S is a measure of software size, and a and b are constants. Some
researchers have doubted the meaningfulness of these derived effort
measures. For example, DeMillo and Lipton looked at the Walston and
Felix model. Walston and Felix assert that effort can be predicted by the
equation

 E = 5.2S0.91

where S is measured in lines of code (see Perlis et al. 1981). DeMillo and
Lipton contend that the prediction equation is an example of a meaningless
measure. They assert that “both E and S are expressed as a ratio scale…
but the measurement is not invariant under the transformation SS and so is
meaningless” (DeMillo and Lipton 1981). In fact, this argument is relevant
only when we consider scales defined in the narrow sense. In the more
usual wide sense, it is easy to show that the equation is meaningful and
that the scale type for effort is ratio. However, demonstrating scale type
and meaningfulness is very different from asserting that the relationship is
valid.

Many times, models of effort involve several levels of derived measure-
ment. That is, a derived measure is defined to be a combination of other
measures, both direct and derived.

EXAMPLE 2.32

Halstead developed a theory of software physics (discussed in Chapter 8) that
defines attributes as combinations of counts of operators and operands. His
equation for software effort, E, is

 E = V/L

where V, the program volume, is on a ratio scale, but L, the estimated pro-
gram level, appears to be only on an ordinal scale. Thus, E cannot be a ratio
scale. However, Halstead claims that E represents the number of mental
discriminations necessary to implement the program, which is necessarily
a ratio scale measure of effort. Therefore, Halstead’s effort equation is not
meaningful.

The unit in which the measure is expressed can affect the scale of the
measure.

78 ◾ Software Metrics

EXAMPLE 2.33

Consider another effort measure

 E = 2.7v + 121w + 26x + 12y + 22z – 497

cited by DeMillo and Lipton (1981). E is supposed to represent person-
months, v is the number of program instructions, and w is a subjective com-
plexity rating. The value of x is the number of internal documents generated
on the project, while y is the number of external documents. Finally, z is the
size of the program in words. DeMillo and Lipton correctly point out that,
as in Example 2.32, effort should be on a ratio scale, but it cannot be ratio
in this equation because w, an ordinal measure, restricts E to being ordi-
nal. Thus, the equation is meaningless. However, E could still be an ordinal
scale measure of effort if we drop the pre-condition that E expresses effort in
person-months.

In this chapter, we have laid a foundation of principles on which to
base valid measurement. The next chapter builds on this foundation by
introducing a framework for how to choose measures, based on needs and
process.

2.5 SUMMARY
Measurement requires us to identify intuitively understood attributes
possessed by clearly defined entities. Then, we assign numbers or symbols
to the entities in a way that captures our intuitive understanding about
the attribute. Thus, intuitive understanding of that attribute must precede
direct measurement of a particular attribute. This intuitive understanding
leads to the identification of relations between entities. For example, the
attribute height for the entity person gives rise to relations like is tall, taller
than, and much taller than.

To measure the attribute, we define corresponding relations in some
number system; then measurement assigns numbers to the entities in
such a way that these relations are preserved. This relationship between
the domain and range relationships is called the representation condition.

In general, there may be many ways of assigning numbers that satisfy
the representation condition. The nature of different assignments deter-
mines the scale type for the attribute. There are five well-known scale
types: nominal, ordinal, interval, ratio, and absolute. The scale type for a
measure determines what kind of statements we can meaningfully make

The Basics of Measurement ◾ 79

using the measure. In particular, the scale type tells us what kind of opera-
tions we can perform. For example, we can compute means for ratio scale
measures, but not for ordinal measures; we can compute medians for ordi-
nal scale measures but not for nominal scale measures.

Many attributes of interest in software engineering are not directly
measurable. This situation forces us to use vectors of measures, with rules
for combining the vector elements into a larger, derived measure. We
define scale types for these in a similar way to direct measures, and hence
can determine when statements and operations are meaningful.

In the next chapter, we build on this foundation to examine a frame-
work for measurement that helps us to select appropriate measures to meet
our needs.

EXERCISES

 1. At the beginning of this chapter, we posed four questions:

 a. How much we must know about an attribute before it is reason-
able to consider measuring it? For instance, do we know enough
about “complexity” of programs to be able to measure it?

 b. How do we know if we have really measured the attribute we
wanted to measure? For instance, does a count of the number of
“bugs” found in a system during integration testing measure the
quality of the system? If not, what does the count tell us?

 c. Using measurement, what meaningful statements can we make
about an attribute and the entities that possess it? For instance,
is it meaningful to talk about doubling a design’s quality? If not,
how do we compare two different designs?

 d. What meaningful operations can we perform on measures? For
instance, is it sensible to compute average productivity for a
group of developers, or the average quality of a set of modules?

Based on what you have learned in this chapter, answer these questions.

 2. a. List, in increasing order of sophistication, the five most impor-
tant measurement scale types.

 b. Suppose that the attribute “complexity” of software modules
is ranked as a whole number between 1 and 5, where 1 means

80 ◾ Software Metrics

“trivial,” 2 “simple,” 3 “moderate,” 4 “complex,” and 5 “incom-
prehensible.” What is the scale type for this definition of com-
plexity? How do you know? With this measure, how could you
meaningfully measure the average of a set of modules?

 3. We commonly use ordinal measurement scales. For example, we can
use an ordinal scale to rank the understandability of programs as
trivial, simple, moderate, complex, or incomprehensible. For each of
the two other common measurement scale types, give an example
of a useful software measure of that type. State exactly which soft-
ware entity is being measured and which attribute. State whether the
entity is a product, process, or resource.

 4. Define measurement, and briefly summarize the representation con-
dition for measurement.

 5. For the empirical and numerical relation system of Example 2.5,
determine which of the following numerical assignments satisfy the
representation condition:

 a. M(Wonderman) = 100; M(Frankie) = 90; M(Peter) = 60

 b. M(Wonderman) = 100; M(Frankie) = 120; M(Peter) = 60

 c. M(Wonderman) = 100; M(Frankie) = 120; M(Peter) = 50

 d. M(Wonderman) = 68; M(Frankie) = 75; M(Peter) = 40

 6. For the relation systems in Example 2.6, determine which of the fol-
lowing mappings are representations. Explain your answers in terms
of the representation condition.

 a. M(each delayed response) = 6; M(each incorrect output) = 6;
M(each data-loss) = 69

 b. M(each delayed response) = 1; M(each incorrect output) = 2;
M(each data-loss) = 3

 c. M(each delayed response) = 6; M(each incorrect output) = 3;
M(each data-loss) = 2

 d. M(each delayed response) = 0; M(each incorrect output) = 1;
M(each data-loss) = 0.5

 7. Suppose that we could classify every software failure as either a)
syntactic, b) semantic, or c) system crash. Suppose additionally that

The Basics of Measurement ◾ 81

we agree that every system crash failure is more critical than every
semantic failure, which in turn is more critical than every syntactic
failure. Use this information to define two different measures of the
attribute of criticality of software failures. How are these measures
related? What is the scale of each?

 8. Explain why you would not conclude that the quality of program X
was twice as great as program Y if integration testing revealed pro-
gram X to have twice as many faults per KLOC than program Y.

 9. Explain why it is wrong to assert that lines of code is a bad software
measure.

 10. Explain why neither M4 nor M5 is a valid mapping in Example 2.16.

 11. In Example 2.18, determine the affine transformations from:

 a. M1 to M2

 b. M2 to M1

 c. M2 to M3

 d. M3 to M2

 e. M1 to M3

 12. Explain why duration of processes is measurable on a ratio scale.
Give some example measures and the ratio transformations that
relate them.

 13. Determine which of the following statements are meaningful:

 a. The length of Program A is 50.

 b. The length of Program A is 50 executable statements.

 c. Program A took 3 months to write.

 d. Program A is twice as long as Program B.

 e. Program A is 50 lines longer than Program B.

 f. The cost of maintaining program A is twice that of maintaining
Program B.

 g. Program B is twice as maintainable as Program A.

 h. Program A is more complex than Program B.

82 ◾ Software Metrics

 14. Formally, what do we mean when we say that a statement about mea-
surement is meaningful? Discuss the meaningfulness of the follow-
ing statements:

 “The average size of a Windows application program is about four
times that of a similar Linux program.”

 “Of the two Ada program analysis tools recommended in the Ada
coding standard, tool A achieved a higher average usability rating
than tool B.” For this example, program usability was rated on a
four-point scale:

 4: can be used by a non-programmer

 3: requires some knowledge of Ada

 2: usable only by someone with at least 5 years Ada program-
ming experience

 1: totally unusable.

 15. Show that the mean can be used as a measure of central tendency for
interval scale data.

 16. Show that, for nominal scale measures, the median is not a meaning-
ful notion of average, but the mode (i.e., the most commonly occur-
ring class of item) is meaningful.

 17. Suppose that “complexity” of individual software modules is ranked
(according to some specific criteria) as one of the following:

 {trivial, simple, moderate, complex, very complex, incomprehensible}

 Let M be any measure (in the representation sense) for this notion
of complexity, and let S be a set of modules for each of which M has
been computed.

 a. You want to indicate the average complexity of the modules in
S. How would you do this in a meaningful way? (Briefly explain
your choice.)

 b. Explain why it is not meaningful to compute the mean of the Ms.
(You should construct a statement involving means that you can
prove is not meaningful.)

The Basics of Measurement ◾ 83

 c. Give two examples of criteria that might be used to enable an asses-
sor objectively to determine which of the complexity values a given
module should be.

State carefully any assumptions you are making.

 18. Example 2.26 defines a quality attribute for compilers. Draw a dia-
gram to illustrate the empirical relation of quality. Explain why it is
not possible to find a measure for this attribute in the set of real num-
bers that satisfies the representation condition. Define a measure-
ment mapping into an alternative number system that does satisfy
the representation condition.

 19. A commonly used derived measure of programmer productivity P
is P = L/E, where L is the number of lines of code produced and E is
effort in person-months. Show that every rescaling of P is of the form
P′ = P (for >0).

 20. Show that the Walston–Felix effort equation in Example 2.32 defines
a ratio scale measure.

 21. Construct a representation for the relations greater functionality and
greater user-friendliness characterized by Table 2.1.

 22. Consider the attribute, “number of bugs found,” for software testing
processes. Define an absolute scale measure for this attribute. Why
is “number of bugs found” not an absolute scale measure of the attri-
bute of program correctness?

 23. Consider the following software application domain (AD) measure
and some data concerning software applications:

Application Domain (AD) Measure

AD Domain Description
1 WWW browsers
2 WWW servers
3 Compilers
4 Embedded systems
5 Operating systems
6 Word processors

84 ◾ Software Metrics

Application Domain (AD) Data

System AD
A 5
B 1
C 1
D 1
E 2
F 6
G 5

 a. What is the measurement scale of the application domain
measure?

 b. How would you measure the central tendency of application
domain? Calculate this central tendency value for the applica-
tions A–G listed above.

 c. Using the measurement theory definition of “meaningful”, give
an example statement concerning the applications listed above
that is not meaningful.

 24. Consider the attribute program adaptability, which is defined as “the
difficulty of adding new features to a program.”

 a. Define a measure for some aspect of program adaptability, and
give an example of an empirical relation.

 b. Give the measurement scale for the proposed measure and justify
your choice.

 c. Explain why the measure satisfies the representation condition.

 d. Describe one advantage and one disadvantage of the measure
that you defined.

REFERENCES
Littlewood B., Forecasting software reliability, In: Software Reliability, Modelling

and Identification (Ed: Bittanti S.), Lecture Notes in Computer Science 341,
Springer-Verlag Berlin Heidelberg, pp. 141–209, 1988.

McCabe T, A software complexity measure, IEEE Transactions on Software
Engineering, SE-2(4), pp. 308–320, 1976.

Perlis A.J., Sayward F.G., and Shaw M. (Eds.), Software Metrics: An Analysis and
Evaluation, MIT Press, Cambridge, Massachusetts, 1981.

The Basics of Measurement ◾ 85

Pfeiffer R.E. Unified Code Counter (UCC) Software Design. AEROSPACE REPORT
NUMBER: TOR-2012(3906)-72, UNIFIED CODE COUNTER (UCC) SOFT-
WARE DESIGN (10-JUL-2012), 2012. http://www.everyspec.com/USAF/
TORs/TOR2012-3906-72_10JUL2012_47673/. 7 August 2014.

FURTHER READING
There is no elementary textbook as such on measurement theory. The most
readable book on the representational theory of measurement is:

Roberts F.S., Measurement Theory with Applications to Decision Making, Utility,
and the Social Sciences, Addison-Wesley, Reading, Massachusetts, 1979.

A more formal mathematical treatment of the representational theory of
measurement (only for the mathematically gifted) is

Krantz D.H., Luce R.D., Suppes P., and Tversky A., Foundations of Measurement,
Volume 1, Academic Press, New York, 1971.

A very good introduction to measurement using non-scientific examples,
including attributes like public image, religiosity, and aspects of political
ideology, may be found in the following:

Finkelstein L., What is not measurable, make measurable, Measurement and
Control, 15, pp. 25–32, 1982.

Hubbard D.W., How to Measure Anything: Finding the Value of Intangibles in
Business, 2nd Edition, John Wiley and Sons, Hoboken, New Jersey, 2010.

Detailed discussions of alternative definitions of meaningfulness in mea-
surement may be found in the following:

Falmagne, J.-C. and Narens, L., Scales and meaningfulness of quantitative laws,
Synthese, 55, pp. 287–325, 1983.

Roberts, F. S., Applications of the theory of meaningfulness to psychology, Journal
of Mathematical Psychology, 29, pp. 311–332, 1985.

The origin of the definition of the hierarchy of measurement scale types
(nominal, ordinal, interval, and ratio) is the classic paper:

Stevens S.S., On the theory of scale types and measurement, Science, 103, pp. 677–
680, 1946.

A criticism of this basic approach appears in:

Velleman P.F. and Wilkinson L., Nominal, ordinal, interval and ratio typolo-
gies are misleading, The American Statistician, 47(1), pp. 65–72, February
1993.

http://www.everyspec.com
http://www.everyspec.com

86 ◾ Software Metrics

Other relevant references are:

Abran A., Software Metrics and Software Metrology, John Wiley and Sons Inc.,
Hoboken, New Jersey, 2010.

Belton V., A comparison of the analytic hierarchy process and a simple multi-
attribute utility function, European Journal of Operational Research, 26, pp.
7–21, 1986.

Briand L.C., Morasca S., and Basili V.R., Property-based software engineering
measurement, IEEE Transactions on Software Engineering, 22(1), pp. 68–86,
1996.

Campbell N.R., Physics: The Elements, Cambridge University Press, Cambridge,
MA, 1920. Reprinted as Foundations of Science: The Philosophy of Theory and
Experiment, Dover, New York, 1957.

Ellis B., Basic Concepts of Measurement, Cambridge University Press, Oxford,
England, 1966.

Finkelstein L., A review of the fundamental concepts of measurement,
Measurement, 2(1), pp. 25–34, 1984.

Finkelstein L., Representation by symbol systems as an extension of the concept of
measurement, Kybernetes, Volume 4, pp. 215–223, 1975.

Kyburg H.E., Theory and Measurement, Cambridge University Press, Cambridge,
England, 1984.

Sydenham P.H. (Ed.), Handbook of Measurement Science, Volume 1, John Wiley,
New York, 1982.

Vincke P., Multicriteria Decision Aids, John Wiley, New York, 1992.
Whitmire S., Object-Oriented Design Measurement, John Wiley and Sons, 1997.
Zuse H., Software Complexity: Measures and Methods, De Gruyter, Berlin, 1991.

87

C h a p t e r 3

A Goal-Based Framework
for Software Measurement

Chapter 1 describes measurement’s essential role in good software
engineering practice, and Chapter 2 shows how to apply a general

theory of measurement to software. In this chapter, we present a concep-
tual framework for diverse software measurement activities that you can
apply to an organization’s software development practices. These practices
may include development and maintenance activities, plus experiments
and case studies that evaluate new techniques and tools.

The framework presented here is based on two principle activities: clas-
sifying the entities to be examined and using measurement goals to iden-
tify relevant metrics. We show how such a goal-based framework supports
evaluations of software products, processes, and software development
organizations. We also look at measurement validation: both the process
of insuring that we are measuring what we say we are, so that we satisfy
the representation condition introduced in Chapter 2, as well as demon-
strating the utility of a measure.

3.1 CLASSIFYING SOFTWARE MEASURES
As we have seen in Chapter 2, the first obligation of any software mea-
surement activity is identifying the entities and attributes that we want to
measure. Software entities can be classified as follows:

88 ◾ Software Metrics

• Processes: Software-related activities.

• Products: Artifacts, deliverables, or documents that result from a
process activity.

• Resources: Entities required by a process activity.

A process is usually associated with some time scale. Process activities
have duration—they occur over time, and they may be ordered or related
in some way that depends on time, so that one activity must be completed
before another can begin. The timing can be explicit, as when design must
be complete by October 31, or implicit, as when a flow diagram shows that
design must be completed before coding can begin.

Resources and products are associated with a process. Each process
activity uses resources and products, and produces products. Thus, the
product of one activity may feed another activity. For example, a design
document can be the product of the design activity, which is then used as
an input to the coding activity.

Many of the examples that we use in this book relate to the development
process or maintenance process. But the concepts that we introduce apply
to any process: the reuse process, the configuration management process,
the testing process, etc. In other words, measurement activities may focus
on any process and need not be concerned with the comprehensive devel-
opment process. As we show in Section 3.2, our choice of measurements
depends on our measurement goals.

Within each class of entity, we distinguish between internal and exter-
nal attributes of a product, process, or resource:

• Internal attributes: Attributes that can be measured purely in terms
of the product, process, or resource itself. An internal attribute can
be measured by examining the product, process, or resource on its
own, without considering its behavior.

• External attributes: Attributes that can be measured only with
respect to how the product, process, or resource relates to its envi-
ronment. Here, the behavior of the process, product, or resource is
important, rather than the entity itself.

To understand the difference between internal and external attributes,
consider a set of software modules. Without actually executing the code,
we can determine several important internal attributes: its size (perhaps

A Goal-Based Framework for Software Measurement ◾ 89

in terms of lines of code, LOC or number of operands), its complexity
(perhaps in terms of the number of decision points in the code), and the
dependencies among modules. We may even find faults in the code as
we read it: misplaced commas, improper use of a command, or failure to
consider a particular case. However, there are other attributes of the code
that can be measured only when the code is executed: the number of fail-
ures experienced by the user, the difficulty that the user has in navigating
among the screens provided, or the length of time it takes to search the
database and retrieve requested information, for instance. It is easy to see
that these attributes depend on the behavior of the code, making them
external attributes rather than internal. Table 3.1 provides additional
examples of types of entities and attributes.

Managers often want to be able to measure and predict external attri-
butes. For example, the cost-effectiveness of an activity (such as design
inspections) or the productivity of the staff can be very useful in ensur-
ing that the quality stays high while the price stays low. Users are also
interested in external attributes, since the behavior of the system affects
them directly; the system’s reliability, usability, and portability affect
maintenance and purchase decisions. However, external attributes are
usually more difficult to measure than internal ones, and they are mea-
sured quite late in the development process. For example, reliability can
be measured only after development is complete and the system is ready
for use.

Moreover, it can be difficult to define the attributes in measurable
ways that satisfy all stakeholders. For example, we all want to build and
purchase systems of high quality, but we do not always agree on what we
mean by quality, and it is often difficult to measure quality in a compre-
hensive way. Thus, we tend to define these high-level attributes in terms of
other, more-concrete attributes that are well defined and measurable. The
McCall model introduced in Chapter 1 is a good example of this phenom-
enon, where software quality is defined as a composite of a large number
of narrower, more easily measurable terms.

In many cases, developers and users focus their efforts on only one facet
of a broad attribute. For example, some measure quality, an external prod-
uct attribute, as the number of faults found during formal testing, an inter-
nal process attribute. Using internal attributes to make judgments about
external attributes can lead to invalid conclusions. But there is a clear need
to be able to use internal attribute measurements decision-making about
external attributes. One of the goals of software measurement research is

90 ◾ Software Metrics

to identify the relationships between internal and external attributes, as
well as to find new and useful methods for directly measuring the attri-
butes of interest.

We also need to be able to track changes in product, process, and
resource attributes as systems evolve over time. For example, as a sys-
tem evolves from version 2 to version 3, the design, code, regression tests,
test requirements, processes, and personnel will change. Changes in
key software measures can potentially identify problems such as design
decay, improvements or reduction in reliability, and personnel changes.
Measurements can also be used to determine the success or failure of the
response to identified problems.

TABLE 3.1 Components of Software Measurement

Entities Attributes

Products Internal External
Requirements
Use case models
and scenarios

Size, reuse, modularity, redundancy,
functionality, syntactic correctness,
etc.

Comprehensibility,
maintainability, etc.

Designs, Design
models

Size, reuse, modularity, coupling,
cohesiveness, functionality, etc.

Quality, complexity,
maintainability, etc.

Code Size, reuse, modularity, coupling,
functionality, algorithmic complexity,
control-flow structuredness, etc.

Reliability, usability,
maintainability, etc.

Test requirements Size, etc. Effectiveness, etc.
Test data Size, coverage, Fault-finding ability
Test harness Languages supported, features Ease of use
… … …
Processes
Constructing
requirements

Time, effort, number of requirements
changes, etc.

Quality, cost, stability,
etc.

Detailed design Time, effort, number of specification
faults found, etc.

Cost, cost-effectiveness,
etc.

Testing Time, effort, number of coding faults
found, etc.

Cost, cost-effectiveness,
stability, etc.

… … …
Resources
Personnel Age, price, etc. Productivity, experience,

intelligence, etc.
Teams Size, communication level,

structuredness, etc.
Productivity, quality, etc.

Software Price, size, etc. Usability, reliability, etc.
Hardware Price, speed, memory size, etc. Reliability, etc.
Offices Size, temperature, light, etc. Comfort, quality, etc.
… … …

A Goal-Based Framework for Software Measurement ◾ 91

3.1.1 Processes

We often have questions about our software development activities and
processes that measurement can help us to answer. We want to know how
long it takes for a process to complete, how much it will cost, whether it
is effective or efficient, and how it compares with other processes that we
could have selected. However, only a limited number of internal process
attributes can be measured directly. These measures include:

• The duration of the process or one of its activities.

• The effort associated with the process or one of its activities.

• The number of incidents of a specified type arising during the pro-
cess or one of its activities.

For example, we may be reviewing our requirements to ensure their
quality before turning them over to the designers. To measure the effec-
tiveness of the review process, we can measure the number of requirement
errors found during the review as well as the number of errors found dur-
ing later activities. Likewise, to determine how well we are doing integra-
tion testing, we can measure the number of faults found during integration
testing, as well as those found later. And the number of personnel work-
ing on the project during a specified period can give us insight into the
resources needed for the development process.

Many of these measures can be used in combination with other mea-
sures to gain a better understanding of what is happening on a project:

EXAMPLE 3.1

During formal testing, we can use the indirect measure

 Cost
Number of errors

as a measure of the average cost of each error found during the process.

EXAMPLE 3.2

AT&T developers wanted to know the effectiveness of their software inspec-
tions. In particular, managers needed to evaluate the cost of the inspections

92 ◾ Software Metrics

against the benefits received. To do this, they measured the average amount
of effort expended per thousand lines of code reviewed. As we will see later
in this chapter, this information, combined with measures of the number of
faults discovered during the inspections, allowed the managers to perform a
cost–benefit analysis.

In some cases, we may want to measure properties of a process that con-
sists of a number of distinct sub-processes:

EXAMPLE 3.3

The testing process may be composed of unit testing, integration testing, system
testing, and acceptance testing. Each component process can be measured to
determine how effectively it contributes to overall testing. We can track the
number of errors identified in each subprocess, along with the duration and
cost of identifying each error, to see if each subprocess is cost-effective.

Cost is not the only process attribute that we can examine. Controllability,
observability, and stability are also important in managing a large proj-
ect. These attributes are clearly external ones. For example, stability of the
design process can depend on the particular period of time, as well as on
which designers are involved. Attributes such as these may not yet be suf-
ficiently well understood to enable numeric measurements according to
the principles described in Chapter 2, so they are often indicated by sub-
jective ratings on an ordinal scale. However, the subjective rankings based
on informal observations can form the basis for the empirical relations
required for subsequent objective measurement.

We often use objective measures of internal attributes as surrogate mea-
sures of external attributes. For example, surrogate measures of the effec-
tiveness of code maintenance can be defined as a composite measure in
terms of the number of faults discovered and the number of faults corrected.
In the AT&T study of Example 3.2, inspection effectiveness was measured
as average faults detected per thousand lines of code (KLOC) inspected.

In each case, we examine the process of interest and decide what kind
of information would help us to understand, control, or improve the pro-
cess. We will investigate process attributes in Chapter 13.

3.1.2 Products

Products are not restricted to the items that management is committed to
deliver as the final software product. Any artifact or document produced

A Goal-Based Framework for Software Measurement ◾ 93

during the software life cycle can be measured and assessed. For exam-
ple, developers often model the requirements and design using various
diagrams defined in the Unified Modeling Language, and they build pro-
totypes. The purpose of models and prototypes is to help developers to
understand the requirements or evaluate possible designs; these models
and prototypes may be measured in some way. Likewise, test harnesses that
are constructed to assist in system testing may be measured; system size
measurements should include this software if they are to be used to deter-
mine team productivity. And documents, such as the user guide or the cus-
tomer specification document, can be measured for size, quality, and more.

3.1.2.1 External Product Attributes
There are many examples of external product attributes. Since an external
product attribute depends on both product behavior and environment,
each attribute measure should take these constraints into account. For
example, if we are interested in measuring the reliability of code, we must
consider the machine and system configuration on which the program
is run as well as the mode of operational usage. That is, someone who
uses a word-processing package only to type letters may find its reliabil-
ity to be different from someone who uses the same package to merge
tables and link to spreadsheets. Similarly, the understandability of a docu-
ment depends on the experience and credentials of the person reading it;
a nuclear engineer reading the specification for power plant software is
likely to rate its understandability higher than a mathematician reading
the same document. Or the maintainability of a system may depend on
the skills of the maintainers and the tools available to them.

Usability, integrity, efficiency, testability, reusability, portability, and
interoperability are other external attributes that we can measure. These
attributes describe not only the code but also the other documents that
support the development effort. Indeed, the maintainability, reusability,
and even testability of specifications and designs are as important as the
code itself.

3.1.2.2 Internal Product Attributes
Internal product attributes are sometimes easy to measure. We can deter-
mine the size of a product by measuring the number of pages it fills or
the number of words it contains, for example. Since the products are con-
crete, we have a better understanding of attributes like size, effort, and
cost. Other internal product attributes are more difficult to measure, as

94 ◾ Software Metrics

opinions differ as to what they mean and how to measure them. For exam-
ple, there are many aspects of code complexity, and no consensus about
what best measures it. We will explore this issue in Chapter 9.

Because products are relatively easy to examine in an automated fash-
ion, there is a set of commonly measured internal attributes. For instance,
you can assess specifications in terms of their length, functionality, modu-
larity, reuse, redundancy, and syntactic correctness. Formal designs and
code can be measured in the same way; we can also measure attributes
such as structuredness (of control and data flow, for example) as well as
module coupling and cohesiveness.

Users sometimes dismiss many of these internal attributes as unim-
portant, since a user is interested primarily in the ultimate functionality,
quality, and utility of the software. However, the internal attributes can
be very helpful in suggesting what we are likely to find as the external
attributes.

EXAMPLE 3.4

Consider a software purchase to be similar to buying an automobile. If we
want to evaluate a used car, we can perform dynamic testing by actually driv-
ing the car in various conditions in order to assess external attributes such as
performance and reliability. But usually we cannot make a complete dynamic
assessment before we make a purchase decision, because not every type
of driving condition is available (such as snowy or slick roads). Instead, we
supplement our limited view of the car’s performance with measures of static
properties (i.e., internal attributes) such as water level, oil type and level,
brake fluid type and level, tire tread and wear pattern, brake wear, shock
absorber response, fan belt flexibility and wear, etc. These internal attributes
provide insight into the likely external attributes; for example, uneven tire
wear may indicate that the tires have been under-inflated, and the owner
may have abused the car by not performing necessary maintenance. Indeed,
when a car is serviced, the mechanic measures only internal attributes and
makes adjustments accordingly; the car is rarely driven for any length of
time to verify the conditions indicated by the internal attributes. In the same
way, measures of internal software product attributes can tell us what the
software’s performance and reliability may be. Changes to the inspection
process, for instance, may be based on measures of faults found, even though
the ultimate goal of reliability is based on failures, not faults.

Just as processes may be composed of subprocesses, there are products
that are collections of subproducts.

A Goal-Based Framework for Software Measurement ◾ 95

EXAMPLE 3.5

A software system design may consist of a number of Unified Modeling
Language design-level class diagrams. Average class diagram size, an attri-
bute of the system design, can be derived by calculating the size of each
diagram. We can measure size by number of classes in each diagram, and
then calculate the comprehensive measure according to Table 3.2.

3.1.2.3 The Importance of Internal Attributes
Many software engineering methods proposed and developed in the last
40 years provide rules, tools, and heuristics for producing software prod-
ucts. Almost invariably, these methods give structure to the products and
the common wisdom is that this structure makes software products eas-
ier to understand, analyze, test, and modify. The structure involves two
aspects of development:

 1. The development process, as certain products need to be produced at
certain stages, and

 2. The products themselves, as the products must conform to certain
structural principles.

In particular, levels of internal attributes such as modularity, coupling,
or cohesion usually characterize product structure.

EXAMPLE 3.6

One of the most widely respected books in software engineering is Brooks’
Mythical Man-Month (Brooks 1975, 1995). There, Brooks describes the vir-
tues of top-down design:

A good top-down design avoids bugs in several ways. First, the clarity of
structure and representation makes the precise statement of requirements and
functions of the modules easier. Second, the partitioning and independence

TABLE 3.2 Definition of Example Design Measurements

Entity Entity Type Attribute Proposed Measure Type
Design-level
class diagram Di

Product Size Number_of_classesi Direct

System design
{D1, … , Dn}

Product Average class
diagram size

1/n ∑
Number_of_classesi

Indirect

96 ◾ Software Metrics

of modules avoids system bugs. Third, the suppression of detail makes flaws
in the structure more apparent. Fourth, the design can be tested at each of
its refinement steps, so testing can start earlier and focus on the proper level
of detail at each step.

Similarly, the notion of high module cohesion and low module coupling
is the rationale for most design methods from structured design (Yourdon
and Constantine 1979) to object-oriented design (Larman 2004). Designs that
possess these attributes are assumed to lead to more reliable and maintain-
able code.

Brooks, Yourdon and Constantine, and Larman assume what most
other software engineers assume: good internal structure leads to good
external quality. Although intuitively appealing, the connection between
internal attribute values and the resulting external attribute values has
rarely been established, in part because (as we shall see in Chapter 4) it
is difficult to perform controlled experiments and confirm relationships
between attributes. At the same time, validating measures of attributes
such as cohesion and coupling is difficult but necessary. Valid software
measurement can help us to understand and confirm relationships empir-
ically; a key to the success of this analysis is the ability to provide accurate
and meaningful measures of internal product attributes.

3.1.2.4 Internal Attributes and Quality Control and Assurance
A major reason that developers want to use internal attributes to predict
external ones is the need to monitor and control the products during devel-
opment. For example, we want to be able to identify modules at the design
stage whose profile, in terms of measures of internal attributes, shows that
they are likely to be error-prone or difficult to maintain or test later on. To
do this, we need to know the relationship between internal design attri-
butes and failures. Figure 3.1 is an irreverent view of this process.

3.1.2.5 Validating Composite Measures
Software engineers frequently use the term “quality” to describe an inter-
nal attribute of design or code. However, “quality” is multi-dimensional; it
does not reflect a single aspect of a particular product.

EXAMPLE 3.7

Consider the gross national product (GNP), a measure of all the goods and
services produced by a country in a given time period. Economists look

A Goal-Based Framework for Software Measurement ◾ 97

at the trend in GNP over time, hoping that it will rise—that the country
is becoming more productive. The GNP is a weighted combination of the
values of key goods and services produced; the weights reflect the priorities
and opinions of the economists defining the measure. The value of indi-
vidual goods and services can be measured directly, but the GNP itself is an
indirect measure.

In the same way that economists want to control the economy and make
a country more productive, we want to measure and control the quality of
our products, and we usually do so by measuring and controlling a num-
ber of internal (structural) product attributes. Without articulating the
specific attributes that contribute to the general notion of quality, many
people assume that a single number, much like GNP, can capture the vari-
ous cognitive and structural notions of complexity, maintainability, and
usability. This number should therefore be a powerful indicator of all the
attributes that one normally associates with high-quality systems, such as
high reliability and high maintainability.

However, this approach ignores the question of whether the component
internal attributes are a complete and accurate depiction of the compre-
hensive one, and whether the weighting is appropriate. Just as economists
question whether GNP is valid (does it capture values like happiness,
beauty, and environmental quality?), we must question the validity of

FIGURE 3.1 Using internal measures for quality control and assurance.

98 ◾ Software Metrics

measures that paint only a partial picture of the attribute of interest. In
Chapters 8 through 11, we shall give scrutiny to conventional approaches
to measuring size, quality, complexity, and more.

3.1.3 Resources

The resources that we are likely to measure include any input for soft-
ware production. Thus, personnel (individual or teams), materials (includ-
ing office supplies), tools (both software and hardware), and methods are
candidates for measurement. We measure resources to determine their
magnitude (how many staff are working on this project?), their cost (how
much are we paying for testing tools?), and their quality (how experienced
are our designers?). These measures help us to understand and control
the process by telling us how the process is using and changing inputs to
outputs. For example, if we are producing poor-quality software, resource
measurements may show us that the software quality is the result of using
too few people or people with the wrong skills.

Cost is often measured across all types of resources, so that manag-
ers can see how the cost of the inputs affects the cost of the outputs. For
instance, the division chief may want to know if a large investment in soft-
ware modeling or testing tools is yielding benefits in terms of more pro-
ductive staff or better quality products. Cost is often defined in terms of
its components, so that managers can see which aspects of cost are having
the biggest effect.

Productivity is always important, and managers are keen not only to
measure it but also to understand how to improve it. Although a measure
of staff, productivity is an external resource attribute, as it depends on the
underlying development process. That is, a productive worker using one
process may become less productive if the process changes. Productivity
is usually measured as some form of the following equation:

Amount of output
Effort input

Notice that this resource measure combines a process measure (input)
with a product measure (output). The general notion is an economic one,
where businesses or markets are judged by comparing what goes in with
what comes out. For software development, the measure of output is usu-
ally computed as the amount of code or functionality produced as the final
product, while the input measure is the number of person-months used to

A Goal-Based Framework for Software Measurement ◾ 99

specify, design, code, and test the software. However, the economic anal-
ogy is incomplete for software, as the amount of software output is not
related to the input in the same way as that in manufacturing. That is,
most manufacturing processes involve replication, so that one car is much
like another coming off the assembly line. But software development is a
creation or design process, not a replication process, and the relationship
between inputs and outputs is defined differently.

There are many staff attributes that we can measure, whose values may
have an influence on the process or product. For example, the education,
experience, age, or intelligence of a developer may affect the quality of the
design or code. Similarly, the size, structure, and communication patterns
of the development team are important.

We can also classify and analyze tools and methods. Languages are
strongly typed or not, object-oriented or not, etc. Techniques can be rated
as manual or automated, and tools can require special training or experi-
ence. These attributes of resources help us to understand how to use tools
and methods in more effective ways.

3.1.4 Change and Evolution

Software that is used is continually revised. New features are added and
errors are fixed. To understand and manage evolving software, we need
to measure attributes of products, processes, and resources at various
points in time. Processes change over time. For example, improved
inspection processes may be added to improve reliability. Clearly, soft-
ware products change as new features are added—modules are added
and expanded. Resources also change as developers move from project
to project and adopt new tools. Measurement can help us to understand
and manage evolving systems by allowing us to track the changes in
attributes over time. We can track the growth of modules, as well as
changes in our processes and resources. We can also track changes in
external attributes to identify, for example, improvements (hopefully)
in product reliability and availability. Thus, we are interested in mea-
surement over time, and the changes and trends of measured attributes.
Measuring trends is how we can demonstrate product and process
improvement.

No developer has the time to measure, analyze, and track everything.
It is important to focus measurement activities on those areas needing the
most visibility, understanding, and improvement. In Section 3.2, we pres-
ent a technique for determining which attributes to measure first.

100 ◾ Software Metrics

3.2 DETERMINING WHAT TO MEASURE
Measurement is useful only if it helps you to understand an underly-
ing process or one of its resultant products. Determining the appropri-
ate attributes to measure depends on your objectives—you select specific
measurements based on what information you need to meet your goals.
The Goal-Question-Metric approach (GQM) for metrics selection, first
suggested by Basili and his colleagues, is an effective approach (Basili and
Weiss 1984; Basili and Rombach 1988; Basili et al. 2009). To use GQM,
you first identify the overall goals of your organization. Depending on
the situation, the organization can be an entire corporation, an individual
department or lab, or a single project or group. Then, you generate ques-
tions whose answers you must know in order to determine whether your
goals are being met. Finally, you analyze each question to identify mea-
surements you need in order to answer each question.

One common goal is to evaluate the maturity of a software organiza-
tion and its process in order to improve it. We shall see how the Goal-
Question-Metric paradigm is applied to do such an evaluation.

3.2.1 Goal-Question-Metric Paradigm

Many metrics programs begin by measuring what is convenient or easy to
measure, rather than by measuring what is needed. Such programs often
fail because the resulting data are not useful to the developers and main-
tainers of the software. A measurement program can be more successful
if it is designed with the goals of the project in mind. The GQM approach
provides a framework involving three steps:

 1. List the major goals of the development or maintenance project.

 2. Derive from each goal the questions that must be answered to deter-
mine whether the goals are being met.

 3. Decide what must be measured in order to be able to answer the
questions adequately.

By deriving the measurements in this way, it becomes clear how to use
the resulting data. As an example, Figure 3.2 illustrates how several met-
rics might be generated from a single goal.

Suppose your overall goal is to evaluate the effectiveness of using a cod-
ing standard, as shown in Figure 3.2. That is, you want to know whether

A Goal-Based Framework for Software Measurement ◾ 101

code produced by following the standard is superior in some way to code
produced without it. To decide whether the standard is effective, you must
ask several key questions. First, it is important to know who is using the
standard, so that you can compare the productivity of the coders who use
the standard with the productivity of those who do not. Likewise, you
probably want to compare the quality of the code produced with the stan-
dard with the quality of non-standard code.

Once these questions are identified, you must analyze each question
to determine what must be measured in order to answer the question.
For example, to understand who is using the standard, it is necessary to
know what proportion of coders is using the standard. However, it is also
important to have an experience profile of the coders, explaining how long
they have worked with the standard, the environment, the language, and
other factors that will help to evaluate the effectiveness of the standard.
The productivity question requires a definition of productivity, which is
usually some measure of effort divided by some measure of product size.
As shown in Figure 3.2, the metric can be in terms of LOCs, function
points, or any other metric that will be useful to you. Similarly, quality
may be measured in terms of the number of errors found in the code, plus
any other quality measures that you would like to use.

In this way, you generate only those measures that are related to the
goal. Notice that, in many cases, several measurements may be needed
to answer a single question. Likewise, a single measurement may apply
to more than one question. The goal provides the purpose for collect-
ing the data, and the questions tell you and your project how to use the
data.

Goal:

Questions:

Metrics:
Proportion of coders
— Using the standard,
— Using the language.

Experience of coders
— With the standard,
— With the language,
— With the environment,
 etc.

Code size
— Lines of code,
— Number of classes,
— Number of methods,
— Function points,
 etc.

Effort Errors…

Evaluate the effectiveness of an organization’s coding standard.

Who is using the
standard?

What is the productivity
of the coders?

What is the quality
of the code?

FIGURE 3.2 Example of deriving metrics from goals and questions.

102 ◾ Software Metrics

EXAMPLE 3.8

AT&T used GQM to help determine which metrics were appropriate for
assessing their inspection process (Barnard and Price 1994). Their goals, with
the questions and metrics derived, are shown in Table 3.3.

What is not evident from the GQM tree or table is the model needed to
combine the measurements in a sensible way so that the questions can be
answered. For example, the tree in Figure 3.2 suggests measuring coder pro-
ductivity; this attribute may be measured in terms of effort per LOC, but that
relationship is not explicit in the tree. Thus, one or more models that express
the relationships among the metrics must supplement the GQM approach.

EXAMPLE 3.9

Once AT&T researchers and developers generated the list of metrics in
Example 3.8, they specified metrics equations and the data items that

TABLE 3.3 Examples of AT&T Goals, Questions, and Metrics

Goal Questions Metrics
Plan How much does the inspection

process cost?
Average effort per KLOC
Percentage of reinspections

How much calendar time does
the inspection process take?

Average effort per KLOC
Total KLOC inspected

Monitor and
control

What is the quality of the
inspected software?

Average faults detected per KLOC
Average inspection rate
Average preparation rate

To what degree did the staff
conform to the procedures?

Average inspection rate
Average preparation rate
Average lines of code inspected
Percentage of reinspections

What is the status of the
inspection process?

Total KLOC inspected

Improve How effective is the inspection
process?

Defect removal efficiency
Average faults detected per KLOC
Average inspection rate
Average preparation rate
Average lines of code inspected

What is the productivity of the
inspection process?

Average effort per fault detected
Average inspection rate
Average preparation rate
Average lines of code inspected

A Goal-Based Framework for Software Measurement ◾ 103

describe what the metrics really mean. For instance, the average preparation
rate is a function of the total number of lines of code inspected, the prepa-
ration time for each inspection, and the number of inspectors. A model of
the metric expresses the average preparation rate as an equation. First, the
preparation time for each inspection is divided by the number of inspectors;
then, the sum over all inspections is calculated and used to normalize the
total number of lines of code.

Even when the metrics are expressed as an equation or relationship, the
definition is not always clear and unambiguous. The tree does not tell you
how to measure a line of code or a function point, only that some measure
of code size is needed to answer a question about productivity. Additional
work is needed to define each metric. In cases where no objective measure
is available, subjective measures must be identified.

In general, typical goals are expressed in terms of productivity, quality,
risk, and customer satisfaction and the like, coupled with verbs express-
ing the need to assess, evaluate, improve, or understand. It is important
that the goals and questions be understood in terms of their audience: a
productivity goal for a project manager may be different from that for a
department manager or corporate director. To aid in generating the goals,
questions, and metrics, Basili and Rombach provided a series of templates:

Templates for goal definition:

• Purpose: To (characterize, evaluate, predict, motivate, etc.) the (pro-
cess, product, model, metric, etc.) in order to (understand, assess,
manage, engineer, learn, improve, etc.) it.

 Example: To evaluate the maintenance process in order to improve
it.

• Perspective: Examine the (cost, effectiveness, correctness, defects,
changes, product measures, etc.) from the viewpoint of the (devel-
oper, manager, customer, etc.)

 Example: Examine the cost from the viewpoint of the manager.

• Environment: The environment consists of the following: process
factors, people factors, problem factors, methods, tools, constraints,
etc.

 Example: The maintenance staff consists of poorly motivated pro-
grammers who have limited access to tools.

104 ◾ Software Metrics

A wide range of goals has been derived along with questions and associ-
ated metrics to develop measurement programs in industry.

EXAMPLE 3.10

Fuggetta et al. report on the use of GQM on a software process at the Digital
Software Engineering Center in Gallarate, Italy (Fuggetta et al. 1998). The
group identified five goals including the following goal, which has a format
consistent with our templates:

Analyze the design and qualification phases of the development pro-
cess for the purpose of evaluating failure detection effectiveness from
the viewpoint of the management and the development team.

The measurement group derived 35 questions that could be answered
using data from approximately 50 metrics.

Guidelines are available to help in defining both product-related questions
and process-related questions (Basili and Rombach 1988; van Solingen and
Berghout 1999). Steps involve defining the process or product, defining the
relevant attributes, and obtaining feedback related to the attributes. What
constitutes a goal or question may be vague, and several levels of refinement
may be required for certain goals and questions; that is, a goal may first have
to be related to a series of subgoals before questions can be derived.

We can relate the GQM templates to the attribute framework intro-
duced in Section 3.1. A goal or question can be associated with at least
one pair of entities and attributes. Thus, a goal is stated, leading to a ques-
tion that should be answered so that we can tell whether we have met our
goal; the answer to the question requires that we measure some attribute
of an entity (and possibly several attributes of an entity, or several attri-
butes of several entities). The use of the measure is determined by the goals
and questions, so that assessment, prediction, and motivation are tightly
linked to the data analysis and reporting.

Thus, GQM complements the entity-attribute measurement frame-
work. The results of a GQM analysis are a collection of measurements
related by goal tree and overall model. However, GQM does not address
issues of measurement scale, objectivity, or feasibility. So the GQM mea-
sures should be used with care, remembering the overall goal of provid-
ing useful data that can help to improve our processes, products, and
resources.

A Goal-Based Framework for Software Measurement ◾ 105

3.2.2 Measurement for Process Improvement

One common goal in the software industry is process improvement.
Software processes can range from chaotic and ad hoc, to well defined and
well managed. A more mature process is more likely to develop software that
is reliable, adaptable, delivered on time, and within budget. Measurement
quantifies the relationships between the processes, products, resources,
methods, and technologies of software development. Thus, measurement
plays a key role in evaluating and improving software processes. We will
look at a popular process evaluation technique, the Software Engineering
Institute’s (SEI’s) Capability Maturity Model Integration (CMMI•) for
Development, from the perspective of GQM (CMMI Product Team 2010).

The CMMI for Development provides an ordinal ranking of develop-
ment organizations from initial (the least predictable and controllable,
and least understood) to optimizing (the most predictable and control-
lable), which is described by the CMMI Product Team as follows:

 1. Initial: Level 1 processes are ad hoc and “success depends on the
competence and heroics of the people in the organization.”

 2. Managed: Level 2 processes are planned; “the projects employ skilled
people … have adequate resources … involve relevant stakeholders;
are monitored, controlled, and reviewed … .”

 3. Defined: Level 3 “processes are well characterized and understood,
and are described in standards procedures, tools, and methods.”

 4. Quantitatively managed: A Level 4 “organization and projects estab-
lish quantitative objectives for quality and process performance and
use them as criteria in managing projects.”

 5. Optimizing: A Level 5 “organization continually improves its pro-
cesses based on a quantitative understanding of its business objec-
tives and performance needs” (CMMI Product Team 2010).

The SEI CMMI distinguishes one level from another in terms of key
process activities going on at each level. Although it appears that measure-
ment is only important at Level 4, actually measurement is used in evalu-
ation at each level. Specific goals, questions, and metrics are developed to
assess whether an organization has reached a particular level. Generally,
to reach a particular level, an organization must have measurement values
that give the desired answer to each question at that level.

106 ◾ Software Metrics

For example, to reach CMMI-Development version 1.3 Level 2 Managed,
a process must satisfy 15 goals in 7 process areas:

 1. Configuration management goals: Establish baselines, track and con-
trol changes, establish integrity.

 2. Measurement and analysis goals: Align measurement and analysis
activities, provide measurement results.

 3. Project monitoring and control goals: Monitor project against plan,
manage corrective actions to closure.

 4. Project planning goals: Establish estimates, develop a project plan,
and obtain commitment to the plan.

 5. Process and quality assurance goals: Objectively evaluate processes
and work products, provide objective insight.

 6. Requirements management goals: Manage requirements.

 7. Supplier agreement management goals: Establish supplier agree-
ments, satisfy supplier agreements.

Answers to questions related to the goals in each process area deter-
mine whether a goal is achieved. These questions tend to be measured by
yes or no answers—either a process performs an activity at a required level
or it does not. For example, answers to the following questions determine
whether configuration management process area goals are met:

Does the development process

 1. Identify configuration items?

 2. Establish a configuration management system?

 3. Create or release baselines?

 4. Track change requests?

 5. Control changes to configuration items?

 6. Establish configuration management records?

 7. Perform configuration audits?

A Goal-Based Framework for Software Measurement ◾ 107

Trained evaluators determine whether each question is answered yes
or no based on interviews with process participants and evaluations of
process documents. Evaluators determine whether the process performs
each activity as required for Level 2 certification. To achieve a Level 2 rat-
ing, the answer must be yes to questions concerning 65 practices related
to 17 goals.

To achieve Level 3 Defined, an organization must satisfy all Level 2
goals, plus 27 additional goals in 11 process areas. The answers to ques-
tions concerning 88 different practices determine whether the goals are
met. Levels 4 and 5 add additional process areas, goals, and questions
about practices.

The CMMI and other models, such as ISO-9000, share a common
goal and approach, namely that they use process visibility as a key dis-
criminator among a set of “maturity levels.” That is, the more visibil-
ity into the overall development process, the higher the maturity and
the better managers and developers can understand and control their
development and maintenance activities. At the lowest levels of matu-
rity, the process is not well understood at all; as maturity increases, the
process is better understood and better defined. At each maturity level,
measurement and visibility are closely related: a developer can measure
only what is visible in the process, and measurement helps to enable
and increase visibility. Thus, the five-level maturity scale such as the
one employed by the CMMI is a convenient context for determining
what to measure first and how to plan an increasingly comprehensive
measurement program.

Successful metrics programs start small and grow according to the goals
and needs of a particular project (Rifkin and Cox 1991). To be successful,
a metrics program should be planned in context with an organization’s
“processes, structures, climate, and power” (Frederiksen and Mathiassen
2005). A metrics program should begin by addressing the critical prob-
lems or goals of the project, viewed in terms of what is meaningful or
realistic at the project’s maturity level. The process maturity framework
then acts as a guideline for how to expand and build a metrics program
that not only takes advantage of visibility and maturity but also enhances
process improvement activities.

Next, we explain how to use the process maturity framework, coupled
with understanding of goals, to build a comprehensive measurement
program.

108 ◾ Software Metrics

3.2.3 Combining GQM with Process Maturity

Suppose you are using the Goal-Question-Metric paradigm to decide
what your project should measure. You may have identified at least one of
the following high-level goals:

• Improving productivity

• Improving quality

• Reducing risk

Within each category, you can represent the goal’s satisfaction as a set of
subgoals, each of which can be examined for its implications for resources,
products, and process. For example, the goal of improving productivity
can be interpreted as several subgoals affecting resources:

• Assuring adequate staff skills

• Assuring adequate managerial skills

• Assuring adequate host software engineering technology

Similarly, improving productivity with products can mean

• Identifying problems early in the life cycle

• Using appropriate technology

• Reusing previously built products

Next, for each subgoal, you generate questions that reflect the areas of deep-
est concern. For example, if improving productivity is your primary goal, and
then assuring adequate staff skills is an important subgoal, you create a list of
questions that you may be interested in having answered, such as:

 1. Does project staffing have the right assortment of skills?

 2. Do the people on the project have adequate experience?

Similarly, if you have chosen improving quality with a subgoal of improv-
ing the quality of the requirements, then the related questions might include:

 1. Is the set of requirements clear and understandable?

 2. Is the set of requirements testable?

A Goal-Based Framework for Software Measurement ◾ 109

 3. Is the set of requirements reusable?

 4. Is the set of requirements maintainable?

 5. Is the set of requirements correct?

However, before you identify particular measurements to help you
answer these questions, it is useful to determine your process maturity
level. Since process maturity suggests that you measure only what is vis-
ible, the incorporation of process maturity with GQM paints a more com-
prehensive picture of what measures will be most useful to you.

For example, suppose you want to answer the question: Is the set of
requirements maintainable?

If you have specified a process at Level 1, then the project is likely to have
ill-defined requirements. Measuring requirements characteristics is diffi-
cult at this level, so you may choose to count the number of requirements
and changes to those requirements to establish a baseline. If your process
is at Level 2, the requirements are well defined and you can collect addi-
tional information: the type of each requirement (database requirements,
interface requirements, performance requirements, etc.) and the num-
ber of changes to each type. At Level 3, your visibility into the process is
improved, and intermediate activities are defined, with entry and exit crite-
ria for each activity. For this level, you can collect a richer type of measure-
ment: measuring the traceability of each requirement to the corresponding
design, code, and test components, for example, and noting the effects of
each change on the related components. Thus, the goal and question analy-
sis is the same, but the metric recommendations vary with maturity. The
more mature your process, the richer your measurements. In other words,
the more mature your process, the more mature your measurements.

Moreover, maturity and measurement work hand-in-hand. As the mea-
surements provide additional visibility, aiding you in solving project prob-
lems, you can use this approach again to expand the measurement set and
address other pressing problems. Thus, your measurement program can
start small and grow carefully, driven by process and project needs.

Using goals to suggest a metrics program has been successful in many
organizations and is well documented in the literature. (For examples, see
Grady and Caswell (1987), Rifkin (1991), Pfleeger (1993), Mendonça and
Basili (2000), and van Solingen and Berghout (1999).) The GQM paradigm, in
concert with process maturity, has been used as the basis for several tools that
assist managers in designing measurement programs (Pulford et al. 1995).

110 ◾ Software Metrics

GQM has helped us to understand why we measure an attribute, and
process maturity suggests whether we are capable of measuring it in
a meaningful way. Together, they provide a context for measurement.
Without such a context, measurements can be used improperly or inap-
propriately, giving us a false sense of comfort with our processes and
products. In Section 3.3, we look at the need for care in capturing and
evaluating measures.

3.3 APPLYING THE FRAMEWORK
In Chapter 1, we introduced several diverse topics involving software mea-
surement. In particular, we saw how the topics relate to essential software
engineering practices. When divorced from any conceptual high-level
view of software measurement and its objectives, many of the activities
may have seemed unrelated. In this section, we revisit the topics to see
how each fits into our unifying framework and to describe some of the
issues that will be addressed in Chapters 8 through 11. That is, we look at
which processes, products, and resources are relevant in each case, which
attributes (and whether these are internal or external) we are measuring,
and whether the focus is on assessment or prediction. The discussion here
is not intended to be a detailed explanation of the various topics. Instead,
we will indicate where the details will be provided later in the book.

3.3.1 Cost and Effort Estimation

Cost and effort estimation focuses on predicting the attributes of cost or
effort for the development process. Here, the process includes activities
from detailed specification through implementation. Most of the estima-
tion techniques present a model; we examine a popular approach to see
how cost and effort estimation are usually done.

EXAMPLE 3.11

Boehm’s original, basic COCOMO model asserts that the effort required for the
process of developing a software system (measured by E person-months) and
size (measured by S thousands of delivered source statements) are related by

 E = aSb

where a and b are parameters determined by the type of software system to
be developed (Boehm 1981).

A Goal-Based Framework for Software Measurement ◾ 111

The model is intended for use during requirements capture, when esti-
mates of effort are needed. To use the technique, we must determine param-
eters a and b. Boehm provides three choices, which are based on the type
of the software system. We must also determine the size S of the eventual
system; since the system has yet to be built, we must predict S in order to
predict E.

Thus, it is more correct to view COCOMO as a prediction system rather
than as a model. The model is expressed as the equation in Example 3.11.
But the prediction system includes the inference procedures for calculat-
ing the model’s parameters. The calculations involve a combination of cal-
ibration based on past history, assessment based on expert judgment, and
the subjective rating of attributes. The underlying theory provides various
means for interpreting the results based on the choice of parameters. It is
ambiguous to talk of the COCOMO cost estimation model, since the same
data can produce results that vary according to the particular prediction
procedures used. These observations apply to most cost and effort estima-
tion models.

Cost models often reflect a variety of attributes, representing all of the
entity types. For example, for more advanced versions of COCOMO as
well as other cost estimation approaches, the inference procedures involve
numerous internal and external attributes of the requirements specifica-
tion (a product), together with process and resource attributes subjectively
provided by users.

Both basic COCOMO and Albrecht’s function point cost estimation
model (described in more detail in Chapter 8) assert that effort is an indi-
rect measure of a single product attribute: size. In Albrecht’s model, the
number of function points, an attribute of the specifications, measures size.
Here “size” really means a more specific attribute, namely functionality.
In the latest version of COCOMO, called COCOMO II, size is defined in
different ways, depending on when during the development process the
estimate is being made (Boehm et al. 2000). Early on, size is described in
terms of object points, which can be derived from a prototype or initial
specification. As more is known about the system, function points provide
the size measure. When yet more information is available, size is defined as
the number of thousands of delivered source statements, an attribute of the
final implemented system. Thus, to use the model for effort prediction, you
must predict this product attribute at the specification phase; that is, using
the model involves predicting an attribute of a future product in order to

112 ◾ Software Metrics

predict effort. This approach can be rather unsatisfactory, since predicting
size may be just as hard as predicting effort. In addition, the number of
source statements captures only one specific view of size. In Chapter 8, we
propose several ways to address these problems.

3.3.2 Productivity Measures and Models

To analyze and model productivity, we must measure a resource attribute,
namely the number of personnel (either as teams or individuals) active
during particular processes. The most commonly used model for produc-
tivity measurement expresses productivity as the ratio “process output
influenced by the personnel” divided by “personnel effort or cost during
the process.” In this equation, productivity is viewed as a resource attri-
bute, captured as a derived measure of a product attribute measure and a
process attribute measure.

Inspired by Japanese notions of spoilage, where engineers measure how
much effort is spent fixing things that could have been put right before
delivery, productivity of software engineers can also incorporate the idea
of cost of fault prevention compared with the cost of fault detection and
correction.

EXAMPLE 3.12

Watts Humphrey has defined a Personal Software Process (PSP) that encour-
ages software engineers to evaluate their individual effectiveness at produc-
ing quality code (Humphrey 1995, 2005). As part of the PSP, Humphrey
suggests that we capture time and effort information about appraisal, failure,
and prevention. The appraisal cost is measured as the percentage of develop-
ment time spent in design and test reviews. The failure cost is the percentage
of time spent during compilation and testing, while the prevention cost is that
time spent preventing defects before they occur (in such activities as pro-
totyping and formal specification). The ratio of appraisal cost to failure cost
then tells us the relative effort spent in early defect removal. Such notions
help us to understand how to improve our productivity.

3.3.3 Data Collection

Even the simplest models depend on accurate measures. Often, product
measures may be extracted with a minimum of human intervention, since
the products can be digitized and analyzed automatically. But automation
is not usually possible for process and resource measures. Much of the

A Goal-Based Framework for Software Measurement ◾ 113

work involved in data collection is therefore concerned with how to set in
place rigorous procedures for gathering accurate and consistent measures
of process and resource attributes.

Chillarege and his colleagues at IBM have suggested a scheme for collect-
ing defect information that adds the rigor usually missing in such data cap-
ture. In their scheme, the defects are classified orthogonally, meaning that any
defect falls in exactly one category (Chillarege et al. 1992; Huber 2000). Such
consistency of capture and separation of classes of defects by causes allow us
to analyze not only the product attributes but also process effectiveness.

3.3.4 Quality Models and Measures

Quality models usually involve product measurement, as their ultimate
goal is predicting product quality. We saw in Chapter 1 that both cost and
productivity are dependent on the quality of products output during vari-
ous processes. The productivity model in Figure 1.5 explicitly considers
the quality of output products; it uses an internal process attribute, defects
discovered, to measure quality. The quality factors used in most quality
models usually correspond to external product attributes. The criteria into
which the factors are broken generally correspond to internal product or
process attributes. The metrics that measure the criteria then correspond
to proposed measures of the internal attributes. In each case, the terms
used are general and are usually not well defined and precise.

Gilb has suggested a different approach to quality. He breaks high-
level quality attributes into lower-level attributes; his work is described in
Chapter 10 (Gilb 1988).

3.3.5 Reliability Models

Reliability is a high-level, external product attribute that appears in all
quality models. The accepted view of reliability is described as the likeli-
hood of successful operation, so reliability is a relevant attribute only for
executable code. Many people view reliability as the single most-impor-
tant quality attribute to consider, so research on measuring and predicting
reliability is sometimes considered a separate sub-discipline of software
measurement.

In Chapter 10, we consider proposals to measure reliability using inter-
nal process measures, such as number of faults found during formal test-
ing or mean time to failure during testing. We also describe in Chapter 10
the pitfalls of such an approach. In Chapter 11, we describe how reliability
theory is applied to software development.

114 ◾ Software Metrics

As we have seen, many developers observe failures (and subsequent
fixes) during operation or testing, and then use this information to deter-
mine the probability of the next failure (which is a random variable).
Measures of reliability are defined in terms of the subsequent distributions
(and are thus defined in terms of process attributes). For example, we can
consider the distribution’s mean or median, or the rate of occurrence of
failures. But this approach presents a prediction problem: We are trying
to say something about future reliability on the basis of past observations.

EXAMPLE 3.13

The Jelinski–Moranda model for software reliability assumes an exponential
probability distribution for the time of the ith failure. The mean of this distri-
bution (and hence the mean time to ith failure, or MTTFi) is given by

 MTTFi N i=
− +
α

1

where N is the number of faults assumed to be initially contained in the
program, and 1/α represents the size of a fault, that is, the rate at which
it causes a failure. (Faults are assumed to be removed on observation of a
failure, and each time the rate of occurrence of failures is reduced by ϕ = 1/
α.) The unknown parameters of the model, N and α, must somehow be esti-
mated; this estimation can be done using, for example, Maximum Likelihood
Estimation after observing a number of failure times.

In this example, we cannot discuss only the Jelinski–Moranda model, we
must specify a prediction system as well. In this case, the prediction system
supplements the model with a statistical inference procedure for determining
the model parameters, and a prediction procedure for combining the model
and the parameter estimates to make statements about future reliability.

3.3.6 Structural and Complexity Metrics

Many high-level quality attributes (i.e., external product attributes) are
notoriously difficult to measure. For reasons to be made clear in Chapter 8,
we are often forced to consider measures of internal attributes of products
as weaker substitutes. The Halstead measures are examples of this situation;
defined on the source code, the internal measures suggest what the external
measures might be. Numerous other measures have been proposed that are
defined on graphical models of either the source code or design. By mea-
suring specific internal attributes like control-flow structure, information

A Goal-Based Framework for Software Measurement ◾ 115

flow, and number of paths of various types, one may attempt to quan-
tify those aspects of the code that make the code difficult to understand.
Unfortunately, much work in this area has been obfuscated by suggestions
that such measures capture directly the external attribute of complexity.
In other words, many software engineers claim that a single internal attri-
bute representing complexity can be an accurate predictor of many external
quality attributes, as well as of process attributes like cost and effort. We
discuss this problem and suggest a rigorous approach to defining structural
attributes in Chapter 9.

3.3.7 Management by Metrics

Managers often use metrics to set targets for their development projects.
These targets are sometimes derived from best practice, as found in a sam-
ple of existing projects.

EXAMPLE 3.14

The US Department of Defense analyzed US government and industry per-
formance, grouping projects into low, median, and best-in-class ratings. From
their findings, the analysts recommended targets for Defense Department-
contracted software projects, along with indicated levels of performance
constituting management malpractice, shown in Table 3.4 (NetFocus 1995).
That is, if a project demonstrates that an attribute is below the malpractice
level, then something is seriously wrong with the project.
The management metrics are a mixture of measurement types. Defect
removal efficiency is a process measures, while defect density, requirements
creep (i.e., an increase or change from the original set of requirements) and
program documentation are product measures. Cost overrun and staff turn-
over capture resource attributes.

TABLE 3.4 Quantitative Targets for Managing US Defense Projects

Item Target Malpractice Level
Defect removal efficiency >95% <70%
Original defect density <4 per function point >7 per function point
Slip or cost overrun in excess of
risk reserve

0% ≥10%

Total requirements creep
(function points or equivalent)

<1% per month average ≥50%

Total program documentation <3 pages per function point >6 pages per function
point

Staff turnover 1–3% per year >5% per year

116 ◾ Software Metrics

Notice that the measures in Example 3.14 are a mixture of measure-
ment types. Moreover, none of the measures is external. That is, none of
the measures reflects the actual product performance as experienced by
the user. This situation illustrates the more general need for managers to
understand likely product quality as early in the development process as
possible. But, as we shall see in the remainder of the book, unless the rela-
tionship between internal and external attributes is well understood, such
management metrics can be misleading.

3.3.8 Evaluation of Methods and Tools

Often, organizations consider investing in a new method or tool but hesi-
tate because of uncertainty about cost, utility, or effectiveness. Sometimes
the proposed tool or method is tried first on a small project, and the results
are evaluated to determine whether further investment and broader
implementation are in order. For example, we saw in Example 3.8 that
AT&T used goals and questions to decide what to measure in evaluating
the effectiveness of its inspections.

EXAMPLE 3.15

The results of the AT&T inspection evaluation are summarized in Table 3.5
(Barnard and Price 1994).

For the first sample project, the researchers found that 41% of the inspec-
tions were conducted at a rate faster than the recommended rate of 150 lines
of code per hour. In the second project, the inspections with rates below 125
found an average of 46% more faults per KLOC than those with faster rates.
This finding means either that more faults can be found when inspection
rates are slower, or that finding more faults causes the inspection rate to slow.
Here, the metrics used to support this analysis are primarily process metrics.

TABLE 3.5 Code Inspection Statistics from AT&T

Metric First Sample Project Second Sample Project
Number of inspections in sample 27 55
Total KLOC inspected 9.3 22.5
Average LOC inspected (module size) 343 409
Average preparation rate (LOC/h) 194 121.9
Average inspection rate (LOC/h) 172 154.8
Total faults detected (observable and
non-observable) per KLOC

106 89.7

Percentage of re-inspections 11 0.5

A Goal-Based Framework for Software Measurement ◾ 117

These examples show us that it takes all types of attributes and metrics—
process, product, and resource—to understand and evaluate software
development.

3.4 SOFTWARE MEASUREMENT VALIDATION
The very large number of software measures in the literature aims to capture
information about a wide range of attributes. Even when you know which
entity and attribute you want to assess, there are many measures from which
to choose. Finding the best measure for your purpose can be difficult, as can-
didates measure or predict the same attribute (such as cost, size or complexity)
in very different ways. So it is not surprising when managers are confused by
measurement: they see different measures for the same thing, and sometimes
the implications of one measure lead to a management decision opposite to
the implications of another! One of the roots of this confusion is the lack of
software measurement validation. That is, we do not always stop to ensure
that the measures we use actually capture the attribute information we seek.

The formal framework presented in Chapter 2 and in this chapter leads
to a formal approach for validating software measures. The validation
approach depends on distinguishing measurement from prediction, as
discussed in Chapter 2. That is, we must separate our concerns about two
types of measuring:

 1. Measures or measurement systems are used to assess an existing
entity by numerically characterizing one or more of its attributes.

 2. Prediction systems are used to predict some attribute of a future entity,
involving a mathematical model with associated prediction procedures.

Informally, we say that a measure is “valid” if it accurately characterizes
the attribute it claims to measure. However, a prediction system is “valid”
if it makes accurate predictions. So not only are measures different from
prediction systems, but the notion of validation is different for each. Thus,
to understand why validation is important and how it should be done, we
consider measures and prediction systems separately.

3.4.1 Validating Prediction Systems

Validating a prediction system in a given environment is the process of
establishing the accuracy of the prediction system by empirical means;
that is, by comparing model performance with known data in the given
environment.

118 ◾ Software Metrics

Thus, validation of prediction systems involves experimentation and
hypothesis testing, as we shall see in Chapter 4. Rather than being a math-
ematical proof, validation involves confirming or refuting a hypothesis.

This type of validation is well accepted by the software engineering
community. For example, researchers and practitioners use data sets to
validate cost estimation or reliability models. If you want to know whether
COCOMO is valid for your type of development project, you can use data
that represent that type of project and assess the accuracy of COCOMO in
predicting effort and duration.

The degree of accuracy acceptable for validation depends on several
things, including the person doing the assessment. We must also consider
the difference between deterministic prediction systems (we always get the
same output for a given input) and stochastic prediction systems (the out-
put for a given input will vary probabilistically) with respect to a given
model.

Some stochastic prediction systems are more stochastic than others. In
other words, the error bounds for some systems are wider than in oth-
ers. Prediction systems for software cost estimation, effort estimation,
schedule estimation and reliability are very stochastic, as their margins of
error are large. For example, Boehm has stated that under certain circum-
stances the COCOMO effort prediction system will be accurate to within
20%; that is, the predicted effort will be within 20% of the actual effort
value. An acceptance range for a prediction system is a statement of the
maximum difference between prediction and actual value. Thus, Boehm
specifies 20% as the acceptance range of COCOMO. Some project manag-
ers find this range to be too large to be useful for planning, while other
project managers find 20% to be acceptable, given the other uncertainties
of software development. Where no such range has been specified, you
must state in advance what range is acceptable before you use a prediction
system.

EXAMPLE 3.16

Sometimes the validity of a complex prediction system may not be much
greater than that of a very simple one. For example, Norbert Fuchs points out
that if the weather tomorrow in Austria is always predicted to be the same as
today’s weather, then the predictions are accurate 67% of the time. The use
of sophisticated computer models increases this accuracy to just 70%!

A Goal-Based Framework for Software Measurement ◾ 119

In Chapter 10, we present a detailed example of how to validate soft-
ware reliability prediction systems using empirical data.

3.4.2 Validating Measures

Measures used for assessment are the measures discussed in Chapter 2.
We can turn to measurement theory to tell us what validation means in
this context:

EXAMPLE 3.17

We want to measure the length of a program in a valid way. Here, “program”
is the entity and “length” the attribute. The measure we choose must not con-
tradict any intuitive notions about program length. Specifically, we need both
a formal model that describes programs (to enable objectivity and repeatabil-
ity) and a numerical mapping that preserves our intuitive notions of length
in relations that describe the programs. For example, if we concatenate two
programs P1 and P2, we get a program whose length is the combined lengths
of P1 and P2. Thus, we expect any measure m of length always to satisfy the
condition

 m(P1,P2) = m(P1) + m(P2)

If program P1 has a greater length than program P2, then any measure m
of length must also satisfy

 m(P1) > m(P2)

We can measure program length by counting lines of code (in the care-
fully defined way we describe in Chapter 8). Since this count preserves these
relationships, lines of code is a valid measure of length. We will also describe
a more rigorous length measure in Chapter 8, based on a formal model of
programs. This form of validation has been applied to measures of coupling
and cohesion of object-oriented software (Briand et al. 1998, 1999), and to
the measurement of diagnosability and vigilance, which are properties of a
software design related to testability (Le Traon et al. 2003; Le Traon et al.
2006).

Validating a software measure is the process of ensuring that the measure
is a proper numerical characterization of the claimed attribute by showing
that the representation condition is satisfied.

120 ◾ Software Metrics

This type of validation is central to the representational theory of mea-
surement. That is, we want to be sure that the measures we use reflect the
behavior of entities in the real world. If we cannot validate the measures,
then we cannot be sure that the decisions we make based on those mea-
sures will have the effects we expect. In some sense, then, we use validation
to make sure that the measures are defined properly and are consistent
with the entity’s real-world behavior.

3.4.3 A Mathematical Perspective of Metric Validation

In Chapter 2, we discussed the theory of measurement, explaining that we
need not use the term “metric” in our exposition. There is another, more
formal, reason for using care with the term. In mathematical analysis, a
metric has a very specific meaning: it is a rule used to describe how far
apart two points are. More formally, a metric is a function m defined on
pairs of objects x and y such that m(x,y) represents the distance between x
and y. Such metrics must satisfy certain properties:

m(x,x) = 0 for all x: that is, the distance from a point to itself is 0.

m(x,y) = m(y,x) for all x and y: that is, the distance from x to y is the
same as the distance from y to x.

m(x,z) ≤ m(x,y) + m(y,z) for all x, y and z: that is, the distance from x
to z is no larger than the distance measured by stopping through an
intermediate point.

There are numerous examples where we might be interested in “math-
ematical” metrics in software:

EXAMPLE 3.18

Fault tolerant techniques like N-version programming have been proposed
for increasing the reliability of safety-critical systems. The approach involves
developing N different versions of the critical software components inde-
pendently. Theoretically, by having each of the N different teams solving the
same problem without knowledge of what the other teams are doing, the
probability of all the teams, or even of the majority, making the same error is
kept small. When the behavior of the different versions differs, a voting pro-
cedure accepts the behavior of the majority of the systems. The assumption,
then, is that the correct behavior will always be chosen.

A Goal-Based Framework for Software Measurement ◾ 121

However, there may be problems in assuring genuine design indepen-
dence, so we may be interested in measuring the level of diversity between
two designs, algorithms or programs. We can define a metric m, where
m(P1,P2) measures the diversity between two programs P1 and P2. In this case,
the entities being measured are products. Should we use a similar metric to
measure the level of diversity between two methods applied during design,
we would be measuring attributes of process entities.

EXAMPLE 3.19

We would hope that every program satisfies its specification completely, but
this is rarely the case. Thus, we can view program correctness as a mea-
sure of the extent to which a program satisfies its specification, and define
a metric m(S,P) where the entities S (specification) and P (program) are both
products. Then m(S,P) indicates the distance between the specification and
a program that implements the specification.

To reconcile these mathematically precise metrics with the framework
we have proposed, we can consider pairs of entities as a single entity. For
example, having produced two programs satisfying the same specifica-
tion, we consider the pair of programs to be a single product system, itself
having a level of diversity. This approach is consistent with a systems view
of N-version programming. Where we have implemented N versions of a
program, the diversity of the system may be viewed as an indirect measure
of the pairwise program diversity.

3.5 PERFORMING SOFTWARE MEASUREMENT VALIDATION
The software engineering community has always been aware of the need
for validation. As new measures are proposed, it is natural to ask whether
the measure captures the attribute it claims to describe. But in the past,
validation has been a relaxed process, sometimes relying on the credibility
of the proposer, rather than on rigorous validation procedures. That is,
if someone of stature says that measure X is a good measure of complex-
ity, then practitioners and researchers begin to use X without question.
Or software engineers adopt X after reading informal arguments about
why X is probably a good measure. This situation can be remedied only by
reminding the software community of the need for rigorous validation.

122 ◾ Software Metrics

An additional change in attitude is needed, though. Some researchers
and practitioners assume that validation of a measure (in the measurement
theory sense) is not sufficient assurance that the measure captures the appro-
priate characteristic of the entity under scrutiny. They expect the validation
to demonstrate that the measure is itself part of a valid prediction system.

EXAMPLE 3.20

Many people use lines of code as a measure of software size. The measure
has many uses: it is a general size measure in its own right, it can be used to
normalize other measures (like number of faults) to enable comparison, and
it is input to many derived measures such as productivity (measured as effort
divided by lines of code produced). But some software engineers claim that
lines of code is not a valid software measure because it is not a good predic-
tor of reliability or maintenance effort.

Thus, a measure must be viewed in the context in which it will be used.
Validation must take into account the measurement’s purpose; measure X
may be valid for some uses but not for others.

3.5.1 A More Stringent Requirement for Validation

As we have seen with lines of code, it is possible for a measure to serve
both purposes: to measure an attribute in its own right, and to be a valu-
able input to a prediction system. But a measure can be one or the other
without being both. We should take care not to reject as invalid a reason-
able measure just because it is not a predictor. For example, there are many
internal product attributes (such as size, structuredness, and modularity)
that are useful and practical measures, whether they are also part of a
prediction system. If a measure for assessment is valid, then we say that
it is valid in the narrow sense or is internally valid. In designing empirical
studies, as shown in Chapter 4, all variables must be internally valid to
demonstrate that a study has construct validity.

Many process attributes (such as cost), external product attributes (such
as reliability), and resource attributes (such as productivity) play a dual
role. We say that a measure is valid in the wide sense if it is both

 1. Internally valid, and

 2. A component of a valid prediction system.

A Goal-Based Framework for Software Measurement ◾ 123

Suppose we wish to show that a particular measure is valid in the
wide sense. After stating a hypothesis that proposes a specific relation-
ship between our measure and some useful attribute, we must conduct an
experiment to test the hypothesis, as described in Chapter 4. Unfortunately,
in practice the experimental approach is not often taken. Instead, the mea-
sure is claimed to be valid in the wide sense by demonstrating a statistical
correlation with another measure. For example, a measure of modularity
might be claimed to be valid or invalid on the basis of a comparison with
known development costs. This validation is claimed even though there is
no demonstrated explicit relationship between modularity and develop-
ment costs! In other words, our measure cannot be claimed to be a valid
measure of modularity simply because of the correlation with development
costs. We require a causal model of the relationship between modularity
and development costs, showing explicitly all the factors interconnecting
each. Only then can we judge whether measuring modularity is the same
as measuring development cost.

This type of mistake is common in software engineering, as well as
in other disciplines. Engineers forget that statistical correlation does not
imply cause and effect. For example, suppose we propose to measure obe-
sity using inches, normally a length measure. We measure the height and
weight of each of a large sample of people, and we show that height corre-
lates strongly with weight. Based on that result, we cannot say that height
is a valid measure of obesity, since height is only one of several factors
that must be taken into account; heredity and body fat percentages play
a role, for instance. In other words, just because height correlates with
weight does not mean that height is a valid measure of weight or obesity.
Likewise, there may be a statistical correlation between modularity and
development costs, but that does not mean that modularity is the only fac-
tor determining development cost.

It is sometimes possible to show that a measure is valid in the wide
sense without a stated hypothesis and planned experiment. Available data
can be examined using techniques such as regression analysis; the mea-
sure may be consistently related (as shown by the regression formula) to
another variable. However, this approach is subject to the same problems
as the correlation approach. It requires a model showing how the various
factors interrelate. Given our poor understanding of software, this type
of validation appears fraught with difficulty. Nevertheless, many software
engineers continue to use this technique as their primary approach to
validation.

124 ◾ Software Metrics

The many researchers who have taken this approach have not been alone
in making mistakes. It is tempting to measure what is available and easy to
measure, rather than to build models and capture complex relationships.
Indeed, speaking generally about measurement validation, Krantz asserts:

A recurrent temptation when we need to measure an attribute of
interest is to try to avoid the difficult theoretical and empirical issues
posed by fundamental measurement by substituting some easily
measured physical quantity that is believed to be strongly correlated
with the attribute in question: hours of deprivation in lieu of hunger;
skin resistance in lieu of anxiety; milliamperes of current in lieu of
aversiveness, etc. Doubtless this is a sensible thing to do when no
deep analysis is available, and in all likelihood some such indirect
measures will one day serve very effectively when the basic attri-
butes are well understood, but to treat them now as objective defini-
tions of unanalyzed concepts is a form of misplaced operationalism.

Little seems possible in the way of careful analysis of an attribute
until means are devised to say which of two objects or events exhib-
its more of the attribute. Once we are able to order the objects in an
acceptable way, we need to examine them for additional structure.
Then begins the search for qualitative laws satisfied by the ordering
and the additional structure.

KRANTZ 1971

Neither we nor Krantz claims that measurement and prediction are
completely separate issues. On the contrary, we fully support the observa-
tion of Kyburg:

If you have no viable theory into which X enters, you have very little
motivation to generate a measure of X.

KYBURG 1984

However, we are convinced that our initial obligation in proposing
measures is to show that they are valid in the narrow sense. Good predic-
tive theories follow only when we have rigorous measures of specific, well-
understood attributes.

3.5.2 Validation and Imprecise Definition

In Example 3.20, we noted that LOC is a valid measure of program size.
However, LOC has not been shown convincingly to be a valid measure of

A Goal-Based Framework for Software Measurement ◾ 125

complexity. Nor has it been shown to be part of an accurate prediction
system for complexity. The fault lies not with the LOC measure but with
the imprecise definition of complexity. Although complexity is generally
described as an attribute that can affect reliability, maintainability, cost,
and more, the fuzziness surrounding its definition presents a problem in
complexity research. Chapter 9 explores whether complexity can ever be
defined and measured precisely.

The problems with complexity do not prevent LOC from being a useful
measure for purposes other than size. For example, if there is a stochastic
association between a large number of LOC and a large number of unit
testing errors, this relationship can be used in choosing a testing strategy
and in reducing risks.

Many studies have demonstrated a significant correlation between
LOC and the cyclomatic number. The researchers usually suggest that
this correlation proves that cyclomatic number increases with size; that
is, larger code is more complex code. However, careful interpretation of
the measures and their association reveals only that the number of deci-
sions increases with code length, a far less profound conclusion. The cyclo-
matic number may be just another size measure. Chapter 9 contains more
detailed discussion of validation for the McCabe measures.

3.5.3 How Not to Validate

New measures are sometimes validated by showing that they correlate
with well-known, existing measures. Li and Cheung present an extensive
example of this sort (Li and Cheung 1987). This approach is appealing
because:

• It is generally assumed that the well-known existing measure is
valid, so that a good correlation means that the new measure must
also be valid.

• This type of validation is straightforward, since the well-known
measure is often easy to compute; automated tools are often available
for computation.

• If the management is familiar with the existing measures, then the
proposed measures have more credibility.

Well-known measures used in this way include Halstead’s suite of soft-
ware science measures, McCabe’s cyclomatic number, and LOC. However,

126 ◾ Software Metrics

although these may be valid measures of very specific attributes (such as
number of decisions for cyclomatic number, and source code program
length for LOC), they have not been shown to be valid measures of attri-
butes such as cognitive complexity, correctness, or maintainability. Thus,
we must take great care in validating by comparison with existing mea-
sures. We must verify that the qualities associated with the existing mea-
sures have been demonstrated in the past.

There is much empirical evidence to suggest that measures such as
Halstead’s suite, McCabe’s cyclomatic number, and LOC are associated
with development and maintenance effort and faults. But such correla-
tions do not imply that the measures are good predictors of these attri-
butes. The many claims made that Halstead and McCabe measures have
been validated are contradicted by studies showing that the correlations
with process data are no better than using a simple measure of size, such
as LOC (Hamer and Frewin 1982; Fenton and Neil 1999).

There is a more compelling scientific and statistical reason why we
must be wary of the correlate-against-existing-measures approach.
Unstructured correlation studies run the risk of identifying spurious
associations. Using the 0.05 significance level, we can expect a significant
but spurious correlation in 1 of 20 times by chance. Thus, if you have 5
independent variables and look at the 10 possible pairwise correlations,
there is a 0.5 (1 in 2) chance of getting a spurious correlation. In situa-
tions like this, if we have no hypothesis about the reason for a relation-
ship, we can have no real confidence that the relationship is not spurious.
Courtney and Gustafson examine this problem in detail (Courtney and
Gustafson 1993).

3.5.4 Choosing Appropriate Prediction Systems

To help us formulate hypotheses necessary for validating the predictive
capabilities of measures, we divide prediction systems into the following
classes:

Class 1. Using internal attribute measures of early life-cycle products
to predict measures of internal attributes of later life-cycle products.
For example, measures of size, modularity, and reuse of a specifica-
tion are used to predict size and structuredness of the final code.

Class 2. Using early life-cycle process attribute measures and resource
attribute measures to predict measures of attributes of later life-cycle

A Goal-Based Framework for Software Measurement ◾ 127

processes and resources. For example, the number of faults found
during formal design review is used to predict cost of implementation.

Class 3. Using internal product attribute measures to predict process
attributes. For example, measures of structuredness are used to pre-
dict time to perform some maintenance task, or number of faults
found during unit testing.

Class 4. Using process measures to predict later process measures. For
example, measures of failures during one operational period are
used to predict likely failure occurrences in a subsequent operational
period. In examples like this, where an external product attribute
(reliability) is effectively defined in terms of process attributes (opera-
tional failures), we may also think of this class of prediction systems
as using process measures to predict later external product measures.

Class 5. Using internal structural attributes to predict external and pro-
cess attributes. Examples of these prediction systems include using
module coupling or other structural measures to predict the fault-
proneness of a component, where fault-proneness is based on failures
during testing or operation that are traced to module faults. These
prediction systems tend to work only on the specific systems where
the prediction system parameters are determined. We doubt that
Class 5 prediction systems will work effectively in general. In the-
ory, it is always possible to construct products that appear to exhibit
identical external attributes but which in fact vary greatly internally.

However, we usually assume that certain internal attributes that result
from modern software engineering techniques (such as modularization,
low coupling, control and data structuredness, information hiding and
reuse) will generally lead to products exhibiting a high degree of desirable
external attributes like reliability and maintainability. Thus, programs and
modules that have poor values of desirable internal attributes (such as large,
unstructured modules) are likely (but not certain) to have more faults and
take longer to produce and maintain. We return to this issue in Chapter 9.

3.6 SUMMARY
This chapter presents a framework to help us to discuss what to measure
and how to use the measures appropriately. The key points to remember
are the following:

128 ◾ Software Metrics

• All entities of interest in software can be classified as either pro-
cesses, products, or resources. Anything we may wish to measure is
an identifiable attribute of these.

• Attributes are either internal or external. Although external attri-
butes (such as reliability of products, stability of processes, or pro-
ductivity of resources) tend to be the ones we are most interested in
measuring, we can rarely do so directly. We are generally forced to
use derived measures of internal attributes.

• The Goal-Question-Metric paradigm is a useful approach for decid-
ing what to measure. Since managers and practitioners have little
time to measure everything, the GQM approach allows them to
choose those measures that relate to the most important goals or the
most pressing problems.

• The GQM approach creates a hierarchy of goals to be addressed (per-
haps decomposed into subgoals), questions that should be answered
in order to know if the goals have been met, and measurements that
must be made in order to answer the questions. The technique con-
siders the perspective of the people needing the information and the
context in which the measurements will be used.

• Process maturity must also be considered when deciding what to
measure. If an entity is not visible in the development process, then
it cannot be measured. Five levels of maturity, ranging from initial
to optimizing, can be associated with the types of measurements that
can be made.

• GQM and process maturity must work hand-in-hand. By using
GQM to decide what to measure and then assessing the visibility of
the entity, software engineers can measure an increasingly richer set
of attributes.

• Many misunderstandings and misapplications of software measure-
ment would be avoided if people thought carefully about the above
framework. Moreover, this framework highlights the relationships
among apparently diverse software measurement activities.

• Measurement is concerned not only with assessment (of an attribute
of some entity that already exists) but also with prediction (of an attri-
bute of some future entity). We want to be able to predict attributes

A Goal-Based Framework for Software Measurement ◾ 129

like the cost and effort of processes, as well as the reliability and main-
tainability of products. Effective prediction requires a prediction sys-
tem: a model supplemented with a set of prediction procedures for
determining the model parameters and applying the results.

• The validation approach described in this chapter guides you in deter-
mining precisely which entities and attributes have to be considered
for measurement. In this sense, it supports a goal-oriented approach.

• Software measures and prediction systems will be neither widely
used nor respected without a proper demonstration of their valid-
ity. However, commonly accepted ideas and approaches to validating
software measures bear little relation to the rigorous requirements
for measurement validation in other disciplines. In particular, for-
mal validation requirements must first be addressed before we can
tackle informal notions such as usefulness and practicality.

• The formal requirement for validating a measure involves demon-
strating that it characterizes the stated attribute in the sense of mea-
surement theory.

• To validate a prediction system formally, you must first decide how
stochastic it is (i.e., determine an acceptable error range), and then
compare performance of the prediction system with known data
points. This comparison will involve experiments, such as those
described in Chapter 4.

• Software measures that characterize specific attributes do not have to
be shown to be part of a valid prediction system in order to be valid
measures. A claim that a measure is valid because it is a good predic-
tor of some interesting attribute can be justified only by formulating
a hypothesis about the relationship and then testing the hypothesis.

EXERCISES

 1. For each entity listed in Table 3.1, find at least one way in which
environmental considerations will influence the relevant external
attributes.

 2. What different product, process, or resource attributes might be the
following measure?

130 ◾ Software Metrics

 a. The number of faults found in program P using a set of test data
created specifically for P.

 b. The number of faults found in program P using a standard in-
house set of test data.

 c. The number of faults found in program P by programmer A dur-
ing one hour.

 d. The number of faults found in program P during a code review
by review team T.

 3. Check the dictionary definitions of the following measures as a basis
for validation: (i) candlepower, (ii) decibel, (iii) horsepower, (iv) light-
year, (v) span.

 4. To which of the above five classes do the following prediction systems
belong: (i) the COCOMO model (Example 3.11), (ii) the Jelinski-
Moranda reliability model (Example 3.13), (iii) stochastic systems,
(iv) coupling as a predictor of program errors.

 5. Explain briefly the idea behind the GQM paradigm. Is it always the
right approach for suggesting what to measure? Suppose you are
managing a software development project for which reliability is a
major concern. A continual stream of anomalies is discovered in the
software during the testing phase, and you suspect that the software
will not be of sufficient quality by the shipping deadline. Construct a
GQM tree that helps you to make an informed decision about when
to ship the software.

 6. Suppose that a software producer considers software quality to con-
sist of a number of attributes, including reliability, maintainability,
and usability. Construct a simple GQM tree corresponding to the
producer’s goal of improving the quality of the software.

 7. Your department manager asks you to help improve the maintain-
ability of the software that your department develops. Construct a
GQM tree to identify an appropriate set of measures to assist you in
this task.

 8. Suppose your development team has as its goal: Improve effective-
ness of testing. Use the GQM approach to suggest several relevant
questions and measures that will enable you to determine if you have
met your goal.

A Goal-Based Framework for Software Measurement ◾ 131

 9. Your department manager asks you to shorten the required system
testing time of software products without a loss in quality of the
delivered product. Use the GQM approach to derive relevant ques-
tions and identify measures to determine whether you have met your
goal. Clearly indicate which measures help to answer each question.

 10. Our confidence in a prediction system depends in part on how well
we feel we understand the attributes involved. After how many suc-
cessful predictions would you consider the following validated?

 a. A mathematical model to predict the return time of Halley’s
comet to the nearest hour.

 b. A timetable for a new air service between London and Paris.

 c. A system that predicts the outcome of the spinning of a roulette
wheel.

 d. A chart showing how long a bricklayer will take to erect a wall of
a given area.

FURTHER READING
The COCOMO model is interesting to study, because it is a well-docu-
mented example of measurement that has evolved as goals and technology
have changed. The original COCOMO approach is described in

Barry W. Boehm, Software Engineering Economics, Prentice-Hall, Englewood
Cliffs, New Jersey, 1981.

An overview of the revision to COCOMO is in

Barry W. Boehm and Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford
K. Clark, Ellis Horowitz, Ray Madachy, Donald J. Reifer, and Bert Steece,
Software Cost Estimation with COCOMO II, Prentice-Hall, Upper Saddle
River, New Jersey, 2000.

The first paper to mention GQM is

Victor R. Basili and David M. Weiss, “A method for collecting valid software engi-
neering data,” IEEE Transactions on Software Engineering, 10(6), November
1984, pp. 728–738.

More detail and examples are provided in

132 ◾ Software Metrics

Basili V.R. and Rombach H.D., “The TAME project: Towards improvement-
oriented software environments,” IEEE Transactions on Software Engineering,
14(6), pp 758–773, 1988.

van Solingen R. and Berghout E. The Goal/Question/Metric Method: A Practical
Guide for Quality Improvement of Software Development, McGraw-Hill,
London, 1999.

Despite its widespread appeal, GQM is not without its critics. These texts
argue strongly against GQM on grounds of practicality.

Bache R. and Neil M., “Introducing metrics into industry: A perspective on
GQM,” in Software Quality Assurance and Metrics: A Worldwide Perspective
(Eds: Fenton N.E., Whitty R.W., Iizuka Y.), International Thomson Press, pp.
59–68, 1995.

Hetzel, William C., Making Software Measurement Work: Building an Effective
Software Measurement Program, QED Publishing Group, Wellesley,
Massachusetts, London, 1993.

One extension to GQM is soft systems methodology, which includes stake-
holders in the goal setting process and is described in the following paper:

Fredreiksen H.D. and Mathiassen L., “Information-centric assessment of soft-
ware metrics practices,” IEEE Trans. Engineering Management, 52(3), August
2005, pp. 350–362.

Much information is available at the CMMI web site: cmmiinstitute.com
Researchers at IBM have produced a good analysis of fault categorization.
The structure and its application are described in

Chillarege, R., Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Diane
S. Moebus, Bonnie K. Ray and Man-Yuen Wong, “Orthogonal Defect
Classification: A Concept for In-Process Measurements,” IEEE Transactions
on Software Engineering, 18(11), November 1992, pp. 943–956.

Correlation is often used to “validate” software measures. The paper by
Courtney and Gustafson shows that use of correlation analysis on many
metrics will inevitably throw up spurious “significant” results.

Courtney, R. E. and Gustafson D. A., “Shotgun correlations in software measures,”
Software Engineering Journal, 8(1), pp. 5–13, 1993.

133

C h a p t e r 4

Empirical Investigation*

Software engineers are always looking for ways to improve the
quality of software products and the development process. Thus, they

want to use improved tools and techniques in all aspects of development.
They want better processes, tools, and languages to gather and analyze
requirements, model designs, develop, test, and evolve applications. But
how can you determine whether a new tool or technique will really provide
the desired benefits? For example, analysts want to use the best techniques
for gathering complete requirements and insuring that the requirements
are consistent. Software architects want to use the design tools that will
help in creating a software design that is relatively easy to implement,
adapt, and maintain. Software developers can use languages and tools to
build programs that accurately implement a design and are maintainable.
Software testers want to use the best tools for generating and running tests
that can find program faults.

How can you tell whether you are using appropriate tools and tech-
niques? Often, decisions are made relying on the advice, experience, and
opinions of others, and are often not based on objective criteria (Fenton
et al. 1994). Many once popular tools and techniques were touted by rec-
ognized software “gurus,” but have since been abandoned. Generally, you
cannot rely on testimonials or evaluations of descriptions or specifica-
tions of a tool or technique. Selecting the best or optimal tool or technique
requires some empirical support—evidence that the tools and techniques
have been effective on a problem and in environments that are similar

* Including contributions by Barbara Kitchenham and Shari Lawrence Pfleeger from previous
editions.

134 ◾ Software Metrics

to the ones where you plan to apply them. The previous chapters dem-
onstrate that measurement plays a crucial role in assessing scientifically
the current situation and in determining the magnitude of change when
manipulating the environment. In this chapter, we explain the assessment
techniques available and provide guidelines for deciding which technique
is appropriate in a given situation.

Suppose you are a software practitioner that needs to evaluate a tech-
nique, method, or tool. You can either rely on evaluations that have been
conducted by others, possibly published in a research journal or conference
proceedings, or conduct your own evaluation. In either case, you need to
know what kind of study is appropriate, and what are the key elements
involved in designing and conducting empirical studies. Otherwise, you
might rely on the results of a poorly designed experiment, or conduct an
inappropriate study yourself. This chapter begins by introducing key con-
cepts relevant to empirical studies, and the limitations and challenges of
empirical studies related to software development tools and techniques.
Next, it describes key concepts and issues related to empirical study design.
That is, the concepts will help you to determine if a previous study is appro-
priate for your evaluation, or to design your own study and derive meaning-
ful results from it. Finally, we review the types of studies that are relevant to
the problems faced by software developers and provide meaningful results.

4.1 PRINCIPLES OF EMPIRICAL STUDIES
Our basic goal here is to apply the scientific method to software engi-
neering problems. As Marshall Walker explains, “the scientific method
is merely a formalization of learning by experience” (Walker 1963, p. 14).
Walker further explains that the “purpose of scientific thought is to make
correct predictions of events in nature” (Walker 1963, p. 1). Our purpose
is to make predictions about events related to software development. For
example, would a new testing tool help to reveal program faults sooner
and more completely than the old tool? In science, a theory is developed
to explain a phenomenon and predict some consequences. Empirical
studies are conducted to test the theory. Empirical studies do not prove
that a theory is true. Rather, they provide further evidence to support
or refute the theory. An empirical study examines some specific sample
or observation of all of the possible values of the variables involved in
a cause–effect relationship. Figure 4.1 shows the relationship between a
theory about the true cause–effect relationships, and what we observe in
an empirical study.

Empirical Investigation ◾ 135

The key principles involved in designing empirical studies include

 1. The level of control of study variables that determines the appropri-
ate type of study

 2. Study goals and hypotheses

 3. Maintaining control of variables

 4. Threats to validity

 5. The use of human subjects

4.1.1 Control of Variables and Study Type

Ideally, we would like to use controlled experiments to evaluate soft-
ware engineering tools and techniques. Controlled experiments involve
the testing of well-defined hypotheses concerning postulated effects of
independent variables on dependent variables in a setting that minimizes
other factors that might affect the outcome. However, often, scientists (and
software engineers) want to understand entities and processes that involve
variables that they cannot control. For example, astrophysicists cannot
run experiments that control all variables in order to understand the for-
mation of black holes. Rather, they observe the behavior of existing black
holes and try to understand the relationships between variables in order
to evaluate hypotheses. Similarly, geologists cannot run controlled experi-
ments to test key ideas about plate tectonics.

Often, ethical and legal issues prevent scientists from conducting con-
trolled experiments that involve humans. For example, a social scientist

Theory

Cause–effect
theory

Cause Effect

OutcomeTreatment

State or independent variable Dependent variable

Study operationObservation

FIGURE 4.1 Empirical theory. (Adapted from Wohlin C. et al. Experimentation
in Software Engineering: An Introduction, Kluwer Academic Publishers, Norwell,
MA, USA, 2000, Figure 7.)

136 ◾ Software Metrics

cannot evaluate the effects of impoverishment on academic achievement
by randomly assigning babies to impoverished and affluent families, and
then evaluating their academic success. Rather, the social scientist will
look for relationships between relative affluence and academic success,
without using random assignment to control for the effects of other factors.
Empirical studies that involve observations where potential confounding
variables cannot be controlled and/or subjects cannot be assigned to treat-
ment or control groups are called observational studies, natural experi-
ments, and/or quasi-experiments.

Controlled experiments tend to be conducted in academia or research
labs. They are rarely conducted inside software development organiza-
tions because it is usually not possible to control all potential confounding
factors. Application domains, environments, tools, processes, the capa-
bilities of developers, and many other factors can vary widely and are
hard to control. Rather, many, but not all, empirical studies in software
engineering are case studies that involve the use of a tool or technique on
projects without random assignment of subjects to projects and control of
all other variables. Thus, these software engineering case studies are really
quasi-experiments.

Some questions can be answered by analyzing the data, even though
you cannot control key variables. Often, surveys are a useful investigative
technique. A survey is a retrospective study of a situation to try to docu-
ment relationships and outcomes. Thus, a survey is done after an event
has occurred. You are probably most familiar with social science surveys,
where attitudes are polled to determine how a population feels about a
particular set of issues, or a demographer surveys a population to deter-
mine trends and relationships. Software engineering surveys are similar,
in that they poll a set of data from an event that has occurred to determine
how the population reacted to a particular method, tool, or technique, or
to determine trends or relationships.

EXAMPLE 4.1

Your organization may have used an agile software development process for
the first time. After the project is complete, you may perform a survey to cap-
ture the size of the code produced, the effort involved, the number of faults
and failures, and the project duration. Then, you may compare these figures
with those from projects using the prior process to see if the agile process led
to improvements over the prior process.

Empirical Investigation ◾ 137

When performing a survey, you have no control over the activity that
is under study. That is, because it is a retrospective study, you can record
a situation and compare it with similar ones. But you cannot manipulate
variables as you do with case studies and controlled experiments.

Controlled experiments must be planned in advance, while case studies
may be planned or retrospective. To conduct a controlled experiment, you
decide in advance what you want to investigate and then plan how to cap-
ture data to support your investigation. A case study is a quasi-experiment
where you identify key factors that may affect the outcome of an activity
and then document the activity inputs, constraints, resources, and out-
puts. In contrast, a controlled experiment is a rigorous, controlled investi-
gation of an activity, where the key factors are identified and manipulated
to document their effects on the outcome. Figure 4.2 illustrates that
controlled experiments, case studies, and surveys are the three types of
empirical investigation in software engineering. (They are not the only
types of investigation. Other methods, including feature analysis, are not
addressed in this book.)

Differences among the research methods are also reflected in their
scale. Since experiments require a great deal of control, they tend to
involve small numbers of people or events. We can think of experiments
as “research in the small.” Case studies usually look at a typical project,
rather than trying to capture information about all possible cases. Such
case studies can be thought of as “research in the typical.” And surveys
try to poll what is happening broadly over large groups of projects and are
thus research in the large.

General guidelines can help you decide whether to perform a sur-
vey, case study, or a controlled experiment. The first step is deciding
whether your investigation is retrospective or not. If the activity you are

Experiments:
research in the

small

Case studies:
research in the

typical

Surveys:
research in the

large

Software-engineering investigations

FIGURE 4.2 Three types of investigation.

138 ◾ Software Metrics

investigating has already occurred, you must perform a survey or case
study. If the activity has yet to occur, you may choose between a case study
and a controlled experiment.

The central factor in this choice is the level of control needed for an
experiment. If you have a high level of control over the variables that can
affect the outcome, then you can consider an experiment. If you do not
have that control, an experiment is not possible; a case study is the pre-
ferred technique. But the level of control satisfies the technical concerns;
you must also address the practical concerns of research. It may be pos-
sible but very difficult to control the variables, either because of the high
cost of doing so or the degree of risk involved. For example, safety-critical
systems may entail a high degree of risk in experimentation, and a case
study may be more feasible.

The other key aspect to consider is the degree to which you can repli-
cate the basic situation you are investigating. For instance, suppose you
want to investigate the effects of language on the resulting software. Can
you develop the same project multiple times using a different language
each time? If replication is not possible, then you cannot do a controlled
experiment. However, even when replication is possible, the cost of repli-
cation may be prohibitive. Table 4.1 summarizes these concerns. The table
is read across and up. For example, if the study you want to do has a low
replication cost, then an experiment is more appropriate than a case study.
Similarly, if you have no control (i.e., the difficulty of control is high), then
you should consider a case study.

A controlled experiment is especially useful for investigating alter-
native methods of performing a particular, self-standing task. For
instance, you can perform an experiment to compare the use of Alloy,
Object Constraint Language (OCL), and Java Modeling Language (JML)
for specifying a set of requirements. Here, the self-standing task can
be isolated from the rest of the development process, but the task is
still embedded in the usual way when the code is developed. Also, the

TABLE 4.1 Factors Relating to Choice of Research Technique

Factor Experiments Case Studies
Level of control High Low
Difficulty of control Low High
Level of replication High Low
Cost of replication Low High

Empirical Investigation ◾ 139

self-standing task can be judged immediately, so that the experiment
does not delay project completion. On the other hand, a case study may
be preferable to a controlled experiment if the process changes caused
by the independent variables are wide-ranging, requiring the effects to
be measured at a high level and across too many dependent variables to
control and measure.

All the three research techniques involve careful measurement. In this
chapter, we focus primarily on controlled experiments and case studies.
However, we encourage you to become familiar with all the three types of
investigation, as each makes a valuable contribution to the body of soft-
ware engineering knowledge.

4.1.2 Study Goals and Hypotheses

The first step in your investigation is deciding what you want to inves-
tigate. That goal helps you to decide which type of research technique is
most appropriate for your situation. The goal for your research can be
expressed as a hypothesis that you want to test. That is, you must spec-
ify what it is that you want to know. The hypothesis is the tentative idea
that you think explains the behavior you want to explore. For example,
your hypothesis may be, “Using Scrum produces better quality software
than using the Extreme Programming (XP) method.” Whether you sur-
vey developers to assess what happened when a particular group used
each method, evaluate activities of an organization during or after using
Scrum (a case study), or conduct a carefully controlled comparison of
those using Scrum with those using XP (a controlled experiment), you
are testing to see if the data you collect will confirm or refute the hypoth-
esis you have stated.

Wherever possible, you should try to state your hypothesis in quantifi-
able terms and in terms of independent and dependent variables, so that it
is easy to tell whether the hypothesis is confirmed or refuted.

EXAMPLE 4.2 THE STATEMENT

Using the Scrum method produces better quality software than using
the XP method

is a hypothesis. However, it is not testable because the notion of quality is not
given in a measureable way. You can define “quality” in terms of the defects
found and restate the hypothesis as

140 ◾ Software Metrics

If using the Scrum method produces better quality software than using
the XP method then code produced using Scrum will have fewer defects
per thousand lines of code than code produced using the XP method.

Now the hypothesis is testable. It clearly describes what is meant by bet-
ter quality, and, if supported empirically, could be used to make predictions.

Quantifying the hypothesis often leads to the use of surrogate mea-
sures. That is, in order to identify a quantity with a factor or aspect you
want to measure (e.g., quality), you must measure the factor indirectly
using something associated with that factor (e.g., defects). Since the sur-
rogate is a derived measure, there is danger that a change in the surrogate
is not the same as a change in the original factor. For example, defects (or
lack thereof) may not accurately reflect the quality of the software: finding
a large number of defects during testing may mean that testing was very
thorough and the resulting product is nearly defect-free, or it may mean
that development was sloppy and there are likely to be many more defects
left in the product (we will return to this issue in Chapter 11). Similarly,
the delivered lines of code may not accurately reflect the amount of effort
required to complete the product, since not all lines of code are equally
difficult to implement. Therefore, along with a quantifiable hypothesis,
you should document the relationship between the measures and the fac-
tors they intend to reflect. In particular, you should strive for quantitative
terms that are as direct and unambiguous at possible. An inappropriate
choice of quality measure is an example of a threat to the construct validity
of a study and is discussed further in Section 4.1.4.

Scientists are skeptics by nature. When deciding whether to accept or
reject a hypothesis, they assume that the hypothesis is not true unless the
evidence is very strong. The method used is to first evaluate a null hypoth-
esis, which states that the proposed relationship does not hold. The null
hypothesis relevant to Example 4.2 is the following:

Hyp0: There is no difference between the quality of software pro-
duced by the Scrum method and the quality of the software pro-
duced by using the XP method as indicated by defects per thousand
lines of code.

The first objective in analyzing the data collected from an empirical
study is to see if you can reject the null hypothesis. Generally, you reject

Empirical Investigation ◾ 141

the null hypothesis only with very strong evidence. For example, a com-
mon criterion is that you reject the null hypothesis only if there is less than
a 5% chance that there is no difference between the two groups. Only after
your analysis shows conclusively that you can reject the null hypothesis,
you can evaluate alternative hypotheses:

HypA1: The code produced using Scrum will have fewer defects
per thousand lines of code than the code produced using the XP
method.
HypA2: The code produced using XP will have fewer defects per thou-
sand lines of code than the code produced using the Scrum method.

Chapter 6 will describe the traditional methods for evaluating hypoth-
eses, and Chapter 7 will present an innovative Bayesian approach to test-
ing hypotheses with incomplete information.

4.1.3 Maintaining Control over Variables

Once you have an explicit hypothesis, you must decide on the variables
that can affect its truth. Then, for each variable identified, you must decide
how much control you have over it. Knowing what you control is essential,
since the key discriminator between experiments and case studies is the
degree of control over behavioral events and the variables they represent.
A case study is preferable when you are examining events where relevant
behaviors cannot be manipulated.

EXAMPLE 4.3

If you are investigating the effect of a design method on the quality of the
resulting software, but you have no control over who is using which design
method (called subject selection), then you probably want to do a case study
to document the results. Experiments are done when you can manipulate
behavior directly, precisely, and systematically. Thus, if you can control which
subjects use the Scrum method, and which subjects use XP, and when and
where they are used, then an experiment is possible. This type of manipula-
tion can be done in a “toy” situation, where events are organized to simulate
their appearance in the real world, or in a “field” situation, where events are
monitored as they actually happen.

The treatment of state variables differs in case studies and controlled
experiments. A state variable is a factor that can characterize your project

142 ◾ Software Metrics

and influence your evaluation results. Sometimes, state variables are called
independent variables, because they can be manipulated to affect the out-
come. The outcome, in turn, is evidenced by the values of the dependent
variable; that is, a dependent variable is one whose value is affected by
changing one or more independent variables.

Examples of state variables include the application area, the system type,
or the developers’ experience with the language, tool, or method. In a con-
trolled experiment, you can identify the variables and sample over them.
This phrase means that you select projects exhibiting a variety of character-
istics possible for your organization and design your research so that more
than one value will be taken for each characteristic. You aim for coverage,
so that you have an instance for each possibility or possible combination.

EXAMPLE 4.4

Suppose your hypothesis involves the effect of programming language on
the quality of the resulting code. “Language” is a state variable, and an ideal
experiment would involve projects where many different languages would
be used. You would design your experiment so that the projects studied
employed as many languages as possible.

In a case study, you sample from the state variable, rather than over it.
This phrase means that you select a value of the variable that is typical for
your organization and its projects. In Example 4.4, a case study might involve
choosing a language that is usually used on most of your projects, rather than
trying to choose a set of projects to cover as many languages as possible.

Thus, a state variable is used to distinguish the control situation from
the treatment in a controlled experiment. When you cannot differentiate
control from treatment, you must do a case study instead of a controlled
experiment. You may consider your current situation to be the control,
and your new situation to be the treatment; a state variable tells you how
the treatment differs from the control.

EXAMPLE 4.5

Suppose you want to determine whether a change in programming language
can affect the productivity of your project. Then language is a state variable.
If you currently use C to write your programs and you want to investigate
the effects of changing to Java, then you can designate C to be the control

Empirical Investigation ◾ 143

language and Java to be the experimental one. The values of all other state
variables should stay the same (e.g., application experience, programming
environment, and type of problem). Then you can be sure that any difference
in productivity is attributable to the change in language. This type of experi-
ment was carried out at NASA’s Goddard Space Flight Center to support the
decision to move from the FORTRAN language to Ada. The experiments
revealed that productivity in Ada did not exceed FORTRAN until the third
use of Ada, when programmers began to use Ada appropriately.

4.1.4 Threats to Validity

We have all seen reports about studies with new results that contradict
results reported from the past. A new study might show that a medical
treatment is not effective, even though prior studies supported the effec-
tiveness of the treatment.

No study is perfect; there are many ways that a study can provide mis-
leading results. Potential problems with empirical studies are classified as
categories of threats to validity. Wohlin et al. (2000) describe the following
four categories of threats to validity:

 1. Conclusion validity. Conclusion validity refers to the statistical rela-
tionship between independent and dependent variables. A study
has conclusion validity if the results are statistically significant
using appropriate statistical tests. Threats to conclusion validity
include using the wrong statistical tests, having too small a sample,
and searching for relationships between too many variables, which
increases the odds of finding a spurious correlation.

 2. Construct validity. A study with construct validity uses measures that
are relevant to the study and meaningful. Using the measure faults per
KLOC as a measure of code quality has some threats to validity since
its value depends in part on when the measure is taken, for example,
during testing (faults found during testing) or after release (faults
found by customers). The key is to use meaningful measures that have
been validated in the narrow sense, as described in Chapter 2. That is,
the measures give values that are consistent with our intuition about
the attribute that they purport to quantify.

 3. Internal validity. Internal validity refers to the cause–effect relation-
ship between independent and dependent variables. A study has
internal validity if the treatment actually caused the effect shown in

144 ◾ Software Metrics

the dependent variables. Specific threats include the effects of other,
possibly unidentified, variables. To have internal validity, there must
be a causal theory—an a priori rationale for why the independent
variable would affect the dependent variable. In addition, there
should be temporal precedence between independent and depen-
dent variables—measurements of independent variables must have
been taken before the dependent variables are measured. Otherwise,
instead of A causing B, B might cause A.

 4. External validity. External validity refers to how well you can gen-
eralize from the results of one study to the wider world. The ability
to generalize depends on how similar the study environment is to
the environment used in actual practice. It depends on how similar
the study subjects (i.e., undergraduate students, graduate students,
novice, and experienced developers) are to software developers in
practice. A study results will tend to be more relevant to environ-
ments that are most similar to the study environment.

You should design a study to minimize these threats rather than evalu-
ate the threats to a study’s validity after the study is completed.

4.1.5 Human Subjects

Empirical studies in software engineering often make use of human sub-
jects. A survey may involve asking developers to respond to questions
about their use of tools or other experiences. A case study may involve the
study of a programming team and their activities as they develop a prod-
uct. A controlled experiment may involve assigning students to treatment
and control groups to evaluate a new technique.

The US Government uses the following definition of human subjects:

Human subject means a living individual about whom an investiga-
tor (whether professional or student) conducting research obtains

 1. Data through intervention or interaction with the individual
 2. Identifiable private information

U.S. DEPARTMENT OF HEALTH AND
HUMAN SERVICES 2009

Generally, government and university regulations require that research
involving human subjects meet specified standards. The standards aim to

Empirical Investigation ◾ 145

ensure that subjects give informed consent to take part in the study; the
study is designed to minimize any damage or injury to subjects; and the
study is designed in a way that it is likely to provide useful information.
The term informed consent refers to a human subject who explicitly agrees
to take part in a study after being informed of the nature of the study and
the potential risks. In the United States, research organizations use an
institutional review board (IRB) to evaluate and approve research projects
that involve human studies. Other countries have similar procedures.

Software engineering studies rarely involve risks of physical harm to
human subjects. The major risks are due to privacy issues. For example, a
subject’s reputation may be affected by the public release of a subject’s par-
ticipation as a member of the group with a higher defect rate. Other risks
include the release of private information that was collected in a study. The
public release of a subject’s opinion about a project can have negative con-
sequences to the subject. To be approved by an IRB, the investigators must
provide specific procedures on how such privacy risks will be protected.
The protections might include encrypting all identifying information and
destroying identifying information when the study is released. An IRB
review will include a review of the study procedures in order to determine
that the results are likely to have some impact. This is another reason to
carefully plan an empirical study.

4.2 PLANNING EXPERIMENTS
Suppose you have decided that a controlled experiment is the best inves-
tigative technique for the questions you want to answer. Controlled
experiments, like software development itself, require a great deal of care
and planning if they are to provide meaningful and useful results. This
section discusses the planning needed to define and run a controlled
experiment, including consideration of several key characteristics of the
experiment. Many of the concepts in this section apply to case studies.
The major difference is that investigators conducting case studies have
more limited control over study variables. The discussion should also
help you to evaluate the published results from controlled experiments
and case studies.

4.2.1 A Process Model for Performing Experiments

Controlled experiments (and case studies) need to be carried out in phases
to ensure that all important issues and concerns are addressed and that
the results will be useful. We suggest a six-phase process:

146 ◾ Software Metrics

 1. Conception

 2. Design

 3. Preparation

 4. Execution

 5. Analysis

 6. Dissemination and decision-making

The process is a sequential. However, it is a good idea to test your experi-
mental design with a small pilot study, involving a small number of subjects
before running a full-scale study. You will discover glitches in your design
that you can correct before investing the time and effort in a larger study.

4.2.1.1 Conception
The first phase is to define the goals of your experiment. The conception
stage includes analysis described earlier to ensure that a controlled experi-
ment, case study, and/or survey are appropriate. Next, you must state
clearly and precisely the objective of your study. The objective may include
showing the benefits and costs of particular method or tool compared to
another method or tool. An alternative goal is to determine, for a particu-
lar method or tool, how differences in environmental conditions or qual-
ity of resources can affect the use or output of the method or tool. For both
experiments and case studies, the objective must be stated so that it can be
clearly evaluated at the end of the experiment. That is, it should be stated
as a question you want to answer. The next phase is to design an empirical
study that will provide the answer.

4.2.1.2 Design
Once your objective is clearly stated, you must translate the objective
into a set of hypotheses, as described in the previous section. You should
describe two or more hypotheses: one or more null hypotheses and one or
more alternative hypotheses for each null hypothesis. A null hypothesis
assumes that there is no significant difference between the two treatments
(i.e., between two methods, tools, techniques, environments, or other con-
ditions whose effects you are measuring) with respect to the dependent
variable you are measuring (such as productivity, quality, or cost). An
alternative hypothesis posits that there is a significant difference between
the two treatments.

Empirical Investigation ◾ 147

Hypothesis definition is followed by the generation of a formal design to
test the hypothesis. The experimental design is a complete plan for applying
differing experimental conditions to your experimental subjects so that you
can determine how the conditions affect the behavior or result of some activ-
ity. In particular, you want to plan how the application of these conditions
will help you to test your hypothesis and answer your objective question.

To see why a formal plan or design is needed, consider Example 4.6:

EXAMPLE 4.6

You are managing a software development organization. Your research team
has proposed the following objective for an experiment:

We want to determine the effect of using the Python language on the
quality of the resulting code.

The problem as stated is far too general to be useful. You must ask specific
questions, such as

 1. How quality is to be measured?
 2. How is the use of Python to be measured?
 3. What are the factors that influence the characteristics to be analyzed?

For example, will experience, tools, design techniques, or testing tech-
niques make a difference?

 4. Which of these factors will be studied in the investigation?
 5. How many times should the experiment be performed, and under what

conditions?
 6. In what environment will the use of Python be investigated?
 7. How should the results be analyzed?
 8. How large a difference in quality will be considered important?

These are just a few of the questions that must be answered before the
experiment can begin.

There is a formal terminology for describing the components of your
experiment or case study. This terminology will help when you consult
with a statistician, and encourage you to consider all aspects of the experi-
ment. The new method or tool you wish to evaluate (compared with an
existing or different method or tool) is called the treatment. You want to
determine if the treatment is beneficial in certain circumstances. That is,
you want to determine if the treatment produces results that are in some
way different. For example, you may want to find out whether a new tool

148 ◾ Software Metrics

increases productivity compared with your existing tool and its produc-
tivity. Or, you may want to choose between two techniques, depending on
their effect on the quality of the resulting product.

Your experiment will consist of a series of tests of your methods or
tools, and the experimental design describes how these tests will be orga-
nized and run. In any individual test run, only one treatment is used. An
individual test of this sort is sometimes called a trial, and the experiment
is formally defined as the set of trials. Your experiment can involve more
than one treatment, and you will want to compare and contrast the dif-
fering results from the different treatments. The experimental objects or
experimental units are the objects to which the treatment is being applied.
Thus, a development or maintenance project can be your experimental
object, and aspects of the project’s process or organization can be changed
to affect the outcome. Or, the experimental objects can be programs or
modules, and different methods or tools can be used on those objects.

EXAMPLE 4.7

If you are investigating the degree to which a design-related treatment results
in reusable code components, you may consider design components as the
experimental objects.

At the same time, you must identify who is applying the treatment;
these people are called the experimental subjects. The characteristics of
the experimental subjects must be clearly defined, so that the effects of
differences among subjects can be evaluated in terms of the observed
results.

When you are comparing using the treatment with not using it, you
must establish a control object, which is an object not used or being
affected by the treatment. The control provides a baseline of information
that enables you to make comparisons. In a case study, the control is the
environment in which the study is being run or another similar project
that did not use the treatment. In a controlled experiment, the control sit-
uation must be defined explicitly and carefully, so that all the differences
between the control object and the experimental object are understood.

The response variables (or dependent variables) are those factors that
are expected to change or differ as a result of applying the treatment. In
Example 4.6, quality may be considered as a composite of several attri-
butes: the number of defects per thousand lines of code, the number of

Empirical Investigation ◾ 149

failures per thousand hours of execution time, and the number of hours
of staff time required to maintain the code after deployment, for example.
Each of these is considered a response variable. In contrast, as we noted
earlier, state variables (or independent variables) are those factors that may
influence the application of a treatment and thus indirectly influence the
result of the experiment. We have seen that state variables usually describe
the characteristics of the developers, the products, or the processes used to
produce or maintain the code. It is important to define and characterize
state variables so that their impact on the response variables can be inves-
tigated. But state variables can also be useful in defining the scope of the
experiment and in choosing the projects that will participate.

EXAMPLE 4.8

Use of a particular design technique may be a state variable. You may decide
to limit the scope of the experiment only to those projects that use Java along
with a design expressed in the UML, rather than investigating Java on projects
using any design technique. Or you may choose to limit the experiment to
projects in a particular application domain, rather than considering all pos-
sible projects.

Finally, as we saw earlier, state variables (and the control you have over
them) help to distinguish case studies from controlled experiments.

The number of and relationships among subjects, objects, and variables
must be carefully described in the experimental plan. The more the sub-
jects, objects, and variables, the more complex the experimental design
becomes and often the more difficult the analysis. Thus, it is very impor-
tant to invest a great deal of time and care in designing your experiment,
rather than rush to administer trials and collect data. In the remainder
of this chapter, we address in more detail the types of issues that must be
identified and planned in a formal experimental design. In many cases,
the advice in this section should be supplemented with the advice of a
statistician, especially when many subjects and objects are involved. Thus,
you should seek advice from a statistician during the design phase.

Once the design is complete, you will know what experimental factors
(i.e., response and state variables) are involved, how many subjects will be
needed, from what population they will be drawn, and to what conditions
or treatments each subject will be exposed. In addition, if more than one
treatment is involved, the order of presentation or exposure will be laid

150 ◾ Software Metrics

out. The criteria for measuring and judging effects will be defined, as well
as the methods for obtaining the measures.

4.2.1.3 Preparation
Preparation involves readying the subjects for application of the treat-
ment. For example, preparation for your experiment may involve pur-
chasing tools, training staff, or configuring hardware in a certain way.
Instructions must be written out or recorded properly. A pilot study—a
dry run of the experiment on a small set of people—is very useful. You will
surely discover that portions of the plan are incomplete and the instruc-
tions need improvement.

4.2.1.4 Execution
During this phase, you conduct the experiment. Following the steps laid
out in the plan, and measuring attributes as prescribed by the plan, you
apply the treatment to the experimental objects. You must be careful that
items are measured and treatments are applied consistently, so that com-
parison of results is sensible.

4.2.1.5 Analysis
The analysis phase has two parts. First, you must review all the measure-
ments taken to make sure that they are valid and useful. You organize
the measurements into sets of data that will be examined as part of the
hypothesis-testing process. Second, you analyze the sets of data according
to the statistical principles described in Chapter 6. These statistical tests,
when properly administered, tell you if the hypotheses are supported or
refuted by the results of the experiment. That is, the statistical analysis
gives you an answer to the original question addressed by the research.

4.2.1.6 Dissemination and Decision-Making
At the end of the analysis phase, you would have reached a conclusion about
how the different characteristics you examined affected the outcome. It is
important to document your conclusions in a way that will allow your col-
leagues to duplicate your experiment and confirm your conclusions in a sim-
ilar setting. Thus, you must document all of the key aspects of the research:
the objectives, the hypotheses, the experimental subjects and objects, the
response and state variables, the treatments, and the resulting data. Any other
relevant documentation should be included: instructions, tool or method
characteristics (e.g., version, platform, and vendor), training manuals, and

Empirical Investigation ◾ 151

more. A report on an experiment should state conclusions clearly, making
sure to address any problems experienced during the running of the experi-
ment. For example, you must report any staff changes during project devel-
opment, and tool upgrades. The report should clearly describe the risks to the
validity of the study and how you controlled these risks.

The experimental results may be used in several ways. You may use them
to support decisions about how you will develop or maintain software in
the future: what tools or methods you will use, and in what situations.
Others may use your results to suggest changes to their own development
environment. In addition, others may replicate your experiment to confirm
the results. Finally, you and others may perform similar experiments with
variations in experimental subjects or state variables. These new experi-
ments will help you and others to understand how the results are affected
by carefully controlled changes. For example, if your experiment demon-
strates a positive change in quality by using Python, others may test to see
if the quality can be improved still further by using Python in concert with
a particular Python-related tool or in a particular application domain.

4.2.2 Key Experimental Design Concepts

Useful results depend on careful, rigorous, and complete experimental
design. In this section, we examine the key concepts that you must con-
sider in designing your experiment. Each key design concept addresses
the need for simplicity and for maximizing information. Simple designs
help to make the experiment practical, minimizing the use of time, money,
personnel, and experimental resources. An added benefit is that simple
designs are easier to analyze (and thus are more economical) than complex
designs. Maximizing information gives you a complete understanding of
your experimental conditions and the results as much as possible, enabling
you to generalize your results to the widest possible situations. Following
these design concepts will reduce risks to the validity of an experiment.

An experimental design deals with experimental units and experimen-
tal error. As noted above, an experimental unit is the experimental object to
which a single treatment is applied. Usually, you apply the treatment more
than once. At the very least, you apply it to the control group as well as at
least one other group that differs from the control by a state variable. In
many cases, you apply the treatment many times to many groups. In each
case, you examine the results to see what the differences are in applying the
treatments. However, even when you keep the conditions the same from
one trial to another, the results can turn out to be slightly different.

152 ◾ Software Metrics

EXAMPLE 4.9

You are investigating the time it takes for a programmer to recognize faults
in a program. You have seeded a collection of programs with a set of known
faults, and you have asked a programmer to find as many faults as possible.
Today, you give the same programmer a different but equivalent program
with different but equivalent seeded faults, but the programmer takes more
time today to find the set of faults as he or she took yesterday.

To what is this variation attributable? Experimental error describes
the failure of two identically treated experimental units to yield identical
results. The error can reflect a host of problems:

• Errors of experimentation.

• Errors of observation.

• Errors of measurement.

• The variation in experimental resources.

• The combined effects of all extraneous factors that can influence the
characteristics under study but which have not been singled out for
attention in the investigation.

Thus, in Example 4.9, the differences may be due to things such as

• The programmer’s mind wandered during the experiment.

• The timer measured elapsed time inexactly.

• The programmer was distracted by loud noises from another room.

• The programmer found the faults in a different sequence today than
yesterday.

• Faults that were thought to be equivalent are not.

• Programs that were thought to be equivalent are not.

The aim of a good experimental design is to control as many variables
as possible, both to minimize variability among participants and to mini-
mize the effects of irrelevant variables (such as noise in the next room
or the order of presentation of the experiment). Ideally, we would like

Empirical Investigation ◾ 153

to eliminate the effects of other variables so that only the effects of the
 independent variables are reflected in the values of the dependent variable.
That is, we would like to eliminate the experimental error. Realistically,
complete elimination is rarely possible. Instead, we try to design the
experiment so that the effects of irrelevant variables are distributed
equally across all the experimental conditions, rather than allowing them
to inflate artificially (or bias) the results of a particular condition. In fact,
statisticians like, whenever possible, to measure the extent of the variabil-
ity under “normal circumstances.”

The three key experimental design concepts—replication, randomiza-
tion, and local control—address this problem of variability by giving us
guidance on forming experimental units so as to minimize the experi-
mental error.

4.2.2.1 Replication
Replication involves repeating an experiment under identical condi-
tions, rather than repeating measurements on the same experimental
unit. This repetition is desirable for several reasons. First, replication
(with associated statistical techniques) provides an estimate of experi-
mental error that acts as a basis for assessing the importance of observed
differences in an independent variable. That is, replication can help us
to know how much confidence we can place in the results of the experi-
ment. Second, replication enables us to estimate the mean effect of any
experimental factor.

It is important to ensure that replication does not introduce the con-
founding of effects. Two or more variables are confounded if it is impos-
sible to separate their effects when the subsequent analysis is performed.

EXAMPLE 4.10

Suppose you want to compare the use of a new tool with your existing
tool. You set up an experiment where programmer A uses the new tool in
your development environment, while programmer B uses the existing tool.
When you compare measures of quality in the resulting code, you cannot
say how much of the difference is due to the tools because you have not
accounted for the difference in the skills of the programmers. That is, the
effects of the tools (one variable) and the programmers’ skills (another vari-
able) are confounded. This confounding is introduced with the replication
when the repetition of the experiment does not control for other variables
(like programmer skills).

154 ◾ Software Metrics

EXAMPLE 4.11

Similarly, consider the comparison of two testing techniques. A test team is
trained in test technique X and asked to test a set of modules. The number
of defects discovered is the chosen measure of the technique’s effectiveness.
Then, the test team is trained in test technique Y, after which they test the
same modules. A comparison of the number of defects found with X and
with Y may be confounded with the similarities between techniques or a
learning curve in going from X to Y. Here, the sequence of the repetition is
the source of the confounding.

Confounding effects are a serious threat to the internal validity of an
experiment. For this reason, the experimental design must describe in
detail the number and kinds of replications of the experiments. It must
identify the conditions under which each experiment is run (including the
order of experimentation), and the measures to be made for each replicate.

4.2.2.2 Randomization
Replication makes it possible to test the statistical significance of the results.
But it does not ensure the validity of the results. That is, we want to be sure
that the experimental results clearly follow from the treatments that were
applied, rather than from other variables. Some aspect of the experimental
design must organize the experimental trials in a way that distributes the
observations independently, so that the results of the experiment are valid.
Randomization is the random assignment of subjects to groups or of treat-
ments to experimental units, so that we can assume independence (and
thus conclusion validity and internal validity) of results. Randomization
does not guarantee independence, but it allows us to assume that the cor-
relation on any comparison of treatments is as small as possible. In other
words, by randomly assigning treatments to experimental units, you can
try to keep some treatment results from being biased by sources of varia-
tion over which you have no control.

For example, sometimes the results of an experimental trial can be
affected by the time, the place, or unknown characteristics of the partici-
pants. These uncontrollable factors can have effects that hide or skew the
results of the controllable variables. To spread and diffuse the effects of
these uncontrollable or unknown factors, you can assign the order of tri-
als randomly, assign the participants to each trial randomly, or assign the
location of each trial randomly, whenever possible.

Empirical Investigation ◾ 155

EXAMPLE 4.12

Consider again the situation in Example 4.11. Suppose each of 30 program-
mers is trained to perform both testing techniques. We can randomly assign
15 of the programmers to use technique X on a given program, and the
remaining 15 can use technique Y on the same program.

A key aspect of randomization involves the assignment of subjects to
groups and treatments. If we use the same subjects in all experimental condi-
tions, we say that we have a related within-subjects design; this is the situation
described in Example 4.11. However, if we use different subjects in different
experimental conditions, we have an unrelated between- subjects design, as
in Example 4.12; different programmers used X than the ones who used Y
to test the program. If there is more than one independent variable in the
experiment, we can consider the use of same or different subjects separately
for each of the variables. (We will describe this issue in more detail later on.)

Earlier, we mentioned the need for protecting subjects from knowing
the goals of the experiment; we suggested the use of double-blind experi-
ments to keep the subjects’ actions from being affected by variable val-
ues. This technique is also related to randomization. It is important that
researchers do not know who is to produce what kind of result, lest the
information bias the experiment.

Thus, an experimental design should include details about the plan to
randomize assignment of subjects to groups or of treatments to experi-
mental units, and how you plan to keep the design information from bias-
ing the analytical results. In cases where complete randomization is not
possible, you should document the areas where lack of randomization may
affect the validity of the results. In later sections, we shall see the examples
of different designs and how they involve randomization.

4.2.2.3 Local Control
As noted earlier, one of the key factors that distinguish a controlled exper-
iment from a case study is the degree of control. Local control refers to the
control that you have over the placement of subjects in experimental units
and the organization of those units. Whereas replication and random-
ization ensure a valid test of significance, local control makes the design
more efficient by reducing the magnitude of the experimental error. Local
control is usually discussed in terms of two characteristics of the design:
blocking and balancing the units.

156 ◾ Software Metrics

Blocking means allocating experimental units to blocks or groups so
that the units within a block are relatively homogeneous. The blocks are
designed so that the predictable variation among units has been con-
founded with the effects of the blocks. That is, the experimental design
captures the anticipated variation in the blocks by grouping like varieties,
so that the variation does not contribute to the experimental error.

EXAMPLE 4.13

You are investigating the comparative effects of three design techniques on
the quality of the resulting code. The experiment involves teaching the tech-
niques to 12 developers and measuring the number of defects found per
thousand lines of code to assess the code quality. It is possible that the 12
developers graduated from three different universities. It is possible that the
universities trained the developers in very different ways, so that the effect
of being from a particular university can affect the way in which the design
technique is understood or used. To eliminate this possibility, three blocks
can be defined so that the first block contains all developers from univer-
sity X, the second block from university Y, and the third block from univer-
sity Z. Then, the treatments are assigned at random to the developers from
each block. If the first block has six developers, you would expect two to be
assigned to design method A, two to B, and two to C, for instance.

Balancing is the blocking and assignment of treatments so that an
equal number of subjects is assigned to each treatment, whenever possible.
Balancing is desirable because it simplifies the statistical analysis, but it is
not necessary. Designs can range from being completely balanced to hav-
ing little or no balance.

In experiments investigating only one factor, blocking and balancing
play important roles. If the design includes no blocks, then it must be
completely randomized. That is, subjects must be assigned at random to
each treatment. A balanced design, with equal numbers of subjects per
treatment, is preferable but not necessary. If one blocking factor is used,
subjects are divided into blocks and then randomly assigned to each treat-
ment. In such a design, called a randomized block design, balancing is
essential for analysis. Thus, this type of design is sometimes called a com-
plete balanced block design. Sometimes, units are blocked with respect to
two different variables (e.g., staff experience and program type) and then
assigned at random to treatments so that each blocking variable combina-
tion is assigned to each treatment an equal number of times. In this case,
called a Latin Square, balancing is mandatory for correct analysis.

Empirical Investigation ◾ 157

Your experimental design should include a description of the blocks
defined and the allocation of treatments to each. This part of the design
will assist the analysts in understanding what statistical techniques apply
to the data that results from the experiments. More details about the anal-
ysis can be found in Chapter 6.

4.2.3 Types of Experimental Designs

There are many types of experimental designs. It is useful to know and
understand the several types of designs that you are likely to use in soft-
ware engineering research, since the type of design constrains the type of
analysis that can be performed and therefore the types of conclusions that
can be drawn. For example, the measurement scale of the variables con-
strains the analysis. Nominal scales simply divide data into categories and
can be analyzed by using statistical tests such as the Sign test (which looks
at the direction of a score or measurement); on the other hand, ordinal
scales permit rank ordering and can be investigated with more power-
ful tests such as Wilcoxon (looking at the size of the differences in rank
orderings). Parametric tests such as analysis of variance can be used only
on data that is at least of an interval scale.

The sampling also enforces the design and constrains the analysis, as
we will see in Chapter 6. For example, the amount of random variance
should be equally distributed among the different experimental condi-
tions if parametric tests are to be applied to the resulting data. Not only
does the degree of randomization make a difference to the analysis, but
also the distribution of the resulting data. If the experimental data are
normally or near-normally distributed—exhibit a bell-shaped curve, as
shown in Figure 4.3 then you can use parametric tests. However, if the
data are not normally distributed, or if you do not know what the distribu-
tion is, nonparametric methods are preferable; examples of distributions
that are not normal are shown in Figure 4.4.

FIGURE 4.3 A normal distribution.

158 ◾ Software Metrics

Many investigations involve more than one independent variable. In
addition, the experiment invokes changes in the dependent variable as one
or more of the independent variables changes. An independent variable is
called a factor in the experimental design.

EXAMPLE 4.14

A study to determine the effect of experience and language on the productiv-
ity of programmers has two factors: experience and language. The depen-
dent variable is productivity.

Various values or classifications for each factor are called the levels of
the factor. Levels can be continuous or discrete, quantitative or qualita-
tive. In Example 4.14, we may choose to measure experience in years of
experience as a programmer; then each integer number of years can be
considered a level. If the most experienced programmer in the study has
8 years of experience, and if there are five languages in the study, then the
first factor has eight levels and the second factor five.

There are several types of factors, reflecting things such as treatments,
replications, blocking, and grouping. This chapter does not tell you what
factors should be included in your design. Neither does it prescribe the
number of factors nor the number of levels. Instead, it explains how the
factors can be related to each other, and how the levels of one factor are
combined with the levels of another factor to form the treatment com-
binations. The remainder of this section explains how to derive a design
from the number of factors and levels you want to consider in your
investigation.

Most designs in software engineering research are based on two simple
relations between factors: crossing and nesting; each is discussed separately.

FIGURE 4.4 Example of nonnormal distributions. The distribution on the left is
skewed, while that on the right is bimodal.

Empirical Investigation ◾ 159

4.2.3.1 Crossing
The design of an experiment can be expressed in a notation that reflects the
number of factors and how they relate to the different treatments. Expressing
the design in terms of factors, called the factorial design, tells you how many
different treatment combinations are required. Two factors, A and B, in a
design are crossed if each level of each factor appears with each level of the
other factor. This relationship is denoted as A × B. The design itself is illus-
trated with three factors in Figure 4.5, where ai represents the levels of factor
A and bj the levels of factor B. The figure’s first row indicates that you must
have a treatment for level 1 of A occurring with level 1 of B, for level 1 of A
occurring with level 2 of B, and for level 1 of A with level 3 of B. The first
column shows that you must have a treatment for level 1 of B occurring
with each of the two levels of A. A crossed design with n levels of the first
factor and m levels of the second factor will have n × m cells, with each cell
representing a particular situation. Thus, Figure 4.5 has two levels for A and
three for B, yielding six possible treatments in all. In the previous example,
the effects of language and experience on productivity can be written as an
8 × 5 crossed design, requiring 40 different treatment combinations. This
design means that your experiment must include treatments for each pos-
sible combination of language and experience. For three factors, A, B, and
C, the design A × B × C means that all combinations of all the levels occur.

4.2.3.2 Nesting
Factor B is nested within factor A if each meaningful level of B occurs in
conjunction with only one level of factor A. The relationship is depicted
as B(A), where B is the nested factor and A is the nest factor. A two-factor
nested design is depicted in Figure 4.6, where, like Figure 4.5, there are
two levels of factor A and three levels of factor B. Now B is dependent on A,
and each level of B occurs with only one level of A. In this example, levels
1 and 2 of B occur only with level 1 of A, and level 3 of B only occurs with
level 2 of A. Thus, B is nested within A. By nesting we have reduced the
number of treatment combinations from 6 to 3.

Factor B
Level 1 Level 2 Level 3

Factor A
Level 1 a1b1 a1b2 a1b3

Level 2 a2b1 a2b2 a2b3

FIGURE 4.5 Example of a crossed design.

160 ◾ Software Metrics

To understand nesting, and to see how crossing differs from nesting,
consider again the effects of language and experience on productivity. In
this case, let factor A be the language, and B be the years of experience
with a particular language. Suppose A has two levels, PHP and Java, and
B separates the programmers into those with less than 2 years of experi-
ence with the language and those who have more. For a crossed design,
we would have four cells for each language. That is, we would have the
following categories:

 1. PHP programmers with less than 2 years of experience with PHP
(a1b1)

 2. PHP programmers with less than 2 years of experience with Java
(a1b3)

 3. PHP programmers with at least 2 years of experience with PHP (a1b2)

 4. PHP programmers with at least 2 years of experience with Java (a1b4)

 5. Java programmers with less than 2 years of experience with PHP
(a2b1)

 6. Java programmers with less than 2 years of experience with Java
(a2b3)

 7. Java programmers with at least 2 years of experience with PHP (a2b2)

 8. Java programmers with at least 2 years of experience with Java (a2b4)

The above eight categories are generated because we are examining
experience with each language type, rather than experience in general.
However, with a nested design, we can take advantage of the fact that
the two factors are related. As depicted in Figure 4.7, we need to con-
sider only four treatments with a nested design, rather than eight; treat-
ments a1b3, a1b4, a2b1, and a2b2 are not used. Thus, nested designs take

Factor A
Level 1 Level 2

Factor B Factor B
Level 1 Level 2 Level 3

a1b1 a1b2 a2b3

FIGURE 4.6 Example of a nested design.

Empirical Investigation ◾ 161

advantage of factor dependencies, and they reduce the number of cases
to be considered.

Nesting can involve more than two factors. For example, three factors
can be nested as C(B(A)). In addition, more complex designs can be cre-
ated as nesting and crossing are combined.

There are several advantages to expressing a design in terms of factorials:

 1. Factorials ensure that resources are used most efficiently.

 2. Information obtained in the experiment is complete and reflects the
various possible interactions among variables. Consequently, the
experimental results and the conclusions drawn from them are appli-
cable over a wider range of conditions than they might otherwise be.

 3. The factorial design involves an implicit replication, yielding the
related benefits in terms of reduced experimental error.

On the other hand, the preparation, administration, and analysis of a
complete factorial design are more complex and time-consuming than a
simple comparison. With a large number of treatment combinations, the
selection of homogeneous experimental units is difficult and can be costly.
Also, some of the combinations may be impossible or of little interest to
you, wasting valuable resources. For these reasons, the remainder of this
section explains how to choose an appropriate experimental design for
your situation.

4.2.4 Selecting an Experimental Design

As seen above, there are many choices for how to design your experiment.
The ultimate choice depends on two things: the goals of your investigation
and the availability of resources. The remainder of this section explains
how to decide which design is right for your situation.

Factor A: Language
Level 1: PHP Level 2: Java

<2 years
experience
with PHP

≥2 years
experience
with PHP

<2 years
experience
with Java

≥2 years
experience
with Java

a1b1 a1b2 a2b3 a2b4

FIGURE 4.7 Nested design for language and productivity example.

162 ◾ Software Metrics

4.2.4.1 Choosing the Number of Factors
Many experiments involve only one variable or factor. These experiments
may be quite complex, in that there may be many levels of the variable that
are compared (e.g., the effects of many types of languages, or of several
different tools). One-variable experiments are relatively simple to analyze,
since the effects of the single factor are isolated from other variables that
may affect the outcome. However, it is not always possible to eliminate the
effects of other variables. Instead, we strive to minimize the effects, or at
least distribute the effects equally across all the possible conditions we are
examining. For example, techniques such as randomization aim to pre-
vent variability among people from biasing the results.

But sometimes the absence of a second variable affects the performance
of the first variable. That is, people act differently in different circum-
stances, and you may be interested in the variable interactions as well as
in individual variables.

EXAMPLE 4.15

You are considering the effects of a new design tool on productivity. The
design tool may be used differently by designers who are well versed in
object-oriented design from those who are new to object-oriented design.
If you were to design a one-factor experiment by eliminating the effects of
experience with object-oriented design, you would get an incomplete (and
probably incorrect) view of the effects of the tool. It is better to design a two-
factor experiment that incorporates both use of the tool and designer experi-
ence. That is, by looking at the effects of several independent variables, you
can assess not only the individual effects of each variable (known as the main
effect of each variable) but also any possible interactions among the variables.

To see what we mean by interaction, consider the reuse of existing code.
Suppose your organization has a repository of code modules that is made
available to some of the programmers but not all. You design an experi-
ment to measure the time it takes to code a module, distinguishing small
modules from large. When the experiment is complete, you plot the results,
separating the times for those who reused code from the times of those
who did not. This experiment has two factors: module size and reuse. Each
factor has two levels; module size is either small or large, and reuse is either
present or absent. If the results of your experiment resemble Figure 4.8,
then you can claim that there is no interaction between the two factors.

Empirical Investigation ◾ 163

The lines in Figure 4.8 are parallel, which indicates that the two vari-
ables have no effect on each other. Thus, an individual line shows the main
effect of the variable it represents. In this case, each line shows that the
time to code a module increases with the size of the module. In comparing
the two lines, we see that reuse reduces the time to code a module, but the
parallel lines indicate that size and degree of reuse do not change the over-
all trend. However, if the results resemble Figure 4.9, then there is indeed
an interaction between the variables, since the lines are not parallel. Such
a graph may result if there is considerable time spent searching through

Ti
m

e t
o

co
de

LargeSmall
Size of module

With reuse

Without reuse

FIGURE 4.8 No interaction between factors.

Ti
m

e t
o

 co
de

LargeSmall
Size of module

With reuse

Without reuse

FIGURE 4.9 Interaction between factors.

164 ◾ Software Metrics

the repository. For a small module, it may actually take more time to scan
the repository than to code the module from scratch. For large modules,
reuse is better than writing the entire module, but there is still significant
time eaten up in working with the repository. Thus, there is an interaction
between the size of the module and reuse of code.

Thus, there is far more information available from the two-factor exper-
iment than there would have been from two one-factor experiments. The
latter would have confirmed that the time to code increases with the size
of the module, both with and without reuse. But the two-factor experi-
ment shows the relationship between the factors as well as the single-fac-
tor results. In particular, it shows that, for small modules, reuse may not
be warranted. In other words, multiple-factor experiments offer multiple
views of the data and enlighten us in ways that are not evident from a col-
lection of single-factor experiments.

Another way of thinking about whether to use one factor or more is
to decide what kind of comparison you want to make. If you are examin-
ing a set of competing treatments, you can use a single-factor experiment.
For example, you may want to investigate three design methods and their
effects on quality. That is, you apply design methods A, B, and C to see
which yields the highest quality design or code. Here, you do not have
other variables that may interact with the design method.

On the other hand, you may want to investigate treatment combina-
tions, rather than competing treatments. For example, instead of looking
just at design methods, you want to analyze the effects of design meth-
ods in conjunction with tool assistance. Thus, you are comparing design
method A with tool assistance to design method A without tool assistance,
as well as design method B with tool assistance and without tool assis-
tance. You have a two-factor experiment: one factor is the design method,
and the other is the absence or presence of tool assistance. Your experi-
ment tests n1 + n2 different treatments, where n1 is the number of levels in
factor 1, and n2 is the number of levels in factor 2.

4.2.4.2 Factors versus Blocks
Once you decide on the number of factors appropriate for your experi-
ment, you must determine how to use blocking to improve the experi-
ment’s precision. However, it is not always easy to tell when something
should be a block instead of a factor. To see how to decide, we continue
to use the example of staff experience with software design, described in
Example 4.15.

Empirical Investigation ◾ 165

In many experiments, we suspect that the experience of the subjects
will affect the outcome. One option in the experimental design is to treat
experience as a blocking factor, as described earlier. To do this, we can
assess the experience of the designers in terms of the number of years each
has had experience with design. We can match staff with similar experi-
ence backgrounds and then assign staff randomly to the different treat-
ments. Thus, if we are investigating design methods A and B, each block
will have at least two subjects of approximately equal experience; within
each block, the subjects are assigned randomly to methods A and B.

On the other hand, if we treat experience as a factor, we must define levels
of experience and assign subjects in each level randomly to the alternative
levels of the other factor. In the design example, we can classify designers as
having high and low experience (the two levels of experience); then, within
each group, subjects are assigned at random to design method A or B.

To determine which approach (factor or block) is best, consider the basic
hypothesis. If we are interested in whether design A is better than design
B, then experience should be treated as a blocking variable. However, if we
are interested in whether the results of using design methods A and B are
influenced by staff experience, then experience should be treated as a fac-
tor. Thus, as described before, if we are not interested in interactions, then
blocking will suffice; if interactions are important, then multiple factors
are needed.

In general, then, we offer the following guidelines about blocking:

• If you are deciding between two methods or tools, then you should
identify state variables that are likely to affect the results and sample
over those variables using blocks to ensure an unbiased assignment
of experimental units to the alternative methods or tools.

• If you are deciding among methods or tools in a variety of circum-
stances, then you should identify state variables that define the dif-
ferent circumstances and treat each variable as a factor.

In other words, use blocks to eliminate bias; use factors to distinguish
cases or circumstances.

4.2.4.3 Choosing between Nested and Crossed Designs
Once you have decided on the appropriate number of factors for your
experiment, you must select a structure that supports the investigation
and answers the questions you have. As we shall see, this decision is often

166 ◾ Software Metrics

more complicated in software engineering than in other disciplines,
because assigning a group not to use a factor may not be sensible or even
possible. That is, there are hidden effects that must be made explicit, and
there are built-in biases that must be addressed by the structure of the
experiment. In addition, other issues can complicate this choice.

Suppose that a company wants to test the effectiveness of two design
methods, A and B, on the quality of the resulting design, with and with-
out tool support. The company identifies 12 projects to participate in the
experiment. For this experiment, we have two factors: design method and
tool usage. The first factor has two levels, A and B, and the second factor
also has two levels, use of the tool and lack of use. A crossed design makes
use of every possible treatment combination, and it would appear that a
crossed design could be used for this experiment.

As shown in Figure 4.10, the 12 projects are organized so that three
projects are assigned at random to each treatment in the design. Consider
the implications of the design as shown. Any project has been assigned to
any treatment. However, unless the tools used to support the method A
are exactly the same as the tools used to support the method B, the factor
levels for tool usage are not comparable within the two methods. In other
words, with a crossed design such as this, we must be able to make sense of
the analysis in terms of interaction effects. We should be able to investigate
down columns (in this example, does tool usage make a difference for a
given method?) as well as across rows (in this example, does method make
a difference with the use of a given tool?). With the design in Figure 4.10,
the interaction between method and tool usage (across rows) is not really
meaningful. The crossed design yields four different treatments based on
method and tool usage that allow us to identify which treatment produces
the best result. But the design does not allow us to make statements about
the interaction between tool usage and method type.

We can look at the problem in a different way by using a nested design,
as shown in Figure 4.11. Although the treatment cells appear to be the
same when looking at the figures, the nested design is analyzed differently

Crossed
Design Method

Method A Method B
Tool
usage

Not used Projects 1, 2, and 3 Projects 7, 8, and 9
Used Projects 4, 5, and 6 Projects 10, 11, and 12

FIGURE 4.10 Crossed design for design methods and tool usage.

Empirical Investigation ◾ 167

from the crossed design (a one-way analysis of variance, as opposed to a
two-way analysis of variance), so there is no risk of meaningless interac-
tion effects, as there was with the crossed design. This difference in analy-
sis approach will be discussed in more detail in Chapter 6.

Thus, a nested design is useful for investigating one factor with two or
more conditions, while a crossed design is useful for looking at two factors,
each with two or more conditions. This rule of thumb can be extended to
situations with more than two factors. However, the more the factors, the
more complex the resulting analysis. For the remainder of this chapter, we
focus on at most two factors, as most situations in software engineering
research will involve only one or two factors, with blocking and random-
ization used to ameliorate the effects of other state variables.

Figure 4.12 summarizes some of the considerations explained so far.
Its flowchart helps you to decide on the number of factors, whether to use
blocks, and whether to consider a crossed or nested design.

However, there are other, more subtle issues to consider when selecting
a design. Let us examine two more examples to see what kinds of prob-
lems may be hidden in an experimental design. Consider first the crossed
design described by Figure 4.13. The design shows an experiment to inves-
tigate two factors: staff experience and design method type. There are two
levels of experience, high and low, and two types of design method. The
staff can be assigned to a project after the project’s status is determined by
a randomization procedure. Then, the project can be assigned to a treat-
ment combination. This example illustrates the need to randomize in sev-
eral ways, as well as the importance of assigning subjects and treatments
in an order that makes sense to the design and the goals of the experiment.

Figure 4.14 is similar to Figure 4.13, except that it is examining the
method usage, as opposed to method type. In this case, it is important to
define exactly what is meant by “not used.” Unlike medicine and agricul-
ture, where “not used” means the use of a placebo or the lack of treatment

Design Method
Method A Method B

Tool usage Tool usage

Not used Used Not used Used
Projects 1, 2, and 3 Projects 4, 5, and 6 Projects 7, 8, and 9 Projects 10, 11, and 12

FIGURE 4.11 Nested design for design methods and tool usage.

168 ◾ Software Metrics

with a chemical, “not used” in software engineering may be difficult or
impossible to control. If we tell designers not to use a particular method,
they are likely to use an alternative method, rather than no method at all.
The alternative method may be hidden, based on how they were trained
or what experience they have, rather than an explicitly defined and

Choosing
number of factors

Use >1 factor: look at
treatment combinations

Use blocks and levels
to ensure unbiased

assignment

Investigating
effects of a
variable?

Y

Y

Y

N

N

N

N

Y

Y

N

No experiment needed

Use one factor: set of
competing treatments

Use factors to distinguish
cases or

circumstances

Use nested design

Use crossed design

Are
interaction effects

meaningful for each
combination?

Need
every possible treatment

combination?

Finding
best treatment?

Examining
interactions among

variables?

Factors
versus
blocks

Nested
versus
crossed

FIGURE 4.12 Flowchart for choosing design.

Crossed
Design method

Method A Method B
Staff

experience
Low Projects 1, 2, and 3 Projects 7, 8, and 9
High Projects 4, 5, and 6 Projects 10, 11, and 12

FIGURE 4.13 Crossed design for method types and staff experience.

Crossed
Design method

Used Not used
Staff

experience
Low Projects 1, 2, and 3 Projects 7, 8, and 9
High Projects 4, 5, and 6 Projects 10, 11, and 12

FIGURE 4.14 Crossed design for method usage and staff experience.

Empirical Investigation ◾ 169

well-documented another method. In this case, the design is inappropri-
ate for the goals of the experiment. However, if the goal of the experiment
is to assess the benefit of a tool to support the given method, then the
design is sufficient.

4.2.4.4 Fixed and Random Effects
Some factors allow us to have complete control over them. For example,
we may be able to control what language is used to develop a system, or
what processor the system is developed on. But other factors are not easy
to control, or are predetermined; staff experience is an example of this
type of factor. The degree of control over factor levels is an important con-
sideration in choosing an experimental design. A fixed-effects model has
factor levels or blocks that are controlled. A random-effects model has fac-
tor levels or blocks that are random samples from a population of values.

EXAMPLE 4.16

If staff experience is used as a blocking factor to match subjects of similar
experience prior to assigning them to a treatment, then the actual blocks
are a sample of all possible blocks, and we have a random-effects model.
However, if staff experience is defined as two levels, low and high, the model
is a fixed-effects model.

The difference between fixed- and random-effects models affects the
way the resulting data are analyzed. For completely randomized experi-
ments, there is no difference in analysis. But for more complex designs,
the difference affects the statistical methods needed to assess the results. If
you are not using a completely randomized experiment, you should con-
sult a statistician to verify that you are planning to use techniques appro-
priate to the type of effects in your model.

The degree of randomization also affects the type of design that is used
in your experiment. You can choose a crossed design when subjects can be
assigned to all levels (for each factor) at random. For example, you may be
comparing the use of a tool (in two levels: using the tool and not using the
tool) with the use of a computing platform (using Linux, Windows, or a
Mac OS, for instance). Since you can assign developers to each level at ran-
dom, your crossed design allows you to look for interaction between the
tool and the platform. On the other hand, if you are comparing tool usage
and experience (low level of experience versus high level of experience),

170 ◾ Software Metrics

then you cannot assign people at random to the experience category; a
nested design is more appropriate here.

4.2.4.5 Matched- or Same-Subject Designs
Sometimes, economy or reality prevents us from using different subjects
for each type of treatment in our experimental design. For instance, we
may not find enough programmers to participate in an experiment, or we
do not have enough funds to pay for a very large experiment. We can use
the same subjects for different treatments, or we can try to match subjects
according to their characteristics in order to reduce the scale and cost of
the experiments. For example, we can ask the same programmer to use
tool A in one situation and then tool B in another situation. The design
of matched- or same-subject experiments allows variation among staff
to be assessed and accounts for the effects of staff differences in analysis.
This type of design usually increases the precision of an experiment, but it
complicates the analysis.

Thus, when designing your experiment, you should decide how many
and what type of subjects you want to use. For experiments with one fac-
tor, you can consider testing the levels of the factor with the same subjects
or with different subjects. For two or more variables, you can consider
the question of same-or-different separately for each variable. To see how,
suppose you have an experimental design with four different treatments,
generated by a crossed design with two factors. If different subjects are
used for each treatment (i.e., for each of both variables), then you have
a completely unrelated between-subjects design. Alternatively, you could
use the same subjects (or subjects matched for similar values of each
level) and subject them to all four treatments; this is a completely related
within-subjects design. Finally, you can use the same subjects for one fac-
tor but different subjects for the other factor to yield a mixed between- and
within-subjects design.

4.2.4.6 Repeated Measurements
In many experiments, one measurement is made for each item of interest.
However, it can be useful to repeat measurements in certain situations.
Repeating a measurement can be helpful in validating it, by assessing the
error associated with the measurement process. We explain the added
value of repeated measurements by describing an example.

Figure 4.15 depicts the results of an experiment involving one product
and three developers. Each developer was asked to calculate the number

Empirical Investigation ◾ 171

of function points in the product at each of three different times during
development: after the specification was completed, after the design was
finished, and after the code was done. Thus, in the figure, there are three
points marked at each of the three estimation times. For example, at speci-
fication, the three developers produced different function point estimates,
so there are three distinct points indicated above “specification” on the
x-axis. The figure shows that there were two kinds of variation in the data
that resulted. The horizontal variation indicates the variation over time,
while the vertical differences at each measurement time indicates the vari-
ation due to the differences among the developers. Clearly, these repeated
measurements add value to the results of the experiment, but at the cost
of the more complex analysis required. The horizontal variation helps us
to understand the error about the line connecting the means at each mea-
surement time, and the vertical error helps us to understand observational
error.

As you can see, there are many issues to consider when choosing a
design for your experiment. In the following section, we look at case stud-
ies, to see how their design differs from experiments.

4.3 PLANNING CASE STUDIES AS QUASI-EXPERIMENTS
Case studies are often the only practical way to evaluate new methods so
that the results will scale up for use in industrial-sized development proj-
ects. Many of the issues involved in planning case studies are the same as
those relevant to controlled experiments. A case study should be treated as

Fu
nc

tio
n

po
in

ts

Time of calculation
DesignSpecification Code

FIGURE 4.15 Repeated measurements on function point calculations.

172 ◾ Software Metrics

a quasi-experiment and be designed, with limitations, in a similar manner
to an experiment. The differences are primarily on the level of control of
variables, and the ability to study multiple treatments. In this section, we
examine some of the differences and describe the steps to follow.

Every case study requires conception, design, preparation, execution,
analysis, dissemination, and decision-making, just as with an experi-
ment. The hypothesis setting is particularly important, as it guides what
you measure and how you analyze the results. The projects you select for
inclusion in a study must be chosen carefully, to represent what is typical
in your organization or company.

A case study usually compares one situation with another: the results of
using one method or tool with the results of using another, for example. To
avoid bias and make sure that you are testing the relationship you hypoth-
esize, you can organize your study in one of three ways: sister project,
baseline, or random selection.

4.3.1 Sister Projects

Suppose your organization is interested in modifying the way it performs
code inspections. You decide to perform a case study to assess the effects
of using a new inspection technique. To perform such a study, you select
two projects, called sister projects, each of which is typical of the organiza-
tion and has similar values for the state variables that you have planned to
measure. For instance, the projects may be similar in terms of application
domain, implementation language, specification technique, and design
method. Then, you perform inspections the current way on the first proj-
ect, and the new way on the second project. By selecting projects that are
as similar as possible, you are controlling as much as you can. This situ-
ation allows you to attribute any differences in result to the difference in
inspection technique.

4.3.2 Baselines

If you are unable to find two projects similar enough to be sister projects,
you can compare your new inspection technique with a general base-
line. Here, your company or organization gathers data from its various
projects, regardless of how different one project is from another. In addi-
tion to the variable information mentioned above, the data can include
descriptive measures, such as product size, effort expended, number of
faults discovered, and so on. Then, you can calculate measures of central
tendency and dispersion on the data in the database, so you have some

Empirical Investigation ◾ 173

idea of the “average” situation that is typical in your company. Your case
study involves completing a project using the new inspection technique,
and then comparing the results with the baseline. In some cases, you may
be able to select from the organizational database a subset of projects
that is similar to the one using the new inspection technique; again, the
subset adds a degree of control to your study, giving you more confidence
that any differences in result are caused by the difference in inspection
technique.

4.3.3 Partitioned Project

Sometimes, it is possible to partition a single project into parts, where
one part uses the new technique while the other does not. If possible, you
can randomly assign the code components to either the old inspection
technique or the new. Then, the case study resembles a controlled experi-
ment, because you are taking advantage of randomization and replication
in performing your analysis. It is not a controlled experiment, however,
because the project was not selected at random from among the others in
the company or organization. As with an experiment, the randomization
helps to reduce the experimental error and balance out the confounding
factors. It is often not possible to use random selection to partition the
project due to pragmatic concerns, especially in a retrospective study.

4.3.4 Retrospective Case Study

You can also conduct a case study on past data from projects. Then you
must identify projects using the new method (treatment projects) and
similar projects that do not use the new method (control projects). You
can also conduct a case study involving portions of a system, by studying
version histories and error logs. Such retrospective case studies are limited
to available data, and you have limited or no control of variables. However,
this allows you to study the evolution of systems over multiple versions
and potentially over many years. A number of retrospective studies have
used software repositories as sources for case study data.

4.4 RELEVANT AND MEANINGFUL STUDIES
There are many areas of software engineering that can be analyzed using
surveys, case studies, and experiments. One key motivator for using a con-
trolled experiment rather than a case study or survey is that the results of
an experiment are usually more generalizable. That is, if you use a survey
or case study to understand what is happening in a certain organization,

174 ◾ Software Metrics

the results apply only to that organization (and perhaps to organizations
that are very similar). But because an experiment is carefully controlled
and involves different values of the controlled variables, its results are gen-
erally applicable to a wider community and across many organizations.
However, experiments may be limited to studying just a few variables and
often do not scale up to an industrial-sized project. In the examples below,
we will see how each type of empirical study can help to answer a variety
of questions.

4.4.1 Confirming Theories and “Conventional Wisdom”

Many techniques and methods are used in software engineering because
“conventional wisdom” suggests that they are the best approaches. Indeed,
many corporate, national, and international standards are based on con-
ventional wisdom. For example, many organizations use standard limits
on structural measures or rules of thumb about module size to “assure”
the quality of their software; they insist that the cyclomatic number be 10
or less, or they restrict module size to 200 lines of code. However, there is
very little quantitative evidence to support claims of effectiveness or util-
ity of these and many other standards, methods, or tools. Case studies
and surveys can be used to confirm the wisdom of these claims in a single
organization, while controlled experiments can investigate the situations
in which the claims are generally valid. Thus, empirical studies can be
used to provide a context in which certain standards, methods, and tools
are recommended for use.

EXAMPLE 4.17

According to the “conventional wisdom” of many software design experts,
a good design for an object-oriented system should make use of delegated
rather than centralized control. That is, the responsibility for managing actions
should be distributed between classes rather than in a few control classes.
The experts, as well as most object-oriented design textbooks, claim that a
system that uses delegated control will be easier to maintain than one with
centralized control (Larman 2004; Fowler 1999).

Arisholm and Sjoberg conducted a controlled experiment to compare the
maintainability of delegated control to that of centralized control (Arisholm
and Sjoberg 2004). The experimental objects were two implementations of
a simple application—a coffee vending machine. One implementation used
centralized control, while the other used delegated control. Arisholm and
Sjoberg converted the “conventional wisdom” into hypotheses concerning

Empirical Investigation ◾ 175

the effect of control style on the time required to perform a set of change
tasks and the correctness of the tasks (the dependent variables). The 158
subjects included undergraduate and graduate students, as well as profes-
sional Java developers with three levels of experience. The classification of
the subjects is the primary independent variable. The experiment assigned
subjects using both randomization and blocking to perform the change tasks
using either centralized or delegated control.

The results showed that only senior professional developers could com-
plete the maintenance task faster on the implementations that used delegated
control. There were more errors on the systems using delegated control for
all groups, except the senior professional developers (which had similar error
rates for both delegated and centralized designs). Only the senior developers
benefited from delegated control.

Often, senior developers determine the overall design and initial imple-
mentation of a system, and they are likely to see benefits from using del-
egated control. Junior developers often perform the maintenance activities.
Unfortunately, the experiment suggests that junior developers will need more
time and will make more mistakes when modifying software that uses a del-
egated control.

EXAMPLE 4.18

A number of studies of open-source software projects report that the defect
density (defects per thousand lines of code) is higher in small modules than in
large modules. This relationship is called the theory of relative defect prone-
ness. In a retrospective case study, Koru, Liu, Zang, and El Emam provide
evidence that the theory of relative defect proneness also holds for closed-
source software projects. The study examined data from ten closed-source
systems from NASA, IBM, and other companies (Koru et al. 2010).

4.4.2 Exploring Relationships

Software practitioners are interested in the relationships among various
attributes of resources and software products. For example

• How does the project team’s experience with the application area
affect the quality of the resulting code?

• How does the requirements quality affect the productivity of the
designers?

• How does the design structure affect the maintainability of the code?

176 ◾ Software Metrics

The relationship can be suggested by a case study or survey, and further
explored in follow-up studies. For instance, a survey of completed proj-
ects may reveal that software written in Java has fewer faults than projects
written in other languages. Clearly, understanding and verifying these
relationships is crucial to the success of any future project.

EXAMPLE 4.19

Suppose you want to explore the relationship between programming lan-
guage and productivity. Your hypothesis may state that certain types of pro-
gramming languages (e.g., object-oriented languages) make programmers
more productive than other types (e.g., procedural languages). A careful
experiment would involve measuring not only the type of language and the
resulting productivity but also controlling other variables that might affect the
outcome. That is, a good experimental design would ensure that factors such
as programmer experience, application type, or development environment
were controlled so that they would not confuse the results. After analyzing
the outcome, you would be able to conclude whether or not programming
language affects programmer’s productivity.

EXAMPLE 4.20

Identifying the design properties that are common in the most error-prone
modules will help us to develop more reliable software. Briand, Wüst,
Ikonomovski, and Lounis conducted a case study to explore the relation-
ship between module coupling and cohesion, and module fault proneness
in an industrial software system. The study applied 28 coupling measures
and 10 cohesion measures. Faults were based on those reported by users
over a 1-year period. The study revealed that coupling, particularly import
coupling, had the strongest relationship with fault proneness (Briand et al.
1999).

EXAMPLE 4.21

There are many claimed benefits of using an agile software development
process. Petersen and Wohlin used both a survey and case study methods
to evaluate the perceived effects of migrating from a “plan-driven” soft-
ware process to one that employed agile methods at Ericsson AB in Sweden
(Petersen and Wohlin 2010). The survey involved interviews with 33 devel-
opers to collect qualitative information about perceptions of negative process

Empirical Investigation ◾ 177

“issues” such as “bottlenecks, unnecessary work, and rework.” In addition,
Petersen and Wohlin collected quantitative data on “unnecessary work …
and rework.” They found more negative issues associated with the plan-
driven process, and several benefits from agile methods. They also identified
the need for further support for testing and team coordination when applying
agile methods.

4.4.3 Evaluating the Accuracy of Prediction Models

Models (as part of prediction systems) are often used to predict the out-
come of an activity or to guide the use of a method or tool. For example,
cost models predict how much the development or maintenance effort
is likely to cost. Capability maturity models guide the use of techniques
such as configuration management or the introduction of testing tools
and methods. Empirical studies can confirm or refute the accuracy and
dependability of these models and their generality by comparing the pre-
dictions with the actual values in a carefully controlled environment.

Prediction models present a particularly difficult problem when
designing an experiment or case study, because their predictions often
affect the outcome. That is, the predictions become goals, and the devel-
opers strive to meet the goal, intentionally or not. This effect is common
when cost and schedule models are used, and project managers turn the
predictions into targets for completion. For this reason, experiments
evaluating models can be designed as “double-blind” experiments,
where the participants do not know what the prediction is until after
the experiment is done. On the other hand, some models, such as reli-
ability models, do not influence the outcome, since reliability measured
as mean time to failure cannot be evaluated until the software is ready
for use in the field. Thus, the time between consecutive failures cannot
be “managed” in the same way that project schedules and budgets are
managed.

EXAMPLE 4.22

Kpodjedo, Ricca, Galinier, Gueheneuc, and Antoniol developed a predic-
tion model that uses design evolution measures—changes to class attributes,
methods, and relationships between classes (associations and generaliza-
tions)—to predict the most fault-prone classes. They developed the predic-
tion model via a case study involving multiple versions of three open-source
software systems. The changes were identified from the source code and the
faults from both Bugzilla records and Subversion commit messages. The case

178 ◾ Software Metrics

study suggests that the design evolution measures are better predictors of fault
proneness than more traditional static design measures (Kpodjedo et al. 2011).

4.4.4 Validating Measures

Many software measures have been proposed to capture the value of a
particular attribute. For example, several measures claim to measure the
complexity of code. As we saw in Chapter 3, a measure is said to be valid
if it reflects the characteristics of an attribute under differing conditions.
Thus, suppose code module X has complexity measure C. The code is aug-
mented with new code, and the resulting module X′ is now perceived to
be much more difficult to understand. If the complexity measure is valid,
then the complexity measure C′ of X′ should be larger than C. In general,
a study can be conducted to test whether a given measure appropriately
reflects changes in the attribute it is supposed to capture.

As we have seen, validating measures is fraught with problems. Often,
validation is performed by correlating one measure with another. But sur-
rogate measures used in this correlation can mislead the evaluator. It is
very important to validate using a second measure that is a direct and
valid measure of the factor it reflects. Such measures are not always avail-
able or easy to measure. Moreover, the measures used must conform to
human notions of the factor being measured. For example, if system A
is perceived to be more reliable than system B, then the measure of reli-
ability of A should be larger than that for system B; that is, the perception
of “more” should be preserved in the mathematics of the measure. This
preservation of relationship means that the measure must be objective and
subjective at the same time: objective in that it does not vary with the mea-
surer, but subjective in that it reflects the intuition of the measurer (as we
saw in Chapter 2).

EXAMPLE 4.23

In order to identify and quantify software security attributes, Manadhata and
Wing introduced the notion of a system’s attack surface, which is “the subset
of its resources that an attacker can use to attack the system” (Manadhata and
Wing, 2011). They define an empirical relation system to compare the relative
attack surface of two systems in terms of the systems’ externally accessible
channels, methods, and files along with weighting factors to account for the
relative damage potential and attack effort for each surface element. They
use the empirical relation system and a survey of software developers and

Empirical Investigation ◾ 179

system administrators to derive an attack surface metric and validate the met-
ric in the narrow sense. This validation reduces risks to construct validity of
studies that use the metric.

Manadhata and Wing validate the attack surface metric in the wide
sense through a quasi-experiment (or case study) using Microsoft security
bulletins as data. The study confirms the relevance of the dimensions of
the metric for predicting attacks and shows that the metric can predict the
severity of attacks.

Experiments, quasi-experiments, case studies, and surveys produce
data to be analyzed. Chapter 5 provides insights on data collection and
Chapter 6 explains how to select appropriate analysis techniques.

4.5 SUMMARY
We have described the key activities necessary for designing or evaluating
an empirical study in software engineering. We began by explaining the
basic principles of empirical studies. In particular, we explained how the
ability to control variables could determine the appropriate study type.
We showed the relationship between study goals and hypotheses and pro-
vided further insight over maintaining control over study variables.

All empirical studies have limitations. Thus, we described common
threats to study validity, so that you can identify these threats when you
evaluate published studies and so that you can reduce these threats in your
own studies. Human subjects are necessary in many empirical studies.
Thus, we describe the ethical standards that you must meet in order to use
human subjects in your research.

Next, we explained how to plan a controlled experimentation or case
study. We listed six process phases for conducting an experiment or case
study: conception, design, preparation, execution, analysis, and dissemina-
tion. We discussed experimental design options in some detail. In particular,
we pointed out that you must consider the need for replication, random-
ization, and local control in any experiment that you plan to perform. We
showed you how you can think of experimental design in terms of crossing
and nesting between factors, as well as other design issues. We looked at
some special design issues relevant to case studies: sister projects, organiza-
tional baselines, partitioned projects, and retrospective case studies.

Finally, we reviewed examples of relevant and meaningful empirical
studies that confirm theories, explore relationships, evaluate prediction
models, and validate measures.

180 ◾ Software Metrics

EXERCISES

 1. Why it is not always possible to apply the principle of random assign-
ment in experiments involving people?

 2. How might the principle of blocking be used in an experiment study-
ing the effectiveness of a course of instruction on the productivity of
software programmers?

 3. Your company is not a software company, but it is beginning to
acknowledge the role software plays in the different company prod-
ucts. If you were to create a company baseline for use in case studies,
what variable information would you try to capture?

 4. Your company is about to start a new project to develop a new soft-
ware system. This project will use (for the first time in the company)
test-driven development (also called test-first development) making
use of the JUnit test framework to develop the project. The company
management has asked you to assess the use of test-driven develop-
ment on this project and make a recommendation on whether or not
to use it in other projects. Explain how you might assess the costs
and benefits of using test-driven development, and what consider-
ations you should make in designing the assessment exercise. Make
sure that you describe and justify (a) the type of study that you pro-
pose (experiment, case study, survey, or combination of methods),
(b) any hypotheses, (c) study variables, and (d) study plan/design.

 5. Design a controlled experiment to compare the two programming lan-
guages C++ and Java in terms of (1) the productivity of programmers
using these languages, (2) reliability, and (3) maintainability of software
systems developed using these languages. Use a course project from a
senior-level software engineering course as the objects of your study
and students as subjects. Make sure that your design includes precise
descriptions of the following: (a) all hypotheses, and null hypotheses,
the treatment and control object, study variables (state, independent,
and dependent), and your plan for carrying out the experiment.

 6. You are about to begin a large project that uses new tools, techniques,
and languages for building a mission-critical product. Your company
president wants to know if the new tools, techniques, and languages
should become company standards if the product is a success. Explain
how you might assess the product’s success, and what considerations
you should make in designing the assessment exercise.

Empirical Investigation ◾ 181

 7. Assume that an empirical study results allow you to conclusively
reject the null hypothesis, and the data exhibit a strong and signifi-
cant correlation (using appropriate statistical tools) between inde-
pendent variable x and dependent variable y. What else you need to
do to show that the study has internal validity before you accept the
alternative hypothesis that x causes y?

FURTHER READING
 Curtis was probably the first to address the need for measurement and experimen-
tation in software engineering.

 Curtis B. Measurement and experimentation in software engineering, Proceedings
of the IEEE, 68(9), 1144–1157, September 1980.

 Basili and his colleagues produced one of the first papers to point out the need for
a rigorous experimentation framework in software engineering.

 Basili V.R., Selby R.W., and Hutchens D.H., Experimentation in software engineer-
ing, IEEE Transactions on Software Engineering, 12(7), 733–743, July 1986.

 Wohlin, Runeson, Höst, Ohlsson, Regnell, and Wesslén published one of the most
comprehensive books focused on empirical methods in software engineering.

 Wohlin C., Runeson P., Höst, M., Ohlsson, M.C., Regnell B., and Wesslén, A.,
Experimentation in Software Engineering: An Introduction, Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

One journal exclusively publishes empirical software engineering papers.

 Empirical Software Engineering, published by Springer.

 A number of journals include empirical studies in all areas of software engineering.
 IEEE Transactions on Software Engineering.
 ACM Transactions on Software Engineering and Methodology.
 Information and Software Technology, published by Elsevier.
 Journal of Systems and Software, published by Elsevier.
 Software: Practice and Experience, published by Wiley.

 Several journals publish empirical studies on focused topics in software
engineering.

 Software Testing Verification and Reliability, published by Wiley.
 Software Quality Journal, published by Springer.
 Automated Software Engineering, published by Springer.
 Journal of Software Maintenance and Evolution: Research and Practice, published

by Wiley.

182 ◾ Software Metrics

REFERENCES

 Arisholm E. and Sjoberg D.I.K., Evaluating the effect of a delegated versus central-
ized control style on the maintainability of object-oriented software, IEEE
Transactions on Software Engineering, 30(8), 521–534, August 2004.

 Briand L.C., Wüst, J., Ikonomovski, S.V., and Lounis H., Investigating quality
factors in object-oriented designs; An industrial case study. Proceedings of
International Conference on Software Engineering (ICSE), 345–354, 1999.

 Fowler M., Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Reading, MA, 1999.

 Koru G., Liu H., Zang, D., and Emam E., Testing the theory of relative defect proneness
for closed-source software, Empirical Software Engineering, 15, 577–598, 2010.

 Kpodjedo S., Ricca, F., Galinier, P., Gueheneuc, Y.-G., Antoniol, G., Design evo-
lution metrics for defect prediction in object oriented systems, Empirical
Software Engineering, 16, 141–175, 2011.

 Larman C., Applying UML and Patterns: an Introduction to Object-Oriented
Analysis and Design and Iterative Development, 3rd Edition, Prentice-Hall
PTR, Upper Saddle River, NJ, 2004.

 Manadhata P.K. and Wing J.M., An Attack Surface Metric, IEEE Transactions on
Software Engineering, 37(3), 371–386, May/June 2011.

 Petersen K. and Wohlin C. The effect of moving from a plan-driven to an incre-
mental software development approach with agile practices, Empirical
Software Engineering, 15, 654–693, 2010.

U.S. Department of Health and Human Services, Code of Federal Regulations
(CRF), TITLE 45 PUBLIC WELFARE, PART 46 PROTECTION OF HUMAN
SUBJECTS, Page 4 (on the pdf version of the regulation), 2009. http://www.
hhs.gov/ohrp/humansubjects/guidance/45cfr46.html, August 7, 2014.

 There are several good books addressing experimentation in general. Cook,
Campbell, and Day discuss many of the issues involved in doing experiments
where it is difficult to control all the variables. The other books address statistics
and experimental design.

 Campbell D.T. and Stanley J., Experimental and Quasi-Experimental Designs for
Research, Rand McNally, Chicago, 1966.

 Cochran W.G., Sampling Techniques, 2nd Edition, John Wiley and Sons, New York,
1963.

 Cook, T.D., Campbell D.T., and Day A., Quasi-Experimentation: Design and Analysis
Issues for Field Settings, Houghton-Mifflin, Boston, Massachusetts, 1979.

 Green J. and d’Oliveira M., Units 16 & 21 Methodology Handbook (Part 2), Open
University, Milton Keynes, England, 1990.

 Lee W., Experimental Design and Analysis, W.H. Freeman and Company, San
Francisco, California, 1975.

 Ostle B. and Malone L.C., Statistics in Research, 4th Edition, Iowa State University
Press, Ames, Iowa, 1988.

 Walker M., The Nature of Scientific Thought, Prentice-Hall, Inc. Englewood Cliffs,
NJ, 1963.

http://www.hhs.gov
http://www.hhs.gov

183

C h a p t e r 5

Software Metrics Data
Collection

We saw in Chapter 3 that measurements should be tied to an
 organization, project, product and process goals, so that we know

what questions we are trying to answer with our measurement program.
Chapter 4 showed us how to frame questions as hypotheses, so that we
can perform measurement-based investigations to help us understand
the answers. But having the right measures is only part of a measurement
program. Software measurement is only as good as the data that are col-
lected and analyzed. In other words, we cannot make good decisions with
bad data.

Data should be collected with a clear purpose in mind. Not only
a clear purpose but also a clear idea as to the precise way in which
they will be analysed so as to yield the desired information. … It
is astonishing that men, who in other respects are clear-sighted,
will collect absolute hotchpotches of data in the blithe and
uncritical belief that analysis can get something out of it.

MORONEY 1962, P. 120

In this chapter, we consider what constitutes good data, and we present
guidelines and examples to show how data collection supports decision
making. In particular, we focus on the terminology and organization of data
related to software quality, including faults and failures. We also discuss
issues related to collecting data on software changes, effort, and productivity.

184 ◾ Software Metrics

5.1 DEFINING GOOD DATA
It is very important to assess the quality of data and data collection before
data collection begins. Your measurement program must specify not only
what metrics to use, but what precision is required, what activities and
time periods are to be associated with data collection, and what rules gov-
ern the data collection (such as whether a particular tool will be used to
capture the data). Of critical importance is the definition of the metric.
Terminology must be clear and detailed, so that all involved understand
what the metric is and how to collect it.

There are two kinds of data with which we are concerned. As illustrated
by Figure 5.1, there is raw data that results from the initial measurement
of process, product, or resource. But there is also a refinement process,
extracting essential data elements from the raw data so that analysts can
derive values about attributes.

To see the difference, consider the measurement of developer effort. The
raw effort data may consist of weekly time sheets for each staff member
working on a project. To measure the effort expended on the design so far,
we must select all relevant time sheets and add up the figures. This refined
data are a direct measurement of effort. But we may derive other measures
as part of our analysis: for example, average effort per staff member, or
effort per design component.

Deciding what to measure is the first step. We must specify which direct
measures are needed, and also measures that may be derived from the
direct ones. Sometimes, we begin with the derived measures. From a goal,
question, metric (GQM) analysis, we understand which derived measures
we want to know; from those, we must determine which direct measures
are required to calculate them.

Most organizations are different, not only in terms of their business
goals but also in terms of their corporate cultures, development prefer-
ences, staff skills, and more. So, a GQM analysis of apparently similar proj-
ects may result in different metrics in different companies. That is exactly
why GQM is preferable to adopting a one-size-fits-all standard measure-
ment set. Nevertheless, most organizations share similar problems. Each

Process
resource
product

Raw data Refined data Derived attribute
values

Data collection Extraction Analysis

Direct measurement Indirect measurement

FIGURE 5.1 The role of data collection in software measurement.

Software Metrics Data Collection ◾ 185

is interested in software quality, cost, and schedule. As a result, most
developers collect metrics information about quality, cost, and duration.
In the next section, we shall learn about the importance of data definition
by examining possible definitions for attributes and measures related to
the reporting of problems that occur in software development.

5.2 DATA COLLECTION FOR INCIDENT REPORTS
No software developer consistently produces perfect software the first
time. Thus, it is important for developers to measure aspects of software
quality. Such information can be useful for determining

• How many problems have been found with a product?

• How effective are the prevention, detection, and removal processes?

• Whether the product is ready for release to the next development
stage or to the customer?

• How the current version of a product compares in quality with previ-
ous or competing versions?

The terminology used to support this investigation and analysis must
be precise, allowing us to understand the causes as well as the effects of
quality assessment and improvement efforts. However, the use of terms
varies widely among software professionals, and terms such as “error,”
“fault,” “failure,” and so forth are used inconsistently. For example, there
is disagreement with the definition of a software failure.

From a formal computer science perspective, a failure is any deviation
from specified behavior. That is, a failure occurs whenever the output does
not match the specified behavior. Using the formal perspective, there is no
failure when program behavior matches an incorrect specification even if
the behavior does not make sense.

From an engineering perspective, a failure is any deviation from the
required or expected behavior. Thus, if a program receives an unspecified
input it should produce a “sensible” output appropriate for the circumstances.

EXAMPLE 5.1

Consider the following specification for a program:

When a non-negative integer n is input into the factorial program, it shall
produce n! as an integer string for values of n up to and including 149.

186 ◾ Software Metrics

Table 5.1 gives interpretations of failure events caused by running the
program. From a formal perspective, if the program input is an unspec-
ified value (151 or “fred”), it is not a failure for the system to crash or
wipe the file system. From an engineering perspective, these behaviors are
deemed failures since such output is not sensible and can have catastrophic
consequences.

5.2.1 The Problem with Problems

Figure 5.2 depicts some of the components of a problem’s cause and
symptoms, expressed in terms consistent with Institute of Electrical and
Electronic Engineers (IEEE) standard 610.12 (IEEE 610.12-1990) and
IEEE standard 1044-2009 (IEEE 1044-2009). A fault in a software product
occurs due to a human error or mistake. That is, the fault is the encod-
ing of the human error. For example, a developer might misunderstand a
user-interface requirement, and therefore create a design that includes the
misunderstanding. The design fault can also result in an incorrect code, as
well as incorrect instructions in the user manual. Thus, a single error can
result in one or more faults, and a fault can reside in any of the products
of development.

However, a failure is the departure of a system from its required
behavior. Failures can be discovered both before and after system

TABLE 5.1 Formal versus Engineering Interpretations of Failure Events for a
Factorial Program

Input Output Formal Failure? Engineering Failure?
150 “Too large a number” No No
151 System crash No Yes
“fred” Delete all files No Yes

?

Human error
(mistake)

Fault
(defect)

Failure

Can lead to Can lead to

FIGURE 5.2 Software quality terminology. Terminology from the IEEE stan-
dard 1044-2009 is in parentheses when it differs from ours. (IEEE Standard 1044-
2009: Standard Classification for Software Anomalies, IEEE Computer Society
Press, 2009.)

Software Metrics Data Collection ◾ 187

delivery, as they can occur in testing as well as in operation. Since we
take an engineering perspective to identify failures, we compare actual
system behavior, rather than with specified behavior. Thus, faults in the
requirements documents can result in failures, too.

In some sense, you can think of faults and failures as inside and out-
side views of the system. Faults represent problems that the developer sees,
while failures are problems that the user sees. Not every fault corresponds
to a failure, since the conditions under which a fault results in system fail-
ure may never be met.

EXAMPLE 5.2

The software in an actual nuclear reactor failed due to a fault that was caused
by the process described below:

 1. Human error: Failure to distinguish signed and absolute value numbers
in an algorithm resulted in the following fault.

 2. Fault: ‘X: = Y’ is coded instead of ‘X: = ABS(Y)’ which in turn led to the
following failure.

 3. Failure: Nuclear reactor shut down because it was wrongly determined
that a meltdown was likely.

A failure may or may not occur depending on the sequence of inputs
processed by the system—a fault may reside in a program segment that is
never executed, thus preventing the processing error from occurring.

We need to introduce another stage to this failure process that of the
software error. Ammann and Offutt define the term software error as “an
incorrect internal state that is the manifestation of some fault” (Ammann
and Offutt, 2008). This notion of error is commonly used in the software
testing community, which is concerned with identifying software errors.
In general, the triggering of a fault may not lead to instantaneous failure;
rather, an erroneous state arises within the system which at some later
time leads to failure. We can think of software errors as intermediate error
states which when propagated through the system ultimately lead to fail-
ure. One example is an operating system fault that is triggered by a par-
ticular input that results in a state error that causes another state error in
the word processor which then crashes. Thus, the fault starts a chain of
software errors that ultimately result in a failure.

188 ◾ Software Metrics

This notion of software error is also highly relevant for software fault
tolerance, which is concerned with how to prevent failures in the pres-
ence of software errors. If an error state is detected and countered before
it propagates to the output, the failure can be prevented. Preventing error
states from propagating is the goal of software fault tolerance. Researchers
continue to search for methods that enable software to operate dependably
even when it contains faults that have been triggered. Software errors do
not necessarily cause failures in fault-tolerant software.

Unfortunately, the terminology used to describe software problems
is not uniform. If an organization measures software quality in terms of
faults per thousand lines of code, it may be impossible to compare the
result with the competition if the meaning of “fault” is not the same. The
software engineering literature is rife with differing meanings for the same
terms. Below are just a few examples of how researchers and practitioners
differ in their usage of terminology.

• In many organizations, errors can mean faults. This meaning con-
trasts with the notion of software error as used in the software testing
community—an invalid system state that results when a fault is trig-
gered and may or may not lead to a failure.

• Anomalies usually mean a class of faults that are unlikely to cause
failures in themselves but may nevertheless eventually lead to fail-
ures indirectly. In this sense, an anomaly is a deviation from the
usual, but it is not necessarily wrong. For example, deviations from
accepted standards of good programming practice (such as use of
nonmeaningful names) are often regarded as anomalies. Note that
the IEEE Standard Glossary of Software Engineering Terminology
defines an anomaly as “anything observed in the documentation
or operation of software that deviates from expectations” (IEEE
610.12-1990). Also the IEEE Standard Classification for Software
Anomalies addresses both faults (defects) and failures (IEEE
1044-2009).

• Defects often refer collectively to faults and failures. However, the
IEEE Standard 1044-2009 uses the term “defect” to refer only to
faults (IEEE 1044-2009).

• Bugs refer to faults occurring in the code, but in some cases are used
to describe failures.

Software Metrics Data Collection ◾ 189

• Crashes are a special type of failure, where the system ceases to
function.

Since the terminology used varies widely, it is important for you to define
your terms clearly, so that they are understood by all who must supply, col-
lect, analyze, and use the data. Often, differences in meaning are accept-
able, as long as the data can be translated from one framework to another.

We also need a good, clear way of describing what we do in reaction
to problems. For example, if an investigation of a failure results in the
detection of a fault, then we make a change to the product to remove
it. A change can also be made if a fault is detected during a review or
inspection process. In fact, one fault can result in multiple changes to one
product (such as changing several sections of a piece of code) or multiple
changes to multiple products (such as a change to requirements, design,
code, and test plans).

In this book, we describe the observations of development, testing, sys-
tem operation, and maintenance problems in terms of failures, faults, and
changes. Whenever a problem is observed, we want to record its key ele-
ments, so that we can investigate the causes and cures. In particular, we
want to know the following:

 1. Location: Where did the problem occur?

 2. Timing: When did it occur?

 3. Symptom: What was observed?

 4. End result: Which consequences resulted?

 5. Mechanism: How did it occur?

 6. Cause: Why did it occur?

 7. Severity: How much was the user affected?

 8. Cost: How much did it cost?

These eight attributes are similar to the failure attributes and defect (fault)
attributes in the IEEE Standard Classification for Software Anomalies
(IEEE 1044-2009). However, the IEEE standard for failure attributes
does not separate symptom from end result; both are included in the gen-
eral attribute called “description.” The IEEE standard for defect (fault)

190 ◾ Software Metrics

attributes includes symptom under the “description” attribute, and end
result under the “effect” attribute.

We use the above eight problem attributes because they are (as far as pos-
sible) mutually independent, so that proposed measurement of one does not
affect measurement of another*; this characteristic of the attributes is called
orthogonality. Orthogonality can also refer to a classification scheme within
a particular category. For example, cost can be recorded as one of the sev-
eral predefined categories, such as low (under $100,000), medium (between
$100,000 and $500,000), and high (more than $500,000). However, in prac-
tice, attempts to over-simplify the set of attributes sometimes result in non-
orthogonal classifications. When this happens, the integrity of the data
collection and metrics program can be undermined, because the observer
does not know in which category to record a given piece of information.

EXAMPLE 5.3

Some organizations try to provide a single classification for software faults,
rather than using the eight components suggested above. Here, one attribute
is sometimes regarded as most important than the others, and the classifica-
tion is a proposed ordinal scale measure for this single attribute. Consider the
following classification for faults, based on severity:

• Major
• Minor
• Negligible
• Documentation
• Unknown

This classification is not orthogonal; for example, a documentation fault
could also be a major problem, so there is more than one category in which
the fault can be placed. The nonorthogonality results from confusing severity
with location, since the described fault is located in the documentation but
has a severe effect.

When the scheme is not orthogonal, the developer must choose which
category is most appropriate. It is easy to see how valuable information is
lost or misrepresented in the recording process.

* This mutual independence applies only to the initial measurement. Data analysis may reveal, for
example, that severity of effects correlates with the location of faults within the product. However,
this correlation is discovered after classification, and cannot be assumed when faults are classified.

Software Metrics Data Collection ◾ 191

EXAMPLE 5.4

Riley described the data collection used in the analysis of the control sys-
tem software for the Eurostar train (the high-speed train used to travel from
Britain to France and Belgium via the Channel tunnel) (Riley 1995). In the
Eurostar software problem-reporting scheme, faults are classified according
to only two attributes, cause and category, as shown in Table 5.2. Note that
“cause” includes notions of timing and location. For example, an error in
software implementation could also be a deviation from functional speci-
fication, while an error in test procedure could also be a clerical error.
Hence, Eurostar’s scheme is not orthogonal and can lead to data loss or
corruption.

On the surface, our eight-category report template should suffice for all
types of problems. However, as we shall see, the questions are answered
very differently, depending on whether you are interested in faults, fail-
ures, or changes.

5.2.2 Failures

A failure report focuses on the external problems of the system: the instal-
lation, the chain of events leading up to the failure, the effect on the user
or other systems, and the cost to the user as well as the developer. Thus, a
typical failure report addresses each of the eight attributes in the follow-
ing way:

TABLE 5.2 Fault Classifications Used in Eurostar Control System

Cause Category
Error in software design Category not applicable
Error in software implementation Initialization
Error in test procedure Logic/control structure
Deviation from functional specification Interface (external)
Hardware not configured as specified Interface (internal)
Change or correction-induced error Data definition
Clerical error Data handling
Other (specify) Computation

Timing
Other (specify)

Source: IEEE Standard 1044-2009: Standard Classification for Software
Anomolies, IEEE Computer Society Press, 2009.

192 ◾ Software Metrics

Failure Report

Location: Such as installation where failure was observed

Timing: CPU time, clock time, or some temporal measure

Symptom: Type of error message or indication of failure

End result: Description of failure, such as “operating system crash,”
“services degraded,” “loss of data,” “wrong output,” and “no output”

Mechanism: Chain of events, including keyboard commands and state
data, leading to failure

Cause: Reference to possible fault(s) leading to failure

Severity: Reference to a well-defined scale, such as “critical,” “major,”
and “minor”

Cost: Cost to fix plus cost of lost potential business

Let us examine each of these categories more closely.
Location is usually a code (e.g., hardware model and serial number, or

site and hardware platform) that uniquely identifies the installation and
platform on which the failure was observed. The installation description
must be interpreted according to the type of system involved. For example,
if software is embedded in an automatic braking system, the “installation”
may move about. Similarly, if the system is distributed, then the terminal
at which a failure is observed must be identified, as well as the server to
which it was online.

Timing has two, equally important aspects: real time of occurrence
(measured on an interval scale), and execution time, up to the occurrence
of failure (measured on a ratio scale).

The symptom category explains what was observed as distinct from the
end result, which is a measure of the consequences. For example, the symp-
tom of a failure may record that, the screen displayed a number that was
one greater than the number entered by the operator; if the larger number
resulted in an item’s being listed as “unavailable” in the inventory (even
though one was still left), that symptom belongs to the “end result” category.

End result refers to the consequence of the failure. Generally, the “end
result” requires a (nominal scale) classification that depends on the type
of system and application. For instance, the end result of a failure may be
any of the following:

Software Metrics Data Collection ◾ 193

• Operating system crash

• Application program aborted

• Service degraded

• Loss of data

• Wrong output

• No output

Mechanism describes how the failure came about. This application-
dependent classification details the causal sequence leading from the acti-
vation of the source to the symptoms eventually observed. This category
may also characterize what function the system was performing or how
heavy the workload was when the failure occurred. Unraveling the chain
of events is a part of diagnosis, so often this category is not completed at
the time the failure is observed.

Cause is also part of the diagnosis (and as such is more important for
the fault form associated with the failure). Cause involves two aspects: the
type of trigger and the type of source (i.e., the fault that caused the prob-
lem). The trigger can be one of several things, such as

• Physical hardware failure

• Operating conditions

• Malicious action

• User error

• Erroneous report

While the actual source can be faults such as these:

• Physical hardware fault

• Unintentional design fault

• Intentional design fault

• Usability problem

194 ◾ Software Metrics

For instance, the cause can involve a switch or case statement with no
code to handle the drop-through condition (the source), plus a situation
(the trigger) where the listed cases were not satisfied.

The cause category is often cross-referenced to fault and change reports,
so that the collection of reports paints a complete picture of what happened
(the failure report), what caused it (the fault reports), and what was done to
correct it (the change reports). Then, post-mortem analysis can identify the
root cause of a fault. The analysis will focus on how to prevent such prob-
lems in the future, or at least catch them earlier in the development process.

Severity describes how serious the failure’s end result was for the service
required from the system. For example, failures in safety-critical systems
are often classified for severity as follows (Riley 1995):

• Catastrophic failures involve the loss of one or more lives, or injuries
causing serious and permanent incapacity.

• Critical failures cause serious and permanent injury to a single per-
son but would not normally result in loss of life to a person of good
health. This category also includes failures causing environmental
damage.

• Significant failures cause light injuries with no permanent or long-
term effects.

• Minor failures result neither in personal injury nor a reduction in the
level of safety provided by the system.

Severity may also be measured in terms of cost to the user.
Cost to the system provider is recorded in terms of how much effort and

other resources were needed to diagnose and respond to the failure. This
information may be a part of diagnosis and therefore supplied after the
failure occurs.

Sometimes, a failure occurs several times before it is recognized and
recorded. In this case, an optional ninth category, count, can be useful. Count
captures the number of failures that occurred within a stated time interval.

EXAMPLE 5.5

Early on December 31, 2008, Microsoft’s first-generation Zune portable
media players hung. This event was widely reported in the media since there
were many thousands of affected users (Robertson 2009). The failure was

Software Metrics Data Collection ◾ 195

traced to a fault in the program code related to date calculations—2008 is a
leap year with 366 days, and the code used 365 days as the length of all years.
The workaround was to wait until January 1, let the battery drain completely,
and then restart the device (this workaround left the fault in place). Using our
failure attributes, a possible failure report might look like the following:

• Location: Many first-generation Zune 30 media players in use around
the world.

• Timing: December 31, 2008, starting early in the morning.
• Symptom: The device froze.
• End result: The device became unusable, even after a restart.
• Mechanism: Upon startup, the loading bar indicates “full,” and then

the device hangs.
• Cause (1): (Trigger) Starting the device on December 31, 2011.
• Cause (2): (Source type) Coding fault related to date calculation.
• Severity: Serious, as it made the device unusable until the inconve-

nient workaround was communicated to the large and diverse user
community.

• Cost: Effort to diagnose the problem, develop and publicize a work-
around, and repair the fault. Perhaps, the greatest cost was damage to
the company reputation.

EXAMPLE 5.6

In the 1980s, problems with a radiation therapy machine were discovered,
and the description of the problems and their software causes are detailed in
an article by Leveson and Turner (1993). Mellor used the above framework
to analyze the first of these failures, in which patients died as a result of a
critical design failure of the Therac 25 radiation therapy machine (Mellor
1992). The Therac administered two types of radiation therapy: x-ray and
electron. In x-ray mode, a high-intensity beam struck a tungsten target, which
absorbed much of the beam’s energy and produced x-rays. In electron mode,
the Therac’s computer retracted the metal target from the beam path while
reducing the intensity of the radiation by a factor of 100. The sequence of a
treatment session was programmed by an operator using a screen and key-
board; the Therac software then performed the treatment automatically. In
each of the accidents that occurred, the electron beam was supposed to be
at a reduced level but instead was applied full strength, without the tungsten
target in place. At the same time, the message “Malfunction 54” appeared on
the monitor screen. Diagnosis revealed that the use of the up-arrow key to
correct a typing mistake by the operator activated a fault in the software, lead-
ing to an error in the system which scrambled the two modes of operation.

Applying our failure framework to the 1986 accident which caused the
death, six months later, of Mr V. Cox, the failure report might look like this:

196 ◾ Software Metrics

• Location: East Texas Cancer Center in Tyler, Texas, USA.
• Timing (1): March 21, 1986, at whatever the precise time that

“Malfunction 54” appeared on the screen.
• Timing (2): Total number of treatment hours on all Therac 25 machines

up to that particular time.
• Symptom (1) “Malfunction 54” appeared on the screen.
• Symptom (2) Classification of the particular program of treatment being

administered, type of tumor, etc.
• End result: Strength of the beam too great by a factor of 100.
• Mechanism: Use of the up-arrow key while setting up the machine led

to the corruption of a particular internal variable in the software.
• Cause (1) (Trigger) Unintentional operator action.
• Cause (2) (Source type) Unintentional design fault.
• Severity: Critical, as injury to Mr Cox was fatal.*

• Cost: Effort or actual expenditure by accident investigators.

In Leveson and Turner’s post-mortem analysis, they identified several root
causes of the failures including the following:

• “Overconfidence in the software” especially “among nonsoftware
professionals.”

• “Confusing reliability with safety.” The software rarely failed. However,
the consequences of failure were tragic.

• “Lack of defensive design.”
• “Failure to eliminate root causes” of prior failures.
• “Complacency.”
• “Unrealistic risk assessments.” Software risk was not treated as seri-

ously as hardware risks.
• “Inadequate investigation or follow-up on accident reports.”
• “Inadequate software engineering practices.”

Remember that only some of the eight attributes can usually be recorded
at the time the failure occurs. These are:

• Location

• Timing

• Symptom

• End result

• Severity

* The failure is classed as “critical,” rather than “catastrophic,” in accordance with several safety
guidelines that (unfortunately) require the loss of several lives for catastrophic failure.

Software Metrics Data Collection ◾ 197

The others can be completed only after diagnosis, including root-cause
analysis. Thus, a data collection form for failures should include at least
these five categories.

When a failure is closed, the precipitating fault in the product has
usually been identified and recorded. However, sometimes there is no
associated fault. Here, great care should be exercised when closing the
failure report, so that readers of the report will understand the resolu-
tion of the problem. For example, a failure caused by user error might
actually be due to a usability problem, requiring no immediate software
fix (but perhaps changes to the user manual, or recommendations for
enhancement or upgrade). Similarly, a hardware-related failure might
reveal that the system is not resilient to hardware failure, but no specific
software repair is needed.

Sometimes, a problem is known but not yet fixed when another, similar
failure occurs. It is tempting to include a failure category called “known
software fault,” but such classification is not recommended because it
affects the orthogonality of the classification. In particular, it is difficult
to establish the correct timing of a failure if one report reflects multiple,
independent events; moreover, it is difficult to trace the sequence of events
causing the failures. However, it is perfectly acceptable to cross-reference
the failures, so the relationships among them are clear.

The need for cross-references highlights the need for forms to be stored
in a way that allows pointers from one form to another. The storage system
must support changes to stored data. For example, a failure may initially
be thought to have one fault as its cause, but subsequent analysis reveals
otherwise. In this case, the failure’s “type” may require change, as well as
the cross-reference to other failures.

The form storage scheme must also permit searching and organizing.
For example, we may need to determine the first failure due to each fault
for several different samples of trial installations. Because a failure may be
a first manifestation in one sample, but a repeat manifestation in another,
the storage scheme must be flexible enough to handle this.

5.2.3 Faults

A failure reflects the user’s view of the system, but a fault is seen only by
the developer. Thus, a fault report is organized much like a failure report
but has very different answers to the same questions. It focuses on the
internals of the system, looking at the particular module where the fault

198 ◾ Software Metrics

occurred and the cost to locate and fix it. A typical fault report interprets
the eight attributes in the following way:

Fault Report

Location: Within system identifier, such as module or document name

Timing: Phases of development during which fault was created, detected
and corrected

Symptom: Type of error message reported, or activity which revealed
fault (such as review)

End result: Failure caused by the fault

Mechanism: How source was created, detected, and corrected

Cause: Type of human error that led to fault

Severity: Refer to severity of resulting or potential failure

Cost: Time or effort to locate and correct; can include analysis of cost
had fault been identified during an earlier activity

Again, we investigate each of these categories in more detail.
In a fault report, Location tells us which product (including both identi-

fier and version) or part of the product (subsystem, module, interface, doc-
ument) contains the fault. The IEEE Standard Classification for Software
Anomalies (IEEE 1044-2009) provides location attributes in four levels:

 1. Asset, which identifies the application with the fault.

 2. Artifact, for example, a specific code file, requirements document,
design specification, test plan, test case.

 3. Version detected, which identifies the version where the fault was
found.

 4. Version corrected.

Timing relates to the three events that define the life of a fault:

 1. When the fault is created

 2. When the fault is detected

 3. When the fault is corrected

Software Metrics Data Collection ◾ 199

Clearly, this part of a fault report will need revision as a causal analysis
is performed. It is also useful to record the time taken to detect and correct
the fault, so that product maintainability can be assessed.

The Symptom classifies what is observed during diagnosis or inspec-
tion. The 1993 draft version of the IEEE standard on software anomalies
(IEEE 1044-2009) provides a useful and extensive classification that we
can use for reporting the symptom. We list the categories in the follow-
ing table:

Classification of Fault Types

Logic problem
 Forgotten cases or steps
 Duplicate logic
 Extreme conditions neglected
 Unnecessary function
 Misinterpretation
 Missing condition test
 Checking wrong variable
 Iterating loop incorrectly
Computational problem
 Equation insufficient or incorrect
 Missing computation
 Operand in equation incorrect
 Operator in equation incorrect
 Parentheses used incorrectly
 Precision loss
 Rounding or truncation fault
 Mixed modes
 Sign convention fault
Interface/timing problem
 Interrupts handled incorrectly
 I/O timing incorrect
 Timing fault causes data loss
 Subroutine/module mismatch
 Wrong subroutine called
 Incorrectly located subroutine call
 Nonexistent subroutine called
 Inconsistent subroutine arguments
Data-handling problem
 Initialized data incorrectly
 Accessed or stored data incorrectly
 Flag or index set incorrectly
 Packed/unpacked data incorrectly

continued

200 ◾ Software Metrics

(continued) Classification of Fault Types
 Referenced wrong data variable
 Data referenced out of bounds
 Scaling or units of data incorrect
 Dimensioned data incorrectly
 Variable-type incorrect
 Subscripted variable incorrectly
 Scope of data incorrect
Data problem
 Sensor data incorrect or missing
 Operator data incorrect or missing
 Embedded data in tables incorrect or
missing

 External data incorrect or missing
 Output data incorrect or missing
 Input data incorrect or missing
Documentation problem
 Ambiguous statement
 Incomplete item
 Incorrect item
 Missing item
 Conflicting items
 Redundant items
 Confusing item
 Illogical item
 Nonverifiable item
 Unachievable item
Document quality problem
 Applicable standards not met
 Not traceable
 Not current
 Inconsistencies
 Incomplete
 No identification
Enhancement
 Change in program requirements
 Add new capability
 Remove unnecessary capability
 Update current capability
 Improve comments
 Improve code efficiency
 Implement editorial changes
 Improve usability
 Software fix of a hardware problem
 Other enhancement

Software Metrics Data Collection ◾ 201

(continued) Classification of Fault Types
Failure caused by a previous fix
Other problems

Source: IEEE Standard 1044-2009, Standard
Classification for Software Anomolies,
IEEE Computer Society Press, 2009.

The End result is the actual failure caused by the fault. If separate failure
or incident reports are maintained, then this entry should contain a cross-
reference to the appropriate failure or incident reports.

Mechanism describes how the fault was created, detected, and cor-
rected. Creation explains the type of activity that was being carried out
when the fault was created (e.g., specification, coding, design, mainte-
nance). Detection classifies the means by which the fault was found (e.g.,
inspection, unit testing, system testing, integration testing), and correc-
tion refers to the steps taken to remove the fault or prevent the fault from
causing failures.

Cause explains the human error (mistake) that led to the fault. Although
difficult to determine in practice, the cause is classified in terms of the sus-
pected causes such as lost information, requirements misunderstanding,
management not taking engineering concerns seriously, and so forth.

Severity assesses the impact of the fault on the user. That is, severity
examines whether the fault can actually be evidenced as a failure, and the
degree to which that failure would affect the user.

The Cost explains the total cost of the fault to the system provider.
Much of the time, this entry can be computed only by considering other
information about the system and its impact.

The optional Count field can include several counts, depending on the
purpose of the field. For example, count can report the number of faults
found in a given product or subsystem (to gauge inspection efficiency), or
the number of faults found during a given period of operation (to assist in
reliability modeling).

EXAMPLE 5.7

We reexamine the problem with the Zune media player described in Example
5.5. The fault causing the failure was quickly identified as a coding error
(Zuneboards, 2008), and was used as an example by Weimer, Forrest, Le
Goues, and Nguyen in a study of automated program repair (Weimer et al.
2010).

202 ◾ Software Metrics

• Location: Module rtc.c, Convert Days function, lines 249–275.
• Timing: Created during coding, detected during operational use.
• Symptom: Missing condition test causing a loop to iterate incorrectly

(nontermination).
• End result: The device froze.
• Mechanism: Creation: during code development; Detection: diagnosis

of operational failure; Correction: workaround provided, code correc-
tion probably done.

• Cause: Human mistake in dealing with a special case—leap years.
• Severity: Serious, as all of the first-generation Zune devices froze.
• Cost: Minimal cost to diagnose, prepare workaround, and repair; how-

ever, there was significant cost with respect to the reputation of the
company.

EXAMPLE 5.8

We return to the Therac problem described in Example 5.6 (Leveson and
Turner 1993). The fault causing the failure that we discussed may be reported
in the following way:

• Location: Product is the Therac 25; the subsystem is the control soft-
ware. The version number is an essential part of the location. The par-
ticular module within the software is also essential.

• Timing: The fault was created at some time during the control soft-
ware’s development cycle.

• Symptom: The category and type of software fault that were the root
cause of the failure.

• End result: “Malfunction 54,” together with a radiation beam that was
very strong.

• Mechanism: Creation: during code development; Detection: diag-
nosis of operational failure; Correction: the immediate response was
to remove the up-arrow key from all machines and tape over the
hole!

• Cause: This is discussed at length by Leveson and Turner (1993).
• Severity: Critical,* in spite of the fact that, not all of the “Malfunction

54” failures led to injury.
• Cost: The cost to the Therac manufacturers of all investigations of all

the failures, plus corrections.

* Again, the failure is not catastrophic, because only one life was lost.

Software Metrics Data Collection ◾ 203

EXAMPLE 5.9

The popular open source problem tracking tool Bugzilla, which describes
both failures and faults as “bugs,” supports recording the eight problem attri-
butes either directly or indirectly as follows:

• Location: Location attributes include product, component, version,
and platform.

• Timing: Timing attributes include dates for when a bug is reported and
when an artifact is modified.

• Symptom, end result, and mechanism: These attributes are not sepa-
rated. They can be recorded under the category “steps to reproduce.”

• Cause: Cause can be recorded as “additional information.”
• Severity: Severity is directly supported.
• Cost: Cost of fault diagnosis and repair is recorded under “time tracking.”

5.2.4 Changes

Once a failure is experienced and its cause determined, the problem is
fixed through one or more changes. These changes may include modifica-
tions to any or all of the development products, including the specification,
design, code, test plans, test data, and documentation. Change reports are
used to record the changes and track the products most affected by them.
For this reason, change reports are very useful for evaluating the most
fault-prone modules, as well as other development products with unusual
numbers of defects. A typical change report may look like this:

Change Report

Location: Identifier of document or module changed

Timing: When the change was made

Symptom: Type of change

End result: Success of change, as evidenced by regression or other testing

Mechanism: How and by whom change was performed

Cause: Corrective, adaptive, preventive, or perfective

Severity: Impact on the rest of the system, sometimes as indicated by an
ordinal scale

Cost: Time and effort for change implementation and test

204 ◾ Software Metrics

The Location identifies the product, subsystem, component, module, or
subroutine affected by a given change. Timing captures when the change
was made, while End result describes whether the change was successful or
not. (Sometimes changes have unexpected effects and have to be redone;
these problems are discovered during regression or specialized testing.)

The IEEE Standard Glossary of Software Engineering Terminology
defines four types of maintenance activities, which are classified by the
reasons for the changes (IEEE 1990). A change may be corrective main-
tenance, in that the change corrects a fault that was discovered in one of
the software products. It may be adaptive maintenance: the underlying
system changes in some way (the computing platform, network configura-
tion, or some part of the software is upgraded), and a given product must
be adapted to preserve functionality and performance. Developers some-
times make perfective changes, refactoring code to make it more adapt-
able by removing “bad smells” (Fowler 1999), rewriting documentation
or comments, and/or renaming a variable or routine to clarify the system
structure so that new faults are not likely to be introduced as part of other
maintenance activities. Finally, preventive maintenance involves removing
anomalies that represent potential faults. The Cause entry in the change
report is used to capture one of these reasons for change: corrective, adap-
tive, perfective, or preventive or perfective.

The Cost entry explains the cost to the system developer of implement-
ing a change. The expense includes not only the time for the developer to
find and fix the system but also the cost of doing regression tests, update
documentation, and return the system to its normal working state.

A Count field may be used to capture the number of changes made in a
given time interval, or to a given system component.

5.3 HOW TO COLLECT DATA
Since the production of software is an intellectual activity, the collection of
data requires human observation and reporting. Managers, systems ana-
lysts, programmers, testers, and users must record raw data on forms. This
manual recording is subject to bias (deliberate or unconscious), error, omis-
sion, and delay. Automatic data capture is therefore desirable, and sometimes
essential, such as in recording the execution time of real-time software.

Unfortunately, in many instances, there is no alternative to manual
data collection. To ensure that the data are accurate and complete, we
must plan our collection effort before we begin to measure and capture
data. Ideally, we should do the following:

Software Metrics Data Collection ◾ 205

• Keep the procedures simple.

• Avoid unnecessary recording.

• Train staff in the need to record data and in the procedures to be used.

• Provide the results of data capture and analysis promptly to the origi-
nal providers and in a useful form that will assist them in their work.

• Validate all data collected at a central collection point.

The quality of collected fault and failure data can vary. Often key data
are missing.

EXAMPLE 5.10

Open source projects are potentially a rich source of data for empirical stud-
ies. They often include source code, test cases, and change log files. The
GNU project coding standards say that you should “keep a change log to
describe all the changes made to program source code” (GNU 2013). Yet,
a study of three open-source projects—GNUJSP, GCC-g++, and Jikes—by
Chen, Schach, Yu, Offutt, and Heller found that overall 22% of the changes
in project files were not recorded in the change logs. In one of the versions of
Jikes, 62% of the changes were not recorded (Chen et al. 2004).

In a similar study, Bachmann and Bernstein examined data from five open-
source and one closed-source project (Bachmann and Bernstein 2009). They
found that most of the fault reports are not linked to an entry in the change
logs.

Clearly, we must check the integrity of the data collected when analyz-
ing project data whether it is from an open-source or proprietary projects.
This requires careful planning.

Planning for data collection involves several steps. First, you must
decide which products to measure, based on your GQM analysis. You may
need to measure several products that are used together, or you may mea-
sure one part or subsystem of a larger system.

EXAMPLE 5.11

Ultimately, failures of all types have to be traced to some system compo-
nent, such as a program, function, unit, module, subsystem, or the system
itself. If the measurement program is to enable management to take action

206 ◾ Software Metrics

to prevent problems, rather than waiting for problems to happen, it is vital
that these components be identified at the right level of granularity. This
ability to focus on the locus of a problem is a critical factor for your mea-
surement program’s success. For example, software development work at
a large British computer manufacturer was hampered by not having data
amalgamated at high levels. The software system had a large number of
very small modules, each of which had no faults or very few faults. At this
level of granularity, it was impossible to identify trends in the fault locations.
However, by combining modules according to some rule of commonality
(e.g., similar function, same programmer, or linkage by calling routines), it
may have been possible to see patterns not evident at lower levels. In other
words, it was of little use to know that each program contained either 0 or
1 as known fault, but it was of great interest to see, for example, a set of
25 programs implementing a single function that had 15 faults, whereas a
similar set of programs implementing another function had no faults. Such
information suggested to management that the first, more fault-prone func-
tion, be subject to greater scrutiny.

In Example 5.11, the level of the granularity of collection was too fine.
Of course, lowering the granularity can be useful, too. Suppose, your
objective is to monitor the fault density of individual modules. That is,
you want to examine the number of faults per thousand lines of code for
each of a given set of modules. You will be unable to do this if your data
collection forms associate faults only with subsystems, not with individual
modules. In this case, the level of granularity in your data collection is too
coarse for your measurement objectives. Thus, determining the level of
granularity is essential to planning your data collection activities.

The next step in planning data collection is making sure that the prod-
uct is under configuration control. We must know which version(s) of each
product we are measuring.

EXAMPLE 5.12

In measuring reliability growth, we must decide what constitutes a “baseline”
version of the system. This baseline will be the system to which all others will
be compared. To control the measurement and evaluate reliability over time,
the changed versions must have a multi-level version numbering scheme,
including a “mark” number that changes only when there is a major func-
tional enhancement. Minor version numbers track lesser changes, such as the
correction of individual faults.

Software Metrics Data Collection ◾ 207

The GQM analysis suggests which attributes and measures you would like
to evaluate. Once you are committed to a measurement program, you must
decide exactly which attributes to measure and how derived measures will
be derived. This will determine what raw data will be collected, and when.

EXAMPLE 5.13

We saw in Chapter 3 that Barnard and Price used GQM to determine what
measures they wanted to investigate in evaluating inspection effectiveness
(Barnard and Price 1994). They may have had limited resources, so they may
have captured only a subset of the metrics initially, focusing first on the ones
supporting the highest-priority goals. Once their metrics were chosen, they
defined carefully exactly which direct and derived measures were needed.
For example, they decided that defect-removal efficiency is the percentage
of coding faults found by code inspections. To calculate this derived met-
ric, they needed to capture two direct metrics: total faults detected at each
inspection, and the total coding faults detected overall. Then, they defined an
equation to relate the direct measures to the derived one:

Defect removal efficiency

total faults detected

t
i

N

i
_ _

_ _
= × =∑

100 1

ootal coding faults detected_ _ _

The direct and derived measures may be related by a measurement
model, defining how the metrics relate to one another, equations such as
the one in Example 5.13 are useful models. Sometimes, graphs or relation-
ship diagrams are used to depict the ways in which metrics are calculated
or related.

Once the set of metrics is clear, and the set of components to be mea-
sured has been identified, you must devise a scheme for identifying each
entity involved in the measurement process. That is, you must make
clear how you will denote products, versions, installations, failures,
faults, and more on your data collection forms. This step enables you
to proceed to form design, including only the necessary and relevant
information on each form. We shall look at forms more closely in the
next section.

Finally, you must establish procedures for handling the forms, analyz-
ing the data, and reporting the results. Define who fills in what, when,
and where, and describe clearly how the completed forms are to be pro-
cessed. In particular, set up a central collection point for data forms, and

208 ◾ Software Metrics

determine who is responsible for the data, each step of the way. If no one
person or group has responsibility for a given step, the data collection and
analysis process will stop, as each developer assumes that another is han-
dling the data. Analysis and feedback will ensure that the data are used,
and useful results will motivate staff to record information.

5.3.1 Data Collection Forms

A data collection form encourages collecting good, useful data. The form
should be self-explanatory, and include the data required for analysis
and feedback. Regardless of whether the form is to be supplied on paper
or computer, the form design should allow the developer to record both
fixed-format data and free-format comments and descriptions. Boxes and
separators should be used to enforce formats of dates, identifiers and other
standard values. By pre-printing data, that is the same on all forms (e.g.,
a project identifier) will save effort and avoid mistakes. Figure 5.3 shows
an actual form used by a British company in reporting problems for air
traffic control support system. (Notice that it is clearly designed to capture
failure information, but it is labeled as a fault report!)

As we have seen, many measurement programs have objectives that require
information to be collected on failures, faults, and changes. The remainder
of this section describes the forms used in case study of a project whose spe-
cific objective was to monitor software reliability. The project developed sev-
eral data collection forms, including separate ones for each failure, fault, and
change. We leave it as an exercise for you to determine whether the data col-
lection forms have all the attributes we have suggested in this chapter.

Table 5.3 depicts an index for a suggested comprehensive set of forms
for collecting data to measure reliability (and other external product attri-
butes). Each form has a three-character mnemonic identifier. For example,
“FLT” refers to the fault record, while “CHR” is a change record. These
forms are derived from actual usage by a large software development orga-
nization. As we describe each set of forms, you can decide if the forms are
sufficient for capturing data on a large project.

Some fields are present on all or most of the forms. A coded Project
Identifier is used so that all forms relevant to one project can be collected
and filed together. The name and organization of the person who completes
each form must be identified so that queries can be referred back to the
author in case of question or comment. The date of form completion must
be recorded and distinguished from the date of any failures or other signifi-
cant events. The identifier and product version must always be recorded,

Software Metrics Data Collection ◾ 209

FIGURE 5.3 Problem report form used for air traffic control support system.

TABLE 5.3 Data Collection Forms for Software
Reliability Evaluation

Identifier Title
PVD Product version
MOD Module version
IND Installation description
IRP Incident report
FLT Fault record
SSD Subsystem version
DOD Document issue
LGU Log of product use
IRS Incident response
CHR Change record

210 ◾ Software Metrics

and a single project may monitor several products over several successive
versions. For example, the Installation Description form may record the
delivery and withdrawal of several successive versions of a product at a
given installation, while Log of Product Use may be used to record the use
of several different products at the same terminal or workstation.

The Product Version, Subsystem Version, Module Version, and Document
Issue forms identify a product version to be measured: all its component sub-
systems, modules, and documents, together with their version or issue num-
bers. They are used to record when the product or component enters various
test phases, trial, and service. Previous versions, if any, may be cross-refer-
enced. Some direct product measures (such as size) are recorded; sometimes,
the scales used for some associated process measures are also captured. Each
Subsystem Version and Module Version Description form should cross-refer-
ence the product version or higher-level subsystem version, to define a hier-
archical product structure. Similarly, the Document Issue Description should
identify the product version of which the particular issue of the document is
part. Together, this set of forms provides a basis for configuration control.

The Installation Document identifies a particular installation on which
the product is being used and measured. It records the hardware type and
configuration, and the delivery date for each product version.

The Log of Product Use records the amount the product is used on a
given installation. Separate records must be kept for each product version,
and each record must refer to a particular period of calendar time, identi-
fied by a date; for example, the period can be described by the date of the
end of the week. Total product use in successive periods on all installations
or terminals can then be extracted as discussed above. This form may be
used to record product use on a single central installation, or adapted for
use at an individual terminal on a distributed system.

The Incident Report form has fields corresponding to the attributes
listed in the sample failure report at the beginning of this chapter. Each
incident must be uniquely identified. The person who completes the form
will usually identify it uniquely among those from a particular installation.
When the report is passed to the Central Collection Point, a second identi-
fier may be assigned, uniquely identifying it within the whole project.

The Incident Response report is returned to the installation from the
central collection point following investigation of the incident’s cause. If the
wrong diagnosis is made, there may be a request for further diagnostic infor-
mation, and several responses may be combined into one report. This report
includes the date of response, plus other administrative information. After a

Software Metrics Data Collection ◾ 211

response, the incident may be still open (under investigation) or closed (when
the investigation has reached a conclusion). A response that closes an inci-
dent records the conclusion and refers to the appropriate fault record.

The Fault Record records a fault found when inspecting a product or
while investigating an incident report. Each fault has a unique identi-
fier. Note that a given fault may be present in one or more versions of the
product, and may cause several incidents on one or more installations.
The fields in this report correspond to those in the fault report recom-
mended in Section 5.2.3. Finally, the Change Record captures all the fields
described in the recommended change report in Section 5.2.4.

Thus, the collection of 10 forms includes all aspects of product fault,
failure, and change information. Most organizations do not implement
such an elaborate scheme for recording quality information. Scrutinize
these descriptions to determine if any data elements can be removed.
At the same time, determine if there are data elements missing. We will
return to the need for these measures in Chapter 11, where we shall dis-
cuss software reliability in depth.

5.3.2 Data Collection Tools

There are many software tools available that support the recording and
tracking of software faults and their attributes. These tools provide data
collection forms or frameworks for designing your own forms. We found
98 different commercial and freeware fault-tracking tools listed online.*
These tools can make it much easier for developers to monitor faults from
their discovery to their resolution. Figure 5.4 gives a screenshot of a tai-
lored form using the Bugzilla open-source freeware tool.

In addition to tools to support tracking of faults, tools are also available
to support the collection and analysis of source code, analysis of the social
networks involved in developing software, extraction, and analysis of a
variety of information from CVS and subversion repository logs including
the analysis of the evolution of related components and the overall archi-
tecture of a system.†

Tools to support data collection are constantly changing. One source
for up-to-date information on data collection tools is the International
Software Benchmarking Standards Group (ISBSG). The ISBSG web site

* Conduct a web search on terms such as “free software testing tools” or “software test automation.”
† Sites with information about software project data collection and analysis tools include http://

www.swag.uwaterloo.ca/tools.html and http://tools.libresoft.es/.

http://
http://www.swag.uwaterloo.ca
http://tools.libresoft.es

212 ◾ Software Metrics

FIGURE 5.4 Bugzilla screenshot.

Software Metrics Data Collection ◾ 213

(http:/ / www. isbsg. org) includes repositories of software development data
from thousands of software projects. Thus it is a great source for industry
software project data, and has links to several data collection and analysis
tools. These tools focus on project size and cost estimation. Of particular
interest are the ISBSG guidelines on what data the group finds to be most
effective for improving software processes. ISBSG data are available for
both academic and commercial use.

5.4 RELIABILITY OF DATA COLLECTION PROCEDURES
For data collection to be reliable and predictable, it needs to be automated.
Data collection technology must also be adaptable so that you can con-
tinue to collect data while development environments (both development
languages and tools) and the measurement tools evolve (Sillitti et al. 2004).
Silliti et al. found that it takes a significant and flexible infrastructure to
collect data from projects involving many developers using multiple cli-
ents employing different languages and tools. Application domains tend
to be unique and require varied data collection support environments and
tools. Reports generated from the data need to be customized for an appli-
cation domain and the context of use.

Data that is not reliable—data that is not appropriate for the application
domain or the context of use—represents a threat to the construct validity
of results gleaned from the data (as described in Chapter 4).

EXAMPLE 5.14

Lethbridge, Sim, and Singer identify many factors that can affect the reliability
of collected data (Lethbridge et al. 2005). One factor to consider is the close-
ness of the connection between the evaluators or researchers and the soft-
ware developers that are part of a project being studied. The relative closeness
of the connection is classified as first degree, second degree, or third degree:

• First degree: Evaluators or researchers directly interact with developers.
They may interview developers, observe them working, or otherwise
interact directly with developers in their daily activities.

• Second degree: Evaluators or researchers indirectly interact with devel-
opers. They may instrument software development tools to collect
information or may record meetings or other development activities.

• Third degree: Evaluators have no interactions with developers. Rather,
they study artifacts such as revision control system records, fault
reports and responses, testing records, etc. Third-degree studies can
be performed retrospectively.

http://

214 ◾ Software Metrics

First-degree studies offer researchers the greatest level of control over the
quality of the data, since they directly observe and control the data col-
lection. However, first-degree studies generally require the greatest level of
resources, as researchers must be present to collect data. Also, there is a
potential for the presence of researchers to affect the behavior of develop-
ers. Second-degree studies support the direct collection of data, without
the presence of researchers. However, second-degree studies require the
availability (or development) of appropriate data collection tools. Also, with
second-degree studies, it is more difficult to collect data concerning the ratio-
nale that developers use to make particular decisions. Third-degree studies
do not support the direct collection of data from developers. However, they
do allow researchers to mine available software repositories for their studies.

EXAMPLE 5.15

Lincke, Lundberg, and Löwe find different data collection tools can produce
measurement values that vary widely (Lincke et al. 2008). They examined the
values of nine common measures generated by 10 different measurement
tools, and found discrepancies. In particular, they found large discrepancies
in the measured values of coupling between objects (CBO), and lack of cohe-
sion between object classes (LCOM). The discrepancies were large enough to
affect the ranking of classes in terms of these measures.

The usability of collected data depends on how the data are stored. To be
useful over an extended period, data must be stored in a manner that sup-
ports future needs. Unfortunately, we may not know now how we will need
to use the data in the future. Harrison proposed a flexible design for a met-
rics repository based on a transformational view of software development
(Harrison 2004). The design uses meta-data and their relations and defers
the choice of specific metrics to quantify attributes. Such flexible designs
promise to support repositories that can remain useful over the long term.

5.5 SUMMARY
We have seen in this chapter that the success or failure of any metrics pro-
gram depends on its underlying data collection scheme. Chapter 3 showed
us how to use measurement goals to precisely specify the data to be col-
lected; there is no single type of data that can be useful for all studies.
Thus, knowing if your goals are met requires careful collection of valid,
complete, and appropriate data.

Software Metrics Data Collection ◾ 215

Data collection should be simple and nonobtrusive, so that develop-
ers and maintainers can concentrate on their primary tasks, with data
collection playing a supporting role. Because quality is a universal con-
cern, almost all measurement programs require data collection about
software problems and their resolution. We distinguish among, and
record information about, several types of problems: faults, failures,
and changes. For each class of entity, we consider measuring the follow-
ing attributes:

Location: Where is the entity?

Timing: When did it occur?

Symptom: What was observed?

End result: Which consequences resulted?

Mechanism: How did it occur?

Cause: Why did it occur?

Cost: How much was incurred by the developer?

Count: How many entities were observed?

Data collection requires a classification scheme, so that every problem
is placed in a class, and no two classes overlap. Such a scheme, called an
orthogonal classification, allows us to analyze the types and sources of
problems, so that we can take action to find and fix problems earlier in the
life cycle.

It is important that system components be identified at appropriate
levels of granularity. For some projects, this means that we collect sub-
system data, while for others it means that we must look at each module
carefully. Often, the granularity required means that we are dealing with
large amounts of data. For this reason, and for consistency of counting,
we should automate our data collection, or at least generate uniform data
collection forms. The collected data should be stored in an automated
database, and the results should be reported back to the developers as
soon as possible, so that they can use the findings to improve product
and process.

216 ◾ Software Metrics

EXERCISES

 1. Define the notions of error, fault, and failure in software.

 2. Below is the severity classification for problems discovered in a large
air traffic control system. Discuss the quality of the classification; in
particular, are there problems with orthogonality?

Category 1: Operational system critical

• Corruption or loss of data in any stage of processing or presenta-
tion, including database.

• Inability of any processor, peripheral device, network, or soft-
ware to meet response times or capacity constraints.

• Unintentional failure, halt, or interruption in the operational
service of the system or the network for whatever reason.

• Failure of any processor or hardware item or any common failure
mode point within the quoted mean time between failures that is
not returned to service within its mean time to repair.

Category 2: System inadequate

• Noncompliance with or omission from the air traffic control
operational functions as defined in the functional or system
specifications.

• Omission in the hardware, software, or documentation (includ-
ing testing records and configuration management records) as
detected in a physical configuration audit.

• Any Category 1 item that occurs during acceptance testing of the
development and training system configurations.

Category 3: System unsatisfactory

• Noncompliance with or omission from the non-air traffic control
support and maintenance functions as defined by the functional
or system specifications applicable to the operational, develop-
ment, and training systems.

• Noncompliance with standards for deliverable items including
documentation.

Software Metrics Data Collection ◾ 217

• Layout or format errors in data presentation that do not affect the
operational integrity of the system.

• Inconsistency or omission in documentation.

 3. Your company is developing the software for a telephone switching
system for a single client. This very large system is delivered to the
customer in phased releases. The customer occasionally observes
system failures, such as loss of availability, loss of specific services,
or erroneous services. There are two testing phases at which it is
possible to gather additional failure data internally: integration test-
ing and system testing. An attempt must be made to fix all failures,
whether observed by the user or in test. Devise the necessary forms
for a data-collection scheme that has to take account of the following:

• There are rigid reliability requirements for the system.

• There are wide variations in the ability to fix failures occurring
in certain parts of the system (one of the project manager’s major
concerns).

• Your change control procedure has to be auditable.

 4. A software development company has a metrics program in which
the following specific measures are collected for each separate devel-
opment project:

• Total effort (in person years)

• Total number of lines of code

• Total number of faults recorded during testing

 a. Describe three objectives that could sensibly be addressed by this set
of measures. In each case, describe the goal that is to be addressed
and how the metrics may enable you to understand and meet your
goal. State clearly any limitations or reservations you might have
about using this particular set of measures for the stated purposes.

 b. Each development project is divided up into modules which,
depending on their functionality and criticality, may be speci-
fied, designed, and tested using different techniques. For exam-
ple, some modules are subject to no specific quality assurance
techniques, while others may be formally specified, formally
reviewed, and subject to several different testing strategies. What

218 ◾ Software Metrics

modest additions or changes would you make to the metrics pro-
gram in order to be able to assess the effectiveness of the different
software quality assurance methods?

 5. Your company has been asked to build a Patient Observation and
Control System (POCS), based on the following specification:

 Patient Observation and Control System

 POCS is intended to improve the efficiency of intensive care, provid-
ing a better level of customer service while reducing the cost of trained
medical staff required to operate it. Sensors attached to the patient
will monitor all vital signs: heartbeat, respiration, blood pressure,
temperature, and brain activity. The set of parameters to be recorded
will vary from patient to patient. For example, a diabetic patient will
require having their blood sugar level measured in addition to the
usual signs, and brain activity should not be recorded for an Arsenal
football supporter, to avoid false indications of brain death.

 Drugs will be administered intravenously by pumps that are con-
trolled by the system. The operation of these pumps and the dosage
administered are also recorded. The signals from the sensors and
pumps are concentrated at the parameter analysis node (PAN) beside
the bed. Complete data is held for the past hour on a local file, and
essential information only (deviation of vital signs from normal val-
ues) is transmitted via a communications link to the nurse’s station,
where the breakdown of essential data (BED) software displays the
status of each patient on a monitor screen, and sounds an alarm to call
the nurse to the bedside if necessary. If an emergency arises, a signal
will be sent to the junior doctor’s paging device. During quiet periods,
a signal (to which the doctor must respond by pressing a button on
the device) will be sent to the paging device at random intervals to
prevent the doctor’s falling asleep. If a cardiac arrest is detected, the
cardiac team will automatically be alerted. In the case where the cus-
tomer is a private patient, the senior consultant will also be paged.

 a. What are the three most important dependability attributes of
POCS, and why?

 b. What data would you record about any failure that occurred dur-
ing the operation of POCS to enable you to measure the three
dependability attributes selected in (a)?

Software Metrics Data Collection ◾ 219

 c. In addition to data about failures, what other types of data would
you need in order to measure the attributes chosen in (a), and
how would you record them?

 d. Describe five modes of failure of POCS that could arise from the
activation of latent software faults. In each case, state to which
dependability attribute that mode of failure is relevant, and how
its end result and severity are classified.

 6. You are a consultant who builds software for the transportation
industry. One night in the Edward the Confessor pub (known locally
as the “Ted the Grass”) in Stevenage, you happen to get into conver-
sation with Big Mick, the owner of a local taxi firm. Over a pint or
three, he outlines to you his requirement for a computer system to
assist him in his business. The Stevenage Compute-a-cab Automated
Management System (SCAMS) will control the running of Mick’s
taxis. In particular, it will automate the selection of routes and com-
munication with the control room, to minimize voice radio com-
munication. (At the moment, Mick’s taxis are controlled by radio,
and many of the drivers are inexperienced and do not have “the
knowledge” of the layout of the town, particularly in outlying areas.
The controllers therefore spend a lot of time guiding drivers to their
destinations by referring to the map on the wall.)

 Mick needs a “Control and Management” system (CAM) in
the control room, to communicate via a digital radio link with a
“Computer on Taxi” system (COT) on-board each taxi. CAM will
maintain a database of the location and status of every taxi. (E.g., a
taxi may be classified as waiting on rank, on way to pick up, wait-
ing at pick-up location, on way to destination, arrived at destination,
returning to base, or taking a tea break.) On receipt of a phone call
from a prospective client, a controller will enter the pick-up location
in the system, and COM will respond with the identification number
of the taxi that can get there most quickly, plus an estimated time
of arrival (ETA). If the ETA is acceptable to the client, CAM will
signal the appropriate COT. If the driver responds with an “accept”
message, the booking is confirmed, and CAM will direct the driver
to the pick-up location. After the driver signals “customer picked
up,” CAM will transmit directions to the destination and, after the
“at destination” signal, calculate the fare, inform the driver of the
amount received, and record it on the accounts database.

220 ◾ Software Metrics

 COT will communicate with CAM, and display its directions to
the driver. It will transmit back to CAM the status indicated by the
driver. If a robbery is attempted, the driver can press a silent alarm,
causing the COT to transmit an emergency signal both to CAM and
to the police station.

 Ideally, the location of each taxi will be determined by a global
positioning system (GPS) receiver, but it is also possible for the driver
to report location directly. The calculation of journey times by CAM
requires a geographical database of the town, available by lease from
Stevenage Borough Council, which already uses one for managing
road repairs.

 The next morning, you vaguely recall that you promised Mick a
very dependable software system for SCAMS for a highly competitive
price, but unfortunately you cannot remember exactly how depend-
able you promised the software would be; you also cannot remem-
ber what price you quoted. Before you meet Mick again and commit
yourself to a written contract, you must think seriously about the
dependability requirements for the proposed system.

 a. Describe five ways in which the proposed SCAMS system could
fail due to a software fault. In each case, imagine that you had just
received a report of a failure due to that fault during the opera-
tion of SCAMS. State what data you would measure and record
for that failure.

 b. Accounting for various modes of failure, state which dependabil-
ity attributes are important for SCAMS, and suggest a reasonable
quantitative target. Give reasons for your answer.

 c. What data you would collect during a trial of SCAMS in order
to be able to measure the dependability attributes you have iden-
tified above, and convince Mick that the system was adequately
dependable?

 7. The IEEE Standard Classification for Software Anomalies (IEEE
1044-2009) lists the following fault attributes (called “defect” in the
IEEE standard). Comment on the completeness and utility of the list
for use in a data recording form.

• Defect ID: Unique identifier for the defect.

• Description: What is missing, wrong, or unnecessary?

Software Metrics Data Collection ◾ 221

• Status: Current state within defect report life cycle.

• Asset: The software asset (product, component, module, etc.)
containing the defect.

• Artifact: The specific work product (e.g., source file or require-
ments document) containing the defect.

• Version detected: Version ID where the defect was detected.

• Version corrected: Version ID of the version where the defect was
corrected.

• Priority: Ranking for processing.

• Severity: Highest failure impact that the defect could (or did)
cause.

• Probability: Probability of recurring failure caused by this defect.

• Effect: The class of requirement (e.g., functionality or usability)
that is impacted by a failure caused by the defect.

• Type: A categorization based on the class of code or work product
where the defect is found (e.g., interface, data, or method body).

• Mode: A categorization based on whether the defect is due to
incorrect implementation or representation, the addition of
something unneeded, or an omission.

• Insertion activity: The activity during which the defect was
injected/inserted.

• Detection activity: The activity during which the defect was
detected (i.e., inspection or testing).

• Failure reference(s): Identifier of failure(s) caused by the defect.

• Change reference(s): Identifier of the change request initiated to
correct the defect.

• Disposition: Final disposition of the defect report upon closure.

 8. Examine the “fault” report form of Figure 5.3. Using the guidelines
for data collection discussed in this chapter, suggest changes to the
form that would improve data quality and help you to make better
decisions about the data. For each suggested change, explain why the
change will help.

222 ◾ Software Metrics

REFERENCES

Lincke, R., Lundberg, J., and Löwe, W., Comparing software metrics tools,
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), ACM, Seattle, Washington, pp. 131–142, 2008.

Sillitti A., Russo B., Zuliani P., and Succi G., Deploying, updating, and
managing tools for collecting software metrics, Proceedings of the
2004 Workshop on Quantitative Techniques for Software Agile Process,
ACM, pp. 1–4, 2004.

FURTHER READING
The definitions and attributes of failures, faults, and changes in this chapter
are consistent with the IEEE Standard Glossary, listed below. The frame-
work is essentially the same as that in the British draft standard, BS 5760,
which provides comprehensive coverage concentrating on reliability assess-
ment. The text by Ammann and Offutt gives precise definitions of failures,
faults, and software errors (state errors) and the relations between them.

Ammann, P. and Jeff Offutt, J., Introduction to Software Testing, Cambridge
University Press, New York, 2008.

IEEE Standard 610.12-1990: Glossary of Software Engineering Terminology, IEEE
Computer Society Press, New York, 1990.

The 2009 IEEE Standard Classification for Software Anomalies pro-
vides a standard set of attributes for both faults (defects) and failures, as
well as examples of attribute values. The 1993 draft version of this stan-
dard provides a comprehensive set of classifications for software faults,
and also contains some useful templates for various data-collection forms.

IEEE Draft Standard 1044-1993, Draft Standard Classification for Software
Anomalies, IEEE Computer Society Press, New York, 1993.

IEEE Standard 1044-2009, Standard Classification for Software Anomolies, IEEE
Computer Society Press, New York, 2009.

For a comprehensive analysis of the Therac-25 accidents discussed in
Example 5.4, Leveson and Turner’s article is compelling reading. Jordan
Roberson provided one of the first accounts of the Zune failure, and
Weimer et al. use the Zune fault in their research on program repair. See
the Risks Digest for comprehensive descriptions of failures that involve
computer software that have occurred since 1985.

Software Metrics Data Collection ◾ 223

Leveson N.G. and Turner C.S., “An investigation of the Therac-25 accidents,” IEEE
Computer, 18–41, July 1993.

Neumann P.G. (moderator), The Risks Digest: Forum on Risks to the Public in
Computers and Related Systems, ACM Committee on Computers and Public
Policy. http:/ / www. risks. org.

Robertson, J., “Microsoft Zune’s New Year Crash,” The Street. January 1 2009. http:/
/ www. thestreet. com/ story/ 10455712/ microsoft- zunes- new- year- crash. html.

Weimer, W., Forrest, S., Le Goues, C., and Nguyen, T., “Automatic program repair
with evolutionary computation,” Communications of the ACM, 53(5), 109–
116, May 2010.

The following empirical research studies identify inaccuracies in change
logs. In particular, they find that many changes are never logged.

Bachmann, A. and Bernstein, A. “Software process data quality and character-
istics—A historical view on open and closed source projects,” Proc. Joint
ERCIM Workshop on Software Evolution and Int. Workshop on Principles
of Software Evolution (IWPSE-Evol’09), Amsterdam, Netherlands, August
24–25, 2009, pp. 119–128, 2009.

Chen, K., Schach, S., Yu, L., Offutt, J., and Heller, G. “Open-source change logs,”
Empirical Software Engineering, 9, 197–210, 2004.

Many tools support reporting and tracking faults and failures. The
“Testing FAQS” site lists numerous commercial and freeware tools. One of
the most popular fault tracking tools is Bugzilla. The Working Conference
on Mining Software Repositories is an established conference series that is
devoted to studying, collecting, and analyzing data from both proprietary
and open-source repositories. It is a rich source for both research results
and analysis tools. Studies involve the analysis of artifacts in repositories
as well as the social networks involved in software development. There are
also sites with information about various software repository analysis tools:

Bugzilla, www. bugzilla.org.
http://www.faqs.org/faqs/software-eng/testing-faq/

Sites with information about software project data collection and analysis
tools related to the MSR community include http://www. swag. uwaterloo.
ca/ tools. html and http://projects.libresoft.es/projects/dataanalysis.

http://
http://
http://
http://www.bugzilla.org.
http://www.faqs.org
http://www.swag.uwaterloo.ca
http://www.swag.uwaterloo.ca
http://projects.libresoft.es

225

C h a p t e r 6

Analyzing Software
Measurement Data*

In Chapter 4, we introduced general techniques for designing empir-
ical studies. Then, in Chapter 5, we explained the importance of good

data-gathering to support rigorous investigation. In this chapter, we turn
to the analysis of the data.

Data analysis involves several activities and assumptions:

• We have a number of measurements of one or more attributes from
a number of software entities (products, processes, or resources). We
call the set of measurements a dataset or a batch.

• We expect the software items to be comparable in some way. For exam-
ple, we may compare modules from the same software product by
examining the differences or similarities in the data. Or, we may look
at several tasks from the same project to determine what the data tell
us about differences in resource requirements. Similarly, we can com-
pare several projects undertaken by the same company to see if there
are some general lessons we can learn about quality or productivity.

• We wish to determine the characteristics of the attribute values for
items of the same type (usually we look at measures of central ten-
dency and measures of dispersion), or the relationships between
attribute values for software items of the same or different types.

* Including contributions by Barbara Kitchenham and Shari Lawrence Pfleeger from previous
editions.

226 ◾ Software Metrics

To perform the analysis, we use statistical techniques to describe the
distribution of attribute values, as well as the relationship between or
among attributes. That is, we want to know what a picture of the data looks
like: how many very high values, how many very low values, and how the
data progress from low to high. And we want to know if we can express
relationships among some attribute values in a mathematical way. Thus,
the purpose of the data analysis is to make any patterns or relationships
more visible, so that we can use the patterns and relationships to make
judgments about the attributes we are measuring.

We begin our discussion of analysis by examining the role of statisti-
cal distributions and hypothesis testing in data analysis. Then we describe
several classical statistical techniques. We explain why some statistical
methods must be treated with caution when we apply them to software
measurement data. Then, we describe some simple methods for exploring
software measurements. In the next section, we turn to the relationships
among attributes and how we can use analysis techniques to describe them.
Several advanced techniques can be helpful in understanding software, and
we discuss three of them: multiattribute utility theory (including the ana-
lytical hierarchy process), outranking methods, and the Bayesian approach
to evaluating multiple hypotheses. We end this chapter with a reminder of
how statistical tests relate to the number of groups you are analyzing.

6.1 STATISTICAL DISTRIBUTIONS AND
HYPOTHESIS TESTING

After we have collected data from an empirical study, we will use the distri-
bution of data to evaluate the hypotheses and to make decisions and predic-
tions. We do this in order to better understand the principles of software
engineering or to make decisions relevant to a practical software engineering
problem. As before, you should use your goal to guide the data analysis pro-
cess. The collected data is generally a sample, and represents the best available
information about the status of the variables involved in the empirical study.
There is always uncertainty about the relationship between the collected data
and the actual relationships; thus, we use probabilistic reasoning. We exam-
ine probability distributions and their role in evaluating hypotheses.

6.1.1 Probability Distributions

Consider the experiment of selecting a contractor to develop a software
system. We are interested in the quality of the contractor and therefore
consider the set of possible outcomes to be

Analyzing Software Measurement Data ◾ 227

 {very poor, poor, average, good, very good}

On the basis of our previous experience with contractors, or purely
based on subjective judgment, we might assign the probabilities to these
outcomes as shown in the table of Figure 6.1a.

Since the numbers are all between 0 and 1 and since they sum to 1, this
assignment is a valid probability measure and represents the likelihood of
randomly selecting a contractor with each outcome level.

A table like the one in Figure 6.1a, or an alternative graphical represen-
tation of it like the one in Figure 6.1b, is called a probability distribution.
For experiments with a discrete set of outcomes, it is defined as follows:

A probability distribution for an experiment is the assignment of
probability values to each of the possible outcomes.

Once we have the probability distribution defined, we can easily calculate
the probability of any event. The probability of an event E is simply the sum
of the probabilities of the individual outcomes that make up the event E.

EXAMPLE 6.1

In the above experiment of selecting a contractor, suppose E is the event
“quality is at least average,” then E consists of the following set of outcomes:

 {average, good, very good}

And so, from the table in Figure 6.1a

 P(A) = P(average) + P(good) + P(very good) = 0.15 + 0.1 + 0.05 = 0.3

 Very poor
Very poor

0.4
40%

30%
15%

10%
5%

0.3
0.15
0.1
0.05

Poor
PoorAverage

AverageGood

Good
Very good

Very good

(a) (b)

Contractor quality

FIGURE 6.1 Probability distribution. (a) Probability table; (b) Distribution
shown as a graph.

228 ◾ Software Metrics

The expression P(A) can refer to both the probability of an event A and
the probability distribution for an experiment A, depending on what A
is. So far we have only used P(A) to denote the probability of an event
A. However, if A is itself the experiment, then we will also use P(A) as
shorthand for the full probability distribution for the experiment A. In the
above experiment A of selecting a contractor, we use P(A) as shorthand for
the following probability distribution:

Very poor 0.4
Poor 0.3
Average 0.15
Good 0.1
Very good 0.05

The notation is a legacy from when discussions revolved primarily
around experiments that simply had two outcomes yes and no (or equiva-
lently true and false). In such cases, the experiment is simply named after
the “yes” outcome, so the following are examples of experiment names:

• “Guilty”: This is the experiment whose outcome is “yes” when a per-
son tried is guilty and “no” when not guilty.

• “Disease”: This is the experiment whose outcome is “yes” when a
person has the disease and “no” when the person does not have the
disease.

• “Test positive”: This is the experiment whose outcome is “yes” when
a person tests positive for the disease and “no” when the person tests
negative.

So if we say P(Guilty) = 0.9, then this genuinely has two meanings.
On the one hand, this means the probability of the event “guilty = yes”
is 0.9. On the other hand, since it tells us that the probability of the event
“guilty = yes” is 0.9, it follows that we also know the whole probability
distribution, since P(yes) = 0.9 and P(no) = 0.1.

In many situations, assumptions about the underlying experiment
enable us to automatically define the whole probability distribution rather
than having to assign individual probabilities to each outcome. For exam-
ple, if we are rolling a die, we can assume that each of the six outcomes is
equally likely. In general, if there are n equally likely outcomes, then the

Analyzing Software Measurement Data ◾ 229

probability of each outcome is simply 1/n. Such a probability distribution
is called the uniform distribution.

For experiments with a continuous set of outcomes, such as measuring
the height of a person in centimeters, it is meaningless to assign probabil-
ity values to each possible outcome. Instead, we do one of the following:

 1. Divide the continuous range of outcomes into a set of discrete inter-
vals (this process is called discretization) and assign probability
values to each interval. For example, if the continuous range is 0 to
infinity, we might define the discrete set as

 [0, 100), [100, 110), [110, 120), [120, 130), [130, 140), [140, 150),
 [150, infinity)

 2. Use a continuous function whose area under the curve for the range
is 1. One common example of this is the normal distribution. For
example, we could use a normal distribution such as shown in Figure
6.2a for our height experiment (in a tool like AgenaRisk* you simply
enter the function as shown in Figure 6.2b; note that the variance
is simply the square of the standard deviation—it is more usual to
specify the variance rather than the standard deviation). Although
the graph plotted here is shown only in the range 0–300, the nor-
mal distribution extends from minus infinity to plus infinity. Thus,
formally, a normal distribution implies that there is a “probability”
of negative values, which is really zero for height measurements.

* http:/ / www. agenarisk. com/ .

0.012

Height
(a) (b)

Expression type

Mean

Normal

158

1000Variance

0.01
0.0080
0.0060
0.0040
0.0020

0.0

0.
0

40
.0

80
.0

12
0.

0

16
0.

0

20
0.

0

24
0.

0

28
0.

0

FIGURE 6.2 A continuous probability distribution. (a) Normal distribution
(with mean 158 and variance 1000) displayed as a graph; (b) Defining the distri-
bution in AgenaRisk.

http://

230 ◾ Software Metrics

This is one reason why the normal distribution can only be a crude
 approximation to the “true” distribution.

If you are using a continuous function as a probability distribution, you
need to understand that, unlike discrete probability distributions, it is not
meaningful to talk about the probability of a (point) value. So, we cannot
talk about the probability that a person’s height is 158 cm. Instead, we always
need to talk in terms of a range, such as the probability that a person’s height
is between 157.9 and 158.1 cm. The probability is then the proportion of the
curve lying between those two values. This is shown in Example 6.2, which
also describes the important example of the continuous uniform distribution.

EXAMPLE 6.2

Suppose that we have modeled the outcomes of measuring people’s height
using the normal distribution shown in Figure 6.3.

The model is an idealized distribution for the underlying population. We
cannot use the model to determine the probability that a person has some
exact (point value), but we can use it to calculate the probability that a per-
son’s height is within any nonzero length range. We do this by computing the
area under the curve between the endpoints of the range. So, in Figure 6.3,
the shaded area is the probability that a person is between 178 and 190 cm
tall. In general, the area under a curve is calculated by integrating the math-
ematical function that describes the distribution. Even for experienced math-
ematicians, this can be very difficult, so they use statistical tables or tools like
Excel or AgenaRisk to do it for them.

165 190178

Shaded area represents the
probability of a person being
between 178 and 190 cm tall

FIGURE 6.3 Probabilities as area under the curve.

Analyzing Software Measurement Data ◾ 231

6.1.2 Hypothesis Testing Approaches

Empirical studies are generally conducted to evaluate hypotheses. The goal
is to determine which one out of a set of competing hypotheses is most
plausible. By plausible, we mean which hypothesis has the greatest prob-
ability of being true given the data that we have gathered. As described in
Chapter 4, the traditional approach is to develop a null hypothesis, along
with an alternative hypothesis, or multiple alternative hypotheses. A key
criterion for testing a hypothesis is a “test of significance,” which evaluates
the probability that a relationship was due to chance (Fisher 1925).

The classical approaches examine whether or not the null hypothesis
can be refuted with some predetermined confidence level, often .05. Using
the .05 confidence level, we can refute the null hypothesis only if our evi-
dence is so strong that there is only a probability of .05 (5%) that, in spite
of an apparent relationship, the null hypothesis is really true.

EXAMPLE 6.3

Consider the following hypotheses:

• H0: The use of a test-first methodology during unit testing does not
affect the fault densities found during system testing.

• H1: The use of a test-first methodology during unit testing reduces the
fault densities found during system testing.

Assume that a study was conducted comparing the use of a test-first meth-
odology to the prior method used for unit testing. The collected data shows
that the mean fault densities obtained during system testing are lower for the
code developed by teams employing a test-first methodology. Using the .05
confidence level, we reject H0 only if statistical tests show that there is less
than a 5% chance that H0 is really true, due to the randomness in selecting
program units or teams or some other factor relevant to the study. We do not
even consider H1 if the confidence level is greater than .05.

Using a classical approach, we do not evaluate hypotheses in terms of
the magnitude of the outcome differences between the treatment and con-
trol group. Rather, we accept or reject hypotheses only on the basis of a
predetermined confidence level. Suppose the results described in Example
6.3 found that the fault densities of the treatment group (modules devel-
oped using a test-first methodology) averaged less than 50% of the fault
densities of the control group (modules not developed using test-first

232 ◾ Software Metrics

methodology), but the statistical confidence level was .07. The results
would not be significant and we would not even consider H1, even though
there was a large magnitude difference between the treatment and control
groups.

The key issue is that the classical approach focuses exclusively on the
precision of the results rather than the magnitude of the differences.
According to Ziliak and McClosey, “statistical significance should be a
tiny part of an inquiry concerned with the size and importance of a rela-
tionship” (Ziliak and McCloskey 2008). This emphasis on precision over
magnitude has limited the benefits of empirical research. As a result, criti-
cal information that can aid decision-makers is often discarded as insig-
nificant. We will show in Chapter 7 that an alternative approach to data
analysis is often more appropriate than the classical approach. This alter-
nate approach employs causal models and Bayesian statistics.

The classical approach remains the predominant way that research-
ers analyze data. Thus, we present classical techniques in the following
sections. Chapter 7 will present data analysis using causal models and
Bayesian statistics.

6.2 CLASSICAL DATA ANALYSIS TECHNIQUES
After you have collected the relevant data (based on the framework we
presented in Chapters 3 and 5), you must analyze it appropriately. This sec-
tion describes what you must consider in choosing a classical data analysis
technique. We discuss typical situations in which you may be performing
a study, and what technique is most appropriate for each situation. Specific
statistical techniques are described and used in the discussion. We assume
that you understand basic statistics, including the following notions:

• Measures of central tendency

• Measures of dispersion

• Distribution of data

• Student’s t-test

• F-statistic

• Kruskal–Wallis test

• Level of significance

• Confidence limits

Analyzing Software Measurement Data ◾ 233

The other statistical tests are described here in overview, but the details
of each statistical approach (including formulae and references to other sta-
tistical textbooks) can be found in standard statistical textbooks (Caulcutt
1991; Chatfield 1998; Dobson 2008; Draper 1998; Ott and Longnecker
2010). However, you need not be a statistical expert to read this chapter;
you can read about techniques to learn of the issues involved and types of
problems addressed. Moreover, many of the commonly used spreadsheet
and statistical packages analyze and graph the data automatically; your
job is to choose the appropriate test or technique.

There are three major items to consider when choosing analysis tech-
niques: the nature of the data you collected, why you performed the study,
and the study design. We consider each of these in turn.

6.2.1 Nature of the Data

In the previous chapters, we have considered data in terms of its mea-
surement scale and its position in our entity-and-attribute framework. To
analyze the data, we must also look at the larger population represented by
the data, as well as the distribution of that data.

6.2.1.1 Sampling, Population, and Data Distribution
The nature of your data will help you to decide what analysis techniques
are available to you. Thus, it is very important for you to understand
the data as a sample from a larger population of all the data you could
have gathered, given infinite resources. Because you do not have infinite
resources, you are using your relatively small sample to generalize to that
larger population, so the characteristics of the population are important.

From the sample data, you must decide whether measured differences
reflect the effects of the independent variables, or whether you could have
obtained the result solely through chance. To make this decision, you use
a variety of statistical techniques, based in large degree on the sample size
and the data distribution. That is, you must consider the large population
from which you could have selected experimental subjects and examine
how your smaller sample relates to it.

In an experiment where we measure each subject once, the sample size
is simply the number of subjects. In other types of experiments where
we measure repeatedly (i.e., the repeated-measures designs discussed in
Chapter 4), the sample size is the number of times a measure is applied to
a single subject. The larger the sample size, the more confident we can be
that observed differences are due to more than just chance variation. As we

234 ◾ Software Metrics

have seen in Chapter 4, an experimental error can affect our results, so we
try to use large samples to minimize that error and increase the likelihood
that we are concluding correctly from what we observe. In other words, if
the sample size is large enough, we have confidence that the sample of mea-
surements adequately represents the population from which it is drawn.

Thus, we must take care in differentiating what we see in the sample from
what we believe about the general population. Sample statistics describe
and summarize measures obtained from a finite group of subjects, while
population parameters represent the values that would be obtained if all
possible subjects were measured. For example, we can measure the produc-
tivity of a group of programmers before and after they have been trained to
use a new programming language; an increase in productivity is a sample
statistic. But we must examine our sample size, population distribution,
experimental design, and other issues before we can conclude that produc-
tivity will increase for any programmers using the new language.

As we have seen in Chapter 2, we can describe the population or the
sample by measures of central tendency (mean, median, and mode) and
measures of dispersion (variance and standard deviation). These char-
acteristics tell us something about how the data are distributed across
the population or sample. Many sets of data are distributed normally, or
according to a Gaussian distribution, and have a bell-shaped curve simi-
lar to the graph shown in Figures 6.2a and 6.3. By definition, the mean,
median, and mode of such a distribution are all equal, and 96% of the data
occur within three standard deviations of the mean.

For example, the data represented by the histogram of Figure 6.4 is
sometimes called “normal” because it resembles the bell-shaped curve. As
the sample gets bigger, we would expect its graph to look more and more
bell-shaped.

Values

Fr
eq

ue
nc

ie
s

FIGURE 6.4 Data resembling a normal distribution.

Analyzing Software Measurement Data ◾ 235

You can see in Figure 6.4 that the data are evenly distributed about the
mean, which is a significant characteristic of the normal distribution. But
there are other distributions where the data are skewed, so that there are
more data points on one side of the mean than another. For example, as
you can see in Figure 6.5, most of the data are on the left-hand side, and
we say that the distribution is skewed to the left.

There are also distributions that vary radically from the bell-shaped
curve, such as the one shown in Figure 6.6. As we shall see, the type of
distribution determines the type of analysis we can perform.

Fr
eq

ue
nc

ie
s

Values

FIGURE 6.5 Distribution where data are skewed to the left.

Fr
eq

ue
nc

ie
s

Values

FIGURE 6.6 Nonnormal distribution.

236 ◾ Software Metrics

6.2.1.2 Distribution of Software Measurements
Let us see how common software engineering data “measures up” to being
normally distributed. In earlier chapters, we mentioned that many com-
mon statistical operations and tests are not meaningful for measures
that are not on an interval or ratio scale. Unfortunately, many software
measures are only ordinal. This scale results from our wanting to use
measures that categorize and rank. For example, we create categories of
failure severity, so that we can tell most of our system failures are trivial,
rather than life threatening. Similarly, we ask our users to rate their sat-
isfaction with the system, or ask designers to assign a quality measure to
each requirement before the design begins. Such ordinal measures do not
allow us to calculate means and standard deviations, as those are suitable
only for interval, ratio, and absolute data. Thus, we must take great care
in choosing analysis techniques that are appropriate to the data we are
collecting. (And as we saw in Chapter 5, we may collect data based on the
type of analysis that we want to do.)

In addition to measurement scale considerations, we must also consider
how the data are gathered. As we have seen in Chapter 4, many statistical
tests and analysis techniques are based on the assumption that datasets
are made up of measurements drawn at random. Indeed, we design our
data collection techniques to encourage this randomization, although it is
not always possible. Moreover, even when software measurements are on
a ratio scale and are selected randomly, the underlying distribution of the
general population of data is not always normal. Frequently, the datasets
are discrete and nonnegative, skewed (usually toward the left), and usually
include a number of very large values.

Let us examine these problems more carefully by looking at examples
of two real datasets.

EXAMPLE 6.4

Consider the datasets in Tables 6.1a and 6.1b. Both contain measures of
project and product information from commercial software systems. Dataset
1 includes all of the data that was available from a particular environment
during a particular time interval; it is typical of the project-level data used
for project cost control. Dataset 2 reflects attributes of all the procedures
in a particular product subsystem and is typical of component-level data.
This second dataset includes various internal product measures that will be
described in detail in Chapter 9.

Analyzing Software Measurement Data ◾ 237

In a normal distribution, the mean, median, and mode of the data are
the same. We can use this information to tell us whether the example data-
sets are normally distributed or not. If, for each attribute of Table 6.1, we
compare the mean with the median, we see in Table 6.2 that the median is
usually considerably smaller than the mean. Thus, the data are not normally
distributed.

TABLE 6.1A Dataset 1

Project Effort
(Months)

Project Duration
(Months)

Product Size
(Lines of Code)

16.7 23.0 6050
22.6 15.5 8363
32.2 14.0 13,334
3.9 9.2 5942
17.3 13.5 3315
67.7 24.5 38,988
10.1 15.2 38,614
19.3 14.7 12,762
10.6 7.7 13,510
59.5 15.0 26,500

TABLE 6.1B Dataset 2

Module
Size

Module
Fan-Out

Module
Fan-In

Module Control
Flow Paths

Module
Faults

29 4 1 4 0
29 4 1 4 2
32 2 2 2 1
33 3 27 4 1
37 7 18 16 1
41 7 1 14 4
55 1 1 12 2
64 6 1 14 0
69 3 1 8 1
101 4 4 12 5
120 3 10 22 6
164 14 10 221 11
205 5 1 59 11
232 4 17 46 11
236 9 1 38 12
270 9 1 80 17
549 11 2 124 16

238 ◾ Software Metrics

Many statistical references describe other techniques for assessing
whether a distribution is normal. Until we know something about our
data, we must be very cautious about the use of techniques that assume an
underlying normal distribution. When we do not know anything about
the distribution, there are a number of approaches dealing with our lack
of knowledge:

• We can use robust statistics and nonparametric methods. Robust
statistical methods are descriptive statistics that are resilient to non-
normality. That is, regardless of whether the data are normally dis-
tributed or not, robust methods yield meaningful results. On the
other hand, nonparametric statistical techniques allow us to test vari-
ous hypotheses about the dataset without relying on the properties
of a normal distribution. In particular, nonparametric techniques
often use properties of the ranking of the data.

• We can attempt to transform our basic measurements into a scale in
which the measurements conform more closely to the normal dis-
tribution. For example, when investigating relationships between
project effort and product size, it is quite common to transform to
the logarithmic scale. Whereas the original data are not normally
distributed, the logarithms of the data are.

• We can attempt to determine the true underlying distribution of
the measurements and use statistical techniques appropriate to that
distribution.

TABLE 6.2A Summary Statistics for Dataset 1

Statistic Effort Duration Size
Mean 26.0 15.2 16,742
Median 18.3 14.8 13,048
Standard deviation 21.3 5.1 13,281

TABLE 6.2B Summary Statistics for Dataset 2

Statistic Size Fan-Out Fan-In Paths Faults
Mean 133.3 5.6 5.8 40 5.9
Median 69 4 1 14 4.0
Standard deviation 135.6 3.5 7.9 57.0 5.8

Analyzing Software Measurement Data ◾ 239

EXAMPLE 6.5

Mayer and Sykes looked at the relationship between lines of code (LOC) per
module and the number of decisions contained in each module. They found
a very good fit for two different datasets using the negative binomial distribu-
tion (Mayer and Sykes 1989).

6.2.1.3 Statistical Inference and Classical Hypothesis Testing
Classical hypothesis testing, introduced in Section 6.1.2, makes use of sta-
tistical inference. The distribution type plays a big part in how we make
inferences from our data. Statistical inference is the process of drawing
conclusions about the population from observations about a sample. The
process and its techniques depend on the distribution of the data. As we
have noted above, parametric statistical techniques apply only when the
sample has been selected from a normally distributed population; other-
wise, we must use nonparametric techniques. In both cases, the techniques
are used to determine if the sample is a good representation of the larger
population. For example, if we perform an experiment to determine the
increase in productivity of programmers, as described in Example 4.15,
we can calculate a mean productivity and standard deviation. Statistical
inference tells us whether the average productivity for any programmer
using the new language is likely to be the same as the average productivity
of our sample.

The logic of statistical inference is based on the two possible outcomes
that can result from any statistical comparison:

 1. The measured differences observed in the course of the experi-
ment reflect simple chance variation in measurement procedures
alone (i.e., there is no real difference between treated subjects and
untreated ones).

 2. The measured differences indicate the real treatment effects of the
independent variable(s).

The first case corresponds to our statement of the null hypothesis; there
is no change. Statisticians often denote the null hypothesis as H0. The sec-
ond case is the alternative hypothesis, often written as H1. The purpose of
statistical analysis is to see whether the data justify rejecting H0. The rejec-
tion of H0 does not always mean the acceptance of H1; there may be several

240 ◾ Software Metrics

alternative hypotheses, and rejection of H0 simply means that more exper-
imentation is needed to determine which alternative hypothesis is the best
explanation of the observed behavior.

We emphasize that statistical analysis is directed only at whether we
can reject the null hypothesis. In this sense, our data can refute the alter-
native hypothesis in light of empirical evidence (i.e., the data support the
null hypothesis because there is no compelling evidence to reject it), but
we can never prove it. In many sciences, a large body of empirical data is
amassed, wherein each case rejects the same null hypothesis; then, we say
loosely that this evidence “confirms,” “suggests,” or “supports” the alter-
native hypothesis, but we have not proven the hypothesis to be fact.

The statistical technique applied to the data yields the probability that
the sample represents the general population; it provides the confidence
we can have in this result and is called the statistical significance of the
test. Usually referred to as the alpha (α) level, acceptable significance is
agreed upon in advance of the test and often α is set at 0.05 or 0.01. That
is, the experiment’s results are not considered to be significant unless we
are sure that there is at least a 0.95 or 0.99 probability that our conclusions
are correct.

Of course, there is no guarantee of certainty. Accepting the null hypoth-
esis when it is actually false is called a Type II error. Conversely, rejecting
the null hypothesis when it is true is a Type I error. Viewed in this way, the
level is the probability of committing a Type I error, as shown in Table 6.3.

We have seen how a normal distribution is continuous and symmetric
about its mean, yet software data are often discrete and not symmetric. If
you are not sure whether your data are normal or not, you must assume
that they are not, and use techniques for evaluating nonnormal data.

In the examples that follow, we consider both normal and nonnormal
cases, depending on the type of data. The examples mention specific sta-
tistical tests, descriptions of which are at the end of this chapter, and addi-
tional information can be found in standard statistical textbooks. Many
of these statistical tests can be computed automatically by spreadsheets,

TABLE 6.3 Results of Hypothesis Testing

State of the World Decision: Accept H0 Decision: Reject H0

H0 is true Correct decision Type I error
Probability = 1 − α Probability = α

H0 is false Type II error Correct decision
Probability = α Probability = 1 − α

Analyzing Software Measurement Data ◾ 241

so you need not master the underlying theory to use them; it is important
only to know when the tests are appropriate for your data.

6.2.2 Purpose of the Experiment

In Chapter 4, we noted two major reasons to conduct a formal investiga-
tion, whether it is an experiment, case study, or survey:

• To confirm a theory

• To explore a relationship

Each of these requires analysis carefully designed to meet the stated
objective. In particular, the objective is expressed formally in terms of
the hypothesis, and the analysis must address the hypothesis directly. We
consider each one in turn, mentioning appropriate analysis techniques
for each objective; all of the techniques mentioned in this section will be
explained in more detail later in this chapter.

6.2.2.1 Confirming a Theory
Your investigation may be designed to explore the truth of a theory. The
theory usually states that the use of a certain method, tool, or technique
(the treatment) has a particular effect on the subjects. The theoretical effect
is to improve the process or product in some way compared to another
treatment (usually the existing method, tool, or technique). For example,
you may want to investigate the effect of a test-first methodology by com-
paring it with your existing testing methods. The usual analysis approach
for this situation is analysis of variance (ANOVA). That is, you consider
two populations, the one that uses the old technique and the one that uses
the new, and you do a statistical test to see if the difference in treatment
results is statistically significant. You analyze the variance between the
two sets of data to see if they come from one population (and therefore
represent the same phenomenon) or two (and therefore may represent
different phenomena). The first case corresponds to accepting the null
hypothesis, while the second corresponds to rejecting the null hypothesis.
Thus, the theory is not proven; instead, the second case provides empirical
evidence that suggests some reason for the difference in behavior.

There are two cases to consider: normal data and nonnormal data. If
the data come from a normal distribution and you are comparing two
groups, you can use tests such as the Student’s t-test to analyze the effects
of the two treatments. If you have more than two groups to compare, a

242 ◾ Software Metrics

more general ANOVA test, using the F statistic, is appropriate. Both of
these are described in most statistics books.

EXAMPLE 6.6

You are investigating the effect of the use of a new tool on productivity. You
have two groups that are otherwise equal except for use of the tool: group A
is using the existing method (without the tool), while group B is using the tool
to perform the designated task. You are measuring productivity in terms of
thousands of delivered source code instructions per month, and the produc-
tivity data come from a normal distribution. You can use a Student’s t-test to
compare group A’s productivity data with group B’s to see if the use of the
tool has made a significant change in productivity.

EXAMPLE 6.7

On the other hand, suppose you want to investigate whether the test-first
technique yields higher-quality code than your current testing technique.
Your null hypothesis is stated as:

Code developed and tested using the test-first technique has the same
number of defects per hundred LOC as code developed using current
testing techniques.

You collect data on number of defects per line of code (a measures of
defect density) for each of two groups, and you seek an analysis technique
that will tell you whether or not the data support the hypothesis. Here, the
data on defects per line of code are not normally distributed. You can ana-
lyze the defect data by ranking it (e.g., by ranking modules according to their
defect density) and using the Kruskal–Wallis test to tell you if the mean rank
of the test-first modules is lower than that of the nontest-first data.

6.2.2.2 Exploring a Relationship
Often, an investigation is designed to determine the relationship among data
points describing one variable or across multiple variables. For example, you
may be interested in knowing the normal ranges of productivity or quality
on your projects, so that you have a baseline to compare for the future. A
case study may be more appropriate for this objective, but you may want to
answer this question as part of a larger experiment. Several techniques can
help to answer questions about a relationship: box plots, bar charts, control
charts, scatter plots (or scatter diagrams), and correlation analysis.

Analyzing Software Measurement Data ◾ 243

A box plot can depict a summary of the range and distribution of a set of
data for one variable. It shows where most of the data are clustered and the
location of outlier data. A bar chart provides an alternative way to display a
single variable. Bar charts are especially useful when you are comparing the
data from a small number of identified entities. A control chart shows the
trends of a variable over time, and can help you to spot occurrences of abnor-
mal data values. While box plots, bar charts, and control charts show infor-
mation about one variable, a scatter plot depicts the relationship between two
variables. By viewing the relative positions of pairs of data points, you can
visually determine the likelihood of an underlying relationship between the
variables. You can also identify data points that are atypical, because they are
not organized or clustered in the same way as the other data points.

Correlation analysis goes a step further than a scatter diagram by
using statistical methods to confirm whether there is a relationship
between two attributes. Correlation analysis can be done in two ways:
by generating measures of association that indicate the closeness of the
behavior of the two variables, or by generating an equation that describes
that behavior.

6.2.3 Decision Tree

To help you understand when to use one analysis technique or another, we
have constructed a decision tree, shown in Figure 6.7, to take into account
the major considerations discussed in this section. The decision tree is to
be read from left to right. Beginning with the objective of your investiga-
tion, move along the branch that fits your situation until you reach a leaf
node with the appropriate analysis technique(s). The next section provides
further details concerning these analysis techniques.

6.3 EXAMPLES OF SIMPLE ANALYSIS TECHNIQUES
There are many robust techniques that are useful with software measure-
ment data, regardless of the distribution. You need not be a statistician
to understand and use them, and you can implement them using simple
spreadsheets or statistical packages. The previous section outlined several
approaches, based on the goals of your investigation. In this section, we
look at some of the techniques in more detail.

6.3.1 Box Plots

Software measurement datasets are often not normally distributed, and
the measurements may not be on a ratio scale. Thus, you should use the

244 ◾ Software Metrics

median and quartiles to define the central location and spread of the
component values, rather than the more usual mean and variance. These
robust statistics can be presented in a visual form called a box plot, as
shown in Figure 6.8. Box plots are constructed from three summary sta-
tistics: the median, the upper quartile, and the lower quartile.

The median is the middle-ranked item in the dataset. That is, the
median is the value m for which half the values in the dataset are larger
than m and half are smaller than m. The upper quartile u is the median
of the values that are more than m, and the lower quartile l is the median
of the values that are less than m. Thus, l, m, and u split the dataset into

Upper tailLower tail Upper quartile
Median

Lower quartileScale

x

Outlier

FIGURE 6.8 Drawing a box plot.

Normal
Student’s t-test

F-statistic

Kruskal–Wallis

Box plot

Scatter diagrams

Pearson

Not tied
Spearman

Kendall
Tied

Chi-squared

multivariate regression

Nonnormal

Equation

Statistical
confirmation
with
correlational
analysis

Exploring
a relationship

Confirming
a theory Nonnormal

Baseline

Measure of
association

Normal

Normal

Nonnormal

Logarithmic
transformation
Thiel

2 groups

2 variables linear regression
>2 variables

>2 groups

FIGURE 6.7 Decision tree for analysis techniques.

Analyzing Software Measurement Data ◾ 245

four parts. We define the box length, d, to be the distance from the upper
quartile to the lower; thus, d = u − l. Next, we define the tails of the dis-
tribution. These points represent the theoretical bounds between which
we are likely to find all the data points if the distribution is normal. If
the data is on an interval, ratio, or absolute scale, the theoretical upper
tail value is the point u + 1.5d, and the lower tail value is l − 1.5d. These
theoretical values must then be truncated to the nearest actual data point
to avoid meaningless concepts (such as negative LOC) and to demonstrate
the essential asymmetry of skewed datasets. Values outside the upper and
lower tails are called outliers; they are shown explicitly on the box plot,
and they represent data points that are unusual in some way.

The relative positions of the median, the quartiles, and the tails in a box
plot can indicate if the dataset is skewed. If the dataset is symmetric about
the median, the median will be positioned in the center of the box, and
the tail lengths (i.e., the length from the quartile to the tail point) will be
equal. However, if the dataset is skewed, the median will be offset from the
center of the box and the tail lengths will be unequal.

To see how box plots are used, we apply them to dataset 2 of Table 6.1.
Figure 6.9 shows the result.

EXAMPLE 6.8

The LOC values in Table 6.1b are arranged in ascending order. The median
is the ninth value: 69. The lower quartile is the fifth value: 37. The upper
quartile is the thirteenth value: 205. Thus, the box length is 168. Constructing
a box plot is more difficult when there is an even number of observations; in
that case, you must take the average of two values when there is no “middle”
value. Hoaglin describes this procedure in more detail (Hoaglin et al. 2000).
It is clear that the box plot in Figure 6.9 is strongly skewed to the left.

Upper tail 457

Lower tail truncated to 29

Upper quartile 205Median 69
Lower quartile 37

x

Outlier 549

0 100 200 300 400 500 600

FIGURE 6.9 Box plot of lines of code (17 procedures) for dataset 2 of Table 6.1b.

246 ◾ Software Metrics

Box plots are simple to compute and draw, and they provide a useful
picture of how the data are distributed. The outliers are especially impor-
tant when you are looking for abnormal behaviors.

EXAMPLE 6.9

Figure 6.10 shows the box plots for measures taken on 17 software systems.
Each system provided three measures: thousands of lines of code (KLOC), aver-
age module size in LOC (MOD), and the number of faults found per KLOC (fault
density, or FD). The top box plot illustrates KLOC, the middle MOD, and the
bottom FD. Each identifies outliers with respect to the measure it is depicting.

Notice that MOD and FD have exactly the same outliers! Systems D, L,
and A have abnormally high FDs, and they also have unusual module sizes: D
and A have abnormally low MOD, while L has abnormally high MOD. Further
investigation must identify more clearly the relationship between MOD and
FD, but the initial data seem to confirm the widely held belief that a system
should be composed of modules that are neither too small nor too large.

The outliers in the KLOC box plot seem to be unrelated to those in fault
density.

In general, since the outliers represent unusual behavior, quality assur-
ance staff can use box plots to identify the modules that should be tested or
inspected first. In this example, we might want to examine all systems whose
MOD values are outliers in the box plot, since these modules are the ones
most likely to be fault-prone.

MOD

A
B
C
D
E
F
G
H
I

J
K
L
M
N
P
Q
R

10
23
26
31
31
40
47
52
54
67
70
75
83
83

100
110
200

15
43
61
10
43
57
58
65
50
60
50
96
51
61
32
78
48

36
22
15
33
15
13
22
16
15
18
10
34
16
18
12
20
21

System KLOC MOD FD

KLOC 0 50 100 150 200

31 54 83 161 R
x

0 25 50 75 100

D A
16 43 51 61 88 L

xx x

FD
0 10 20 30 40

D L A

4.5 15 18 22 32.5
xxx

FIGURE 6.10 Box plots for different attributes.

Analyzing Software Measurement Data ◾ 247

Thus, box plots point us to abnormal or unusual behavior. On the other
hand, they can also help us to see what is usual or normal.

EXAMPLE 6.10

We often analyze system test fault density (defined as the number of faults
discovered during system test divided by some measure of product size) on
past projects to identify the fault density norm for an organization or product
line. We can calculate the likely number of system test faults expected for a
new product entering system test by multiplying the median value of the fault
density by the actual product size measure. Then, we can define an accept-
able range to be between the upper and lower quartiles, and use it to monitor
the results of system test.

Many developers seek to implement statistical quality control on soft-
ware development. For this kind of control, it is too stringent to restrict the
identification of potential problem components to those that are outliers.
A compromise solution is to review quickly those components with values
greater than the upper quartile; then, give greater scrutiny to the com-
ponents with values greater than the upper quartile plus the box length.
The components identified by these criteria are considered to be anomalies
rather than outliers.

These examples show the utility of box plots in providing norms for
planning purposes, summarizing actual measurements for the purposes
of project monitoring, and identifying software items with unusual values
for quality control and process evaluation.

6.3.2 Bar Charts

We saw the utility of box plots in visualizing what is happening in a data-
set. The box plot hides most of the expected behavior and shows us instead
what is unusual. Another useful depiction of data is a bar chart. Here, we
simply display all the data ordered to see what the patterns or trends may
be. For example, the graph in Figure 6.11 contains a bar for each of the ten
projects in dataset 1 of Table 6.1. The x-axis is labeled from 1 to 10 for the
project number, the bar height shows the effort, and there is one bar for
each measurement in the dataset.

We can see from the bar chart that most of the projects require less than
40 person-months of effort, but two require a great deal more. Such infor-
mation raises many questions, and often we want to know the relationship
between one attribute (such as effort in this example) and others (such as

248 ◾ Software Metrics

size). Unlike box plots, bar charts allow us to readily identify the entity
associated with each measured value.

6.3.3 Control Charts

Another helpful technique is a control chart, which helps you to see when
your data are within acceptable bounds. By watching the data trends over
time, you can decide whether to take action to prevent problems before they
occur. To see how control charts work, consider first some nonsoftware
examples. Many processes have a normal variation in a given attribute. For
instance, steel manufacturers rarely make a 1-inch nail that is exactly 1-inch
long; instead, they set tolerances, and a 1-inch nail can be a very small frac-
tion above or below an inch in length and still be acceptable. We would
expect the actual length values to be randomly distributed about the mean
of 1 inch, and 95% of the nails would have lengths falling within two stan-
dard deviations of the 1-inch mean. Similarly, the voltage in a 220-V electri-
cal outlet is rarely exactly 220 V; instead, it ranges in a band around 220 V,
and appliances are designed to work properly within that small band (but
may fail to work if the voltage drops too low or jumps too high).

In the same way, there are parts of the software process that can be
expected to behave in a random way, and we can use the control limits to
warn us when a value is unusual. We use the values of two standard devia-
tions above and below the mean as guidelines. We want to determine the
reasons why any value falls outside these boundaries.

Consider the data in Table 6.4 (Schulmeyer and McManus 1987). Here, we
have information about the ratio between preparation hours and inspection
hours for a series of design inspections. We calculate the mean and standard

Project number
1

0

10

20

30

40

50

60

70

3 5 7 9

Project
effort

FIGURE 6.11 Bar chart of effort from dataset 1.

Analyzing Software Measurement Data ◾ 249

deviation of the data, and then two control limits. The upper control limit is
equal to two standard deviations above the mean, while the lower control
limit is two standard deviations below the mean (or zero, if a negative control
limit is meaningless). The control limits act as guidelines for understanding
when the data are within random statistical variation and when they repre-
sent unusual behavior. In this sense, control charts are similar to box plots.

To visualize the behavior of the data, we construct a graph called a control
chart. The graph shows the upper control limit, the mean, and the lower
control limit. As you can see in Figure 6.12, the data are plotted so that we
can see when they are getting close to or exceeding the control limits. In
Figure 6.12, the data stay within the control limits. Thus, the preparation
hours per hour of inspection are within what we would expect of random

0 1 2 3 4 5 6 7

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Components

Pr
ep

ar
at

io
n

ho
ur

s p
er

 h
ou

r
of

 in
sp

ec
tio

n Upper
control
limit

Mean

Lower
control
limit

FIGURE 6.12 Inspection control chart showing hours of preparation per hour
of inspection.

TABLE 6.4 Selected Design Inspection Data

Component Number
Preparation Hours/

Inspection Hours
1 1.5
2 2.4
3 2.2
4 1.0
5 1.5
6 1.3
7 1.0
Mean 1.6
Standard deviation 0.5
Upper control limit (UCL) 2.6
Lower control limit (LCL) 0.4

250 ◾ Software Metrics

variation. However, if the data were to exceed the control limits, we would
take action to bring them back under control—that is, back within the band
between the upper and lower control limits. In this example, exceeding the
upper control limit means that too much preparation is being done, or not
enough time is being spent during inspection. If the value is below the lower
control limit, then not enough preparation is being done, or too much time
is being spent during inspection. Even when data do not exceed the con-
trol limits, action can be taken when the trend veers toward the edge of the
acceptable band, so that behavior is drawn back toward the middle.

6.3.4 Scatter Plots

In Chapter 4, we saw many reasons for wanting to investigate the relation-
ships among attribute values. For instance, understanding relationships
is necessary when, for planning purposes, we wish to predict the future
value of an attribute from some known value(s) of the same or different
attributes. Likewise, quality control requires us to identify components
having an unusual combination of attribute values.

When we are interested in the relationship between two attributes, a
scatter plot offers a visual assessment of the relationship by representing
each pair of attribute values as a point in a Cartesian plane.

EXAMPLE 6.11

Figure 6.13 is a scatter plot of effort (measured in person-months) against
size (measured in thousands of LOC) for dataset 1 in Table 6.1. Each point
represents one project. The x-coordinate indicates project effort and the
y-coordinate is the project size. This plot shows us that there appears to be
a general relationship between size and effort, namely, that effort increases
with the size of the project.

However, there are a few points that do not support this general rule. For
instance, two projects required almost 40 person-months to complete, but
one was 10 KLOC, while the other was 68. The scatter plot cannot explain
this situation, but it can suggest hypotheses that we can then test with further
investigation.

EXAMPLE 6.12

Similarly, Figure 6.14 is a scatter plot of the module data shown in dataset
2 of Table 6.1. Here, module size (measured in LOC) is graphed against the
number of faults discovered in the module. That is, there is a point in the

Analyzing Software Measurement Data ◾ 251

scatter plot for each module in the system. Again, the plot shows a trend, in
that the number of faults usually increases with the module size. However,
again we find one point that does not follow the rule: the largest module does
not appear to have as many faults as might have been expected.

Thus, scatter plots show us both general trends and atypical situa-
tions. If a general relationship seems to be true most of the time, we can
investigate the situations that are different and determine what makes the
projects or products anomalous. The general relationship can be useful in
making predictions about future behavior, and we may want to generate
an estimating equation to project likely events. Similarly, we may project
likely anomalies to control problems by taking action to avert their behav-
ior or by minimizing their effects.

For obvious reasons, scatter plots are not helpful for more than three
variables, unless you evaluate relationships for all possible pairs and

0
2
4
6
8

10
12
14
16
18

0 200 400 600
Module size (LOC)

Fa
ul

ts
 in

 m
od

ul
e

FIGURE 6.14 Scatter plot of module faults against module size for dataset 2.

0

10

20

30

40

0 20 40 60 80
Project effort

Pr
oj

ec
t s

iz
e

FIGURE 6.13 Scatter plot of project effort against project size for dataset 1.

252 ◾ Software Metrics

triples. Such partitioning of the problem does not give you a good over-
view of the behavior that interests you.

6.3.5 Measures of Association

Scatter plots depict the behavior of two attributes, and sometimes we can
determine that the two attributes are related. But the appearance of a rela-
tionship is not enough evidence to draw conclusions. Statistical techniques
that can help us evaluate the likelihood that the relationship seen in the
past will be seen again in the future. We call these techniques measures of
association, and the measures are supported by statistical tests that check
whether the association is significant.

For normally distributed attribute values, the Pearson correlation coef-
ficient is a valuable measure of association. Suppose we want to examine
the association between two attributes, say x and y. For instance, we saw in
Example 6.12 that x could be the size of a module, while y is the number of
faults found in the module. If the datasets of x and y values are normally
distributed (or nearly), then we can form pairs (xi, yi), where there are i
software items and we want to measure the association between x and y.
The total number of pairs is n, and for each attribute, we calculate the
mean and variance. We represent the mean of the x values by mx, and the
mean of the y values by my. Likewise, var(x) is the variance of the set of x
values, and var(y) is the variance of the y values. Finally, we calculate

r

x m y m
n x y

i x i y

i

n

=
− −

=
∑

()()
var()var()1

The value of r, called the correlation coefficient, varies from −1 to 1.
When r is 1, then x and y have a perfect positive linear relationship; that
is, when x increases, then so does y in equal linear steps. Similarly, −1
indicates a perfect negative linear relationship (i.e., when x increases, y
decreases linearly), and 0 indicates no relationship between x and y (i.e.,
when x increases, y is just as likely to increase as to decrease). Statistical
tests can be used to check whether a calculated value of r is significantly
different from zero at a specified level of significance; in other words, com-
putation of r must be accompanied by a test to indicate how much confi-
dence we should have in the association.

However, as we have noted before, most software measurements are
not normally distributed and usually contain atypical values. In fact, the

Analyzing Software Measurement Data ◾ 253

dataset in Example 6.12 is not from a normal distribution, so the Pearson
correlation coefficient is not recommended for it. In these cases, it is pref-
erable to use robust measures of association and nonparametric tests of
significance. One approach to the problem is the use of a robust correla-
tion coefficient; other approaches, including contingency tables and the
chi-squared test, are discussed in standard statistical textbooks.

6.3.6 Robust Correlation

The most commonly used robust correlation coefficient is Spearman’s
rank correlation coefficient. It is calculated in the same way as the Pearson
correlation coefficient, but the x and y values are based on ranks of the
attributes, rather than raw values. That is, we place the attribute values in
ascending order and assign 1 to the smallest value, 2 to the next smallest,
etc. If two or more raw values are equal, each is given the average of the
related rank values.

EXAMPLE 6.13

The two smallest modules in dataset 2 have 29 LOC. In a ranking, each mod-
ule is assigned the rank of 1.5, calculated as the average of ranks 1 and 2.

Kendall’s robust correlation coefficient t varies from −1 to 1, as
Spearman’s, but the underlying theory is different. The Kendall coefficient
assumes that, for each two pairs of attribute values, (xi, yi) and (xj, yj),
if there is a positive relationship between the attributes, then when xi is
greater than xj, then it is likely that yi is greater than yj. Similarly, if there
is a negative relationship, then when xi is greater than xj, it is likely that yi
is less than yj. Kendall’s t is based on assessing all of pairs of vectors (in a
dataset of points) and comparing positive with negative indications.

Kendall’s correlation coefficient is important because it can be gener-
alized to provide partial correlation coefficients. These partial values are
useful when the relationship between two attributes may in fact be due to
the relationship between both attributes and a third attribute. (See Seigel
and Castellan’s classic statistics book for an explanation of partial coef-
ficients and their use (Siegel and Castellan 1988).)

The rank correlation coefficients are intended to be resilient both to
atypical values and to nonlinearity of the underlying relationship, as well
as not being susceptible to the influence of very large values.

254 ◾ Software Metrics

EXAMPLE 6.14

Tables 6.5 and 6.6 contain the values of the Pearson, Spearman, and Kendall
correlation coefficients for various attribute pairs from datasets 1 and 2
in Table 6.1. Notice that, in both tables, the robust correlations (i.e., the
Spearman and Kendall values) are usually less than the Pearson correlations.
This difference in correlation value is caused by the very large values in both
datasets; these large values tend to inflate the Pearson correlation coefficient
but not the rank correlations.

Notice, too, that we have calculated some of the correlations both with
and without some of the atypical values, as identified by scatter plots earlier
in this chapter. It appears that the rank correlation coefficients are reasonably
resilient to atypical values. Moreover, the relationship between control flow
paths and faults in a module is nonlinear, but the rank correlations are not
affected by it.

Table 6.5, reflecting dataset 1, shows that, in general, all the correlation
coefficients were susceptible to the gross outliers in the data. So, although
the rank correlation coefficients are more reliable for software measurement
data than the Pearson correlation, they can be misleading without visual
inspection of any supposed relationship.

Example 6.14 includes a practice common to data analysis: eliminat-
ing atypical data points. Sometimes, a scatter plot or correlational anal-
ysis reveals that some data illustrate behavior different from the rest. It
is important to try to understand what makes these data different. For
example, each point may represent a project, and the unusual behavior
may appear only in those projects done for a particular customer, X. With
those data points removed, the behavior of the rest can be analyzed and
used to predict likely behavior on future projects done for customers other
than X. However, it is not acceptable to remove data points only to make
the associations look stronger; there must be valid reasons for separating
data into categories and analyzing each category separately.

TABLE 6.5 Correlation Coefficients for Dataset 1

Type
Effort

vs. Size

Effort vs. Size
(Atypical Items

Removed)
Effort vs.
Duration

Effort vs.
Duration

(Atypical Items
Removed)

Pearson 0.57 0.91 0.57 0.59
Spearman 0.46 0.56 0.48 0.50
Kendall 0.33 0.67 0.38 0.65

Analyzing Software Measurement Data ◾ 255

6.3.7 Linear Regression

Having identified a relationship using box plots, scatter plots, or other
techniques, and having evaluated the strength of the association between
two variables, our next step is expressing the nature of the association in
some way. Linear regression is a popular and useful method for expressing
an association as a linear formula. The linear regression technique is based
on a scatter plot. Each pair of attributes is expressed as a data point, (xi, yi),
and then the technique calculates the line of best fit among the points.
Thus, our goal is to express attribute y, the dependent variable, in terms of
attribute x, the independent variable, in an equation of the form

 y = a + bx

To see how this technique works, consider again the scatter plot of
Figure 6.10. We can draw a line roughly to estimate the trend we see,
showing that effort increases as size increases; this line is superimposed
on the scatter plot in Figure 6.15.

The theory behind linear regression is to draw a line from each data
point vertically up or down to the trend line, representing the vertical dis-
tance from the data point to the trend. In some sense, the length of these

TABLE 6.6 Correlation Coefficients for Dataset 2

Type
LOC vs.
Faults

LOC vs. Faults
(Atypical
Removed)

Paths vs.
Faults

Paths vs. Faults
(Atypical
Removed)

FO vs.
Faults

FI vs.
Faults

Pearson 0.88 0.96 0.68 0.90 0.65 −0.11
Spearman 0.86 0.83 0.80 0.79 0.54 0.02
Kendall 0.71 0.63 0.60 0.62 0.58 0.02

0

10

20

30

40

0 20 40 60 80
Project effort

Pr
oj

ec
t s

iz
e

FIGURE 6.15 Plot of effort against size for dataset 1, including line to show trend.

256 ◾ Software Metrics

lines represents the discrepancy between the data and the line, and we
want to keep this discrepancy as small as possible. Thus, the line of “best
fit” is the line that minimizes these distances.

The mathematics required to calculate the slope, b, and intercept, a, of
this “best fit” line are straightforward. The discrepancy for each point is
called the residual, and the formula for generating the linear regression
line minimizes the sum of the squares of the residuals. We can express the
residual for a given data point as

 ri = yi − a − bxi

Minimizing the sum of squares of the residuals leads to the following
equations for a and b:

b
x m y m

x m

i x i y

i x

=
− −

−

∑
∑

()()

()
2

 a = my − bmx

The least squares technique makes no assumptions about the normality
of the distribution of either attribute. However, to perform any statistical
tests relating to the regression parameters (e.g., we may want to determine
if the value of b is significantly different from 0), it is necessary to assume
that the residuals are distributed normally. In addition, the least squares
approach must be used with care when there are many large or atypical
values; these data points can distort the estimates of a and b.

EXAMPLE 6.15

Figure 6.16 shows the scatter plot of module size against faults from dataset 2
in Table 6.1. Imposed on the scatter plot is the line generated by linear regres-
sion. Notice that there are several values in the dataset that are far from the
line, including the point representing the largest module. If we remove the data
point for the largest module, the regression line changes dramatically, as shown
in Figure 6.17. The remaining data points are much closer to the new line.

After fitting a regression line, it is important to check the residuals to
see if any are unusually large. We can plot the residual values against the

Analyzing Software Measurement Data ◾ 257

corresponding dependent variable in a scatter plot. The resulting graph
should resemble an ellipsoidal cloud of points, and any outlying point
(representing an unusual residual) should be clearly visible, as shown in
Figure 6.18.

6.3.8 Robust Regression

There are a number of robust linear regression approaches, and several
statistical textbooks (see (Sprent 2007), for example) describe them. For
instance, Theil proposed estimating the slope of the regression line as the

0
2
4
6
8

10
12
14
16
18

0 200 400 600
Module size (LOC)

Fa
ul

ts
 in

 m
od

ul
e

FIGURE 6.17 Module size against faults, using dataset 2 without the largest
module.

0

5

10

15

20

25

0 200 400 600
Module size (LOC)

Fa
ul

ts
 in

 m
od

ul
e

FIGURE 6.16 Module size against faults, including linear regression line.

258 ◾ Software Metrics

median of the slopes of all lines joining pairs of points with different val-
ues. For each pair (xi, yi) and (xj, yj), the slope is

b

y y
x xij

j i

j i
=

−
−

If there are n data points and all the xi are different, then there are
n(n − 1)/2 different values for bij, and b is estimated by the median value. It
is also possible to determine the confidence limits for this estimate.

Theil suggested estimating the intercept, a, as the median of all the
values

 ai = yi − bxi

EXAMPLE 6.16

We can apply Theil’s method to the relationship between size and effort
represented by dataset 1, and we generate the equation

 Effort (months) = 8.869 + 1.413 size (KLOC)

0
100 200 300 400 500 600 700 800

100

200

300

400

500

Inspection duration (min)

To
ta

l d
ef

ec
ts

FIGURE 6.18 A scatter plot of data from a major telecommunications company,
with residuals noted.

Analyzing Software Measurement Data ◾ 259

This equation is quite similar to the regression line obtained by least
squares when the atypical value is removed. However, the confidence
limits on the estimate of the slope range from −0.22 to 2.13 (at the 0.05
level of significance), which includes 0. Thus, we must conclude that the
robust technique implies that the relationship between effort and size is not
significant.

6.3.9 Multivariate Regression

The regression methods we have considered so far focus on determining
a linear relationship between two attributes. Each involves the use of the
least squares technique. This technique can be extended to investigate a
linear relationship between one dependent variable and two or more inde-
pendent variables; we call this multivariate linear regression. However, we
must be cautious when considering a large number of attributes, because

• It is not always possible to assess the relationship visually, so we can-
not easily detect atypical values.

• Relationships among the dependent variables can result in unstable
equations. For example, most size and structure attributes are cor-
related, so it is dangerous to include several size and structure mea-
sures in the same multivariate regression analysis.

• Robust multivariate regression methods can be quite complicated.

For multivariate linear regression, we recommend using least squares
analysis but avoiding the use of many correlated-dependent variables. Be
sure to analyze the residuals to check for atypical data points (i.e., data
points having very large residuals).

6.4 MORE ADVANCED METHODS
There are many other statistical methods for analyzing data. In this section,
we consider several advanced methods that can be useful in investigating
relationships among attributes: classification tree analysis, transforma-
tions, and multivariate data analysis.

6.4.1 Classification Tree Analysis

Many statistical techniques deal with pairs of measures. But often we want
to know which measures provide the best information about a particular
goal or behavior. That is, we collect data for a large number of measures,

260 ◾ Software Metrics

and we want to know which ones are the best predictors of the behavior
in a given attribute. A statistical technique called classification tree analy-
sis can be used to address this problem. This method, applied success-
fully on data from multiple releases of a large telecommunications system
(Khoshgoftaar et al. 2000), allows large sets of metrics data to be analyzed
with respect to a particular goal.

EXAMPLE 6.17

Suppose you have collected data on a large number of code modules,
and you want to determine which of the metrics are the best predictors of
poor quality. You define poor quality in terms of one of your measures; for
instance, you may say that a module is of poor quality if it has more than
three faults. Then, a classification tree analysis generates a decision tree
to show you which of the other measures are related to poor quality. The
tree may look like the one in Figure 6.19, which suggests that if a module
is between 100 and 300 LOC and has a cyclomatic number of at least 15,
then it may have a large number of faults. Likewise, if the module is over
300 LOC, has had no design review, and has been changed at least five
times, then it too may have a large number of faults. This technique is useful
for shrinking a large number of collected measures to a smaller one, and for
suggesting design or coding guidelines. In this example, the tree suggests
that, when resources are limited, design reviews may be restricted to large
modules, and code reviews may be advisable for large modules that have
been changed a great deal.

+
+

–

–

–

–

Size

Cyclomatic
complexity Module

changes

Design
review

<100 LOC

100–300
LOC

>300 LOC

Yes

No

<15
<5

≥15
≥5

FIGURE 6.19 Classification tree.

Analyzing Software Measurement Data ◾ 261

6.4.2 Transformations

Sometimes, it is difficult to understand the behavior of data in its original
form, but much easier if the data are transformed in some way to make
the behavior more visible. We noted earlier that it is sometimes possible
to transform nonnormal data into normal data by applying a logarithmic
function. In general, a transformation is a mathematical function applied
to a measurement. The function transforms the original dataset into a new
dataset. In particular, if a relationship between two variables appears to be
nonlinear, it is often convenient to transform one of the attributes in order
to make the relationship more linear.

EXAMPLE 6.18

Figure 6.20 is a scatter plot of some of the data from dataset 2 in Table 6.1.
Here, we have graphed the structure of each module, as measured by control
flow paths, against the number of faults found in the module. The relationship
between faults and number of paths appears to be nonlinear and therefore
not suitable for analysis using linear regression.

There are many choices for transformation. Tukey suggested a “lad-
der” from which to decide on an appropriate transformation function
(Mosteller and Tukey 1977). The ladder consists of a sequence of transfor-
mation functions, where the “top” of the ladder is on the left as shown in
Figure 6.21.

0
2
4
6
8

10
12
14
16
18

0 50 100 150 200 250
Control flow paths

Fa
ul

ts
 in

 m
od

ul
e

FIGURE 6.20 Structure graphed against faults, from dataset 2.

262 ◾ Software Metrics

We begin by positioning ourselves at the x value of the ladder (i.e., mid-
way on the ladder). If we seem to have a curved rather than linear relation-
ship between two attributes, we use the ladder as follows:

• If the relationship looks positive and convex (as in Figure 6.20), we
may transform either the independent variable by going down the
ladder (i.e., using a square root transformation), or the dependent
variable by going up the ladder (i.e., using a square transformation).

• If the relationship looks positive and concave, we may transform
either the independent variable by going up the ladder, or the depen-
dent variable by going down.

If it is important to obtain an equation for predicting the dependent
variable, we recommend transforming the independent variable, so that
the dependent variable is in the correct scale.

EXAMPLE 6.19

Figure 6.22 is a graph of the data depicted in Figure 6.20, except that the
square root of the control flow paths is plotted, rather than the raw data of
dataset 2. The relationship of the transformed data to the module faults is
clearly more linear for the transformed data than for the raw data. In fact, the
relationship obtained using the raw data accounts for only 46% of the varia-
tion of the dependent variable, whereas the relationship obtained using the
transformed data accounts for 68% of the variation.

There are many other reasons for transforming data. For example, data
are often transformed to cope with relationships of the form

x3

x2

x
x1/2

log x
−x−1

−x−2

−x−3

FIGURE 6.21 Tukey’s ladder.

Analyzing Software Measurement Data ◾ 263

 y = axb

where x and y are two attributes, a is a coefficient, and b is an exponent.
We can use logarithms to generate a linear relationship of the form

 log (y) = log (a) + b log (x)

Then, log(a) and b can be estimated by applying the least squares tech-
nique to the transformed attribute values. The logarithmic transformation
is used frequently to investigate the relationship between project effort and
product size, or between project effort and project duration, as we saw in
the case of the COCOMO model in Chapter 3 (Example 3.11). However, we
must take care in the judgments that we make from such transformed data.
Plotting relationships on a log–log scale can give a misleading impression of
the variability in the raw data. To predict effort (as opposed to log(effort)),
you should plot an appropriate line on the untransformed scatter plot.

EXAMPLE 6.20

The relationship between effort and duration for dataset 1 is depicted in
Figure 6.23. A linear relationship is not significant for the raw data. However,
when we transform the data using the logarithm of each attribute, the result
is the scatter plot of Figure 6.24. This figure shows the linear regression line,
which is significant after using the log–log transformation.

0
2
4
6
8

10
12
14
16
18
20

0 5 10 15
Square root of control paths

Fa
ul

ts
 in

 m
od

ul
e

FIGURE 6.22 Module structure (transformed) plotted against faults.

264 ◾ Software Metrics

6.4.3 Multivariate Data Analysis

There are several different techniques that can be applied to data involv-
ing many variables. In this section, we look at three related techniques.
The principal component analysis can simplify a set of data by removing
some of the dependencies among variables. The cluster analysis uses the
principal components that result, allowing us to group modules or proj-
ects according to some criterion. Then, the discriminant analysis derives
an assessment criterion function that distinguishes one set of data from
another; for instance, the function can separate data that is “error-prone”
from data that is not.

6.4.3.1 Principal Component Analysis
Often, we measure a large set of attributes where some subset of the attri-
butes consists of data that are related to one another. For example, the size
of a project affects the amount of effort required to complete it, so size
and effort are related. Suppose we want to predict project duration. If we

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 0.5 1 1.5 2
log (effort)

lo
g

(d
ur

at
io

n)

FIGURE 6.24 Logarithm of effort plotted against logarithm of duration.

0

5

10

15

20

25

0 20 40 60 80
Effort (person–months)

D
ur

at
io

n
(m

on
th

s)

FIGURE 6.23 Effort plotted against duration, from dataset 1.

Analyzing Software Measurement Data ◾ 265

use both size and effort in a duration prediction equation, we may predict
a longer time period than is really required, because we are (in a sense)
double counting; the duration suggested by the size measures may also
be represented in our effort value. We must take care to ensure that the
variables contributing to our equation are as independent of one another
as possible.

In general, if we want to investigate the relationship among several attri-
butes, we want to be sure that subsets of related attributes do not present
a misleading picture. The principal component analysis generates a linear
transformation of a set of correlated attributes, such that the transformed
variables are independent. In the process, it simplifies and reduces the
number of measures with which we must deal. Thus, we begin with n mea-
sures xi, and our analysis allows us to obtain n new variables of the form

 yi = ai1x1 + ai2x2 + … + ainxn

The technique identifies values for the aij and determines the contribu-
tion of yi to the overall variability of the set of transformed variables.

Although the process creates the same number of transformed vari-
ables as original variables, we can reduce the number of variables by
examining the variability in the relationship. We need fewer transformed
variables to describe the variability of the dataset than we had originally,
because the attributes that are virtually identical will contribute to a single
variable on the new scale. The analysis indicates what proportion of the
total variability is explained by each transformation. The transformation
accounting for the most variability is called the first principal component,
the transformation accounting for the next largest amount is called the
second principal component, etc. The principal components that account
for less than 5% of the variability are usually ignored.

EXAMPLE 6.21

During the first phase of the Software Certification Programme in Europe
(SCOPE), 39 software metrics related to maintainability were collected from
modules produced by five industrial software projects. A principal compo-
nent analysis reduced the set to six, accounting for nearly 90% of the varia-
tion. Size alone explained almost 57% of the variation. In other words, more
than half of the variation in the maintainability measure was explained by
changes to the size measure (Neil 1992).

266 ◾ Software Metrics

Principal component analysis is available in most statistical packages
because it is useful for several purposes:

 1. To identify the underlying dimensionality of a set of correlated
variables.

 2. To allow a set of correlated variables to be replaced by a set of non-
correlated variables in multivariate regression analysis.

 3. To assist in outlier detection. Each set of attribute values for a soft-
ware item can be transformed into one or more new variables (i.e.,
the principal components). If the first principal component is plot-
ted against the second, there will be no relationship; however, points
that are very distant from the central mass of points are regarded as
anomalies.

EXAMPLE 6.22

Table 6.7 shows the results of a principal component analysis performed on
the four structure and size variables of dataset 2. The variables were normal-
ized prior to performing the analysis (i.e., transformations were applied, so
that each variable had mean 0 and standard deviation 1). Table 6.7 shows
the correlation between each of the original variables and the transformed
variables. It also indicates the percentage of the variability accounted for by
each component. The analysis suggests that the four original variables can be
represented adequately by the first three transformed variables (i.e., the first
three principal components). It also shows that the first principal component
is related to LOC, fan-out and paths, since the correlation coefficients are
positive and high. Similarly, the second principal component is related to
fan-in, and the third principal component is related to LOC.

TABLE 6.7 Correlations between Principal Components and the Normalized
Variables for Dataset 2 Size and Structure Measures

Original
Principal

Component 1
Principal

Component 2
Principal

Component 3
Principal

Component 4
LOC 0.81 −0.13 0.57 0.02
Fan-out 0.92 0.06 −0.28 0.27
Fan-in −0.10 0.99 0.12 0.03
Path 0.92 0.15 −0.21 −0.28
% Variation explained 59.1 24.4 11.5 3.9

Analyzing Software Measurement Data ◾ 267

6.4.3.2 Cluster Analysis
Cluster analysis can be used to assess the similarity of modules in terms
of their measurable characteristics. It assumes that modules with simi-
lar attributes will evidence similar behavior. First, a principal component
analysis is performed, producing a reduced set of principal components
that explain most of the variation in the behavior being investigated. For
example, we saw in Example 6.21 that the behavior, maintainability, was
explained by six principal components. Next, cluster analysis specifies
the behavior by separating it into two categories, usually exhibiting the
behavior and not; in Example 6.21, we can think of the categories as “easy
to maintain” or “not easy to maintain.”

There are many cluster algorithms available with statistics packages.
These algorithms can be used much as box plots were used for single vari-
ables: to cluster the data and identify outliers or unusual cases.

6.4.3.3 Discriminant Analysis
Discriminant analysis allows us to separate data into two groups, and to
determine to which of the two groups a new data point should be assigned.
The technique builds on the results of a cluster analysis to separate the two
groups. The principal components are used as discriminating variables, help-
ing to indicate to which group a particular module is most likely to belong.

The groups generated by a cluster analysis sometimes have overlap
between them. The discriminant analysis reduces this overlap by maxi-
mizing the variation between clusters and minimizing the variation
within each cluster.

6.5 MULTICRITERIA DECISION AIDS
Most of the techniques we have presented so far are based on classical sta-
tistical methods. In this section, we present some newer ways of address-
ing data analysis, especially when decision-makers must solve problems
by taking into account several different points of view. In other words, we
have assumed so far that the goal of measurement is clear, but there are
times (as we saw in Chapter 3) when some people interpret goals differ-
ently from others. We need to be able to analyze data and draw conclu-
sions that address many different interpretations of the same goal, even
when the interpretations conflict. Thus, rather than “solving” a problem
by finding a universal truth or law exhibited by the data, we need to find,
instead, a subjective problem resolution that is consistent and satisfies all
parties involved, even if it is not optimal in the mathematical sense.

268 ◾ Software Metrics

To understand why this situation is common in software measurement,
consider a software system that is being built to meet requirements about
safety or reliability. Data are collected to help in answering the question,
Is this software safe? But the interpretation of “safe” can differ from one
person to another, and it is not always clear that we have sufficient evi-
dence to answer the question. Moreover, we often have to balance several
considerations. We may ask, which option provides the most reliability for
the least cost? and we must make decisions that reflect our priorities when
there is no clear-cut “best” answer.

Multicriteria decision aids can help us to address such questions. They
draw heavily on methods and results in operations research, measurement
theory, probability, fuzzy sets, the theory of social choice, and expert sys-
tems. In the 1980s and 1990s, the multicriteria decision aids made great
strides, and several computer-based tools have been developed to imple-
ment the methods. The book by Vincke provides additional information
(Vincke 1992).

In this section, we begin with the basic concepts of multicriteria deci-
sion-making. Then, we examine two classes of methods that have received
a great deal of attention: (1) multiple attribute utility theory (including the
analytical hierarchy process) and (2) outranking methods. The latter is far
less stringent than the former, and it allows far more realistic assumptions.
Our examples are presented at a very high level, so that you can see how
the concepts and techniques are applied to software engineering prob-
lems. But these techniques are quite complex, and the details are beyond
the scope of this book. The end of this chapter suggests other sources for
learning the techniques in depth.

6.5.1 Basic Concepts of Multicriteria Decision-Making

We often have a general question to answer, and that question is really
composed of a set of more specific decision problems. For example, it is
not enough to ask, How do we build a system that we know is safe? We
must ask an assortment of questions:

• Which combination of development methods is most appropriate to
develop a safe system in the given environment?

• How much effort should be spent on each of a set of agreed-upon
testing techniques in order to assure the safety of this system?

Analyzing Software Measurement Data ◾ 269

• Which compiler is most appropriate for building a safe system under
these conditions?

• What is considered valid evidence of safety, and how do we combine
the evidence from different subsets or sources to form a complete
picture?

• Which of a set of possible actions should we take after system com-
pletion to assess the system safety?

In each case, we have a set of actions, A, to be explored during the deci-
sion procedure. A can include objects, decisions, candidates, and more.
For instance, in the first question above, A consists of all combinations of
mutually compatible methods selected from some original set. An enu-
meration of A might consist of combinations such as

(Alloy specification, correctness proofs)

(Alloy specification, UML design)

(OCL specification, Z formal verification, proof)

(OOD)

(Specification from Python rapid prototyping, agile development)

Once we have a set of actions, we define a criterion, g, to be a function
from the set of actions to a totally ordered set, T. That T is totally ordered
means that there is a relation R on pairs of elements of T that satisfies four
properties:

 1. R is reflexive: for each element x in T, the pair (x, x) is in R.

 2. R is transitive: if (x, y) and (y, z) are in R, then (x, z) must be in R.

 3. R is antisymmetric: if (x, y) and (y, x) are in R, then x must equal y.

 4. R is strongly complete: for any x and y in T, either (x, y) is in R or (y, x)
is in R.

These conditions guarantee that any action can be compared to any
other action using a relation on T. We can use the total ordering to com-
pare software engineering techniques, methods, and tools.

270 ◾ Software Metrics

EXAMPLE 6.23

Suppose A is a set of verification and validation techniques used on a soft-
ware project. We can define a criterion that maps A to the set of real numbers
by defining g as follows: For each element a of A,

 g(a) = the total effort in person-months devoted to using technique a

This measure gives us information about experience with each element of
A. Alternatively, we can define another criterion, g′, to be a mapping to the
set of nonnegative integers, so that we can compare the effectiveness of two
techniques:

 g′(a) = the total number of faults discovered when using technique a

We can also have criteria that map to sets that are not numbers. For exam-
ple, define the set T to be {poor, moderate, good, excellent}, representing
categories of ease of use. Then we can define a criterion that maps each ele-
ment of A to an element of T that represents the ease of use for a particular
technique, as rated subjectively by an expert. In this example, T is totally
ordered, since

 poor < moderate < good < excellent

Suppose we consider a family of criteria defined on a set of actions, A. If
the family is consistent (in a way that is described more fully by Roy 1990),
then a multicriteria decision problem can be any one of the following:

• Determine a subset of A considered to be best with respect to the
family of criteria (the choice problem).

• Divide A into subsets according to some norms (the sorting problem).

• Rank the actions of A from best to worst (the ranking problem).

To solve these problems, a decision-maker must compare each pair
actions, a and b, in one of the three ways:

 1. Strict preference for one of the actions

 2. Indifference to either action

 3. Refusal or inability to compare the actions

Analyzing Software Measurement Data ◾ 271

Each of these choices defines a relation between a and b. The set of all
of these relations forms a preference structure on A. We can also define a
preference relation S using only conditions 1 and 2, where a is related to
b if and only if either a is strictly preferred to b, or there is indifference
between the two. A classic problem of decision optimization is to define a
numerical function that preserves S. In other words, we want to define a
function, f, from the set A to some number system, N, which satisfies both
of these conditions:

 f(a) > f(b) if and only if a is strictly preferred to b

 f(a) = f(b) if and only if there is indifference between a and b

This function may look familiar to you, as it is a mathematical way
of describing the representation condition, introduced in Chapter 2. In
multicriteria decision-making, a key problem is optimizing f. Here, “opti-
mization” means that f must satisfy the stated conditions in a way that
optimizes one or more attributes of the elements of A, such as cost or
quality. When N is the set of real numbers, then no such function f exists
if there are two actions that are incomparable. Unfortunately, there are
many real-world situations where incomparabilities exist; we can include
the incomparabilities by mapping to other types of number systems, such
as vectors of real numbers, as we did in Chapter 2.

When we can preserve the preference structure by mapping to the real
numbers, then we can rank the actions from best to worst, with possible
ties when there is indifference between two actions; this mapping is called
the traditional model. Such a relation is called a complete preorder. If there
are no ties, then the preference structure is a complete order. Any criterion
for which the underlying preference structure is a complete preorder is
called a true criterion.

In the traditional model, indifference must be transitive; that is, if there
is indifference between a and b, and indifference between b and c, then
there must be indifference between a and c. However, sometimes this
condition is not realistic, as when there are “sensibility thresholds” below
which we are indifferent; multicriteria decision-making can be extended
to cover this case, but here we focus on the traditional model and assume
transitivity.

Suppose a and b are possible actions, and we have a set of n criteria {gi}.
We say that a dominates b if gi(a) ≥ gi(b) for each i from 1 to n. An action is
said to be efficient if it is strictly dominated by no other action.

272 ◾ Software Metrics

EXAMPLE 6.24

We are considering eight software packages, P1 through P8, to select one
for use in a safety-critical application. All of the packages have the same
functionality. There are four criteria that govern the selection: cost (measured
in dollars), speed (measured in number of calculations per minute on a stan-
dardized set of test data), accuracy, and ease of use. The latter two criteria
are measured on an ordinal scale of integers from 0 to 3, where 0 represents
poor, 1 represents fair, 2 represents good, and 3 represents very good. Table
6.8 contains the results of the ratings for each criterion. To ensure that the
dominance relation holds, we have changed the sign of the values for cost. In
this example, we see that

P2 dominates P1
P5 dominates both P4 and P6
P3, P7, and P8 dominate no other package
P2, P5, P3, P7, and P8 are efficient

The first task in tackling a multicriteria decision problem is by reduc-
ing the set of actions to a (probably smaller) subset of efficient actions. We
may find that there is only one efficient action, in which case that action is
the simple solution to our problem. However, more often the dominance
relation is weak, and multicriteria decision activities involve enriching the
dominance relation by considering all relevant information.

To do this, we consider a vector formed by evaluating all of the criteria
for a given action. That is, for each action, a, we form a vector <g1(a), g2(a),
…, gn(a)>. Then the collection of all of these n-tuples is called the image
of A. In Example 6.24, the image of A is the set of eight 4-tuples that cor-
respond to the rows in Table 6.8. For each i from 1 to n, we can identify

TABLE 6.8 Ratings for Each Software Package Against Four Criteria

Software
Package g1: Cost g2: Speed g3: Accuracy g4: Ease of Use
P1 −1300 3000 3 1
P2 −1200 3000 3 2
P3 −1150 3000 2 2
P4 −1000 2000 2 0
P5 −950 2000 2 1
P6 −950 1000 2 0
P7 −900 2000 1 0
P8 −900 1000 1 1

Analyzing Software Measurement Data ◾ 273

the (not necessarily unique) action ai
* in A that is best according to the cri-

terion gi. The ideal point is the point (z1, z2, …, zn), where z g ai i i= ()* . For
instance, the ideal point in Example 6.24 is (−900, 3000, 3, 2).

We can apply all of the criteria to each ideal point, so that we compute
all possible G g aij j i= ()* . The n × n matrix formed by the Gij is called the
payoff matrix; this matrix is unique only if each criterion achieves its max-
imum at only one action. The diagonal of a payoff matrix is the ideal point.

EXAMPLE 6.25

There are two different payoff matrices for the actions and criteria in
Example 6.24:

M

a P

a P

a P

a P

=

= −

= −

= −

=

1

2

3

4

8 900 1000 1 1

2 1200 3000 3 2

2 1200 3000 3 2

3

*

*

*

* −−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ʹ =

= −

= −

1150 3000 2 2

7 900 2000 1 0

3 1150 30
1

2M

a P

a P

*

* 000 2 2

1 1300 3000 3 1

2 1200 3000 3 2
3

4

a P

a P

*

*

= −

= −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

For a given payoff matrix, the nadir is the point whose ith coordinate is
the minimum of the values in the ith column. In Example 6.25, the nadir
for matrix M is (−1200, 1000, 1, 1); for M′, the nadir is (−1300, 2000, 1, 0).

These concepts can be used to help solve the multicriteria decision prob-
lem. For instance, it can be shown that a positive linear combination of
criteria always yields an efficient action, and that efficient actions can be char-
acterized as those that minimized a certain distance (called the Tchebychev
distance) to a point that slightly dominates the ideal point. The parametric
optimization techniques can then be used to determine efficient actions.

However, there are often more constraints on the problem than these.
For instance, in Table 6.8, we see that, although P2 is $50 more expensive,
its accuracy is greater than that of P3. Our decision-makers may believe
that it is worth paying the extra money to increase the accuracy. Such
observations are called substitution rates of criteria; they allow us to add a

274 ◾ Software Metrics

particular amount to one criterion to compensate for a loss of one unit of
another criterion. Although the assignment of substitution rates is subjec-
tive, the technique allows us to control the insertion of subjectivity, and to
be consistent in applying our subjective judgments.

Suppose that, because of the safety-criticality of the application, the
decision-makers prefer to pay a lot more for a package to get the high-
est degree of accuracy, no matter what the speed or ease of use. In this
situation, two of the criteria (namely, speed and accuracy) are said to be
preferentially independent.

6.5.2 Multiattribute Utility Theory

Multiattribute utility theory (MAUT) takes constraints such as a prefer-
ence for accuracy over costs into account, providing another approach to
organize subjective judgments for use in choosing between multiple alter-
natives. MAUT assumes that a decision-maker want to maximize a func-
tion of various criteria. Two types of problems present themselves:

 1. The representation problem: What properties must be satisfied by the
decision-maker’s preferences so that they can be represented by a
function with a prescribed analytical form?

 2. The construction problem: How can the maximization function be
constructed, and how can we estimate its parameters?

EXAMPLE 6.26

Suppose we are given four criteria for assessing which verification and vali-
dation techniques should be used on a software module; these criteria are
described in Table 6.9.

A decision-maker rates four techniques, and the results are shown in Table
6.10. We have several choices for defining a utility function, U, which is a
sum of functions Ui on each gi. One possibility is to define each Ui to be a
transformation onto the unit interval [0, 1]. For instance, we may define:

U1(little) = 0.8 U1(moderate) = 0.5 U1(considerable) = 0.2 U1(excessive) = 0
U2(bad) = 0 U2(reasonable) = 0.1 U2(good) = 0.3 U2(excellent) = 0.6
 U3(no) = 0.2 U3(yes) = 0.7
 U4(x) = 1/x

Thus, for any technique, we rate the availability of tool support as having
greater utility than excellent coverage, and we rate the greatest utility to be

Analyzing Software Measurement Data ◾ 275

ranked at the top by an expert. The final result can be evaluated by summing
the functions for each technique:

 U(inspections) = 0.2 + 0.6 + 0.2 + 1 = 2
 U(proof) = 0 + 0.3 + 0.2 + 0.5 = 1
 U(static analysis) = 0.5 + 0 + 0.7 + 0.25 = 1.45
 U(black box) = 0.8 + 0.3 + 0.2 + 0.33

It is easy to see that the criteria in Table 6.9 are nonorthogonal, as the
criteria are not independent. In an ideal situation, the criteria should be
recast into an orthogonal set, so that the relative importance of each is
clear and sensible. However, in many situations, it is not possible or prac-
tical to derive an orthogonal set. Nevertheless, MAUT helps us to impose
order and consistency to the analysis process. Sometimes, the act of apply-
ing MAUT makes the decision-maker more aware of the need for orthog-
onality, and the criteria are changed. Otherwise, MAUT helps to generate
a reasonable decision when the “best” is not possible.

The analytic hierarchy process (AHP) is a popular MAUT technique
(Saaty and Vargas 2012). AHP begins by representing the decision prob-
lem as a hierarchy graph, where the top node is the main problem objec-
tive and the bottom nodes represent actions. At each level of the hierarchy,
a decision-maker makes a pairwise comparison of the nodes from the
viewpoint of their contribution to each of the higher-level nodes to which
they are linked. The pairwise comparison involves preference ratios (for
actions) or importance ratios (for criteria), evaluated on a particular
numerical scale. Then, the “value” of each node is calculated, based on
computing the eigenvalues of the matrix of pairwise comparisons. Each
action’s global contribution to the main objective is calculated by aggre-
gating the weighted average type. A software package called Expert Choice
supports the use of AHP.*

* http://expertchoice.com/.

TABLE 6.9 Criteria for Assessing Verification and Validation Techniques

Criterion Measurement Scale
g1: Effort required {Little, moderate, considerable, excessive}
g2: Coverage {Bad, reasonable, good, excellent}
g3: Tool support {No, yes}
g4: Ranking of usefulness by expert {1, 2, …, n} where n is number of techniques

http://expertchoice.com

276 ◾ Software Metrics

AHP has been used in dependability assessment (Auer 1994), and
Vaisanene and colleagues have applied it to a safety assessment of pro-
grammable logic components (Vaisanene et al. 1994). AHP was also used
to help NASA choose from among several strategies for improving a safety
feature of the Space Shuttle (Frank 1995).

6.5.3 Outranking Methods

MAUT can be very valuable, resulting in a ranking of actions from best
to worst. However, such rankings are based on assumptions that are unre-
alistic in many situations. For many problems, we do not have a complete
ranking, so we can do without the unrealistic assumptions. However, the
dominance relation alone is generally too weak to be useful. The outrank-
ing methods seek to enrich the dominance relation without having to
make the assumptions of MAUT.

An outranking relation is a binary relation on a set of actions defined
in the following way. Consider two actions a and b. Given what is known
about the decision-maker’s preferences, the quality of the valuations of the
actions, and the nature of the problem, if there are enough arguments to
decide that a is at least as good as b and no essential reason to refute that
statement, then we say that a is related to b. This definition is informal, and
published outranking methods differ in the way that they are formalized.
No matter the definition, the outranking relation is neither necessarily
complete nor transitive (Roy 1990).

Any outranking method has two steps:

 1. Building the outranking relation

 2. Exploiting the relation with regard to the chosen problem statement

To give you an idea of how outranking works, we present a brief exam-
ple, using the Electre I method (Figueira et al. 2005).

TABLE 6.10 Evaluation of Four Verification and Validation Techniques

Technique g1 g2 g3 g4

Code inspection Considerable Excellent No 1
Formal proof Excessive Good No 2
Static analysis Moderate Bad Yes 4
Black box testing Little Good No 3

Analyzing Software Measurement Data ◾ 277

EXAMPLE 6.27

Table 6.11 lists four criteria for assessing combinations of verification and
validation techniques. For instance, action 1 might involve formal proof fol-
lowed by code inspection, while action 2 might be formal proof plus static
code analysis. Each criterion must map onto a totally ordered set, and each
is assigned a weight, indicated by the number in parentheses. (For example,
the weight of the first criterion is 5.)

For each ordered pair of actions (a, b), we compute a concordance index
by adding the weights of all criteria gi for which gi(a) is greater than gi(b). Thus,
for the pair (1, 2), action 1 is at least as good as action 2 with respect to all
but the first criterion, so we sum the weights (4 + 3 + 3) to yield a concor-
dance index of 10. The full set of concordance indices is shown in Table 6.12.
In a sense, this table is the “first draft” of the preference structure (i.e., the
outranking relation). We say that a is preferable to b when the concordance
index for (a, b) is larger than for (b, a).

Next, we restrict the structure by defining a concordance threshold, t,
so that a is preferred to b only if the concordance index for (a, b) is at least
as large as t. Suppose t is 12. Then, according to Table 6.12, action 2 is still
preferable to action 1, but we no longer have preference of action 1 to action
7 because the concordance index for (1, 7) is not large enough.

We further refine the preference structure to include other constraints. For
instance, suppose that for criterion g1 (effort required) we never allow action
a to outrank action b if g1(a) is excessive and g1(b) is little. In other words,
regardless of the values of the other criteria, b is so superior to a with respect
to g1 that we veto it being outranked by a. In general, we handle this situation
by defining a discordance set for each criterion, containing the ordered pairs
of values for the criterion for which the outranking is refused.

For example, let us define

 D1 = {(excessive, little), (considerable, little)}
 D2 = {(moderate, excellent)}
 D3 = D4 = {}

Then we can define the outranking relation by saying that one action out-
ranks another provided that its concordance index is at least as large as the
threshold, and provided that for each criterion, the preference is not vetoed
by the discordance set. The full outranking relation for the example is shown
in Figure 6.25.

Finally, we exploit this relationship to find a subset of actions that is opti-
mal with respect to the outranking. In graph theory, such a set (of nodes)
is called a kernel. There are several graph-theoretic techniques for deter-
mining kernels; thus enabling us to find the best course of action, given
our constraints. From Figure 6.25, we can see that there are three kernels,
namely, {2,4,7} and {2,5,7}; the actions 4 and 5 are considered to be tied.

278 ◾ Software Metrics

6.5.4 Bayesian Evaluation of Multiple Hypotheses

You may have noticed that AHP, MAUT, and outranking methods depend
on operations on data that according to Chapter 2 represent inadmissible
transformations. Many of the attributes and attribute weights appear to
be rankings and thus are ordinal scale measures. Yet, the methods per-
form multiplication and/or addition on these values. It would be bet-
ter if we could use an analysis using only well-defined and meaningful
transformations.

1

2

63

4 5 7

FIGURE 6.25 Graph of outranking relation. An arc from node x to node y indi-
cates that y outranks x.

TABLE 6.12 Concordance Indices

1 2 3 4 5 6 7

1 – 10 10 10 10 10 10
2 12 – 12 7 10 7 10
3 11 11 – 11 10 10 10
4 8 8 12 – 12 12 10
5 8 11 12 12 – 12 10
6 11 11 11 11 11 – 10
7 5 8 5 8 8 9 —

TABLE 6.11 Criteria for Assessing Combined Verification and Validation Techniques

Action

g1: Effort
Required

(Weight = 5)

g2: Potential for
Detecting Critical

Faults (Weight = 4)

g3: Coverage
Achieved

(Weight = 3)

g4: Tool
Support

(Weight = 3)

1 Excessive Excellent Good Yes
2 Considerable Excellent Average Yes
3 Considerable Good Good Yes
4 Moderate Good Good No
5 Moderate Good Average Yes
6 Moderate Reasonable Good Yes
7 Little Reasonable Average No

Analyzing Software Measurement Data ◾ 279

The Bayesian approach, based on a theory introduced by Thomas
Bayes in 1763, analyzes multiple variables in terms of three key factors:
the probability of the occurrence of a set of events, the outcome of each
event should it occur, and the dependencies between events. The prob-
abilities and outcomes are expressed in terms of ratio scales measures
making the analyses meaningful. The Bayesian approach supports the
use of qualitative beliefs concerning probabilities and outcomes, and is
dynamic—it supports the updating beliefs in response to new evidence.
In addition, unlike classical data analysis techniques described in Section
6.2, the Bayesian approach focuses on the magnitude of relations rather
than their precision.

This elegant approach has been widely used in law, medicine, finance,
and engineering. Tools that support Bayesian analyses are now readily
available. This approach is well suited to analyzing software engineering
problems. Thus, we devote Chapter 7 to an in-depth description of the
Bayesian approach applied to software engineering problems.

6.6 OVERVIEW OF STATISTICAL TESTS
This chapter has mentioned several statistical tests that can be used to
analyze your data. We have presented techniques in terms of the type of
relationship we seek (linear, multivariate, etc.), but our choice of technique
must also take into account the number of groups being compared, the
size of the sample, and more. In this section, we describe a few statistical
tests, so that you can see how each one is oriented to a particular experi-
mental situation. The section is organized in terms of sample and experi-
ment type, as summarized in Table 6.13.

6.6.1 One-Group Tests

In a one-group design, measurements from one group of subjects are com-
pared with an expected population distribution of values. These tests are
appropriate when an experimenter has a single set of data with an explicit
null hypothesis concerning the value of the population mean. For exam-
ple, you may have sampled the size of each of a group of modules, and you
hypothesize that the average module size is 200 LOC.

For normal distributions, the parametric test is called the t-test (or,
equivalently, the Student’s t-test, single sample t-test, or one-group t-test).
Since the mean of the data is involved, the test is appropriate only for data
that are on the interval scale or above.

280 ◾ Software Metrics

There are several alternatives for nonparametric data.

6.6.1.1 Binomial Test
The binomial test should be used when

• The dependent variable can take only two distinct, mutually exclu-
sive, and exhaustive values (such as “module has been inspected”
and “module has not been inspected”).

• The measurement trials in the experiment are independent.

6.6.1.2 Chi-Squared Test for Goodness of Fit
The chi-squared test is appropriate when

 1. The dependent variable can take two or more distinct, mutually
exclusive, and exhaustive values (such as “module has fewer than 100

TABLE 6.13 Examples of Statistical Tests

Sample Type Nominal Ordinal Interval Ratio

One sample Binomial Kolmogorov–
Smirnov

Single-sample
t-test

Chi-square One-sample runs
Change point

Two related
samples

McNemar
change

Sign test Permutation Matched
groups t-test

Wilcoxon signed
ranks

Two independent
samples

Fisher exact Median test Permutation Population
t-test

Chi-square Wilcoxon–Mann–
Whitney

Robust rank order
Kolmogorov–
Smirnov two-sample

Siegel–Tukey
K-related samples Cochran

Q-test
Friedman two-way
ANOVA

Within-groups
ANOVA

Page test (ordered
alternatives)

K-independent
samples

Chi-squared Kruskal–Wallis
one-way ANOVA

Jonckheere test

Between-
groups
ANOVA

Analyzing Software Measurement Data ◾ 281

LOC,” “module has between 100 and 300 LOC,” and “module has
more than 300 LOC”).

 2. The measurement trials in the experiment are independent.

 3. None of the categories has an observed or expected frequency of less
than five occurrences.

6.6.1.3 Kolmogorov–Smirnov One-Sample Test
This test assumes that the dependent measure is a continuous, rather than
discrete, variable. It assesses the similarity between an observed and an
expected cumulative frequency distribution.

6.6.1.4 One-Sample Runs Test
This test determines if the results of a measurement process follow a
consistent sequence, called a run. For example, it can be used in ana-
lyzing the reasons for system downtime, to determine if one particular
type of hardware or software problem is responsible for consecutive sys-
tem crashes. The test assumes that the successive measurement trials are
independent.

6.6.1.5 Change-Point Test
This test determines whether the distribution of some sequence of events
has changed in some way. It assumes that the observations form an ordered
sequence. If, at some point in the distribution of observed measures, a shift
in the median (or middle) score has occurred, the test identifies the change
point.

6.6.2 Two-Group Tests

Single-sample designs and tests are often used to decide if the results of
some process are straying from an already-known value. However, these
designs are not appropriate when an experimentally established compari-
son is required.

Two-group designs allow you to compare two samples of dependent
measures drawn from related or matched samples of subjects (as in a
within-subjects design), or from two independent groups of subjects (as
in a between-subjects design). The appropriate statistical test depends on
whether the samples are independent or related in some way.

282 ◾ Software Metrics

6.6.2.1 Tests to Compare Two Matched or Related Groups
The parametric t-test for matched groups applies when the dependent
measurement is taken under two different conditions, and when one of
the following additional conditions has been met:

 1. The same subject is tested in both conditions (i.e., a within-subjects
or repeated-measures design has been used).

 2. Subjects are matched according to some criterion (i.e., a matched-
groups design has been used).

 3. Prescreening has been used to form randomized blocks of subjects
(i.e., a randomized block design has been used).

This test assumes the following:

• Subjects have been randomly selected from the population. When
different subjects have been used in each condition, assignment to
the conditions should be random.

• If fewer than 30 pairs of dependent measures are available, the distri-
bution of the differences between the two scores should be approxi-
mately normal.

Like the single-sample t-test, this test also requires measurement data
to be at least on the interval scale.

Nonparametric alternatives to this test include the McNemar change
test, the sign test, and the Wilcoxon signed ranks test. The McNemar
change test is useful for assessing change on a dichotomous variable, after
an experimental treatment has been administered to a subject. For exam-
ple, it can be used to assess whether programmers switch preferences for
language type after receiving training in procedural and object-oriented
techniques. The test assumes that the data are frequencies that can be clas-
sified in dichotomous terms.

The sign test is applied to related samples when you want to establish
that one condition is greater than another on the dependent measure. The
test assumes that the dependent measure reflects a continuous variable
(such as experience) rather than categories. For example, you may use this
test to determine whether a particular type of programming construct is
significantly easier to implement on a given system. The Wilcoxon signed

Analyzing Software Measurement Data ◾ 283

ranks test is similar to the sign test, taking into account the magnitude as
well as the direction of difference; it gives more weight to a pair that shows
a large difference than to a pair that shows a small difference.

6.6.2.2 Tests to Compare Two Independent Groups
The parametric test appropriate for independent groups or between-sub-
jects designs is the t-test for differences between population means. This
test is applied when there are two groups of different subjects that are not
paired or matched in any way. The test assumes the following:

 1. Subjects have been randomly selected from the population and
assigned to one of the two treatment conditions.

 2. If fewer than 30 subjects are measured in each group, the distribu-
tion of the differences between the two scores should be approxi-
mately normal.

 3. The variance, or spread, of scores in the two population groups
should be equal or homogeneous.

As before, the data must be measured on at least an interval scale to be
suitable for this test.

Several nonparametric alternatives to this test are available; they are
described in most statistics books.

6.6.3 Comparisons Involving More than Two Groups

Suppose you have measured an attribute of k groups, where k is greater than
two. For example, you are comparing the productivity rates of 10 projects,
or you want to look at a structural attribute for each of 50 modules. Here,
the appropriate statistical analysis technique is an ANOVA. This class of
parametric techniques is suitable for data from between-subjects designs,
within-subjects designs, and designs that involve a mixture of between- and
within-subjects treatments. Complementary nonparametric tests are avail-
able but are beyond the scope of this book; some are listed in Table 6.13.

ANOVA results tell you whether at least one statistically significant dif-
ference exists somewhere within the comparisons drawn by the analysis.
Statistical significance in an ANOVA is reflected in the F statistic that is
calculated by the procedure. When an F statistic is significant, you then
apply multiple comparisons tests to determine which levels of a factor dif-
fer significantly from the others.

284 ◾ Software Metrics

As we noted in Chapter 4, when your experimental design is complex,
it is best to consult a statistician to determine which analysis techniques
are most appropriate. Since the techniques require different types of data
and control, it is sensible to lay out your analysis plans and methods before
you begin your investigation; otherwise, you risk collecting data that are
insufficient or inappropriate for the analysis you need to do.

6.7 SUMMARY
Datasets of software attribute values must be analyzed with care because
software measures are not usually normally distributed. We have pre-
sented several techniques here that address a wide variety of situations:
differing data distributions, varying measurement scales, varying sample
sizes, and differing goals. In general, it is advisable to

• Describe a set of attribute values using box plot statistics (based on
median and quartiles) rather than on mean and variance

• Inspect a scatter plot visually when investigating the relationship
between two variables

• Use robust correlation coefficients to confirm whether or not a rela-
tionship exists between two attributes

• Use robust regression in the presence of atypical values to identify
a linear relationship between two attributes, or remove the atypical
values before analysis

• Always check the residuals by plotting them against the dependent
variable

• Use Tukey’s ladder to assist in the selection of transformations when
faced with nonlinear relationships

• Use principal component analysis to investigate the dimensionality
of datasets with large numbers of correlated attributes

It is also helpful to consider using more advanced techniques, such as
multiattribute utility theory, to help you choose a “good” solution, rather
than the “best” solution, subject to the constraints on your problem. But
most important, we have demonstrated that your choice of analysis tech-
nique must be governed by the goals of your investigation, so that you can
support or refute the hypothesis you are testing.

Analyzing Software Measurement Data ◾ 285

EXERCISES

 1. Why are statistics necessary? Why can experimenters not just
look at the data and decide for themselves what is important? On
the other hand, which of the following is more important: (a) the
results of a statistical test or (b) the results of the intraocular sig-
nificance test (i.e., when the effect leaps out and hits you between
the eyes)?

 2. Can a comparison that does not achieve statistical significance still
be important?

 3. Three years ago, the software development manager introduced
changes to the development practices at your company. These
changes were supposed to ensure that more time was spent up-front
on projects, rather than coding. Suppose you have the following data
giving actual effort by software development phase for the last five
projects (in chronological order). Provide an appropriate graphi-
cal representation for the manager so that she can see whether the
changes have had an effect.

Project 1 Project 2 Project 3 Project 4 Project 5

Requirements 120 100 370 80 410
Specification 320 240 490 140 540
High-level design 30 40 90 40 60
Detailed design 170 190 420 120 340
Coding 1010 420 1130 250 1200
Testing 460 300 580 90 550

 4. Construct a box plot for the paths measure in dataset 2 of Table 6.1.

 5. Draw the scatter plot of the LOC and the path measures for the mod-
ules in dataset 2 of Table 6.1. Are there any unusual values?

 6. Obtain the Spearman rank correlation coefficient and the
Pearson correlation coefficient for paths and LOC for dataset 2
of Table 6.1. Why do you think the rank correlation is larger than
the Pearson correlation? (Hint: Look at the scatter plot produced
for Exercise 5.)

286 ◾ Software Metrics

 7. Using a statistical package or spreadsheet, calculate the least
squares regression line for faults against LOC for all the modules in
dataset 2 of Table 6.1. Calculate the residuals and plot the residual
against the dependent variable (LOC). Can you identify any outly-
ing points?

 8. If you have access to a statistical package, do a principal component
analysis of the normalized LOC, fan-out, fan-in, and paths mea-
sures from dataset 2 of Table 6.1. Produce a scatter plot of the first
principal component against the second and identify the atypical
values.

 9. What result do you think you would get if you did a principal com-
ponent analysis on the raw rather than the normalized size and
structure measures in dataset 2 of Table 6.1? If you have a statistical
package, perform a principal component analysis on the raw size and
structure data and see if the results confirm your opinion.

 10. Company X runs a large software system S that has been developed
in-house over a number of years. The company collects information
about software defects discovered by users of S. During the regu-
lar maintenance cycle, each defect is traced to one of the nine sub-
systems of S (labeled with letters A through I), each of which is the
responsibility of a different team of programmers. The table below
summarizes information about new defects discovered during the
current year:

System A B C D E F G H I

Defects 35 0 95 35 55 40 55 40 45
Size (KLOC) 40 100 5 50 120 70 60 100 40

 Suppose you are the manager of system S.

 a. Compute the defect density for each subsystem.

 b. Use simple outlier analysis to identify unusual features of the
system.

 c. What conclusions can you draw from your outlier analysis?

Analyzing Software Measurement Data ◾ 287

 d. What are the basic weaknesses of the metrics data as currently
collected?

 e. What simple additions or changes to the data collection strategy
would significantly improve your diagnostic capability?

 11. The table below contains three measures for each of 17 software
modules. LOC is the number of LOC in the module, CFP is the num-
ber of control flow paths in the module, and Faults are the number
of faults found in the module. Construct a box plot for each of the
three measures, and identify any outliers. What conclusions can you
draw? What recommendations can you make to address the prob-
lems you have discovered?

Module LOC CFP Faults

A 15 4 0
B 28 6 15
C 40 2 10
D 60 26 1
E 60 14 0
F 95 18 15
G 110 12 9
H 140 12 6
I 170 54 6
J 180 36 20
K 185 28 14
L 190 32 20
M 210 54 15
N 210 46 18
P 270 128 58
Q 400 84 59
R 420 120 43

 12. The table below contains metrics from 17 software systems under
investigation: total number of thousands LOC for the system
(KLOC), average module size (MOD) measured in LOC, and total
number of faults found per thousand LOC (FD). Construct a box
plot for each metric, and identify any outliers.

288 ◾ Software Metrics

 13. Test-first development is one component of many agile software
development processes such as Extreme Programming and SCRUM
that is briefly described as follows:

 Test-first development: Unit tests are written for each class or com-
ponent before the class or component body code is written. The tests
are run continuously and the program must pass all tests. These tests
act as executable specifications for the program units.

 The following table shows the results of a case study that examined
the defect profile of a software system in which part of the system was
developed by applying test first methods. The table shows the number
of “defects” found at different phases, comparing the portion of the
system with test first developed code to the rest of the system.

 a. What conclusions can you draw about the effectiveness of test-
first development based on these results? Justify your conclusions
and note limitations.

 b. List all assumptions that you used to arrive at your conclusions
in (a).

System KLOC MOD FD

A 10 15 36
B 23 43 22
C 26 61 15
D 31 10 33
E 31 43 15
F 40 57 13
G 47 58 22
H 52 65 16
I 54 50 15
J 67 60 18
K 70 50 10
L 75 96 34
M 83 51 16
N 83 61 18
P 100 32 12
Q 110 78 20
R 200 48 21

Analyzing Software Measurement Data ◾ 289

 c. List any additional information/metrics data that you would like
to have seen.

Test Phase

Defects Found in
Test-First Developed

Code (10,000 Lines Total)

Defects Found in
Remainder of Code
(8000 Lines Total)

Specification and design
inspection

10 16

Unit test 89 32
System and integration test 15 80
12 months of operational use 16 16
Overall 130 144

REFERENCE
Figueira, J., Salvatore G., Matthias E., Multiple Criteria Decision Analysis:
State of the Art Surveys, Springer Science + Business Media, Inc., New York,
ISBN 0-387-23081-5, 2005.

FURTHER READING
 There are several good books on statistics and their application.

 Chatfield C., Statistics for Technology: A Course in Applied Statistics Third Edition
(Revised), Chapman and Hall, London, England, 1998.

 Ott R.L. and Longnecker M.T., An Introduction to Statistical Methods and Data
Analysis 6th Edition, Duxbury Press, Pacific Grove, California and United
Kingdom, 2008.

 The book by Siegel and Castellan is a classic text on nonparametric statis-
tics, while the recent book by Kraska-Miller is geared for practical applica-
tion by students and practitioners.

 Kraska-Miller M., Nonparametric Statistics for Social and Behavioral Science, CRC
Press, Boca Raton, 2014.

 Siegel S. and N. Castellan N.J., Jr., Nonparametric Statistics for the Behavioral
Sciences, 2nd edition, McGraw-Hill, New York, 1988.

 For descriptions of box plots and other exploratory data analysis, consult
Hoaglin, Mosteller and Tukey.

 Hoaglin D. C., Mosteller F., and Tukey J.W., Understanding Robust and Exploratory
Data Analysis, John Wiley and Sons, New York, 2000.

290 ◾ Software Metrics

 Sometimes, you have two datasets representing the same situation. Each
is different from the other, in terms of distribution, mean or variance, but
both were collected with reasonable care. This problem arises frequently
but is rarely discussed in standard statistical texts; Barford explains how
to tell which is the better dataset for answering your questions.

 Barford, N. C., Experimental Measurements: Precision, Error and Truth Second
Edition, Addison-Wesley, Reading, Massachusetts, 1985.

 For an excellent overview of MCDA, you should consult:

 Vincke P., Multicriteria Decision Aid, John Wiley and Sons, New York, 1992.

 Additional references on multiattribute analysis methods are:

 Roy B., Decision aid and decision making, European Journal of Operational
Research, 45, 324–331, 1990.

 Saaty T.L. and Vargas L.G., Models, Methods, Concepts & Applications of the
Analytic Hierarchy Process Second Edition, Springer, New York, 2012.

291

C h a p t e r 7

Metrics for Decision
Support
The Need for Causal Models*

The ultimate goal for software metrics is to help software profes-
sionals (be they developers, testers, managers, or maintainers) make

decisions under uncertainty. As explained so far, we are ultimately inter-
ested in knowing things like how much effort and time will be required to
produce a system to a particular set of requirements, how much more test-
ing will be needed before the system has sufficiently few bugs, how much
effort can we save by using some particular tool, etc. All of these deci-
sions involve uncertainty, risk, and trade-offs. Whereas the other chapters
in this book provide the tools for identifying and collecting the specific
metrics to capture the underlying attributes involved in these problems,
this chapter focuses on how to incorporate these metrics into a rational
decision-making framework.

Several years ago at a leading international software metrics confer-
ence, which attracted nearly a thousand delegates, a keynote speaker
recounted an interesting story about a company-wide metrics program
that he had been instrumental in setting up. He said that one of the main
objectives of the program was to achieve process improvement by learn-
ing from metrics what process activities worked and what ones did not.

* This chapter is based on collaborative work with Martin Neil.

292 ◾ Software Metrics

To do this, the company looked at those projects that, in metrics terms,
were considered most successful. These were the projects with especially
low rates of customer-reported defects, measured by defects per thousand
lines of code (KLOC). The idea was to learn what processes characterized
such successful projects. A number of such “star” projects were identified,
including some that achieved the magical perfect quality target of zero
defects per KLOC in the first six months post-release. But, it turned out
that what they learned from this was very different from what they had
expected. Few of the star projects were, in fact, at all successful from any
commercial or subjective perspective:

The main explanation for the very low number of defects reported
by customers was that they were generally so poor that they never
got properly completed or used.

This story exposes the classic weakness of relying only on traditional
static metrics: the omission of sometimes obvious and simple causal fac-
tors that can have a major explanatory effect on what is observed and
learnt. If you are managing a software development project and you hear
that very few defects were found during a critical testing phase, is that
good news or bad news? Of course it depends on the testing effort, just as
it does if you heard that a large number of defects were discovered. The
danger is to assume that defects found in testing correlates with defects
found in operation, and that it is thus possible to build a regression model
(in the sense of Chapter 6) in which defects in operation (the uncertain
quantity we are trying to predict) is a function of the variable defects found
in test (the known quantity we can measure). Similarly, it is dangerous to
assume that we can build regression models in which other metrics, such
as size and complexity metrics, act as independent variables that can pre-
dict dependent variables like defects and maintenance effort. In Section
7.1, we will explain why such attempts at prediction based on correlation
are not normally effective and cannot be used for risk assessment.

If you are interested in, say, predicting defects in operation from infor-
mation gained during development and testing, then certainly metrics
like defects found in test and other size and complexity metrics might be
useful pieces of evidence. A rational way to use this evidence to update
your beliefs about defects in operation is to use Bayesian reasoning. When
there are multiple, dependent metrics then we use Bayesian reasoning
together with causal models, that is, Bayesian networks (BNs). We explain
the basics of Bayesian Reasoning and BNs in Section 7.2. In Section 7.3,

Metrics for Decision Support ◾ 293

we describe a range of BNs that have been effectively used in software
projects, including BNs that enable risk trade-off analysis. We also discuss
the practical issues in building and deploying BNs in software projects.
In Section 7.4, we look at typical approaches to risk assessment used by
software project managers and demonstrate how the BN approach can
provide far more logic and insight.

There are numerous free and commercial tools available that make it
very easy to build and run the BN models described in this chapter (the
book (Fenton and Neil 2012) provides a comprehensive overview). In par-
ticular, the AgenaRisk BN tool (Agena 2014) can be downloaded free and
it contains all of the models described in this chapter.

7.1 FROM CORRELATION AND REGRESSION TO CAUSAL
MODELS

Standard statistical approaches to risk assessment and prediction in all
scientific disciplines seek to establish hypotheses from relationships dis-
covered in data. To take a nonsoftware example, suppose we are inter-
ested in the risk of fatal automobile crashes. Table 7.1 gives the number of
crashes resulting in fatalities in the United States in 2008 broken down by
month (Source: US National Highways Traffic Safety Administration). It
also gives the average monthly temperature.

We plot the fatalities and temperature data in a scatterplot graph as
shown in Figure 7.1.

There seems to be a clear relationship between temperature and fatali-
ties—fatalities increase as the temperature increases. Indeed, using the

TABLE 7.1 Fatal Automobile Crashes per Month

Month Total Fatal Crashes Average Monthly Temperature (°F)

January 297 17.0
February 280 18.0
March 267 29.0
April 350 43.0
May 328 55.0
June 386 65.0
July 419 70.0
August 410 68.0
September 331 59.0
October 356 48.0
November 326 37.0
December 311 22.0

294 ◾ Software Metrics

standard statistical tools of correlation and p-values, statisticians would
accept the hypothesis of a relationship as “highly significant” (the correla-
tion coefficient here is approximately 0.869 and it comfortably passes the
criteria for a p-value of 0.01).

However, in addition to serious concerns about the use of p-values
generally (as described comprehensively in Ziliak and McCloskey 2008),
there is an inevitable temptation arising from such results to infer causal
links such as, in this case, higher temperatures cause more fatalities. Even
though any introductory statistics course teaches that correlation is not
causation, the regression equation is typically used for prediction (e.g., in
this case the equation relating N to T is used to predict that at 80°F we
might expect to see 415 fatal crashes per month).

But there is a grave danger of confusing prediction with risk assess-
ment. For risk assessment and risk management the regression model is
useless, because it provides no explanatory power at all. In fact, from a
risk perspective this model would provide irrational, and potentially dan-
gerous, information: it would suggest that if you want to minimize your
chances of dying in an automobile crash you should do your driving when
the highways are at their most dangerous, in winter.

One obvious improvement to the model, if the data are available, is
to factor in the number of miles traveled (i.e., journeys made). But there
are other underlying causal and influential factors that might do much to
explain the apparently strange statistical observations and provide better

450
430
410
390
370
350

To
ta

l f
at

al
 cr

as
he

s (
N

)

Total fatal crashes

Linear (total fatal
crashes)

330

310
290
270
250

15.0 35.0 55.0
Temperature (Fahrenheit) (T)

75.0

N = 2.144 × T + 243.55
corr. = 0.869

FIGURE 7.1 Scatterplot of temperature against road fatalities (each dot repre-
sents a month).

Metrics for Decision Support ◾ 295

insights into risk. With some common sense and careful reflection, we can
recognize the following:

• Temperature influences the highway conditions (which will be worse
as temperature decreases).

• Temperature also influences the number of journeys made; people
generally make more journeys in spring and summer and will gener-
ally drive less when weather conditions are bad.

• When the highway conditions are bad, people tend to reduce their
speed and drive more slowly. So highway conditions influence speed.

• The actual number of crashes is influenced not just by the number of
journeys, but also the speed. If relatively few people are driving, and
taking more care, we might expect fewer fatal crashes than we would
otherwise experience.

The influence of these factors is shown in Figure 7.2.
The crucial message here is that the model no longer involves a simple

single causal explanation; instead, it combines the statistical informa-
tion available in a database (the “objective” factors) with other causal
 “subjective” factors derived from careful reflection. These factors now
interact in a nonlinear way that helps us to arrive at an explanation for
the observed results. Behavior, such as our natural caution to drive slower
when faced with poor road conditions, leads to lower accident rates (peo-
ple are known to adapt to the perception of risk by tuning the risk to toler-
able levels. This is formally referred to as risk homeostasis). Conversely, if
we insist on driving fast in poor road conditions then, irrespective of the
temperature, the risk of an accident increases and so the model is able to
capture our intuitive beliefs that were contradicted by the counterintuitive
results from the simple regression model.

The role played in the causal model by driving speed reflects human
behavior. The fact that the data on the average speed of automobile driv-
ers was not available in a database explains why this variable, despite its
apparent obviousness, did not appear in the statistical regression model.
The situation whereby a statistical model is based only on available data,
rather than on reality, is called “conditioning on the data.” This enhances
convenience but at the cost of accuracy.

By accepting the statistical model we are asked to defy our senses and
experience and actively ignore the role unobserved factors play. In fact, we

296 ◾ Software Metrics

cannot even explain the results without recourse to factors that do not appear
in the database. This is a key point: with causal models we seek to dig deeper
behind and underneath the data to explore richer relationships missing from
over-simplistic statistical models. In doing so, we gain insights into how best
to control risk and uncertainty. The regression model, based on the idea that
we can predict automobile crash fatalities based on temperature, fails to
answer the substantial question: how can we control or influence behavior to
reduce fatalities. This at least is achievable; control of weather is not.

Statistical regression models have played a major role in software predic-
tion with size (whether it be solution size, as in complexity metrics or LOC-
based approaches, or problem size, as in function point-based approaches)
being the key driver. Thus, it is assumed that we can fit a function F such that

Temperature (T)

Driving conditions (D)

Driving speed (S)

Number of accidents
(N) Number of miles (M)

Risk of accident (R)

FIGURE 7.2 Causal model for fatal crashes.

Metrics for Decision Support ◾ 297

 Defects = F (size, complexity)

Figures 7.3 through 7.6 show data from a major case study (Fenton
and Ohlsson 2000) that highlighted some of the problems with these
approaches. In each figure the dots represent modules (which are typi-
cally self-contained software components of approximately 2000 LOC)
sampled at random from a very large software system. Figure 7.3 (in
which “faults” refers to all known faults discovered pre- and post-delivery)
confirms what many studies have shown: module size is correlated with
number of faults, but is not a good predictor of it. Figure 7.4 shows that
complexity metrics, such as cyclomatic complexity (see Section 9.2.2.1 for
the details of this metric), are not significantly better (and in any case are

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10,000

Fa
ul

ts

Lines of code

FIGURE 7.3 Scatterplot of LOC against all faults for major system (each dot rep-
resents a module).

0
20
40
60
80

100
120
140
160

Pre-release

0
5

10
15
20
25
30
35

Post-release

Fa
ul

ts

Fa
ul

ts

Cyclomatic complexityCyclomatic complexity
0 1000 2000 3000 0 1000 2000 3000

FIGURE 7.4 Scatterplots of cyclomatic complexity against number of pre- and
post-release faults for release n + 1 (each dot represents a module).

298 ◾ Software Metrics

very strongly correlated to LOC). This is true even when we separate out
pre- and post-delivery faults.

Figure 7.5 shows that there is no obvious empirical support for the widely
held software engineering theory that smaller modules are less “fault-
prone” than large ones. The evidence here shows a random relationship.

But the danger of relying on statistical models is most evident when we
consider the relationship between the number of pre-release faults (i.e.,
those found during pre-release testing) and the number of post-release
faults (the latter being the number you really are most interested in predict-
ing). The data alone, as shown in Figure 7.6 (an empirical result that has
been repeated in many other systems) shows a relationship that is contrary
to widely perceived assumptions. Instead of the expected strong (positive)
correlation between pre-release and post-release faults (i.e., the expectation
that modules which are most fault-prone pre-release will be the ones that are
most fault-prone post-release), there is strong evidence of a negative correla-
tion. The modules that are very fault-prone pre-release are likely to reveal
very few faults post-release. Conversely, the truly “fault-prone” modules
post-release are the ones that mostly revealed few or no faults pre-release.*

There are, of course, very simple explanations for the phenomenon
observed in Figure 7.6. One possibility is that most of the modules that

* These results are potentially devastating for some regression-based fault prediction models,
because many of those models were “validated” on the basis of using pre-release fault counts as a
surrogate measure for operational quality.

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 2000 4000 6000 8000 10,000

Fa
ul

ts
/L

O
C

Lines of code

FIGURE 7.5 Scatter plot of module fault density against size (each dot represents
a module).

Metrics for Decision Support ◾ 299

had many pre-release and few post-release faults were very well tested. The
amount of testing is therefore a very simple explanatory factor that must be
incorporated into any predictive model of defects. Similarly, a module that
is simply never executed in operation will reveal no faults no matter how
many are latent. Hence, operational usage is another obvious explanatory
factor that must be incorporated.

The absence of any causal factors that explain variation is a feature also
of the classic approach to software metrics resource prediction, where again
the tendency (as we will see in Chapter 8) has been to produce regression-
based functions of the form:

 Effort = F(size, process quality, product quality)
 Time = F(size, process quality, product quality)

The basic problems with this approach are:

• It is inevitably based on limited historical data of projects that just
happened to have been completed. Based on typical software projects
these are likely to have produced products of variable quality, includ-
ing many that are poor. It is therefore difficult to interpret what a
figure for effort prediction based on such a model actually means.

30

20

10

0
0 8040

Pre-release faults

Po
st

-r
el

ea
se

 fa
ul

ts

120 160

FIGURE 7.6 Scatter plot of pre-release faults against post-release faults for a
major system (each dot represents a module).

300 ◾ Software Metrics

• It fails to incorporate any true causal relationships, relying often on
the fundamentally flawed assumption that somehow the solution
size can influence the amount of resources required. This is contrary
to the economic definition of a production model where

 Output = F(input)

 Rather than

 Input = F(output).

• There is a flawed assumption that projects do not have prior resource
constraints. In practice all projects do, but these cannot be accommo-
dated in the models. Hence, the “prediction” is premised on impos-
sible assumptions and provides little more than a negotiating tool.

• The models are effectively “black boxes” that hide/ignore crucial
assumptions explaining the relationships and trade-offs between the
various inputs and outputs.

• The models provide no information about the inevitable inherent
uncertainty of the predicted outcome; for a set of “inputs” the mod-
els will return a single point value with no indication of the range or
size of uncertainty.

To provide genuine risk assessment and decision support for managers,
we need to provide the following kinds of predictions:

• For a problem of this size, and given these limited resources, how
likely am I to achieve a product of suitable quality?

• How much can I scale down the resources if I am prepared to put up
with a product of specified lesser quality?

• The model predicts that I need 4 people over 2 years to build a system of
this kind of size. But I only have funding for 3 people over one year. If I
cannot sacrifice quality, how good must the staff be to build the systems
with the limited resources? Alternatively, if my staff are no better than
average and I cannot change them, how much required functionality
needs to be cut in order to deliver at the required level of quality?

Our aim is to show that causal models, using Bayesian networks,
can provide relevant predictions, as well as incorporating the inevitable

Metrics for Decision Support ◾ 301

uncertainty, reliance on expert judgment, and incomplete information
that are pervasive in software engineering.

7.2 BAYES THEOREM AND BAYESIAN NETWORKS
While Section 7.1 provided the rationale for using causal models rather
than purely statistically driven models, it provided no actual mechanism
for doing so. The necessary mechanism is driven by Bayes theorem, which
provides us with a rational means of updating our belief in some unknown
hypothesis in light of new or additional evidence (i.e., observed metrics).

At their core, all of the decision and prediction problems identified so
far incorporate the basic causal structure shown in Figure 7.7.

There is some unknown hypothesis H about which we wish to assess
the uncertainty and make some decision. Does our system contain critical
bugs? Does it contain sufficiently few bugs to release? Will it require more
than 3 person months of effort to complete the necessary functionality?
Will the system fail within a given period of time?

Consciously or unconsciously we start with some (unconditional) prior
belief about H. Taking a nonsoftware example, suppose that we are in charge
of a chest clinic and are interested in knowing whether a new patient has
cancer; so H is the hypothesis that the patient has cancer. Suppose that 10%
of previous patients who came to the clinic were ultimately diagnosed with
cancer. Then a reasonable prior belief for the probability H is true, written
P(H), is 0.1. This also means that the prior P(not H) = 0.9.

One piece of evidence E we might discover that could change our prior
belief is whether or not the person is a smoker. Suppose that 50% of the
people coming to the clinic are smokers, so P(E) = 0.5. If we discover that
the person is indeed a smoker, to what extent do we revise our prior judg-
ment about the probability P(H) that the person has cancer? In other
words we want to calculate the probability of H given the evidence E. We
write this as P(H|E); it is called the conditional probability of H given E
and because it represents a revised belief about H once we have seen the
evidence E we also call it the posterior probability of H. To arrive at the
correct answer for the posterior probability, we use a type of reasoning

H
(hypothesis)

E
(evidence)

FIGURE 7.7 Causal view of evidence.

302 ◾ Software Metrics

called Bayesian inference, named after Thomas Bayes who determined the
necessary calculations for it in 1763.

What Bayes recognized was that (as in this and many other cases) we
might not have direct information about P(H|E) but we do have prior
information about P(E|H). The probability P(E|H) is called the likelihood
of the evidence—it is the chance of seeing the evidence E if H is true*
(generally we will also need to know P(not E|H)). Indeed, we can find out
P(E|H) simply by checking the proportion of people with cancer who are
also smokers. Suppose, for example, that we know that P(E|H) = 0.8.

Now Bayes theorem tells us how to compute P(H|E) in terms of P(E|H).
It is simply:

P H E

P E H P H
P E

()
() ()

()
|

|
=

×

In this example, since P(H) = 0.1; P(E|H) = 0.8; P(E) = 0.5, it follows
that P(H|E) = 0.16. Thus, if we get evidence that the person is a smoker
we revise our probability of the person having cancer (it increases from
0.1 to 0.16).

In general, we may not know P(E) directly, so the more general version
of Bayes theorem is one in which P(E) is also determined by the prior
likelihoods:

P H E

P E H P H
P E

P E H P H
P E H P H E notH P n

()
() ()

()
() ()

() () () (
|

| |
| |

=
×

=
×

× + × ootH)

EXAMPLE 7.1

Assume one in a thousand people has a particular disease. Then our prior
belief is

 P(H) = 0.001, so P(not H) = 0.999

Also, assume a test to detect the disease has 100% sensitivity (i.e., no false
negatives) and 95% specificity (meaning 5% false positives). Then if E repre-
sents the Boolean variable “Test positive for the disease,” we have

* For simplicity, we assume for the moment that the hypothesis and the evidence are simple Boolean
propositions, that is, they are simply either true or false. Later on, we will see that the framework
applies to arbitrary discrete and even numeric variables.

Metrics for Decision Support ◾ 303

 P(E|notH) = 0.05

 P(E|H) = 1

Now suppose a randomly selected person tests positive. What is the prob-
ability that the person actually has the disease? By Bayes theorem this is

P H E

P E H P H
P E H P H E notH P notH()

() ()
() () () ()

.
.|

|
| |=

+
=

×
×

1 0 001
1 0 001++ ×

=

0 05 0 999
0 01963

. .
.

So there is a less than 2% chance that a person testing positive actually
has the disease. For every thousand people tested, there will be on average
50 false positives and only 1 true positive. Bayes theorem gives us a way to
show the impact of the false positives.

While Bayes theorem is a rational way of revising beliefs in light of
observing new evidence, it is not easily understood by people without a
statistical/mathematical background. Moreover, as Example 7.1 shows,
the results of Bayesian calculations can appear, at first sight, as counter-
intuitive. Indeed, in a classic study (Casscells et al. 1978) when Harvard
Medical School staff and students were asked to calculate the probability
of the patient having the disease (using the exact assumptions stated in
Example 7.1) most gave the wildly incorrect answer of 95% instead of the
correct answer of less than 2%.

If Bayes theorem is difficult for lay people to compute and understand
in the case of a single hypothesis and piece of evidence (as in Figure 7.7),
the difficulties are obviously compounded when there are multiple related
hypotheses and evidence as in the example of Figure 7.8.

Visit to
Asia?

Has
tuberculosis

Has lung
cancer

Has
bronchitis

Dyspnea?
Positive
x-ray?

Smoker?

FIGURE 7.8 Bayesian network for diagnosing disease.

304 ◾ Software Metrics

As in Figure 7.7 the nodes in Figure 7.8 represent variables (which may
be known or unknown) and the arcs* represent causal (or influential) rela-
tionships. In addition to the graphical structure we specify, for each node,
a node probability table (NPT) (such as the examples shown in Figure 7.9).
These tables capture the relationship between a node and it parents by
specifying the probability of each outcome (state) given every combination
of parent states. The resulting model is called a Bayesian network (BN).

So, a BN is a directed graph together with a set of probability tables. The
directed graph is referred to as the “qualitative” part of the BN, while the
probability tables are referred to as the “quantitative” part.

The BN in Figure 7.8 is intended to model the problem of diagnos-
ing diseases (TB, cancer, bronchitis) in patients attending a chest clinic.
Patients may have symptoms (like dyspnea—shortness of breath) and can
be sent for diagnostic tests (x-ray); there may be also underlying causal
factors that influence certain diseases more than others (such as smoking,
visit to Asia).

To use Bayesian inference properly in this type of network necessar-
ily involves multiple applications of Bayes theorem in which evidence is
“propagated” throughout. This process is complex and quickly becomes
infeasible when there are many nodes and/or nodes with multiple states.
This complexity is the reason why, despite its known benefits, there was
for many years little appetite to use Bayesian inference to solve real-world
decision and risk problems. Fortunately, due to breakthroughs in the late
1980s that produced efficient calculation algorithms, there are now widely
available tools that enable anybody to do the Bayesian calculations without
ever having to understand, or even look at, a mathematical formula. These
developments were the catalyst for an explosion of interest in BNs. Using
such a tool we can do the kind of powerful reasoning shown in Figure 7.10.

* Some of the arcs in Figure 7.8 are dotted. This simply means there are some “hidden” nodes
through which the causal or influential relationship passes.

Yes 0.01
No 0.99

Probability table for “visit to Asia?”

Smoker? Yes No
Yes 0.6 0.3
No 0.4 0.7

Probability table for “bronchitis?”

FIGURE 7.9 Node Probability Table (NPT) examples.

Metrics for Decision Support ◾ 305

Specifically,

• With the prior assumptions alone (Figure 7.10a), Bayes theorem
computes what are called the prior marginal probabilities for the dif-
ferent disease nodes (note that we did not “specify” these probabili-
ties—they are computed automatically; what we specified were the
conditional probabilities of these diseases given the various states of
their parent nodes). So, before any evidence is entered the most likely
disease is bronchitis (45%).

• When we enter evidence about a particular patient, the probabilities
for all of the unknown variables get updated by the Bayesian infer-
ence. So, in Figure 7.10b once we enter the evidence that the patient
has dyspnea and is a nonsmoker, our belief in bronchitis being the
most likely disease increases (75%).

Visit to
Asia?

(c)

(a)

(d)

(b)

yes yes yes yes yes yes2.5% 2.4% 75.4%

24.6%97.5% 97.6%no no no

1%
Has tuberculosis Has tuberculosis

Has tuberculosis

Has lung cancer

Has lung cancer

Has bronchitis

Has bronchitis Has tuberculosis

Has lung cancer

Has lung cancer

Has bronchitis

Has bronchitis

5.5% 45%

55%94.5%99%no

yes 25.6% 24.6% 56.5% 63.2% 12.6% 45.9%

54.1%87.4%36.8%
43.5%75.4%74.4%no

yes yes

no no

yes

no

yes

no

yes

no

no no

Visit to
Asia?

Visit to
Asia?

Visit to
Asia?

Positive
x-ray?

Positive
x-ray?

Positive
x-ray?

Positive
x-ray?

Dyspnea?

Dyspnea?

Dyspnea

Dyspnea?

Smoker?

Smoker? Smoker?

Smoker?

Scenario 1: no

Scenario 1: yes Scenario 1: yes

Scenario 1: yes Scenario 1: yes

Scenario 1: no Scenario 1: yes Scenario 1: no

Scenario 1: yes

FIGURE 7.10 Reasoning within the Bayesian network. (a) Prior beliefs point
to bronchitis as most likely, (b) patient is “nonsmoker” experiencing dyspnea
(shortness of breath): strengthens belief in bronchitis, (c) positive x-ray result
increases probability of TB and cancer but bronchitis still most likely, (d) visit to
Asia makes TB most likely now.

306 ◾ Software Metrics

• If a subsequent x-ray test is positive (Figure 7.10b) our belief in both
TB (26%) and cancer (25%) are raised but bronchitis is still the most
likely (57%).

• However, if we now discover that the patient visited Asia (Figure
7.10d) we overturn our belief in bronchitis in favor of TB (63%).

Note that we can enter any number of observations anywhere in the BN
and update the marginal probabilities of all the unobserved variables. As
the above example demonstrates, this can yield some exceptionally pow-
erful analyses that are simply not possible using other types of reasoning
and classical statistical analysis methods.

In particular, BNs offer the following benefits:

• Explicitly model causal factors.

• Reason from effect to cause and vice versa.

• Overturn previous beliefs in the light of new evidence (also called
“explaining away”).

• Make predictions with incomplete data.

• Combine diverse types of evidence including both subjective beliefs
and objective data.

• Arrive at decisions based on visible auditable reasoning (unlike
blackbox modeling techniques there are no “hidden” variables and
the inference mechanism is based on a long-established theorem).

With the advent of the BN algorithms and associated tools, it is there-
fore no surprise that BNs have been used in a range of applications that
were not previously possible with Bayes theorem alone.

7.3 APPLYING BAYESIAN NETWORKS TO THE PROBLEM
OF SOFTWARE DEFECTS PREDICTION

Once we think in terms of causal models that relate unknown hypotheses
and evidence, we are able to make much better use of software metrics
and arrive at more rational predictions that not only avoid the kind of fal-
lacies we introduced earlier, but are also able to explain apparent empiri-
cal anomalies. This is especially evident in the area of defect prediction
(Fenton and Neil 1999).

Metrics for Decision Support ◾ 307

7.3.1 A Very Simple BN for Understanding Defect Prediction

When we count defects found in testing what we actually have is evidence
about the unknown variable we are most interested in, namely the number
of defects present. A very simple, but rational, causal model is shown in
Figure 7.11.

Clearly, the number of defects present will influence the number of
defects found, but the latter will also be influenced by the testing quality
(as we will see later, this will turn out to be a fragment of a larger model,
with for example the node representing defects present being a synthesis
of a number of factors including process quality and problem complexity).

To keep things as simple as possible to start with, we will assume that
the number of defects is classified into just three states (low, medium,
high) and that testing quality is classified into just two (poor, good). Then
the NPT for the node defects found in testing might reasonably be speci-
fied as shown in Table 7.2. For example, this specifies that if testing quality
is “poor” and there are a “medium” number of defects present then there
is a 0.9 probability (90% chance) that defects found is “low,” 0.1 probabil-
ity (10% chance) that defects found is “medium,” and 0 probability that
defects found is “high.”

So, if testing quality is “poor,” then defects found is likely to be “low”
even when there are a high number of defects present. Conversely, if test-
ing quality is “good” we assume that most (but not all) defects present will

Defects
present

Testing
quality

Defects
found in

testing

FIGURE 7.11 Simple causal model for defects found.

TABLE 7.2 NPT for defects found node

Defects Present
Testing Quality

Low Medium High

Poor Good Poor Good Poor Good
Low 1.0 1.0 0.9 0.1 0.7 0.0
Medium 0.0 0.0 0.1 0.9 0.2 0.2
High 0.0 0.0 0.0 0.0 0.1 0.8

308 ◾ Software Metrics

be found. Assuming that the prior probabilities for the states of the nodes
defect present and testing quality are all equal, then in its marginal state
the model is shown in Figure 7.12.

One of the major benefits of the causal models that we are building is
that they enable us to reason in both a “forward” and a “reverse” direction.
That is, we can identify the possible causes given the observation of some
effect. In this case, if the number of defects found is observed to be “low”
the model will tell us that low testing quality and a low number of defects
present are both possible explanations (perhaps with an indication as to
which one is the most likely explanation) as shown in Figure 7.13.

Low
Defects found in testing

Defects present
Low

Testing quality

Poor

Good

70.27%

29.73%

Medium

Medium

100%

54.05%
27.03%

18.92%

Scenario 1: Low
High

High

FIGURE 7.13 Low number of defects found.

Defects found in testing

Defects present

Low

Medium
High

Low 33.33%
33.33%
33.33%

61.67%
23.33%

15%

Medium
High

Testing quality

Poor

Good

50%

50%

FIGURE 7.12 Model in its initial (marginal) state.

Metrics for Decision Support ◾ 309

The power of the model becomes clearer as we discover more
 “evidence.” Suppose, for example, that we also have independent evi-
dence that the testing quality is good. Then, as shown in Figure 7.14a,
we can deduce with some confidence that there were indeed a low num-
ber of defects present. However, if it turns out that the testing qual-
ity is poor, as shown in Figure 7.14b we are little wiser than when we
started; the evidence of low number of defects found in testing has
been “explained away” by the poor testing quality; we now have no
real knowledge of the actual number of defects present, despite the low
number found in testing.

Defects present

(b)

(a)

Low 90.91%
9.09%

100%

Scenario 1: Low

Scenario 1: Low

Scenario 1: Poor

Scenario 1: Good

Medium

Medium

Medium

Medium

High

High

High

High

Defects present Testing quality
38.46%

34.62%

26.92%

Testing quality

Defects found in testing

Defects found in testing

Low

Good 100%

100%

Poor

Good

100%PoorLow

Low

FIGURE 7.14 Effect of different evidence about testing quality. (a) Testing quality
is good, (b) testing quality is poor.

310 ◾ Software Metrics

7.3.2 A Full Model for Software Defects and Reliability Prediction

A more complete causal model for software defects and reliability predic-
tion is shown in Figure 7.15 (this is itself a simplified version of a model
that has been extensively used in a number of real software development
environments, Fenton et al. 2007).

In this case the number of defects found in operation* (i.e., those found
by customers) in a software module is what we are really interested in
predicting. We know this is clearly dependent on the number of residual
defects. But it is also critically dependent on the amount of operational
usage. If you do not use the system you will find no defects irrespective
of the number there. The number of residual defects is determined by the
number you introduce during development minus the number you suc-
cessfully find and fix. Obviously defects found and fixed are dependent on
the number introduced. The number introduced is influenced by problem
complexity and design process quality. The better the design the fewer the

* Handling numeric nodes such as the number of defects found in operation in a BN was, until rela-
tively recently, a major problem because it was necessary to “discretize” such nodes using some
predefined range and intervals. This is cumbersome, error prone, and highly inaccurate [see
Fenton et al. (2008) for a comprehensive explanation]. Such inaccuracies, as well as the wasted
effort over selecting and defining discretization intervals, can now be avoided by using dynamic
discretization (in particular, the algorithm described in Neil et al. (2007) and implemented in
AgenaRisk). Dynamic discretization allows users to simply define a numeric node by a single
range (such as—infinity to infinity, or 0–100, 0 to infinity, etc.).

Design process
quality

Problem
complexity

Defects inserted

Testing quality Defects found
and fixed

Defects found in
operation

Operational
usage

Residual defects

FIGURE 7.15 BN model for software defects and reliability prediction.

Metrics for Decision Support ◾ 311

defects and the less complex the problem the fewer defects. Finally, how
many defects you find is influenced not just by the number there to find
but also by the amount of testing effort.

The task of defining the NPTs for each node in this model is clearly more
challenging than the previous examples. In many situations we would need
the NPT to be defined as a function rather than as an exhaustive table of
all potential parent state combinations. Some of these functions are deter-
ministic rather than probabilistic: for example, the “Residual defects” is
simply the numerical difference between the “Defects inserted” and the
“Defects found and fixed.” In other cases, we can use standard statisti-
cal functions. For example, in this version of the model we assume that
“Defects found and fixed” is a binomial B(n,p) distribution where n is the
number of defects inserted and p is the probability of finding and fixing
a defect (which in this case is derived from the “testing quality”); in more
sophisticated versions of the model the p variable is also conditioned on n
to reflect the increasing relative difficulty of finding defects as n decreases.
Table 7.3 lists the full set of conditional probability distributions for the
nodes (that have parents) of the BN model of Figure 7.15.

The nodes “design quality,” “complexity,” “testing quality,” and “opera-
tional usage” are all examples of what are called ranked nodes (Fenton
et al. 2007); ranked nodes have labels like {very poor, poor, average, good,
very good} but they have an underlying [0,1] scale that makes it very easy
to define relevant probability tables for nodes which have them as parents
(as in some of the functions as described in Table 7.3).* The nodes with-
out parents are all assumed to have a prior uniform distribution, that is,
one in which any state is equally as likely as any other state (in the “real”
models the distributions for such nodes would normally not be defined as

* Again note that AgenaRisk provides comprehensive support for ranked nodes and their associated
NPTs.

TABLE 7.3 Probability Distributions for the Nodes of BN Model in Figure 7.15

Node Name Probability Distribution

Defects found in
operation

Binomial (n, p) where n = “residual defects” and
p = “operational usage”

Residual defects Defects inserted − Defects found (and fixed) in testing
Defects found in
testing

Binomial (n, p) where n = “defects inserted” and p = “testing
quality

Defects inserted This is a distribution based on empirical data from a particular
organization. For full details see Fenton et al. (2007)

312 ◾ Software Metrics

uniform but would reflect the historical distribution of the organization
either from data or expert judgment).

We next illustrate the BN calculations (that are performed automati-
cally by the BN tool), which show that the case for using BNs as causal
models for software defects and reliability prediction is both simple and
compelling.

Figure 7.16 shows the marginal distributions of the model before any
evidence has been entered. So this represents our uncertainty before we
enter any specific information about this module. Since we assumed uni-
form distributions for nodes without parents we see, for example, that the
module is just as likely to have very high complexity as very low, and that
the number of defects found and fixed in testing is in a wide range where

Design process quality

Defects inserted

Testing quality

Very low 20%
20%
20%
20%
20%

Low
Medium

High
Very high

0.016
0.0080

0.0

0.1
0.064
0.048
0.032
0.016

0.0

0.2
0.16
0.12
0.08
0.04

0.0

0.08
0.06
0.04
0.02

0.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

Very low 20%
20%
20%
20%
20%

Low
Medium

High
Very high

Very low 20%
20%
20%
20%
20%

Low
Medium

High
Very high

Very low 20%
20%
20%
20%
20%

Low
Medium

High
Very high

Defects found in testing

Operational usage
Defects found in operation

Residual defects

Complexity

FIGURE 7.16 BN model with marginal distributions for variables superimposed
on nodes. All of the graphs are probability distributions, but there is a standard
convention to represent discrete distributions (such as the node testing quality)
with horizontal bars (i.e., the probability values are on the x-axis), whereas con-
tinuous/numeric distributions (such as the node defects found in testing) have
vertical bars (i.e., the probability values are on the y-axis).

Metrics for Decision Support ◾ 313

the median value is about 18–20 (the prior distributions here were for a
particular organization’s modules).

Figure 7.17 shows the result of entering two observations about this
module:

 1. That it had zero defects found and fixed in testing; and

 2. That the problem complexity is “High”

Note that all the other probability distributions updated. The model is
doing both forward inference to predict defects in operation and backward
inference about, say, design process quality. Although the fewer than expected
defects found does indeed lead to a belief that the post-release faults will drop,
the model shows that the most likely explanation is inadequate testing.

So far, we have made no observation about operational usage. If, in fact,
the operational usage is “Very High” (Figure 7.18) then what we have done
is replicate the apparently counter-intuitive empirical observations we

Design process quality
Very low 11.024%

12.757%
16.827%

24.362%
35.029%

Low

Low

Medium
High

Very high

Very low

Medium
High

Very high

Low
Very low 20%

20%
20%
20%
20%

Medium
High

Very high

Very low
Low

Medium
High

Very high

0.12

0.06

0.0

1.076.641%
10.548%
5.771%
3.989%
3.051%

0.12
0.08
0.04

0.0

0.8
0.6
0.4
0.2
0.0

0.16
0.08

0.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

Defects inserted

Defects found in testing
Testing quality

Operational usage
Defects found in operation

Residual defects

Complexity

100%

Scenario 1: high

Scenario 1: 0

FIGURE 7.17 Zero defects in testing and high complexity observed.

314 ◾ Software Metrics

discussed in Section 7.1 whereby a module with no defects found in test-
ing has a high number of defects post-release.

But suppose we find out that the test quality was “Very High” (Figure 7.19).
Then we completely revise out beliefs. We are now fairly certain that

the module will be fault free in operation. Note also that the “explana-
tion” is that the design process is likely to be very high quality. This type
of reasoning is unique to Bayesian networks. It provides a means for deci-
sion makers (such as quality assurance managers in this case) to make
decisions and interventions dynamically as new information is observed.

7.3.3 Commercial Scale Versions of the Defect Prediction Models

The ability to do the kind of prediction and what-if analysis described in
the model in Section 7.3.2 has proved to be very attractive to organizations
that need to monitor and predict software defects and reliability, and that
already collect defect-type metrics. Hence, organizations such as Motorola
(Gras 2004), Siemens (Wang et al. 2006), and Philips (Fenton et al. 2007)

Design process quality
Very low 11.024%

12.757%
16.827%

24.362%
35.029%

76.641%
10.548%
5.771%
3.989%
3.051%

Low
Medium

High
Very high

0.12

0.06

0.0

1.0 0.12
0.08
0.04

0.0

0.12
0.08
0.04

0.0

0.8
0.6
0.4
0.2
0.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

0.0

0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

Very low
Low

Medium
High

Very high

Very low
Low

Medium
High 100%

100%

Scenario 1 : high

Scenario 1 : 0

Scenario 1 : very high

Very high

Very low
Low

Medium
High

Very high

Defects inserted

Defects found in testing
Testing quality

Operational usage

Residual defects

Defects found in operation

Complexity

FIGURE 7.18 Very high operational usage.

Metrics for Decision Support ◾ 315

have exploited models and tools originally developed in Fenton et al. (2002)
to build large-scale versions of the kind of model described in Section 7.3.2.

It is beyond the scope of this chapter to describe the details of these
models and how they were constructed and validated, but what typifies the
approaches is that they are based around a sequence of testing phases, by
which we mean those testing activities such as system testing, integration
testing, and acceptance testing that are defined as part of the companies’
software processes (and hence for which relevant defect and effort data
is formally recorded). In some cases a testing phase is one that does not
involve code execution, such as design review. The final “testing” phase is
generally assumed to be the software in operation. Corresponding to each
phase is a “subnet” like that in Figure 7.20, where a subnet is a component of
the BN with interface nodes to connect the component subnet to other par-
ent and child subnets. For the final “operational” phase, there is, of course,
no need to include the nodes associated with defect fixing and insertion.

The distributions for nodes such as “probability of finding defect” derive
from other subnets such as that shown in Figure 7.21. The particular nodes
and distributions will, of course, vary according to the type of testing phase.

Design process quality
Very low

2.409%
9.715%

27.87%
59.58%

100%

Low
Medium

High
Very high

0.6
0.3
0.0

1.0 0.8
0.6
0.4
0.2
0.0

0.8
0.6

0.2
0.0

0.4

0.8
0.6
0.4
0.2
0.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

0.0

0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

Very low
Low

Medium
High

Very high

Very low
Low

Medium
High 100%

Scenario 1 : high

Scenario 1 : 0

Scenario 1 : very high
100%

Very high

Very low
Low

Medium
High

Very high

Defects inserted

Defects found in testing
Testing quality

Operational usage

Residual defects

Defects found in operation

Complexity

Scenario 1 : very high

FIGURE 7.19 Testing quality is very high.

316 ◾ Software Metrics

Drivers of testing process quality

Testing team
experience

Testing tools quality

Testing process quality
Testing effortQuality of overall

documentation

Testing process
overall effectiveness

Testing coverage
achieved

Quality of
documented test

cases
Indicators of testing process quality

Probability of finding
defect

FIGURE 7.21 Typical subnet for testing quality.

Residual defects pre

Residual defects post

Probability of
fixing defect

Probability of
finding defect

Defects found Defects fixed New defects inserted

New defects removed

Defect insertion
probability

FIGURE 7.20 Defects phase subnet.

Metrics for Decision Support ◾ 317

To give a feel for the kind of expert elicitation and data that was required
to complete the NPTs in these kinds of models, we look at two examples,
namely the nodes “probability of finding a defect” and “testing process
overall effectiveness”:

EXAMPLE 7.2

The NPT for the node “probability of finding a defect.” This node is a contin-
uous node in the range [0,1] that has a single parent “testing process overall
effectiveness” that is a ranked node (in the sense of Fenton et al. (2007) on
a 5-point scale from “very low” to “very high”). For a specific type of testing
phase (such as integration testing), the organization had both data and expert
judgment that enabled them to make the following kinds of assessment:

• “Typically (i.e., for our average level of test quality) this type of testing
will find approximately 20% of the residual defects in the system.”

• “At its best (i.e., when our level of testing is at its best) this type of test-
ing will find 50% of the residual defects in the system; at its worst it
will only find 1%.”

On the basis of this kind of information, the NPT for the node “probability
of finding a defect” is a partitioned expression like the one in Table 7.4. Thus,
for example, when overall testing process effectiveness is Average, the prob-
ability of finding a defect is a truncated normal distribution over the range
[0,1] with mean 0.2 and variance 0.001.

EXAMPLE 7.3

The NPT for the node “testing process overall effectiveness.” This node is
a ranked node on a 5-point ranked scale from “very low” to “very high.” It
has three parents “testing process quality,” “testing effort,” and “quality of
overall documentation,” which are all also ranked nodes on the same 5-point

TABLE 7.4 NPT for Node “Probability of Finding a Defect”

Parent (Overall Testing Process
Effectiveness) State Probability of Finding a Defect

Very low TNormal (0.01, 0.001, 0, 1)
Low TNormal (0.1, 0.001, 0, 1)
Average TNormal (0.2, 0.001, 0, 1)
High TNormal (0.35, 0.001, 0, 1)
Very high TNormal (0.5, 0.001, 0, 1)

318 ◾ Software Metrics

ranked scale from “very low” to “very high.” Hence, the NPT in this case is a
table of 625 entries. Such a table is essentially impossible to elicit manually,
but the techniques described in Fenton et al. (2007) (in which ranked nodes
are mapped on to an underlying [0,1] scale) enabled experts to construct
a sensible table in seconds using an appropriate “weighted expression” for
the child node in terms of the parents. For example, the expression elicited
in one case was a truncated normal (on the range [0,1]) with mean equal to
the weighted minimum of the parent values (where the weights were: 5.0 for
“testing effort,” 4.0 for testing quality; and 1.0 for “documentation quality”)
and the variance was 0.001. Informally this weighted minimum expression
captured expert judgment like the following:

“Documentation quality cannot compensate for lack of testing effort,
although a good testing process is important.”

As an illustration, Figure 7.22 shows the resulting distribution for overall
testing process effectiveness when testing process quality is average, quality
of documentation is very high, but testing effort is very low.

Using a BN tool such as AgenaRisk the various subnets are joined,
according to the BN Object approach (Koller and Pfeffer 1997) as shown
in Figure 7.23. Here, each box represents a BN where only the “input”
and “output” nodes are shown. For example, for the BN representing the
defects in phase 2 the “input” node residual defects pre is defined by the
marginal distribution of the output node residual defects post of the BN
representing the defects in phase 1.

Testing process quality Quality of documentation

Overall testing process effectiveness

Testing effort
100%Very low

Low
Medium

Very high

Very low
Low

Medium

Very high
High High

Very low
Low

Medium

Very high
High

Very low
71.476%

21.225%

7.295%

100%

100%

Scenario 1 : medium Scenario 1 : very high Scenario 1 : very low

Low
Medium

Very high

High

FIGURE 7.22 Scenario for “overall testing effectiveness.”

Metrics for Decision Support ◾ 319

The general structure of the BN model proposed here is relevant for any
software development organization whose level of maturity includes defined
testing phases in which defect and effort data are recorded. However, it is
important to note that a number of the key probability distributions will
inevitably be organization/project specific. In particular, there is no way
of producing a generic distribution for the “probability of finding a defect”
in any given phase (and this is especially true of the operational testing
phase); indeed, even within a single organization this distribution will be
conditioned on many factors (such as ones that are unique to a particular
project) that may be beyond the scope of a workable BN model. At best, we
assume that there is sufficient maturity and knowledge within an organiza-
tion to produce a “benchmark” distribution in a given phase. Where neces-
sary this distribution can then still be tailored to take account of specific
factors that are not incorporated in the BN model. It is extremely unlikely
that such tailoring will always be able to take account of extensive relevant
empirical data; hence, as in most practically usable BN models, there will
be a dependence on subjective judgments. But at least the subjective judg-
ments and assumptions are made explicit and visible.

The assumptions about the “probability of finding a defect” are espe-
cially acute in the case of the operational testing phase because, for exam-
ple, in this phase the various levels of “operational usage” will be much
harder to standardize on. What we are doing here is effectively predict-
ing reliability and to do this accurately may require the operational usage
node to be conditioned on a formally defined operational profile such as
described in the literature on statistical testing (see Chapter 11).

Testing quality phase 1
Quality overall
documentation

Probability of finding defect

Defects phase 1

Defects phase 2

Defects phase 3

Defect insertion probability

Defect insertion probability

Defect insertion probability

Residual defects pre

Residual defects pre

Residual defects pre

Probability of fixing defect

Probability of fixing defect

Probability of fixing defect

Probability of finding defect

Probability of finding defect

Probability of finding defect

Residual defects post

Residual defects post

Residual defects post

Probability of finding
defect

Probability of finding defect

Quality of overall
documentation

Quality of overall
documentation

Testing quality phase 2

Testing quality phase 3

FIGURE 7.23 Sequence of software testing phases as linked BN objects.

320 ◾ Software Metrics

7.4 BAYESIAN NETWORKS FOR SOFTWARE PROJECT RISK
ASSESSMENT AND PREDICTION

In Section 7.1, we suggested that effective metrics-driven software risk
methods should be able to provide answers to the following types of
questions:

• For a problem of this size, and given these limited resources, how
likely am I to achieve a product of suitable quality?

• How much can I scale down the resources if I am prepared to put up
with a product of specified lesser quality?

• The model predicts that I need 4 people over 2 years to build a system
of this kind of size. But I only have funding for 3 people over one
year. If I cannot sacrifice quality, how good does the staff have to
be to build the systems with the limited resources? Alternatively, if
my staff are no better than average and I cannot change them, how
much required functionality needs to be cut in order to deliver at the
required level of quality?

We now describe a “project level software risk” model that has been
widely used and which provides support to help answer exactly these
types of questions. The model is a very general-purpose quality and risk
assessment model for large software projects. It was developed as part of
a major international consortium, with key empirical and expert judg-
ment provided by a range of senior software managers and developers.
Although it is beyond the scope of this chapter to describe the full details
of the model and its validation (these details are provided in Fenton et al.
2004), we can show how the model is used to predict different aspects of
resources and quality while monitoring and mitigating different types of
risks. The full model is shown in Figure 7.24, but is too complex to under-
stand all at once.

Figure 7.25 provides an easier to understand schematic view of the
model. We can think of the model as comprising six subnets (shown as
square boxes).

The subnets are:

• Distributed communications and management. Contains variables
that capture the nature and scale of the distributed aspects of the
project and the extent to which these are well managed.

Metrics for Decision Support ◾ 321

• Requirements and specification. Contains variables relating to the
extent to which the project is likely to produce accurate and clear
requirements and specifications.

• Process quality. Contains variables relating to the quality of the
development processes used in the project.

• People quality. Contains variables relating to the quality of people
working on the project.

• Functionality delivered. Contains all relevant variables relating to the
amount of new functionality delivered on the project, including the
effort assigned to the project.

Total team
size

Communications
management

quality
Subcontract
management

quality

Scale of
subcontracts

Scale of
distributed

communications

Internal
management

quality

Overall people
quality

Overall staff
quality

Staff
motivation

CMM level

Regularity of
reviews

Level of
independent

testing

Quality of
documentation

Development &
testing process

quality

Spec process
quality

Staff
turnover

Relevant
program
language

General
level of staff
experience

General
 level of staff

training

Staff quality
indicators

Requirements
complexity

Requirements and
specification

Process quality Staff qualityProcess quality
indicators

Stakeholder
involvement

Requirements
novelty

Requirements
difficulty

Requirements
stability

Specification
accuracy

Specification
clarity

Overall
process
quality

Total
effective

effort

Quality effort
FD differential

Level of
problem
reports

Defects per
KLOC post

release

User
satisfaction Delivered quality indicators

Delivered quality

Quality
delivered

New
functionality

delivered

Language
KLOC

delivered

Total number
inputs and

outputs

Number of
distinct GUI

screens

Functionality delivered
indicators

Functionality delivered

Project
duration

Resources

Average #
people full

time

Total effort
adjusted by

Brooks factor

Process and
prople quality

Overall
management

quality

Geographical
diversity

Number of
sites

Indicators of scale of
distributed
communications

Management and communication

FIGURE 7.24 Full BN model for software project risk.

322 ◾ Software Metrics

• Quality delivered. Contains all relevant variables relating to both the
final quality of the system delivered and the extent to which it pro-
vides user satisfaction (note the clear distinction between the two).

The full model enables us to cope with variables that cannot be observed
directly. Instead of making direct observations of the process and people
quality, the functionality delivered and the quality delivered, the states
of these variables are inferred from their causes and consequences. For
example, the process quality is a synthesis of the quality of the differ-
ent software development processes—requirements analysis, design, and
testing.

The quality of these processes can be inferred from “indicators.” Here,
the causal link is from the “quality” to directly observable values like the
results of project audits and of process assessments, such as the CMM. Of
course, only some organizations have been assessed to a CMM level, but
this need not be a stumbling block since there are many alternative indica-
tors. An important and novel aspect of our approach is to allow the model
to be adapted to use whichever indicators are available.

At its heart the model captures the classic trade-offs between:

• Quality (where we distinguish and model both user satisfaction—
this is the extent to which the system meets the user’s true require-
ments—and quality delivered—this is the extent to which the final
system works well).

Requirements and
specification

Distributed
communications
and management

Process
quality

Quality
delivered

Functionality
delivered

People
quality

FIGURE 7.25 Schematic for the project level model.

Metrics for Decision Support ◾ 323

• Effort (represented by the average number of people full-time who
work on the project).

• Time (represented by the project duration).

• Functionality (meaning functionality delivered).

So, for example, if you want a lot of functionality delivered with lit-
tle effort in a short time then you should not expect high quality. If you
need high quality then you will have to be more flexible on at least one
of the other factors (i.e., use more effort, use more time, or deliver less
functionality).

What makes the model so powerful, when compared with traditional
software cost models, is that we can enter observations anywhere in the
model to perform not just predictions but also many types of trade-off
analysis and risk assessment. So we can enter requirements for quality and
functionality and let the model show us the distributions for effort and
time. Alternatively, we can specify the effort and time we have available
and let the model predict the distributions for quality and functionality
delivered (measured in function points, which are described in Chapter
8). Thus, the model can be used like a spreadsheet—we can test the effects
of different assumptions.

To explain how this works we consider two scenarios called “New”
and “Baseline” (Figure 7.26 shows how, in AgenaRisk, you can enter

FIGURE 7.26 Two scenarios in risk table view.

324 ◾ Software Metrics

observations for the different scenarios into a table view of the model).
Suppose the new project is to deliver a system of size 4000 function points
(this is around 270 KLOC of Java, an estimate you can see for the node
KLOC by entering the observation “java” for the question “language”).
In the baseline scenario we enter no observations other than the one for
functionality. We are going to compare the effect against this baseline of
entering various observations into the new scenario.

We start with the observations shown in Figure 7.26, that is, the only
change from the baseline in the new project is to assert that the qual-
ity delivered should be “perfect.” Running the model produces the results
shown in Figure 7.27 for the factors process and people quality, project
duration, and average number of people full time. First, note that the dis-
tributions for the latter factors have high variances (not unexpected given
the minimal data entered) and that generally the new scenario will require
a bit more effort for a bit longer. However, the factor process and people
quality (which combines all the process and people factors) shows a very
big difference from the baseline. The prediction already suggests that it
will be unlikely (a 14% chance) to deliver the system to the required level
of quality unless the quality of staff is better than average.

Suppose, however, that we can only assume process and people quality
is “medium.” Then the predictions for project duration and effort increase
significantly. For example, the median value for project duration is up
from 31 months in the baseline case to around 54 months (Figure 7.28)
with full time staff increasing to 33.

Now, we withdraw the observation of process and people quality and sup-
pose, as is typical in software projects, that we have a hard schedule dead-
line of 18 months in which to complete (i.e., a target that is significantly
lower than the one the model predicts). With this observation we get the
distributions shown in Figure 7.29 for process and people quality and average
number of people full time. Now, not only do we need much higher quality
people, we also need a lot more of them compared with the baseline.

But typically, we will only have a fixed amount of effort. Suppose, for
example that additionally we enter the observation that we have only 10
people full-time (so the project is really “under-resourced” compared with
the predictions). Then the resulting distribution for process and people
quality is shown in Figure 7.30.

What we see now is that the probability of the overall process and people
quality being “very high” (compared to the industry average) is 0.9966.
Put a different way, if there is even a tiny chance that your processes and

Metrics for Decision Support ◾ 325

people are NOT among the best in the industry then this project will NOT
meet its quality and resource constraints. In fact, if we know that the pro-
cess and people quality is just “average” and now remove the observation
“perfect” for quality delivered, then Figure 7.31 shows the likely quality to
be delivered; it is very likely to be “abysmal” (with probability 0.69).

Very low

New
Baseline

New
(a)

(b)

(c)

Baseline

24%

14%
55%

80%
20%

6%

0.024

0.02

0.016

0.012

0.0080

0.0040

0.0

0.024

0.02

0.016

0.012

0.0080

0.0040

0.0

0.
0

10
.0

20
.0

30
.0

40
.0

50
.0

60
.0

70
.0

80
.0

90
.0

10
0.

0

0.
0

10
.0

20
.0

30
.0

40
.0

50
.0

60
.0

70
.0

80
.0

90
.0

10
0.

0

New

Low

Medium

High

Very high

Baseline

FIGURE 7.27 Distributions when functionality delivered is set as “perfect” for
new project (compared with baseline). (a) Process and people quality, (b) project
duration (median 31, 39), (c) average number of people full time (19, 23).

326 ◾ Software Metrics

Very low
(a)

(b)

Low
24%

New
Baseline

New
Baseline

55%

87%
20%

12%

Medium

High

Very high

0.028
0.024

0.02
0.016
0.012

0.0080
0.0040

0.00

0.
0

10
.0

20
.0

30
.0

40
.0

50
.0

60
.0

70
.0

80
.0

90
.0

10
0.

0
11

0.
0

FIGURE 7.29 Project duration set to 18 months. (a) Process and people quality,
(b) average number of people full time.

0.024

Baseline

0.02

0.016

0.012

0.0080

0.0040

0.0

0.
0

10
.0

20
.0

30
.0

40
.0

50
.0

60
.0

70
.0

80
.0

90
.0

10
0.

0

New

FIGURE 7.28 When staff quality is medium, project duration jumps to median
value of 54 months.

Metrics for Decision Support ◾ 327

Nevertheless, suppose we insist on perfect quality and all the previous
resource constraints. In this case the only thing left to “trade-off” is the
functionality delivered. So we remove the observation 4000 in the new
scenario. Figure 7.32 shows the result when we run the model with these
assumptions: we are likely to deliver only a tenth of the functionality orig-
inally planned. Armed with this information, a project manager can make
an informed decision about how much functionality needs to be dropped
to meet the quality and resource constraints.

Very low

New
Baseline

0.11%

23.66%

0.03%

55.26%

0.31%

20.16%

0.8%
99.66%

Low

Medium

High

Very high

FIGURE 7.30 Project duration = 12 months, people = 10.

New

Abysmal

Very poor

Poor

Average

Good

Very good

Perfect 1%

4%

2%

10%

18%

25%

24%
29%

69%
18%

Baseline

FIGURE 7.31 Quality delivered if process and people quality = medium with
resource constraints set.

328 ◾ Software Metrics

7.5 SUMMARY
There have been many noncausal models for software defect prediction
and software resource prediction. Some of these have achieved very good
accuracy (see Fenton et al. 2008 (ESE) for a detailed overview) and they
provide us with an excellent empirical basis. However, in general these
models are typically data-driven statistical models; they provide us with
little insight when it comes to effective risk management and assessment.
What we have shown is that, by incorporating the empirical data with
expert judgment, we are able to build causal Bayesian network models that
enable us to address the kind of dynamic decision making that software
professionals have to confront as a project develops.

The BN approach helps to identify, understand, and quantify the com-
plex interrelationships (underlying even seemingly simple situations) and
can help us make sense of how risks emerge, are connected and how we
might represent our control and mitigation of them. By thinking about
the causal relations between events we can investigate alternative explana-
tions, weigh up the consequences of our actions and identify unintended
or (un)desirable side effects. Above all else the BN approach quantifies the
uncertainty associated with every prediction.

We are not suggesting that building a useful BN model from scratch is
simple. It requires an analytical mindset to decompose the problem into
“classes” of event and relationships that are granular enough to be mean-
ingful, but not too detailed that they are overwhelming. The states of vari-
ables need to be carefully defined and probabilities need to be assigned
that reflect our best knowledge. Fortunately, there are tools that help
avoid much of the complexity of model building, and once built the tools

0.0020

New
Baseline

0.0

0.
0

10
00

.0

20
00

.0

30
00

.0

40
00

.0

50
00

.0

FIGURE 7.32 Functionality (function points) delivered if process and people
quality = medium with resource constraints set.

Metrics for Decision Support ◾ 329

provide dynamic and automated support for decision making. Also, so we
have presented some pre-defined models that can be tailored for different
organizations.

EXERCISES

 1. It is known that a particular type of software test is certain to iden-
tify virus X if it has been inserted into a computer system. However,
there is also a 5% probability of a false alarm (i.e., there is a 5%
probability that the test will be positive when virus X has not been
inserted). You run the test and the outcome is positive.

 a. What can you conclude about whether or not the system really is
infected with the virus X?

 b. How would your answer to (i) change if, additionally, it was
known that virus X had been inserted into approximately one in
every thousand computer systems?

 c. Suppose the only known effective fix for virus X costs $250,000
when the full costs of system shutdown and repair are consid-
ered. From a risk assessment perspective what action would you
recommend (you should state any assumptions about additional
information needed)?

 2. Look again at the story (on the first page of this chapter) recounted by
the keynote speaker. Draw a BN model (with 5 nodes) that “explains”
the phenomenon he observed.

 3. Look again at Figure 7.6. Use your answer to Question 2 to explain
what could be going on here.

 4. A tool that computes the values of a set of code complexity metrics
C1, C2, …, Cn is applied to a large number of systems and subsystems
for which the number of defects D found in operations is known.
Using Excel, a positive correlation is observed and a regression
model of the form

 D = f(C1, C2, …, Cn)

 is computed. The following quality assurance procedure is subse-
quently recommended:

330 ◾ Software Metrics

 Before any major system release the tool should be applied to
extract the metrics C1, C2, …, Cn for each subsystem and the func-
tion f is then computed. Any subsystem for which f is above 25 must
undergo additional testing.

 What concerns do you have about this quality assurance
procedure?

 5. Explain how a Bayesian network approach can help answer the ques-
tions posed at the end of Question 7.1.

FURTHER READING
For an introduction and historical perspective of Bayes theorem and its
applications we recommend:

McGrayne S.B., The Theory That Would Not Die, Yale University Press, CT, 2011.
Simpson E., Bayes at Bletchley Park, Significance, 7(2), 76–80, 2010.

For a comprehensive and not overtly mathematical overview of Bayesian
networks and their applications and support, see:

Fenton N.E. and Neil M., Risk Assessment and Decision Analysis with Bayesian
Networks, 2012, CRC Press, Boca Raton, FL, ISBN: 9781439809105, ISBN
10:1439809100, 2012.

There are also extensive resources available on the associated website:
http://www.bayesianrisk.com/.

To understand the limitations of statistical modeling techniques and
their tests of significance and p-values, see the following for a devastating
critique of their widespread abuse across a range of empirical disciplines:

Ziliak S.T. and McCloskey D.N., The Cult of Statistical Significance: How the
Standard Error Costs Us Jobs, Justice, and Lives, University of Michigan Press,
Ann Arbor, USA, 2008.

Mathematically adept readers seeking more in depth understanding of the
theoretical underpinnings of Bayesian networks and their associated algo-
rithms should consider the following books:

Jensen F.V. and Nielsen T., Bayesian Networks and Decision Graphs, Springer-
Verlag Inc, New York, 2007.

Madsen A.L., Bayesian Networks and Influence Diagrams, Springer-Verlag, New
York, 2007.

Neapolitan R.E., Learning Bayesian Networks, Upper Saddle River Pearson Prentice
Hall, 2004.

http://www.bayesianrisk.com

Metrics for Decision Support ◾ 331

Pearl J., Causality: Models Reasoning and Inference, Cambridge University Press,
Cambridge, UK, 2000.

Readers who are interested in building BN models and running the models
in this chapter can do so by downloading the Agenarisk software and fol-
lowing the instructions contained on the webpage describing the models:

Agena 2014, http:/ / www. agenarisk. com

The following papers and books were referenced in the chapter:

Casscells W., Schoenberger A. and Graboys T.B., Interpretation by physicians of
clinical laboratory results, New England Journal of Medicine, 299, pp. 999–
1001, 1978.

Fenton N.E., Marsh W., Cates P., Forey S., and Tailor M., Making resource deci-
sions for software projects, Proceedings of the 26th International Conference
on Software Engineering (ICSE2004), Edinburgh International Conference
Centre, Edinburgh, UK, IEEE Computer Society, pp. 397–406, 2004.

Fenton N.E. and Neil M., A critique of software defect prediction models, IEEE
Transactions on Software Engineering, 25(5), 675–689, 1999.

Fenton N.E., Neil M., and Gallan J., Using ranked nodes to model qualitative
judgments in Bayesian networks, IEEE Transactions on Knowledge and Data
Engineering, 19(10), 1420–1432, 2007.

Fenton N.E., Neil M., and Krause P., Software measurement: Uncertainty and
causal modelling, IEEE Software, 10(4), 116–122, 2002.

Fenton N.E., Neil M., Marsh W., Hearty P., Marquez D., Krause P., and Mishra R.,
Predicting software defects in varying development lifecycles using Bayesian
nets, Information & Software Technology, 49, 32–43, 2007.

Fenton N.E., Neil M., Marsh W., Hearty P., Radlinski L., and Krause P., On the
effectiveness of early life cycle defect prediction with Bayesian nets, Empirical
Software Engineering, 13, 499–537, 2008.

Fenton N.E., Neil M., and Marquez D., Using Bayesian networks to predict soft-
ware defects and reliability, Proceedings of the Institution of Mechanical
Engineers, Part O, Journal of Risk and Reliability, 222(O4), pp. 701–712, 2008.

Fenton N.E. and Ohlsson N. Quantitative analysis of faults and failures in a com-
plex software system. IEEE Transactions on Software Engineering, 26(8),
797–814, 2000.

Gras J.-J., End-to-end defect modeling. IEEE Software, 21(5), 98–100, 2004.
Koller D. and Pfeffer A. Object-oriented Bayesian networks, Proceedings of the 13th

Annual Conference on Uncertainty in AI (UAI), Providence, Rhode Island, pp.
302–313, 1997.

Neil M., M. Tailor M., and Marquez D., Inference in hybrid Bayesian networks
using dynamic discretization, Statistics and Computing, 17(3), 219–233, 2007.

Wang H., Peng F., Zhang C., and Pietschker A., Software project level estimation
model framework based on Bayesian belief networks, in Sixth International
Conference on Quality Software (QSIC’06), Beijing, China, pp. 209–218, 2006.

http://

333

II
Software Engineering Measurement

335

C h a p t e r 8

Measuring Internal
Product Attributes
Size

The first part of this book laid the groundwork for measuring and
evaluating software products, processes, and resources. Now, we turn

to the actual measurement, to see which metrics we can use and how they
are applied to software engineering problems. In the remaining chap-
ters, we look at the products themselves. Here and in Chapter 9, we focus
on internal product attributes; Chapters 10 and 11 will turn to external
attributes.

We saw in Chapter 3 that internal product attributes describe software
products (including documents) in a way that is dependent only on the
product itself. The most obvious and useful of such attributes is the size
of a software system, which can be measured statically, without having to
execute the system. In this chapter, we look at different ways to measure
the size of any development product. We start the discussion by describing
the properties that should be satisfied by any software size measure. Then
we will show, in turn, how size can be measured on a variety of software
entities, including code, designs, requirements, and problem statements.
We also consider applications of size measures, including the use of size
to normalize other measures, size measures used to quantify testing attri-
butes, and those that indicate the amount of reuse (the extent to which the
software is genuinely new).

336 ◾ Software Metrics

8.1 PROPERTIES OF SOFTWARE SIZE
Each product of software development is expressed in a concrete form and
can be treated in a manner similar to physical entities. Like physical enti-
ties, software products can be described in terms of their size. The size of
physical objects is easily measured by length, volume, mass, or other stan-
dard measure, as well as their length (width, height, depth). Measuring
the size of software is straightforward as long as we use relatively simple
measures that are consistent with measurement theory principles.

Remember, size measures only indicate how much of an entity we have.
Size alone cannot directly indicate external attributes such as effort, pro-
ductivity, and cost. We have seen many complaints about the limitations of
size measures. For example, Conte, Dunsmore, and Shen assert that

… there is a major problem with the lines-of-code measure: it is not
consistent because some lines are more difficult to code than others
…. One solution to the problem is to give more weight to lines that
have more ‘stuff’ in them.

CONTE ET AL. 1986

Although size measures do not indicate external attributes like “diffi-
culty of coding,” they are very useful. Clearly, when all other attributes are
similar, the size of a software entity really matters. In general, a 100,000
line program will be more difficult to test and maintain than a 10,000 line
program. A large program is more likely to contain faults than a small
program. Problem size is a good attribute to use to predict software devel-
opment time and resources. Size is commonly used as a component to
compute indirect attributes such as productivity:

 Productivity = Size/Effort

Another example, which was discussed earlier in the book, is defect
density:

 Defect density = Defect count/Size

Also, size is commonly used in many cost estimation models, which are
often used for project planning.

Rejecting simple size measures because they do not indicate attributes
like coding difficulty reflects a misunderstanding of the basic measure-
ment principles discussed in Chapter 2. Those who reject a measure

Measuring Internal Product Attributes ◾ 337

because it does not provide enough information may be expecting too
much of a single measure. Consider the following analogy:

EXAMPLE 8.1

If human size is measured in terms of only a single attribute, say a person’s
weight or mass, then we can use it to determine how much additional fuel
is needed for a satellite launch vehicle to carry someone into orbit. If human
size is measured as a single attribute, say height, then we can use it to predict
whether or not a person would bump his or her head when entering a door-
way. These applications of the definitions make mass and height useful mea-
sures. However, we cannot use them effectively alone to determine whether
a person can lift a heavy object.

Similarly, if we measure software code size as the number of bytes, for
instance, the fact that it is not useful in measuring quality does not negate
its value in predicting the amount of space it requires in a file.

EXAMPLE 8.2

If human size is measured in terms of two attributes, say height and weight or
mass, then we can use it to determine (on the basis of empirical understanding)
whether a person is obese. However, we cannot use it effectively to determine
how fast such a person can run nor how intelligent the person might be.

Likewise, models that define an attribute in terms of several internal
attributes may be useful, even if they are not complete. As we have seen
in Chapter 3, the measures and models are derived from the goals set for
them, and applying them to different goals does not invalidate them for
their original purpose.

Ideally, we want to define general properties or empirical relations of
software size and other properties that are analogs to properties of humans
such as weight. We want any measure of size to satisfy the properties so
that the measure actually quantifies the attribute and thus satisfies the
representation condition of measurement and is valid in the narrow sense.

We examine the empirical relation systems for measures of size by
applying a published set of software size properties (Briand et al. 1996).
The properties are defined in terms of a system of modules. Modules

338 ◾ Software Metrics

contain elements (really graph nodes), and elements have links (graph
edges) with other elements. An element may be in more than one mod-
ule. The modules may be nested and may be disjoint. The properties are
defined in terms of the effects of system changes to any valid measure of
size. As we will see in Chapter 9, this model supports the definition of
properties of software complexity, length, coupling, and cohesion.

This model of a system can represent most software entities at any
level of abstraction. It can represent source code using nodes to repre-
sent expressions or statements and edges to represent control flow or data
links. It can represent various kinds of UML diagrams with nodes and
edges. It can also be used to model requirements documents. The model
works as long as we can think of a system as a set of modules that contain
elements that can be linked.

We use our intuition about the size of things in the physical world to
develop measures of the size of software entities.

EXAMPLE 8.3

Consider boxes of marbles, where size is measured in terms of the number
of marbles. A box cannot have negative size, but it may be empty and have
no size. If we put several boxes of marbles inside another box, the size of the
enclosing box will be the sum of the marbles in each box as long as we make
sure not to count a marble more than once.

Following this intuition, Briand, Morasco, and Basili define the follow-
ing three properties for any valid measure of software size:

 1. Nonnegativity: All systems have nonnegative size.

 2. Null value: The size of a system with no elements is zero.

 3. Additivity: The size of the union of two modules is the sum of sizes of
the two modules after subtracting the size of the intersection.

These three properties are, of course, empirical relations in the sense of
the representational theory of measurement described in Chapter 2; they
constitute the minimum empirical relation system for the notion of “size.”
Many of the size measures that we will use are calculated by counting ele-
ments. Such measures easily satisfy the size properties.

Measuring Internal Product Attributes ◾ 339

Knowing the size of most development products can be very useful. The
size of a requirements specification can predict the size and complexity
of a design, which can predict the code size. Size attributes of the design
and code can determine the required effort for testing, as well as the effort
required to add features. Size measures are commonly used to indicate the
amount of reuse in a system.

8.2 CODE SIZE
Program code is an integral component of software. Such code includes
source code, intermediate code, byte code, and even executable code. We
look at approaches for directly measuring code size.

8.2.1 Counting Lines of Code to Measure Code Size

The most commonly used measure of source code program size is the
number of lines of code (LOCs), introduced in Chapter 2. But some LOCs
are different from others. For example, many programmers use spacing
and blank lines to make their programs easier to read. If LOCs are being
used to estimate programming effort, then a blank line does not contrib-
ute the same amount of effort as a line implementing a difficult algorithm.
Similarly, comment lines improve a program’s understandability, and they
certainly require some effort to write. But they may not require as much
effort as the code itself. Many different schemes have been proposed for
counting lines, each defined with a particular purpose in mind, so there
are many ways to calculate LOCs for a given program. Without a careful
model of a program, coupled with a clear definition of an LOC, confusion
reigns. We must take great care to clarify what we are counting and how
we are counting it. In particular, we must explain how each of the follow-
ing is handled:

• Blank lines

• Comment lines

• Data declarations

• Lines that contain several separate instructions

Jones reports that one count can be as much as five times larger than
another, simply because of the difference in counting technique (Jones
2008).

340 ◾ Software Metrics

EXAMPLE 8.4

There is some general consensus that blank lines and comments should not be
counted. Conte et al. define an LOC as any line of program text that is not a
comment or blank line, regardless of the number of statements or fragments of
statements on the line. This definition specifically includes all lines containing
program headers, declarations, and executable and nonexecutable statements
(Conte et al. 1986). Grady and Caswell report that Hewlett-Packard defines
an LOC as a noncommented source statement: any statement in the program
except for comments and blank lines (Grady and Caswell 1987).

This definition of an LOC is still the most widely accepted. To stress the
fact that an LOC according to this definition is actually a noncommented
line, we use the abbreviation NCLOC, sometimes also called effective lines
of code. The model associated with this definition views a program as a
simple file listing, with comments and blank lines removed, giving an
indication of the extent to which it is self-documented.

NCLOC is useful for comparing subsystems, components, and imple-
mentation languages. For example, a study of the Debian 2.2 Linux
release found that 71% of the NCLOC of Debian code was written in
C. The remainder of the system was written in 10 other programming
languages. The study also measured the sizes of the largest packages
(González-Barahona et al. 2001).

Another use of NCLOC is to evaluate the growth of systems over time.
Godfrey and Tu used NCLOC analyzed the growth of the Linux system
and key subsystems over multiple releases. They found that Linux had
been growing at a superlinear rate (Godfrey and Tu 2000). Another study
of the growth of evolving systems using NCLOC included both Linux and
FreeBSD, but found no evidence of superlinear growth; the systems grew
at a linear rate (Izurieta and Bieman 2006).

In a sense, valuable size information is lost when comment lines are
not counted. In many situations, program size is important in deciding
how much computer storage is required for the source code, or how
many pages are required for a print-out. Here, the program size must
reflect the blank and commented lines. Thus, NCLOC is not a valid
measure (in the sense of Chapter 3) of total program size; it is a measure
of the uncommented size. Uncommented size is a reasonable and useful
attribute to measure, but only when it addresses appropriate questions
and goals. If we are relating size with effort from the point of view of

Measuring Internal Product Attributes ◾ 341

productivity assessment, then uncommented size may be a valid input.
But even here, there is room for doubt, as uncommented size carries
with it an implicit assumption that comments do not entail real pro-
gramming effort and so should not be considered.

As a compromise, we recommend that the number of comment lines of pro-
gram text (CLOC) be measured and recorded separately. Then we can define

 Total size (LOC) = NCLOC + CLOC

and some useful indirect measures follow. For example, the ratio

CLOC
LOC

measures of the density of comments in a program.

EXAMPLE 8.5

A large UK organization has written the code for a single application in two
different kinds of COBOL. Although the code performs the same kinds of
functions, the difference in comment density is striking, as shown in Table 8.1.

As a single measure of program size, LOC may be preferable to NCLOC,
and it is certainly easier to measure automatically. In general, it may be
useful to gather both measures.

Other code size measures try to take into account the way code is devel-
oped and run. Some researchers and practitioners acknowledge that some-
times programs are full of data declarations and header statements, and
there is very little code that actually executes. For some purposes (such as
testing), it is important to know how much executable code is being pro-
duced. Here, they prefer to measure the number of executable statements
(ES). This measure counts separate statements on the same physical line as
distinct. It ignores comment lines, data declarations, and headings.

Other developers recognize that the amount of code delivered can
be significantly different from the amount of code actually written. The

TABLE 8.1 Comment Density by Language Type

 Number of Programs Total Lines of Code Comment Density (%)
Batch COBOL 335 670,000 16
CICS COBOL 273 507,000 26

342 ◾ Software Metrics

programming team may write drivers, stubs, prototypes, and “scaffold-
ing” for development and testing, but these programs are discarded
when the final version is tested and turned over to the customer. Here,
the developers want to distinguish the amount of delivered code from
the amount of developed code. The number of delivered source instruc-
tions (DSI) captures this aspect of size; it counts separate statements
on the same physical line as distinct, and it ignores comment lines.
However, unlike ES, DSI includes data declarations and headings as
source instructions.

Clearly, the definition of code size is influenced by the way in which
it is to be used. Some organizations use size to compare one project with
another, to answer questions such as

• What is our largest, smallest, and average-sized project?

• What is our productivity?

• What are the trends in project size over time?

Other organizations measure size only within a project team, asking

• What is the largest, smallest, and average module size?

• Does module size influence the number of faults?

The US Software Engineering Institute developed a set of guidelines to
help you in deciding how to measure an LOC in your organization (Park
1992). It takes into account the use of automatic code generators, distin-
guishes physical LOCs from logical ones, and allows you to tailor the defi-
nition to your needs.

EXAMPLE 8.6

The Software Engineering Institute did a pilot study of the use of its guidelines at
the Defense Information Systems Agency (Rozum and Florac 1995). The check-
list was used to decide that a lines-of-code count would include the following:

• All executable code
• Nonexecutable declarations and compiler directives

Comment and blank lines are not counted. The checklist also requires the
user to specify how the code was produced, and the pilot project classified
code produced in the following ways:

Measuring Internal Product Attributes ◾ 343

• Programmed
• Generated with source code generators
• Converted with automatic translators
• Copied or reused without change
• Modified

But code that was removed from the final deliverable was not counted.
The checklist takes into account the origin of code, so that code that was

new work or adapted from old work was counted, as was local library soft-
ware and reuse library software. However, code that was furnished by the
government or a vendor was not included in the count.

Figure 8.1 presents an example of a simple program. A large number of
practitioners were asked to count independently (i.e., without conferring

with TEXT _ IO; use TEXT _ IO;
procedure Main is

 —This program copies characters from an input
 —file to an output file. Termination occurs
 —either when all characters are copied or
 —when a NULL character is input

 NullchAr, Eof: exception;
 Char: CHARACTER;
 Input _ file, Ouptu _ file, Console: FILE _ TYPE;
Begin
 loop
 Open (FILE => Input _ file, MODE => IN _ FILE,
 NAME => "CharsIn");
 Open (FILE => Output _ file, MODE = > OUT _ FILE,
 NAME => "CharOut");
 Ge (Input _ file, Char);
 if END _ OF _ FILE (Input _ file) then
 raiseEof;
 elseif Char = ASCII.NUL then
 raiseNullchar;
 else
 Put(Output _ file, Char);
 endif;
 end loop;
exception
 whenEof => Put (Console, "no null characters");
 whenNullchar => Put (Console, "null terminator");
end Main

FIGURE 8.1 A simple program.

344 ◾ Software Metrics

or seeking clarification) the “number of LOCs” in the program. Among
the various valid answers were the following:

30 Count of the number of physical lines (including blank lines)

24 Count of all lines except blank lines and comments

20 Count of all statements except comments (statements taking more
than one line count as only one line)

17 Count of all lines except blank lines, comments, declarations and
headings

13 Count of all statements except blank lines, comments, declarations
and headings

 6 Count of only the ESs, not including exception conditions

Thus, even with a small program, the difference between least and most
compact counting methods can be a factor of 5:1, as observed in prac-
tice by Jones. When other size measures are used, the same variations are
encountered:

Number of ESs: Ranges from 6 to 20

Number of characters Ranges from 236 to 611

You can obtain consistency by using a tool to count LOCs. For example,
the UNIXTM (or Linux) command “wc –l code” will count the number of
lines (including comments and blank lines) in file “code.” You can improve
consistency by formatting source code with a “pretty printer” program.
The key is to be consistent in formatting and counting lines.

We now review the approach developed by Maurice Halstead, which is
based on the programming language tokens in program code.

8.2.2 Halstead’s Approach

Maurice Halstead made an early attempt to capture notions of size and
complexity beyond the counting of LOCs (Halstead 1977). Although his
work has had a lasting impact, Halstead’s software science measures pro-
vide an example of confused and inadequate measurement, particularly
when used to capture attributes other than size.

Measuring Internal Product Attributes ◾ 345

EXAMPLE 8.7

Halstead’s software science attempted to capture attributes of a program that
paralleled physical and psychological measurements in other disciplines. He
began by defining a program P as a collection of tokens, classified as either
operators or operands. The basic metrics for these tokens are the following:

μ1 = Number of unique operators
μ2 = Number of unique operands
N1 = Total occurrences of operators
N2 = Total occurrences of operands

For example, the FORTRAN statement

 A(I) = A(J)

has one operator (=) and two operands (A(I) and A(J)).
The length of P is defined to be N = N1 + N2, while the vocabulary of P

is μ1 = μ2 + μ3. The volume of a program, akin to the number of mental com-
parisons needed to write a program of length N or the minimum number of
bits to represent a program, is

 V = N × log2μ

Halstead derived measures for a number of other attributes including pro-
gram level, difficulty, and effort. According to Halstead, one can use these
metrics and an estimate of the number of mental discriminations per second
to compute the time required to write a program.

The software science program length measure does satisfy the proper-
ties of a software size measure. However, the other metrics derived from
the primitive counts of operators and operands are not true measures. The
metrics are presented in the literature as a definitive collection, with no
corresponding consensus on the meaning of attributes such as volume,
difficulty, or program level. In other words, the relationship between the
empirical relational system (i.e., the real world) and the mathematical
model is unclear. Further, Halstead gives no real indication of the rela-
tionships among different components of his theory. And we cannot tell if
he is defining measures or prediction systems.

Using the conceptual framework described in Chapter 3, we can discuss
Halstead’s metrics in more depth. The focus of Halstead’s measurements
is a product: the source code for an imperative language. We have seen

346 ◾ Software Metrics

that a model is prerequisite to any measurement; in this case, we require
a model of source code sufficiently precise to identify unambiguously the
operators and operands as objects, as well as occurrences of these objects.
But no such model is provided, other than the formulae that interrelate the
metrics. Four internal attributes are measured, and each is measured on
an absolute scale: the number of distinct operators, μ1 (corresponding to
the source code attribute “having operators”), the number of distinct oper-
ands, μ2, and total number of respective occurrences of these, N1 and N2.

The formula N = N1 + N2 is a proposed measure of the internal program
attribute of length. From the perspective of measurement theory, N is a rea-
sonable measure of the size of the actual code (without comments), since it
does not contradict any intuitively understood relations among programs
and their sizes. A similar argument applies to the formula for the internal
program attribute of vocabulary. The program attribute volume is supposed
to correspond to the amount of computer storage necessary for a uniform
binary encoding; the assumption of a uniform encoding on an arbitrary
machine suggests that this measure should be viewed as an internal attribute.

Thus, Halstead has proposed reasonable measures of three internal
program attributes that reflect different views of size. Halstead’s approach
becomes problematic when we examine the remaining measures, which
are generally unvalidated and, some would argue, intuitively implausible
prediction systems in which the prediction procedures are not properly
articulated. Abran provides a comprehensive discussion and evaluation of
the Halstead suite of metrics (Abran 2010).

8.2.3 Alternative Code Size Measures

To define size differently, we have two other alternatives to explore, both of
which are acceptable on measurement theory grounds as ratio measures:

 1. We can measure size in terms of the number of bytes of computer stor-
age required for the program text. This approach has the advantage of
being on the same scale as the normal measure of size for object code.
It is at least as well understood as LOC, and it is very easy to collect.

 2. We can measure size in terms of the number of characters (CHAR)
in the program text, which is another easily collected measure. For
example, most modern word processors compute this count rou-
tinely for any text file. (Both the UNIX and Linux operating systems
have the command wc <filename> to compute it.)

Measuring Internal Product Attributes ◾ 347

Because these size measures, as well as LOCs, are on the ratio scale,
we can rescale any one of the size measures by multiplying by a suitable
(empirical) constant.

EXAMPLE 8.8

If α is the average number of characters per line of program text, then we
have the rescaling

 CHAR = α LOC

which expresses a stochastic relationship between LOC and CHAR. Similarly,
we can use any constant multiple of the proposed measures as an alternative
valid size measure. Thus, we can use KLOC (thousands of LOCs) or KDSI
(thousands of delivered source instructions) to measure program size.

So far, we have assumed that one LOC is much like another. However,
many people argue that an LOC is dependent on language; a line of APL
or LISP is very different from a line of C, C++, or Java. Some practitioners
use conversion factors, so that a module of k lines of APL code is consid-
ered to be equivalent to αk lines of C code, for some appropriate α. This
conversion is important if you must use LOC to measure functionality
and effort, rather than just size.

8.2.4 Dealing with Nontextual or External Code

There is another aspect of language dependence that causes a problem.
Most code measures assume that software code consists purely of text.
Up to 1990, this assumption was almost invariably true. However, the
advent of visual programming and windowing environments (and to a
lesser extent object orientation and fourth-generation languages) changed
dramatically our notions of what a software program is.

EXAMPLE 8.9

In many program development environments, you can create a graphical
user interface, complete with menus, icons and graphics, with almost no
code in the traditional sense. For example, the executable code to produce a
scroll bar is constructed automatically after you point at a scroll bar object in
the programming environment. You only need to write code to perform the
specific actions that result from, say, a click on a specific command button.

348 ◾ Software Metrics

In an environment like the one described in Example 8.9, it is not at all
clear how you would measure the size of your “program.” The traditional
code size may be negligible, compared to the “size” of the objects provided
by the environment and other graphics objects. Thus, a program with just
five hand-written source code statements can easily generate an executable
program of 200 KB.

These approaches to programming raise two separate measurement
issues:

 1. How do we account in our size measures for objects that are not
textual?

 2. How do we account in our size measures for components that are
constructed externally?

Issue 1 is relevant not just for code developed in new programming
environments, but also for traditional specification and design docu-
ments, and we address this partially in Section 8.3. Issue 2 is an aspect of
reuse, and we address it in Section 8.6.2.

8.3 DESIGN SIZE
We can measure the size of a design in a manner similar to that used to
measure code size. We will count design elements rather than LOCs. The
elements that we count depend on the abstractions used to express the
design, and the design aspects of interest. Thus, the appropriate size mea-
sure depends on the design methodology, the artifacts developed, and the
level of abstraction.

To measure the size of a procedural design, you can count the number
of procedures and functions at the lowest level of abstraction. You can also
measure the size of the procedure and function interfaces in terms of the
number of arguments. Such measurements can be taken without code, for
example, by analyzing the APIs of a system. At higher levels of abstraction,
you can count the number of packages and subsystems. You can measure
the size of a package or subsystem in terms of the number functions and
procedures in the package.

Object-oriented designs add new abstraction mechanisms: objects,
classes, interfaces, operations, methods, associations, inheritance, etc.
Object-oriented design can also include realizations of design patterns
(Gamma et al. 1994). When quantifying size, our focus is generally on the

Measuring Internal Product Attributes ◾ 349

static entities rather than the links between entities, or runtime entities.
Thus, we will measure size in terms of packages, design patterns, classes,
interfaces, abstract classes, operations, and methods.

• Packages: Number of subpackages, number of classes, interfaces
(Java), or abstract classes (C++)

• Design patterns:

• Number of different design patterns used in a design

• Number of design pattern realizations for each pattern type

• Number of classes, interfaces, or abstract classes that play roles in
each pattern realization

• Classes, interfaces, or abstract classes: Number of public methods or
operations, number of attributes

• Methods or operations: Number of parameters, number of over-
loaded versions of a method or operation

One of the earliest object-oriented design size measures was the
weighted methods per class (WMC) measure (Chidamber and Kemerer
1994). As proposed, WMC is measured by summing the weights of the
methods in a class, where weights are unspecified complexity factors
for each method. The weight used in most studies is 1. With a weight
of 1, WMC becomes a size measure—the number of methods in a class.
For example, using a weight of 1, Zhou and Leung found that the WMC
was one of a set of independent variables that can effectively predict the
severity of faults in data from a NASA C++ system (Zhou and Leung
2006). Another study by Pai and Dugan applied a Bayesian analysis to
develop a causal model-related object-oriented design measures includ-
ing two size measures—WMC (again using a weight of 1) and the num-
ber LOCs, along with several object-oriented structure measures (to
be discussed in the next chapter)—to predict fault proneness (Pai and
Dugan 2007).

Both the number of methods and the number of attributes can serve
as class size measures. One set of studies found that the number of meth-
ods is a better predictor of class change-proneness than the number of
attributes (Bieman et al. 2001, 2003). The studies focused on the effects
of design pattern use on change-proneness in three proprietary systems

350 ◾ Software Metrics

and two open sources systems. The studied systems included from 4 to 7
unique design pattern types, with a range of 6–35 pattern realizations—
actual implementations of a pattern, as one pattern can be “realized” sev-
eral times in a design. Here, the number of design pattern realizations
served as a measure of design size. The studies found that the classes that
played roles in design patterns were more, not less, change prone than the
classes that were not part of a pattern.

If we are interested in run time properties of a design, we can measure the
size of a running system in terms of the number of active objects over time.

8.4 REQUIREMENTS ANALYSIS AND SPECIFICATION SIZE
Requirements and specification documents generally combine text,
graphs, and special mathematical diagrams and symbols. The nature of
the presentation depends on the particular style, method, or notation
used. When measuring code or design size, you can identify atomic enti-
ties to count (lines, statements, bytes, classes, and methods, for example).
However, a requirements or specification document can consist of a mix-
ture of text and diagrams. For example, a use case analysis may consist of
a UML use case diagram along with a set of use case scenarios that may be
expressed as either text or as UML activity diagrams. Because a require-
ments analysis often consists of a mix of document types, it is difficult to
generate a single size measure.

EXAMPLE 8.10

There are obvious atomic elements in a variety of requirements and specifi-
cation model types that can be counted:

 i. Use case diagrams: Number of use cases, actors, and relationships of
various types

 ii. Use case: Number of scenarios, size of scenarios in terms of steps, or
activity diagram model elements

 iii. Domain model (expressed as a UML class diagram): Number of classes,
abstract classes, interfaces, roles, operatons, and attributes

 iv. UML OCL specifications: Number of OCL expressions, OCL clauses
 v. Alloy models: Number of alloy statements—signatures, facts, predi-

cates, functions, and assertions (Jackson 2002)
 vi. Data-flow diagrams used in structured analysis and design: Processes

(bubbles nodes), external entities (box nodes), data-stores (line nodes)
and data-flows (arcs)

Measuring Internal Product Attributes ◾ 351

 vii. Algebraic specifications: Sorts, functions, operations, and axioms
 viii. Z specifications: The various lines appearing in the specification, which

form part of either a type declaration or a (nonconjunctive) predicate
(Spivey 1993)

We can enforce comparability artificially by defining a page as an
atomic entity, so that both text and diagrams are composed of a number of
sequential pages. Thus, the number of pages measures length for arbitrary
types of documentation and is frequently used in industry.

8.5 FUNCTIONAL SIZE MEASURES AND ESTIMATORS
Many software engineers argue that size is misleading, and that the
amount of functionality inherent in a product paints a better picture of
product size. In particular, those who generate effort and duration esti-
mates from early development products often prefer to evaluate the
amount of required functionality rather than product size (which is not
available early). As a distinct attribute, required functionality captures an
intuitive notion of the amount of function contained in a delivered prod-
uct or in a description of how the product is supposed to be.

There have been several serious attempts to measure functionality of
software products. We examine two approaches in this chapter: Albrecht’s
function points (FPs) and the COCOMO II approach. These approaches
were developed as part of a larger effort to supply size information to a cost
or productivity model, based on measurable early products, rather than as
estimates of LOCs.

Both approaches measure the functionality of specification docu-
ments, but each can also be applied to later life-cycle products to refine
the size estimate and therefore the cost or productivity estimate. Indeed,
our intuitive notion of functionality tells us that if a program P is an
implementation of specification S, then P and S should have the same
functionality.

Neither approach adheres to the rigorous view of measurement that
we have described. As we discuss each method, we indicate where the
problems are and how they might be addressed rigorously. However,
the current lack of rigor should not prevent us from using and refining
the current approaches, as functionality is a very important product
attribute. Moreover, these methods have been used to good effect in a
number of industrial applications.

352 ◾ Software Metrics

8.5.1 Function Points

Albrecht’s effort estimation method was largely based on the notion of
FPs. As their name suggests, FPs are intended to measure the amount of
functionality in a system as described by a specification. We can compute
FPs without forcing the specification to conform to the prescripts of a par-
ticular specification model or technique.

To compute the number of FPs we first compute an unadjusted function
point count (UFC). To do this, we determine from some representation of
the software the number of “items” of the following types:

• External inputs: Those items provided by the user that describe dis-
tinct application-oriented data (such as file names and menu selec-
tions). These items do not include inquiries, which are counted
separately.

• External outputs: Those items provided to the user that generate dis-
tinct application-oriented data (such as reports and messages, rather
than the individual components of these).

• External inquiries: Interactive inputs requiring a response.

• External files: Machine-readable interfaces to other systems.

• Internal files: Logical master files in the system.

EXAMPLE 8.11

Figure 8.2 describes a simple spelling checker. To compute the UFC from this
description, we can identify the following items:

• The two external inputs are: document file-name, personal
dictionary-name.

• The three external outputs are: misspelled word report, number-of-
words-processed message, number-of-errors-so-far message.

• The two external inquiries are: words processed, errors so far.
• The two external files are: document file, personal dictionary.
• The one internal file is: dictionary.

Next, each item is assigned a subjective “complexity” rating on a three-
point ordinal scale: simple, average, or complex. Then, a weight is assigned
to the item, based on Table 8.2.

In theory, there are 15 different varieties of items (three levels of
complexity for each of the five types), so we can compute the UFC by

Measuring Internal Product Attributes ◾ 353

multiplying the number of items in a variety by the weight of the variety
and summing over all 15:

UFC = Number of items of variety weight() ()i

i
i

=
∑ ×

1

15

EXAMPLE 8.12

Consider the spelling checker introduced in Example 8.11. If we assume that
the complexity for each item is average, then the UFC is

 UFC = 4A + 5B + 4C + 10D + 7E = 58

If instead we learn that the dictionary file and the misspelled word report
are considered complex, then

 UFC = 4A + (5× 2 + 7× 1) + 4C + 10D + 10E = 63

Spell-checker spec: The checker accepts as input a document file and an optional personal
dictionary file. The checker lists all words not contained in either of these files. The user can
query the number of words processed and the number of spelling errors found at any stage
during processing.

A = # external inputs = 2, B = # external outputs = 3, C = # inquiries = 2,
D = # external files = 2, and E = # internal files = 1

Spelling
checkerUser User

Errors-found enquiry

Words process enquiry

Document file

Personal dictionary

Words-processed message

Errors message

Report on misspelt words
Words

Dictionary

FIGURE 8.2 Computing basic function point components from specification.

TABLE 8.2 Function Point Complexity Weights

Item Simple Weighting Factor Average Complex
External inputs 3 4 6
External outputs 4 5 7
External inquiries 3 4 6
External files 7 10 15
Internal files 5 7 10

354 ◾ Software Metrics

To complete our computation of FPs, we calculate an adjusted function-
point count, FP, by multiplying UFC by a technical complexity factor, TCF.
This factor involves the 14 contributing factors listed in Table 8.3.

Each component or subfactor in Table 8.3 is rated from 0 to 5, where 0
means the subfactor is irrelevant, 3 means it is average, and 5 means it is
essential to the system being built. Although these integer ratings form an
ordinal scale, the values are used as if they are a ratio scale, contrary to
the principles we introduced in Chapter 2. Also, we find it curious that the
“average” value of 3 is not the median value.

The following formula combines the 14 ratings into a final technical
complexity factor:

TCF 0.65 0.01= +

=
∑Fi
i 1

14

This factor varies from 0.65 (if each Fi is set to 0) to 1.35 (if each Fi is
set to 5). The final calculation of FPs multiplies the UFC by the technical
complexity factor:

 FP = UFC × TCF

EXAMPLE 8.13

To continue our FP computation for the spelling checker in Example 8.11, we
evaluate the technical complexity factor. After having read the specification
in Figure 8.2, it seems reasonable to assume that F3, F5, F9, F11, F12, and F13
are 0, that F1, F2, F6, F7, F8, and F14 are 3, and that F4 and F10 are 5. Thus, we
calculate the TCF as

 TCF = 0.65 + 0.01(18 + 10) = 0.93

Since UFC is 63, then

 FP = 63 × 0.93 = 59

TABLE 8.3 Components of the Technical Complexity Factor
F1 Reliable backup and recovery F2 Data communications
F3 Distributed functions F4 Performance
F5 Heavily used configuration F6 Online data entry
F7 Operational ease F8 Online update
F9 Complex interface F10 Complex processing
F11 Reusability F12 Installation ease
F13 Multiple sites F14 Facilitate change

Measuring Internal Product Attributes ◾ 355

FPs can form the basis for an effort estimate.

EXAMPLE 8.14

Suppose our historical database of project measurements reveals that it takes
a developer an average of two person-days of effort to implement an FP.
Then we may estimate the effort needed to complete the spelling checker as
118 days (i.e., 59 FPs multiplied by 2 days each).

But FPs are also used in other ways as a size measure. For example,
they can be used to express defect density in terms of defects per FP. They
are also used in contracts, both to report progress and to define payment.
For instance, Onvlee claimed that 50–60% of fixed priced software con-
tracts in the Netherlands have had their costs tied to an FP specification
(Onvlee 1995). In other words, many companies write software contracts
to include a price per FP, and others track project completion by reporting
the number of FPs specified, designed, coded, and tested.

8.5.1.1 Function Points for Object-Oriented Software
The notion of FPs has been adapted to be more suitable for object-oriented
software. To apply FP analysis to object-oriented software and designs, we
need to know how to identify the inputs, outputs, inquiries, and files in
the early artifacts generated during object-oriented development (Lokan
2005). There are some obvious mappings: messages represent inputs and
outputs, while classes with persistent state identified during domain anal-
ysis represent files. An analysis of system sequence diagrams developed
during analysis can also identify FP items.

Rather than map object-oriented constructs to traditional FP items,
object points can be computed directly from class diagrams using a weight-
ing scheme similar to that used in FPs (Antoniol et al. 1999). To compute
object points for classes with superclasses, inherited attributes are included
as part of a subclass. An empirical study showed that object points can
predict size in terms of LOC as well as other methods (Antoniol et al. 2003).

Since use case analysis is often performed early in each cycle of object-
oriented development (Larman 2004), it makes sense to base FP analysis on
use case documents. These documents may include UML use case models
and associated scenarios or activity diagrams developed during use case
analysis. Use case points are computed from counts of the actors, use cases,
and the activities that are modeled along with associated complexity weights

356 ◾ Software Metrics

and technical complexity factors. The computation of use case points is
very similar to the computation of FPs. Kusumoto et al. provide a simple
example of the computation of use case points along with a description
of an automated tool that computes use case points from use case models
(Kusumoto et al. 2004). Empirical studies found that estimates produced
by applying use case points can be more accurate than those produced by a
group of professional developers (Anda et al. 2001; Anda 2002).

8.5.1.2 Function Point Limitations
Albrecht proposed FPs as a technology-independent measure of size. But
there are several problems with the FPs measure, and users of the tech-
nique should be aware of its limitations.

 1. Problems with subjectivity in the technology factor. Since the TCF
may range from 0.65 to 1.35, the UFC can be changed by ±35%. Thus,
the uncertainty inherent in the subjective subfactor ratings can have
a significant effect on the final FP value.

 2. Problems with double counting. It is possible to account for internal
complexity twice: in weighting the inputs for the UFC, and again in
the technology factor (Symons 1988). Even if the evaluator is careful
in separating these two complexity-related inputs, double counting
can occur in the use to which the final FP count is put. For example,
the TCF includes subfactors such as performance requirements and
processing complexity, characteristics often used in cost models.
However, if FPs are used as a size input to a cost model that rates
performance and complexity separately, these adjustment factors are
counted twice.

 3. Problems with counterintuitive values. In addition, the subfactor rat-
ings lead to TCF values that are counterintuitive. For instance, when
each Fi is average and rated 3, we would expect TCF to be 1; instead,
the formula yields 1.07. Albrecht included the TCF as a means of
improving resource predictions, and the TCF accentuates both
internal system complexity and complexity associated with the user-
view functionality. It may be preferable to measure these concepts
separately.

 4. Problems with accuracy. One study found that the TCF does not
significantly improve resource estimates (Kitchenham and Känsälä

Measuring Internal Product Attributes ◾ 357

1993). Similarly, another study found that the UFC seems to be no
worse a predictor of resources than the adjusted FP count (Jeffery
et al. 1993). So the TCF does not seem useful in increasing the accu-
racy of prediction. Recognizing this, many FP users restrict them-
selves to the UFC.

 5. Problems with changing requirements. FPs are an appealing size mea-
sure in part because they can be recalculated as development con-
tinues. They can also be used to track progress, in terms of number
of FPs completed. However, if we compare an FP count generated
from an initial specification with the count obtained from the result-
ing system, we sometimes find an increase of 400–2000% (Kemerer
1993). This difference may be not due to the FP calculation method
but rather due to “creeping elegance,” where new, nonspecified func-
tionality is built into the system as development progresses. However,
the difference occurs also because the level of detail in a specification
is coarser than that of the actual implementation. That is, the number
and complexity of inputs, outputs, enquiries, and other FP-related
data will be underestimated in a specification because they are not
well understood or articulated early in the project. Thus, calibrating
FP relationships based on actual projects in your historical database
will not always produce equations that are useful for predictive pur-
poses (unless the FPs were derived from the original system specifi-
cation, not the system itself).

 6. Problems with differentiating specified items. Because evaluating the
input items and technology factor components involves expert judg-
ment, the calculation of FPs from a specification cannot be completely
automated. To minimize subjectivity and ensure some consistency
across different evaluators, organizations (such as the International
Function Point User Group) often publish detailed counting rules
that distinguish inputs and outputs from enquiries, to define what
constitutes a “logical master file,” etc. However, there is still great
variety in results when different people compute FPs from the same
specification.

 7. Problems with subjective weighting. Symons notes that the choice of
weights for calculating unadjusted FPs was determined subjectively
from IBM experience. These values may not be appropriate in other
development environments (Symons 1988).

358 ◾ Software Metrics

 8. Problems with measurement theory. Kitchenham et al. have proposed
a framework for evaluating measurements, much like the framework
presented in Chapters 2 and 3. They apply the framework to FPs, not-
ing that the FP calculation combines measures from different scales
in a manner that is inconsistent with measurement theory. In par-
ticular, the weights and TCF ratings are on an ordinal scale, while
the counts are on a ratio scale, so the linear combinations in the for-
mula are meaningless. They propose that FPs be viewed as a vector
of several aspects of functionality, rather than as a single number
(Kitchenham et al. 1995). A similar approach proposed by Abran
and Robillard is to treat FPs as a multidimensional index rather than
as a dimensionless number (Abran and Robillard 1994).

Several attempts have been made to address some of these problems.
The International Function Points User Group meets regularly to discuss
FPs and their applications, and they publish guidelines with counting
rules. The organization also trains and tests estimators in the use of FPs,
with the goal of increasing consistency of interpretation and application.

In general, the community of FP users is especially careful about data
collection and analysis. If FPs are used with care, and if their limitations
are understood and accounted for, they can be more useful than LOCs as
a size or normalization measure. As use of FPs is modified, evaluated, and
reported in the literature, we can monitor the success of the changes.

8.5.2 COCOMO II Approach

COCOMO is a model for predicting effort from a formula whose main inde-
pendent variable is size. In investigating alternatives for LOCs as a size input
to revise the COCOMO model, Boehm and his colleagues selected FPs for
use when the system is completely specified. However, they sought a size
measure that could be used even earlier in development, when feasibility is
being explored and prototypes built. Although they are not specialized to
object-oriented concerns, the term object points was unfortunately used for
this early size measure in COCOMO II (Boehm et al. 2000). To distinguish
from the more appropriate use of the “object point” as done in the prior
section, we will use the term “C2 object point” here. The C2 object point
approach is a synthesis of an approach for modeling estimation expertise
(Kauffman and Kumar 1993) with productivity data (Banker et al. 1994a).

To compute C2 object points, counting the number of screens, reports,
and third-generation language components that will be involved in the

Measuring Internal Product Attributes ◾ 359

application generates an initial size measure. It is assumed that these entities
are defined in a standard way as part of an integrated software development
environment. Next, each entity is classified as simple, medium, or difficult,
much as are FPs. Table 8.4 contains guidelines for this classification.

The number in each cell is weighted according to Table 8.5. The weights
reflect the relative effort required to implement an instance of that com-
plexity level.

As with FPs, the weighted instances are summed to yield a single C2
object point number. Then, the procedure differs from FPs in that reuse is
taken into account, since the C2 object points are intended for use in effort
estimation. Assuming that r% of the objects will be reused from previous
projects, the number of new object points is calculated to be

 New object points = (Object points) × (100 − r)/100

To use this number for effort estimation, COCOMO II determines a
productivity rate (i.e., new object points per person-month) from a table
based on developer experience and capability, coupled with ICASE matu-
rity and capability.

TABLE 8.4 C2 Object Point Complexity Levels

For Screens For Reports

Number and Source of Data Tables Number and Source of Data Tables
Number of
views
contained

Total
<4 (<2
server,
<2
client)

Total <8
(2–3
server,
3–5
client)

Total
8+ (>3
server,
>5
client)

Number of
sections
contained

Total <4
(<2
server,
<2
client)

Total <8
(2–3
server,
3–5
client)

Total 8+
(>3
server,
>5
client)

<3 Simple Simple Medium 0 or 1 Simple Simple Medium
3–7 Simple Medium Difficult 2 or 3 Simple Medium Difficult
8+ Medium Difficult Difficult 4+ Medium Difficult Difficult

Source: Boehm B.W. et al. Software Cost Estimation with Cocomo II, Prentice-Hall, Upper
Saddle River, New Jersey, 2000.

TABLE 8.5 Complexity Weights for Object Points

Object Type Simple Medium Difficult
Screen 1 2 3
Report 2 5 8
3GL component – – 10

360 ◾ Software Metrics

8.6 APPLICATIONS OF SIZE MEASURES
Size measures are useful for quantifying many software attributes of inter-
est. Here we look at three areas where size is useful: to normalize measures
of other attributes, to quantify the amount of reuse, and to measure attri-
butes related to software testing.

8.6.1 Using Size to Normalize Other Measurements

Besides indicating the size of software entities, the most common use of
software size measures is to normalize measures of other attributes. For
example, Chapters 1 through 6 introduced the commonly used software
quality measure errors or faults per thousand lines of code (KLOC). This
normalization can be done to compare the quality of functions or meth-
ods, classes, packages, subsystems, or systems.

Another attribute that is commonly normalized by size is cost. For
example, the total project cost per delivered KLOC can be computed using
accounting and code data. Normalized cost is often reported in terms of
the cost per FP.

We can also normalize LOC in terms of other size measures, for exam-
ple, number of classes or methods. Then we would report LOC per class
and LOC per method. The average and distribution of method size is com-
monly reported.

EXAMPLE 8.15

A study of the change proneness of classes counted the number of changes
to classes between releases. The number of changes was normalized by
class size (measured by the number of operations) to create a new measure,
change density. Change density is the number changes per operation—the
total number of changes to a class over a specified period divided by the total
number of operations defined for the class (Bieman et al. 2003).

EXAMPLE 8.16

Another study examined the frequency of the occurrence of coding concerns
in software systems. A coding concern is an anomaly in the code that should
be checked to confirm that it is not an error. Static analysis tools can identify
dozens of coding concerns in Java code including having an empty catch
block, overriding a base class with an empty method, unused private field or
method, unused variable, hiding of names, etc. To get a better understanding

Measuring Internal Product Attributes ◾ 361

of the frequency of coding concerns. Munger et al. reported their results as
concern density: concerns per LOC, concerns per class, and concerns per
package. It was surprising when they reported that average concerns per
LOC in Netbeans 3.31 was 1.068, more than one concern per LOC (Munger
et al. 2002).

8.6.2 Size-Based Reuse Measurement

We regularly use operating systems, compilers, database management
systems, class libraries, statistical packages, and libraries of mathematical
routines, rather than writing our own. This reuse of software (including
requirements, designs, documentation, and test data and scripts as well
as code) improves our productivity and quality, allowing us to concen-
trate on new problems, rather than continuing to solve old ones again.
A review of empirical studies of software reuse reports that reuse led to
lower problem density, decreased effort expended on fixing problems, and
increased productivity (Mohagheghi and Conradi 2007). Table 8.6 com-
pares the effects of reuse on subsystems of a large telecom system. You can
see that the number of trouble reports (normalized by KLOC) is lower for
the reused code. The code modification rate is the percentage of the total
KLOC of code that were changed in response to trouble reports. The code
modification rate is notably higher on the non-reused code.

Counting reused code is not as simple as it sounds. It is difficult to
define formally what we mean by reused code. We sometimes reuse whole
programs without modification, but more often we reuse some unit of
code (a module, function, or procedure). And we often modify that unit to
some extent. However, we account for reused code, we want to distinguish

TABLE 8.6 Trouble Reports (TRs) and Code Modification Rates for Subsystems in a
Large Telecom System

 #Subsystems # TRs
TRs/
KLOC

TRs/Modified
KLOC

Code
Modification

Rate (%)
Release 2
Reused 8 170 0.44 1.43 44
Nonreused 3 244 1.44 2.19 60
Release 3
Reused 9 664 2.31 5.17 45
Nonreused 3 855 4.62 7.67 60
Source: Mohagheghi P. and Conradi R., An empirical investigation of software reuse ben-

efits in a large telecom product, ACM Transactions on Software Engineering and
Methodology (TOSEM), 17(3), 1–31, June 2008.

362 ◾ Software Metrics

a module with one modified line from a module with 100 modified lines.
Thus, we consider the notion of extent of reuse, measured on an ordinal
scale by NASA/Goddard’s Software Engineering Laboratory in the follow-
ing way (SPC 1995).

 1. Reused verbatim: The code in the unit was reused without any
changes.

 2. Slightly modified: Fewer than 25% of the LOCs in the unit were
modified.

 3. Extensively modified: 25% or more of the LOCs were modified.

 4. New: None of the code comes from a previously constructed unit.

EXAMPLE 8.17

Selby studied reuse in 25 large-scale NASA systems using the above ordinal
scale for the extent of reuse. He found that the modules that were reused ver-
batim (level 1) exhibited fewer faults and required less effort for fault removal.
The modules reused after extensive modifications (level 3) were the most
fault prone (Selby 2005).

For a given program, we can define size in terms of total size and pro-
portion of reuse at the different levels.

EXAMPLE 8.18

Hatton reports a high degree of reuse at Programming Research Ltd., where
reuse was encouraged as part of a larger program to eliminate troublesome
language constructs from company products (Hatton 1995). The reuse ratio
is computed for each product as the proportion of reused lines out of the
total number of lines. Table 8.7 illustrates the reuse ratio for Programming
Research products.

Hewlett-Packard considers three levels of code: new code, reused code,
and leveraged code. In this terminology, reused code is used as is, with-
out modification, while leveraged code is existing code that is modified in
some way. The Hewlett-Packard reuse ratio includes both reused and lev-
eraged code as a percentage of total code delivered. The chart in Figure 8.3

Measuring Internal Product Attributes ◾ 363

illustrates the degree of reuse on six firmware products at Hewlett-Packard
(Lim 1994).

8.6.3 Size-Based Software Testing Measurement

Various size attributes are related to software testing. The simplest is the
size of the test suite in terms of SLOC of testing code or the number of test
cases in a test suite. Measures related to the test requirements may be of
greater interest.

A test requirement is a specific software element that must be executed
or covered during testing to satisfy a particular testing criterion (Ammann
and Offutt 2008). For example, each program statement (or node in a con-
trol flow graph) is a test requirement for the statement coverage criterion
and each branch (or edge in a control flow graph) is a test requirement for

TABLE 8.7 Reuse of Code at Programming Research Ltd.

Product
Reusable Lines of

Code
Total Lines of

Code Reuse Ratio (%)
QAC 40,900 82,300 50
QA FORTRAN 34,000 73,000 47
QA Manager (X) 18,300 50,100 37
QA Manager
(Motif)

18,300 52,700 35

QA C++ 40,900 82,900 49
QA C Dynamic 11,500 30,400 38

0
0.55 0.73 0.80 2.21 2.85 3.09

10

20

30

40

50

60

70

80

90

�ousands of noncomment source lines

Pe
rc

en
t r

eu
se

FIGURE 8.3 Reuse at Hewlett-Packard. The bars represent six different firmware
projects.

364 ◾ Software Metrics

the branch coverage criterion. Thus, the test requirements in a software
system depend on the relevant testing criteria. The following are some
testing criteria and associated measures of the size of the test requirements:

• Statement/node coverage: The number of statements or nodes in a
control flow graph, or states in a state machine model

• Branch/edge coverage: The sum of the number of destinations for the
program branches, the number of edges in a control flow graph, or
the number of transitions in a state machine model

• All use coverage: The number of feasible definition–use pairs in a
control flow graph that is annotated with variable definition and uses

• All use cases: The number of use cases generated by requirements
analysis or in a UML use case diagram

• Object-oriented requirements: The number of object-oriented relation-
ships (associations, realizations, dependencies, etc.) in a design or code

We can also use size-based measures to quantify the number of test
antipatterns in a system, which are difficult to test constructs in an object-
oriented program or design (Baudry and Sunye 2004; Baudry et al. 2001).
Such measures would be the inverse of testability—a system with a greater
number of antipatterns would be more difficult to test.

One study examined changes in the number of test requirements and
test antipatterns between releases. It found that the number of object-
oriented test requirements and test antipatterns increased as three open
source software systems evolved, thus reducing testability (Izurieta and
Bieman 2008, 2013).

8.7 PROBLEM, SOLUTION SIZE, COMPUTATIONAL
COMPLEXITY

Some of the measures, particularly the functional size measures, use
an adjustment based on the size of the problem being addressed by the
requirements specification. For example, Albrecht’s TCF is supposed to be
a measure of the underlying problem. But a problem can have more than
one solution, and the solutions can vary in their approaches and therefore
in their attributes. Thus, as we noted at the beginning of this chapter, the
complexity or size of a solution can be considered as a separate component
of size, and it can be expressed in a more objective way.

Measuring Internal Product Attributes ◾ 365

Ideally, we would like the complexity of the solution to be no greater than
the complexity of the problem, but that is not always the case. Let us infor-
mally define the complexity of a problem as the amount of resources required
for an optimal solution to the problem. Then complexity of a solution can be
regarded in terms of the resources needed to implement a particular solution.

We can view solution complexity as having at least two aspects (Garey
and Johnson 1979):

 1. Time complexity, where the resource is computer time.

 2. Space complexity, where the resource is computer memory.

Both time and space are really size attributes—time and space measures
must satisfy the three properties of size measures described in Section 8.1.

8.8 SUMMARY
Internal product attributes are important, and measuring them directly
allows us to assess early products and predict likely attributes of later ones.
In this chapter, we have seen the properties that any size measure should
satisfy. We have also seen several ways to measure the size of code, designs,
requirements, specifications, and functionality. In many ways, code size is
the easiest to measure; it can be expressed in terms of LOCs, number of
characters, and more. But we must take into account the dependence of
code size measures on language, degree of reuse, and other factors. We can
measure the size of designs, specifications, requirements, software mod-
els, etc. Object-oriented products can be measured in terms of numbers of
classes, objects, methods, and links between objects and classes through
associations, inheritance, and use dependencies.

Functional size can be derived from problem statements or specifica-
tions by using FPs, or COCOMO II object points; development products
available later in the life cycle can be measured, too, and compared with
earlier estimates. Measures of both functionality and length can be used
to normalize other measures, for example, to express defect density in
terms of defects per LOC or per FP, and progress and productivity can be
tracked in terms of size or functionality of product.

366 ◾ Software Metrics

EXERCISES

 1. Recall several programs you have written in a particular program-
ming language. Can you rank them according to length, functional-
ity, and problem complexity? Is the ranking harder to perform if the
programs are written in different languages?

 2. How is the stochastic relationship

 CHAR = α LOC

 similar to this formula?

 Time = Distance/Speed

 Manipulating the formula allows speed to be expressed as an indi-
rect measure as a ratio of distance and time. Is a similar manipula-
tion meaningful for the LOC relationship?

 3. It is important to remember that “prediction” is not “prescription.”
How might a development policy that requires all programming
staff to produce 50 lines of documentation per thousand LOC prove
inappropriate?

 4. Consider the following informal statement of requirements for a
system:

 The system processes various commands from the operator of a
chemical plant. The most important commands are

 a. Calculate and display average temperature for a specified reactor
for the day period.

 b. Calculate and display average pressure for a specified reactor for
the day period.

 c. Calculate and display a summary of the temperature and pres-
sure averages.

 The operator can also choose to send the results to an urgent elec-
tronic bulletin board if necessary.

Measuring Internal Product Attributes ◾ 367

 Compute both the unadjusted and adjusted function point count
for this system, stating carefully any assumptions you are making.

 5. For the specification in Figure 8.2, experiment with different possible
values of TCF and different complexity weightings ranging from the
lowest to highest possible values to see how FP may vary from the
value 59 in Example 8.13. How does this variation scale up for systems
involving hundreds or thousands of inputs, outputs, and interfaces?

 6. Consider the following informal requirements for a safety-critical
system:

 The system will control a radiotherapy machine to treat cancer
patients. This system is embedded in the machine and must run
on a special purpose processor with limited memory (16 MB). The
operator enters the type of treatment and radiation dose levels. In
addition, the machine communicates with a patient database system
to get patient information and, after treatment, record the radiation
dose and other treatment details in a database. The system also dis-
plays this information to the operator.

 a. Compute both the unadjusted and adjusted function-point
count for this system, stating carefully any assumptions you are
making.

 b. Compare the function point values that you computed for the
radiotherapy machine to those computed in Examples 8.12 and
8.13 for the system described in Figure 8.2. Do you believe that
the computed values for these two systems accurately quan-
tify the amount of functionality in these systems and the effort
required to build them? Justify your answer.

 7. Explain very briefly (five lines at most) the idea behind Albrecht’s
function points measure. List the main applications of function
points, and compare function points with the lines of code measure.

 8. Exam question

 a. What do function points measure and what are the major
drawbacks?

368 ◾ Software Metrics

 b. Give three examples of how you might use the function point
measure in quality control or assurance (stating in each case why
it might be preferable to some simpler alternative measure).

 c. Consider the following specification of a simple system for col-
lecting student course marks or grades.

 The course marks system enables lecturers to enter student
marks for a predefined set of courses and students on those
courses. Thus, marks can be updated, but the lecturers cannot
change the basic course information, as the course lists are the
responsibility of the system administrator. The system is menu-
driven, with the lecturer selecting from a choice of courses and
then a choice of operations. Compute the number of function
points in this system, stating carefully the assumptions you are
making. The operations include

 i. Enter coursework marks

 ii. Enter exam marks

 iii. Compute averages

 iv. Produce letter grades

 v. Display information (to screen or printer)

 The information displayed is always a list of the students
together with all the known marks, grades, and averages.

FURTHER READING
The book by Alain Abran describes and evaluates the entire suite of Halstead mea-
sures and both function points and object points. It also describes the develop-
ment of the COSMIC measurement method to determine the functional size of
real-time and embedded software. COSMIC was adopted as the ISO 19761 stan-
dard. The book also describes the relationship between function points and other
ISO standards, including ISO 20926, 20968, 24570, and 29881.

Abran, A., Software Metrics and Software Metrology, Wiley, Hoboken, New Jersey,
2010.

For further information on COSMIC and ISO 19761, including tutorials and case
studies, visit the following website:

Measuring Internal Product Attributes ◾ 369

The Common Software Measurement International Consortium (the “COSMIC”
organization) http:/ / www. cosmicon. com/

The latest definition of function point measurement is available from the
International Function Point User Group (IFPUG). Information is available from
http:/ / www. ifpug. org/ . For a comprehensive review of the background and evolu-
tion of function point analysis, see the review paper by Christopher Lokan.

Lokan C.J., Function Points, Advances in Computers, 65, 297–344, 2005.

A good source for information about the use of COCOMO II object points is the
COCOMO II website:

http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html

For details of measuring algorithmic efficiency and computational complexity, see
Harel and Feldman’s book.

Harel D. and Feldman Y., Algorithmics, 3rd Edition. Addison Wesley, Reading,
Massachusetts, 2004.

Garey and Johnson have written the definitive text and reference source for com-
putational complexity.

Garey M.R. and Johnson D.S., Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman, San Francisco, 1979.

http://
http://
http://sunset.usc.edu

371

C h a p t e r 9

Measuring Internal
Product Attributes
Structure

We have seen how size measures can be useful in many ways: as
input to prediction models, as a normalizing factor, as a way to

express progress during development, and more. But there are other useful
internal product attributes. There is clearly a link between the structure of
software products and their quality. The structure of requirements, design,
and code can help us to understand the difficulty we sometimes have in con-
verting one product into another (as, e.g., implementing a design as code),
in testing a product (as, e.g., in testing code or validating requirements),
or in predicting external software attributes from early internal product
measures. Although structural measures vary in what they measure and
how they measure it, they are often (and misleadingly) called “complexity”
metrics, when they are actually quantifying other attributes.

We begin by describing aspects of structural measures based on the
software entity to be measured, its level of abstraction, and the attribute
that we want to measure. Then, we look in more detail at software con-
trol flow structure of individual program code-level functions, proce-
dures, and methods. In the following sections, we turn to measures that
are based on the information and data flow structure, metrics for object-
oriented designs, and finally to data structure. We end this chapter with a
discussion on how to compare general complexity measures.

372 ◾ Software Metrics

9.1 ASPECTS OF STRUCTURAL MEASURES
The size of a development product tells us a lot about the effort that went
into creating it. All other things being equal, we would like to assume that
a large module takes longer to specify, design, code, and test than a small
one. But experience shows us that such an assumption is not valid; the
structure of the product plays a part, not only in requiring development
effort but also in how the product is maintained. Thus, we must investigate
the characteristics of product structure, and determine how they affect the
outcomes we seek. In this chapter, we focus primarily on code and design
measures, but many of the concepts and measures introduced here can be
applied to other development products also.

A software module or design can be viewed from several perspectives.
The perspective that we use depends on

 1. The level of abstraction—program unit (function, method, class),
package, subsystem, and system

 2. The way the module or design is described—syntax and semantics

 3. The specific attribute to be measured

To be sure that we are measuring the desired attribute, we generally
represent the relevant aspects of a module or design using a model con-
taining only the information relevant to the attribute. We can think of
structure from at least two perspectives:

 1. Control flow structure

 2. Data flow structure

The control flow addresses the sequence in which instructions are exe-
cuted in a program. This aspect of structure reflects the iterative and loop-
ing nature of programs. Whereas size counts an instruction or program
element just once, control flow makes more visible the fact that an instruc-
tion or program element may be executed many times as the program is
actually run.

Data flow follows the trail of a data item as it is created or handled by a
program. Many times, the transactions applied to data are more complex
than the instructions that implement them; data flow measures depict the
behavior of the data as it interacts with the program.

Measuring Internal Product Attributes ◾ 373

In Chapter 8, we evaluated size measures in terms of three properties
of the size attribute: nonnegativity, null value, and additivity (Briand et al.
1996). In this chapter, we will evaluate structure measures by applying the
properties that Briand et al. also developed for the following structural
attributes: complexity, length, coupling, and cohesion. As introduced in
Chapter 8, the properties are defined in terms of a graph model of system
of modules, where modules contain elements (nodes in the graph), and
elements have links (graph edges) with other elements, and an element
can be in more than one module. Also, modules may be nested or disjoint.
The properties are defined in terms of the effect of system changes to a
measure of the particular attribute. For each attribute, the properties are
an empirical relation system and represent the required but not neces-
sarily sufficient constraints on a valid measure. A measure may need to
satisfy additional constraints to be intuitively valid.

9.1.1 Structural Complexity Properties

The relevant notion of complexity captures the complicatedness of the
connections between elements in a system model. Here, complexity refers
to the complexity of a system. The complexity of a system depends on the
number of links between elements, and should, at a minimum, satisfy the
following properties (Briand et al. 1996) (which are, of course, a set of
empirical relations in the sense of Chapter 2):

 1. Nonnegativity: System complexity cannot be negative.

 2. Null value: The complexity of a system with no links is zero.

 3. Symmetry: The complexity of a system does not depend on how links
are represented.

 4. Module monotonicity: System complexity “is no less than the sum of
the complexities of any two of its modules with no relationships in
common.”

 5. Disjoint module additivity: The complexity of a system of disjoint
modules is the sum of the complexities of the modules.

9.1.2 Length Properties

Sometimes, we are only interested in the size of an entity in terms of one
dimension of a model. For example, we are only interested in a person’s

374 ◾ Software Metrics

height to predict whether or not a person would bump his or her head
when entering a doorway. For software entities, we might be interested in
the distance in terms of links from one element to another. The first two
length properties are the same as those for size (in Chapter 8). However,
the effect on system length from adding links depends on whether or not
modules are disjoint (Briand et al. 1996):

 1. Nonnegativity: System length cannot be negative.

 2. Null value: A system with no links has zero length.

 3. Nonincreasing monotonicity for connected components: Length does
not increase when adding links between connected elements.

 4. Nondecreasing monotonicity for nonconnected components: Length
does not decrease when adding links between nonconnected elements.

 5. Disjoint modules: The length of a system of disjoint modules is equal
to the length of the module with the greatest length.

Property 5 reflects a difference between the notions of length from that
of size. For example, height is a length attribute of a person, while mass or
weight is a size attribute. The distribution of human heights in a popula-
tion is more useful for determining the necessary height of a doorway than
distribution of weights. The maximum depth of a tree and the maximum
nesting depth in a program are examples of length measures.

9.1.3 Coupling Properties

Coupling is an attribute of an individual module and depends on a mod-
ule’s links to and from elements that are external to the module (Briand
et al. 1996):

 1. Nonnegativity: Module coupling cannot be negative.

 2. Null value: A module without links to elements that are external to
the module has zero coupling.

 3. Monotonicity: Adding intermodule relationships does not decrease
coupling.

 4. Merging modules: Merging two modules creates a new module that
has coupling that is at most the sum of the coupling of the two
modules.

Measuring Internal Product Attributes ◾ 375

 5. Disjoint module additivity: Merging disjoint modules without links
between them creates a new module with coupling that is the sum of
the coupling of the original modules.

9.1.4 Cohesion Properties

Cohesion is an attribute of an individual module and depends on the
extent that related elements are contained within a module. Thus, a
module with many connections between its internal elements will have
greater cohesion than a module that contains unrelated elements (Briand
et al. 1996):

 1. Nonnegativity and normalization: Module cohesion is normalized so
that it is between zero and one.

 2. Null value: A module whose elements have no links between them
has zero cohesion.

 3. Monotonicity: Adding links between elements in a module cannot
decrease the cohesion of the module.

 4. Merging modules: Merging two unrelated modules creates a new
module with a maximum cohesion no greater than that of the origi-
nal module with the greatest cohesion.

Property 1 is pragmatic. It allows one to compare the cohesion of dif-
ferent sized modules. Zero cohesion is defined in property 2. Although
Briand et al. did not define the notion of maximum cohesion—corre-
sponding to a score of 1 on the normalized 0–1 scale, it is clear that a
module with maximum cohesion is one in which every one of its elements
is connected.

9.1.5 Properties of Custom Attributes

We can also define structural attributes that are defined for special pur-
poses. For example, we may want a design to be consistent with a particu-
lar structure or architecture, or use specified design patterns. A system
might have a design that requires a layered architecture. Then we might
want to define measures based on the consistency with the architecture,
or count violations of constraints implied by the architecture. Later in
this chapter, we will see the notion of tree impurity defined as an attribute
along with the properties of an associated tree impurity measure. Such a

376 ◾ Software Metrics

measure would indicate the difference between (1) a specific graph repre-
sentation modeling some aspects of software and (2) a tree structure. We
will also see that one can define measures based on the occurrences of
realizations of design structures such as design patterns.

We now examine the measurement of the internal structure of software
starting from the perspective of the control flow in individual program
units.

9.2 CONTROL FLOW STRUCTURE OF PROGRAM UNITS
A great deal of early software metrics work was devoted to measuring
the control flow structure of individual functions, procedures, or meth-
ods implemented as imperative language programs or algorithms. This
work is still relevant, especially when applied to problems in software test-
ing. The control flow measures are usually modeled with directed graphs,
where each node (or point) corresponds to a program statement or basic
block (code that always executes sequentially), and each arc (or directed
edge) indicates the flow of control from one statement or basic block to
another. We call these directed graphs control flowgraphs or flowgraphs.

Figure 9.1 presents a simple example of a program, A, and a reasonable
interpretation of its corresponding flowgraph, F(A). We say “reasonable
interpretation” because it is not always obvious how to map a program A
to a flowgraph F(A). The flowgraph is a good model for defining measures
of control flow structure, because it makes explicit many of the structural
properties of the program. The nodes enumerate the program statements,
and the arcs make visible the control patterns.

10 INPUT P
20 Div = 2
30 Lim = INT(SQR(P))
40 Flag = P/Div - INT(P/Div)
50 IF Flag = 0 OR Div = Lim THEN 80
60 Div = Div + 1
70 GO TO 40
80 IF Flag <>0 OR P>4 THEN 110
90 PRINT Div; ‘‘Smallest factor of’’; P; ‘‘.’’
100 GO TO 120
110 PRINT P; ‘‘ is prime’’
120 END

10

20

30

40

60

50

80

90110

120

f
ft
t

FIGURE 9.1 A program and its corresponding flowgraph.

Measuring Internal Product Attributes ◾ 377

There are many flowgraph-based measures, some of which are incor-
porated into static analysis and program development tools. Many mea-
sures reflect an attempt to characterize a desirable (but possibly elusive)
notion of structural complexity and preserve our intuitive feelings about
complexity: if m is a structural measure defined in terms of the flowgraph
model, and if program A is structurally “more complex” than program
B, then the measure m(A) should be greater than m(B). In Chapter 2, we
noted some theoretical problems with this simplistic approach. There are
practical problems as well; since the measures are often based on very
specific views of what constitutes good structure, there may be differing
opinions about what constitutes a well-structured program. The struc-
tural complexity properties in Section 9.1.1 represent one perspective on
complexity. The other structural attributes in Section 9.1 have different
properties.

To support differing perspectives and multiple attributes, we introduce
an approach for analyzing control flow structure that is independent of
any particular view of desirable program structure. We can also use this
technique to describe and differentiate views of desirable structure. The
technique enables us to show that any program has a uniquely defined
structural decomposition into primitive components. In the following
sections, we show that this decomposition (which can be generated auto-
matically) may be used to define a wide range of structural measures.
These unifying principles objectively make clear the assumptions about
structuredness inherent in each measure’s definition. Most importantly,
we show how the decomposition can be used to generate measures of spe-
cific attributes, such as those relating to test coverage. The decomposition
is at the heart of many static analysis tools and reverse engineering tools.

9.2.1 Flowgraph Model and the Notion of Structured Programs

We begin our discussion by reviewing graph-related terminology. Recall
that a graph consists of a set of points (or nodes) and line segments (or
edges). In a directed graph, each edge is assigned a direction, indicated by
an arrowhead on the edge. This directed edge is called an arc.

Thus, directed graphs are depicted with a set of nodes, and each arc
connects a pair of nodes. We write an arc as an ordered pair, <x, y>, where
x and y are the nodes forming the endpoints of the arc, and the arrow
indicates that the arc direction is from x to y. The arrowhead indicates
that something flows from one node to another node. Therefore, each
node has some arcs flowing into it and some arcs flowing out (or possibly

378 ◾ Software Metrics

no arcs of each type). The in-degree of a node is the number of arcs arriv-
ing at the node, and the out-degree is the number of arcs that leave the
node. We can move from one node to another along the arcs, as long as
we move in the direction of the arrows. A path* is a sequence of consecu-
tive (directed) edges, some of which may be traversed more than once
during the sequence. A simple path† is one in which there are no repeated
edges.

EXAMPLE 9.1

In Figure 9.1, the node labeled “50” has in-degree 1 and out-degree 2. The
following sequence S of edges is a path:

 <30,40> <40,50> <50,60> <60,40> <40,50> <50,80 >

However, S is not a simple path, since it repeats edge <40,50>.

A flowgraph is a directed graph in which two nodes, the start node and
the stop node, obey special properties: the stop node has out-degree zero,
and every node lies on some path from the start node to the stop node. In
drawing flowgraphs, we distinguish the start and stop nodes by encircling
them.‡ Flowgraph nodes with out-degree equal to 1 are called procedure
nodes; all other nodes (except the stop node) are termed predicate nodes.

EXAMPLE 9.2

In the flowgraph of Figure 9.1, the nodes labeled 50 and 80 are predicate
nodes. All the other nodes (except the stop node) are procedure nodes.

When we model program control structure, certain flowgraphs occur
often enough to merit special names. Figure 9.2 depicts those flowgraphs

* In graph theory, this is normally referred to as a walk. For historical reasons, computer scientists
refer to walks as paths.

† In graph theory, this is normally referred to as a path. Ammann and Offutt define a simple path as
a sequence of nodes connected by edges without any repeated nodes, except for the first and last
node (Ammann and Offutt 2008).

‡ Flowgraphs are examples of finite-state machines. In general, a finite-state machine may have
many start and stop nodes (states); the convention is to draw a circle around such nodes.

Measuring Internal Product Attributes ◾ 379

that correspond to the basic control constructs in imperative language
programming.

For example, the P2 flowgraph* represents the construct sequence, where
a program consists of a sequence of two statements. Beneath the name of
each construct in Figure 9.2, we have written an example of program code
for that construct. For instance, the example code for the D0 construct
is the if–then statement. Not all imperative languages have built-in con-
structs for each of the control constructs shown here, nor is the particular
code for the constructs unique.

EXAMPLE 9.3

Figure 9.2 contains an example of the repeat–until statement. An alternate
expression for that construct is

10 X
If A then goto 20 else goto 10
20 end

The flowgraph model for this program is identical to D3 in Figure 9.2.

Strictly speaking, a flowgraph is “parameterized” when we associ-
ate with it the actual code that it represents. For example, the notation

* The sequence statement P2 is a special case of a sequence of n statements Pn. Another special
instance of Pn is the case n = 1, which represents a program consisting of a single statement.

t
fX
A D0 or D0 (A,X)

If A then X
YX

A
D1 or D1 (A,X,Y)t f

If A then X
 else Y

f t

X

A
D2 or D2 (A,X)

while A do X f

t

X

A

D3 or D3 (A,X)
repeat X until A

A
X1 X2

Xn
.....

Cn or Cn(A,X1,…,Xn)

case A of
 a1 : X1
 a2 : X2
 an : Xn

a1 a2
an

X2
Pn or Pn (X1,X2,…, Xn)

X1;X2;…;Xn
XnX1

......

FIGURE 9.2 Common flowgraphs from program structure models.

380 ◾ Software Metrics

D2(A,X) (meaning D2 with parameters A and X) is an explicit denotation
of the construct while A do X. Sometimes, for convenience, we refer only
to the unparameterized names like D2, meaning the generic while–do con-
trol construct.

Most imperative programs have built-in control constructs for the flow-
graphs in Figure 9.2, but the same is not true for the control constructs
shown in Figure 9.3. (We shall soon see that the reasons for this difference
are more dogmatic than rational.) In theory, each of these additional con-
structs can be implemented using goto statements (which are available in
C or C++, but not in many languages such as Java or Python). For example,
the two-exit loop construct L2 is equivalent to the following C code:

loop:
X;
if (A) goto end;
Y;
if (B) goto end;
else goto loop;
end: return;

Although we can construct the flowgraphs in Figures 9.2 and 9.3 using
the goto construct, most developers avoid the goto construct because it
allows you to create very complex control flow that is difficult to under-
stand, debug, and modify. Experience suggests that it is best to build the
control flow of procedures, functions, and methods using only the control
flow constructs that implement those modeled in Figure 9.2 and possibly

Y

f
t

X

A

tf

X

A
B

Y
t

f

t
f

X

A Bf
t

“lazy Boolean evaluation OR”

If (A or B) then X else Y
in Turbo Pascal with Boolean
evaluation set to LAZY

If A or else B then X else Y
in Ada

“two-exit loop”

loop
 X: exit when A; Y exit when B
loop end

in Ada

“middle-exit loop”

loop
 X; exit when A;Y
loop end

in Ada

L2 or L2(A,B,X,Y) D4 or D4(A,X,Y)D5 or D5(A,B,X,Y)

FIGURE 9.3 Flowgraphs for less common control constructs.

Measuring Internal Product Attributes ◾ 381

Figure 9.3, as provided in an implementation language. There are many
possible variations of the constructs in Figure 9.3. For example, a variation
in D5 is the if–and–then–else construct, as well as more complex condi-
tions like

 if (A or B or C) then X else Y, if ((A or B) and (B or C))

However, all of the flowgraphs in Figures 9.2 and 9.3 have an impor-
tant common property that makes them suitable as “building blocks” for
structured program units. To understand it, we must define formally the
ways that we can build flowgraphs.

9.2.1.1 Sequencing and Nesting
There are just two legitimate operations we can use to build new flow-
graphs from old: sequencing and nesting. Both have a natural interpreta-
tion in terms of program structure.

Let F1 and F2 be two flowgraphs. Then the sequence of F1 and F2 is the
flowgraph formed by merging the stop node of F1 with the start node of F2.
The resulting flowgraph is written as

 F1; F2 or Seq (F1, F2) or P2 (F1, F2)

EXAMPLE 9.4

Figure 9.4 shows the result of forming the sequence of the D1 and D3
flowgraphs.

The flowgraph sequence operation corresponds to the sequence operation
(also called concatenation) in imperative language programming. In fact,
the flowgraph operation preserves the program operation in the following

D1
D3

D1; D3

Sequence

FIGURE 9.4 Applying the sequence operation.

382 ◾ Software Metrics

way. Suppose A and A′ are two blocks of program code, and recall that, in
general, the flowgraph model of a program A is denoted by F(A). Then

 F(A; A′) = F(A); F(A′)

Thus, the flowgraph of the program sequence is equal to the sequence
of the flowgraphs.

Let F1 and F2 be two flowgraphs. Suppose F1 has a procedure node x. Then
the nesting of F2 onto F1 at x is the flowgraph formed from F1 by replacing
the arc from x with the whole of F2. The resulting flowgraph is written as

 F1 (F2 on x)

Alternatively, we write F1(F2) when there is no ambiguity about the
node onto which the graph is nested.

EXAMPLE 9.5

Figure 9.5 shows the result of nesting the D3 flowgraph onto the D1 flowgraph.

EXAMPLE 9.6

Figure 9.6 shows the construction of a flowgraph from a number of nesting
and sequence operations.

The flowgraph nesting operation corresponds to the operation of proce-
dure substitution in imperative language programming. Specifically, con-
sider a program A in which the procedure A′ is called by a parameter x.
Then

 F(A with A′ substituted for x) = F(A) (F(A′) on x)

D1 (D3 on x)
D1

D3

WithX Nested
on x

FIGURE 9.5 Applying the nesting operation.

Measuring Internal Product Attributes ◾ 383

Thus, the flowgraph of the program substitution is equal to the nesting
of the flowgraphs.

In general, we may wish to nest n flowgraphs F1, …, Fn onto n respective
procedure nodes x1, …, x2. The resulting flowgraph is written as

 F(F1 on x1, F2 on x2, …, Fn on xn.)

In many of our examples, the actual nodes onto which we nest are of no
importance, and so we write: F(F1, F2, …, Fn).

Our examples describe the graphs that are constructed by using
sequencing and nesting constructs. We can sometimes reverse the process,
decomposing a flowgraph into smaller pieces that are related by sequenc-
ing and nesting. However, there are some graphs that cannot be decom-
posed that way. Formally, we say that prime flowgraphs are flowgraphs that
cannot be decomposed nontrivially by sequencing or nesting. The build-
ing blocks of our approach to control structure analysis and measurement
are these prime flowgraphs:

EXAMPLE 9.7

Each of the flowgraphs in Figures 9.2 and 9.3 is prime. The flowgraph on the
right-hand side of Figure 9.5 is not prime, because it decomposes as: D1(D3).
In other words, it is constructed by nesting one flowgraph, D3, onto another,
D1. Similarly, the flowgraph on the right-hand side of Figure 9.4 is not prime,
because it decomposes as a sequence of a D1 followed by D3.

X

D1

Y
D0

D3

D2

D1 (D2 on X)

D0 (D3 on Y)

D1 (D2 on X); D0 (D3 on D)

With

With

Sequence

Nested
onto x

Nested
onto y

FIGURE 9.6 Combining the sequence and nesting operations.

384 ◾ Software Metrics

9.2.1.2 Generalized Notion of Structuredness
The common definitions of structured programming assert that a program
is structured if it can be composed using only a small number of allowable
constructs. Normally, these constructs must be only sequence, selection,
and iteration. The rationale can be traced back to a classic result of Böhm
and Jacopini, demonstrating that every algorithm may be implemented
using just these constructs (Böhm and Jacopini 1966). Some authors have
argued (wrongly, in light of Example 9.3) that this statement is equivalent
to asserting that a program is structured only if it is written without any use
of the goto statement.

We have to be able to assess an individual program and decide whether
or not it is structured; the informal definition of structured programming
offers us no help in answering this question. Ideally, we should be able to
answer it by considering the flowgraph alone. However, to do so, we need a
definition of structuredness that supports many different views, and a mech-
anism for determining the level of structuredness in an arbitrary flowgraph.

To form this definition, we must introduce more terminology involv-
ing a family S of prime flowgraphs. We say that a family of graphs is
S-structured (or, more simply, that the family members are S-graphs) if it
satisfies the following recursive rules:

 1. Each member of S is S-structured

 2. If F and F′ are S-structured flowgraphs, then so are

 a. F;F′

 b. F(F′) (whenever nesting of F′ onto F is defined)

 3. No flowgraph is an S-structured graph unless it can be shown to be
generated by a finite number of applications of the above steps.

Notice that, by definition, the members of S are themselves S-structured.
We call these the basic S-graphs, and they correspond to the building blocks
we seek. Since this definition is quite general, it permits you to choose
which building blocks define your notion of structuredness.

EXAMPLE 9.8

For S = {P1}, the set of S-structured graphs is the set {P1, P2, …, Pn, …}.

Measuring Internal Product Attributes ◾ 385

EXAMPLE 9.9

For S = {D1, D2}, Figure 9.7 shows the examples of various S-structured
graphs.

The definition allows us to nominate, for any particular development
environment, a set of legal control structures (represented by the basic
S-graphs) suited for particular applications. Then, by definition, any con-
trol structure composed from this nominated set will be “structured” in
terms of this local standard; in other words, the set derived from the basic
S-graphs will be S-structured.

EXAMPLE 9.10

Let SD = {P1, D0, D2}. Then the class of SD-graphs is the class of flowgraphs com-
monly called (in the literature of structured programming) the D-structured
(or sometimes just structured) graphs. Stated formally, the Böhm and Jacopini
result asserts that every algorithm can be encoded as an SD-graph. Although
SD is sufficient in this respect, it is normally extended to include the structures
D1 (if–then–else) and D3 (repeat–until).

For reasons that have been discussed extensively elsewhere, it is now
common to accept a larger set than SD as the basis for structured program-
ming. For example, there are very powerful arguments for including all
of the primes in Figure 9.3. Many modern languages have constructs that

X

D1 D2

D1(D2)

D2(D1)

D1;D2

D1;D2; (D2(D1))

etc.

FIGURE 9.7 Examples of S-structured graphs when S = {D1, D2}.

386 ◾ Software Metrics

support these primes. Thus, in these languages, the set of structured pro-
grams includes the set of S-graphs where

 S = {P1, D0, D1, D2, D3, D4, Cn (for all n), L2}

9.2.1.3 Prime Decomposition
We can associate with any flowgraph a decomposition tree to describe
how the flowgraph is built by sequencing and nesting primes (Fenton
and Whitty 1986). Figure 9.8 illustrates how a decomposition tree can be
determined from a given flowgraph.

Figure 9.9 presents another example, where a flowgraph is shown with
its prime decomposition tree.

To understand this prime decomposition, consider the program-
ming constructs that correspond to the named primes. By expanding

i.e., F = (D1 (D2)) ; D0

Seq

D1 D0

D2

The flowgraph F
here

is the sequence
of this
flowgraph F1

and this
prime D0

But F1
is the prime
D1
with the prime
D2 nested
onto it

Thus, the
hierarchical
decomposition
into primes is

FIGURE 9.8 Deriving the decomposition tree of a flowgraph.

D1

P3 D0

D2 D3P1

F = D1((D0; P1; D2), D0(D3))

TREE(F)F

D0

FIGURE 9.9 A flowgraph and its decomposition tree.

Measuring Internal Product Attributes ◾ 387

TREE(F) in Figure 9.9, we can recover the program text as shown in
Figure 9.10.

Not only can we always decompose a flowgraph into primes, but we can
be assured that the decomposition is always unique:

Prime decomposition theorem: Every flowgraph has a unique
decomposition into a hierarchy of primes.

The proof of the theorem (see (Fenton and Whitty 1986)) provides a
constructive means of determining the unique decomposition tree. For
large flowgraphs, it is impractical to perform this computation by hand,
but there are tools available commercially that do it automatically.

The prime decomposition theorem provides us with a simple means
of determining whether an arbitrary flowgraph is S-structured or not for
some family of primes S. We just compute the decomposition tree and
look at the node labels; if every node is either a member of S or a Pn, then
the flowgraph is an S-graph.

EXAMPLE 9.11

If S = {D1, D2}, then the flowgraph F in Figure 9.9 is not an S-graph, because
one of the nodes in the decomposition tree is D3. However, F is an SD-graph,
where SD = {D0, D1, D2, D3}.

Every flowgraph must be S-structured for some family S (namely, where
S is the set of distinct primes found in the decomposition tree); the ques-
tion is whether any members of S are considered to be “nonstructured.”
The decomposition theorem shows that every program has a quantifiable
degree of structuredness characterized by its decomposition tree. The only

a

cb

d
e

X

Y

U

V

if a
 then
 begin
 If b then do X;
 Y;
 while e do U
 end
 else
 if c
 then do
 repeat V until d

FIGURE 9.10 The flowgraph of Figure 9.9 in terms of its program structure.

388 ◾ Software Metrics

structures that cannot be decomposed in any way at all are primes. So, unless
the whole flowgraph is prime, it can be decomposed to a certain extent.

9.2.2 Hierarchical Measures

The uniquely defined prime decomposition tree is a definitive description
of the control structure of a program. In this section, we show that this tree
is all we need to define a very large class of interesting measures. We are
able to define many measures because they can be described completely in
terms of their effect on primes and the operations of sequence and nesting.

EXAMPLE 9.12

Suppose we wish to measure formally the intuitive notion of depth of nesting
within a program. Let the program be modeled by a flowgraph, F; we want to
compute α, the depth of nesting of F. We can express α completely in terms
of primes, sequence, and nesting:

Primes: The depth of nesting of the prime P1 is zero, and the depth of nest-
ing of any other prime F is equal to one. Thus, α(P1) = 0, and if F is a
prime ≠ P1, then α((F) = 1.

Sequence: The depth of nesting of the sequence F1, …, Fn is equal to the
maximum of the depth of nesting of the Fis. Thus, α(F1; …; Fn) = max
(α(F1); …; α(Fn)).

Nesting: The depth of nesting of the flowgraph F(F1, …, Fn) is equal to the
maximum of the depth of nesting of the Fi plus one because of the extra
nesting level in F. Thus, α(F(F1, …, Fn)) = 1 + max(α(F1), …, α(Fn)).

Next, consider the flowgraph F in Figure 9.9. We know that F = D1
((D1;P1;D2), D0 (D3)), so we compute:

α(F) = α (D1 ((D1;P1;D2), D0 (D3)))
= 1 + max (α(D1;P1;D2), α(D0 (D3))) (Nesting rule)
= 1 + max(max(α(D1), α(P1), α(D2)),

1 + α(D3))
(Sequence rule and nesting
rule)

= 1 + max(max(1,0,1),2)
= 1 + max(1,2)
= 3

Intuitively, the depth of nesting measure α indicates the length of the path
to the most deeply nested prime. Indeed, α satisfies the properties of a length
measure described in Section 9.1.2.

Measuring Internal Product Attributes ◾ 389

Next, assume that S is an arbitrary set of primes. We say a measure
m is a hierarchical measure if it can be defined on the set of S-graphs by
specifying:

M1: m(F) for each F ∈ S

M2: The sequencing function(s)

M3: The nesting functions hF for each F ∈ S

As we saw in Example 9.12, we may automatically compute a hierarchi-
cal measure for a program once we know M1, M2, M3, and the decomposi-
tion tree.

The uniqueness of the prime decomposition implies that an S-graph can
be constructed in only one way. Thus, we can construct new hierarchical
measures simply by assigning a value m(F) to each prime and a value to
the sequence and nesting functions; in other words, we construct our own
conditions M1, M2, and M3. However, rather than generating arbitrary and
artificial hierarchical measures in this way, we wish instead to show that
many existing measures, plus many measures of specific intuitive struc-
tural attributes, are indeed hierarchical.

EXAMPLE 9.13

In Chapter 8, we discussed some of the problems involved in defining the
lines of code measure unambiguously. Given the theory, which we have pre-
sented so far in this chapter, we define a formal size measure, v, which cap-
tures unambiguously the number of statements in a program when the latter
is modeled by a flowgraph.

M1: v(P1) = 1, and for each prime F ≠ P1, v(F) = n + 1, where n is the num-
ber of procedure nodes in F

M2: v(F1; …; Fn) = Σv(Fi)
M3: v(F(F1, …, Fm)) = 1 + Σv(Fi) for each prime F ≠ P1

Condition M1 asserts that the size of a procedure node (which will gener-
ally correspond to a statement having no control flow) will be 1. The size of
a prime with n procedure nodes (which will generally be a control statement
involving n noncontrol statements) is n + 1. This mapping corresponds to our
intuitive notion of size, and satisfies the properties of the size attribute given
in Section 8.1. The sequence and nesting functions given in M2 and M3,
respectively, are equally noncontroversial.

390 ◾ Software Metrics

To see how this measure works, we apply it to a flowgraph F in Figure 9.9:

v(F) = v(D1 ((D0;P1;D2), D0 (D3)))
= 1 + (v(D0;P1;D2) + v(D0 (D3))) (Nesting rule)
= 1 + (v(D0) + v(P1) + v(D2))
 + (1 + v(D3))

(Sequence rule
and nesting rule)

= 1 + (2 + 1 + 2) + (1 + 2)
= 9

Once a hierarchical measure has been characterized in terms of the con-
ditions M1, M2, and M3, then we have all the information we need to calcu-
late the measure for all S-graphs. We also have a constructive procedure for
calculating measures using this information together with the prime decom-
position tree. Some other simple but important hierarchical measures that
capture very specific properties are shown in Figure 9.11.

Number of Nodes Measure n
M1: n(F) = number of nodes in F for each prime F
M2: n(F1; …; Fm) = Σn(Fi) – k + 1
M3: n(F(F1, …, Fp)) = n(F) + Σn(Fi) – 2k for each prime F

Number of Edges Measure e
M1: e(F) = number of edges in F for each prime F
M2: e(F1; …; Fm) = Σe(Fi)
M3: e(F(F1, …, Fm)) = e(F) + Σe(Fi) – n for each prime F

The “Largest Prime” Measure κ: (First Defined in Fenton (1985))
M1: κ(F) = number of predicates in F for each prime F
M2: κ(F1; …; Fn) = max(κ(F1), …, κ(Fn))
M3: κ(F(F1, …, Fn)) = max(κ(F), κ(F1), …, κ(Fn)) for each prime F

Number of Occurrences of Named Primes Measure p
M1: p(F) = 1 if F is named prime, else 0
M2: p(F1; …; Fn) = Σp(Fi)
M3: p(F(F1, …, Fm)) = p(F) + Σp(Fi)

D-Structured Measure d
(This nominal scale measure yields the value 1 if the flowgraph is D-structured and 0 if it
is not.)

M1: d(F) = 1 for F = P1, D0, D1, D2, D3 and 0 otherwise
M2: d(F1; …; Fn) = min(d(F1), …, d(Fn))
M3: d(F(F1, …, Fn)) = min(d(F), d(F1), …, d(Fn))

FIGURE 9.11 Some hierarchical measures.

Measuring Internal Product Attributes ◾ 391

Many flowgraph-based measures have been proposed as measures of
structural complexity. Many of these measures are hierarchical, so they
can be defined easily within our framework. By viewing each of them
in the context of the three necessary and sufficient conditions, M1, M2,
and M3, we can see how such measures may be computed automatically.
Furthermore, we can see easily what level of subjectivity has crept into
the definition of the measure, and we can compare it with the notion
of complexity in the real, empirical world that the measure is trying to
capture.

In particular, we can isolate the three aspects of subjectivity in the mea-
sure’s definition, namely

 1. What is the “complexity” of the distinguished primes?

 2. What is the “complexity” of sequencing?

 3. What is the “complexity” of nesting onto a given prime?

The remainder of this section applies this analysis to several popular
measures of the “complexity” of the control flow in program units.

9.2.2.1 McCabe’s Cyclomatic Complexity Measure
As we noted in Chapter 2, McCabe proposed the cyclomatic number of a
program’s flowgraph as a measure of program complexity (McCabe 1976).
For a program with flowgraph F, the cyclomatic number is calculated as

 ν(F) = e − n + 2

where F has e arcs and n nodes. The cyclomatic number actually measures
the number of linearly independent paths through F, and an explanation of
this term and its implications can be found in Appendix A.1.2. This mea-
sure is objective and useful when counting linearly independent paths,
and it does satisfy the properties of a structural complexity measure as
described in Section 9.1.1. See Briand et al. (1996) for details. However, it is
not at all clear that v(F) paints a complete or accurate picture of program
complexity. To see why, let us examine ν as a hierarchical measure.

For reasons detailed in Appendix A.1, we know that, for any flow-
graph F,

 ν(F) = 1 + d

392 ◾ Software Metrics

where d is the number of predicate nodes in F. Thus, ν can be defined as a
hierarchical measure in the following way:

M1: ν(F) = 1 + d for each prime F, where d is the number of predicates
in F

M2: ν(F1, …, Fn) = ∑ − +=i
n

iv F n1 () 1 for each n

M3: ν(F(F1, …, Fn)) = v F v F ni
n

i() ()+ ∑ −=1 for each prime F

Thus, if ν is a measure of “complexity,” it follows that

 1. The “complexity” of primes is dependent only on the number of
predicates contained in them.

 2. The “complexity” of sequence is equal to the sum of the complexities
of the components minus the number of components plus one.

 3. The “complexity” of nesting components on a prime F is equal to the
complexity of F plus the sum of the complexities of the components
minus the number of components.

From a measurement theory perspective, it is extremely doubtful that
any of these assumptions corresponds to intuitive relations about com-
plexity. Thus, ν cannot be used as a general complexity measure. However,
the cyclomatic number is a useful indicator of how difficult a program or
module will be to test and maintain. In this context, ν could be used for
quality assurance. In particular, McCabe has suggested that, on the basis
of empirical evidence, when ν is greater than 10 in any one module, the
module may be problematic.

EXAMPLE 9.14

Grady reported a study at Hewlett-Packard, where cyclomatic number was
computed for each module of 850,000 lines of FORTRAN code. The investi-
gators discovered a close relationship between a module’s cyclomatic num-
ber and the number of updates required. After examining the effects of cost
and schedule on modules with more than three updates, the study team
concluded that 15 should be the maximum cyclomatic number allowed in a
module (Grady 1994).

Measuring Internal Product Attributes ◾ 393

EXAMPLE 9.15

The quality assurance procedure for the software in the Channel Tunnel rail
system requires that a module be rejected if its cyclomatic number exceeds
20 or if it has more than 50 statements, as determined by the LOGISCOPE
tool (Bennett 1994).

9.2.2.2 McCabe’s Essential Complexity Measure
McCabe also proposed a measure to capture the overall level of struc-
turedness in a program. For a program with flowgraph F, the essential
complexity eν is defined as

 eν(F) = ν(F) – m

where m is the number of subflowgraphs of F that are D-structured primes
(i.e., either D0, D1, D2, or D3)* (McCabe 1976).

The flowgraph F in Figure 9.12 has a single D-structured prime subflow-
graph, namely, the D2 construct on the right. Thus, m = 1, and ν(F) = 5,
yielding eν(F) = 4.

McCabe asserts that the essential complexity indicates the extent to which
the flowgraph can be “reduced” by decomposing all those subflowgraphs that
are D-primes. In this way, the essential complexity is supposed to measure
the cyclomatic number of what remains after you decompose all the struc-
tured subflowgraphs. The essential complexity of a D-structured program is
one, since only a Pn is left after decomposing all the structured primes.

EXAMPLE 9.16

The flowgraph on the left of Figure 9.13 is a truly unstructured “spaghetti”
prime. Its essential complexity is 6, the same as its cyclomatic number. On

* McCabe (1976) actually refers to these curiously as “proper one-entry one-exit subflowgraphs.”

FIGURE 9.12 Flowgraph with essential complexity 4.

394 ◾ Software Metrics

the other hand, the flowgraph on the right is the sequence of three L2 con-
structs. Since none is a D-prime, then according to McCabe’s definition this
flowgraph is nonreducible; therefore, its essential complexity should be the
same as its cyclomatic number, namely, 7.

When a flowgraph is not D-structured, it is not at all clear that the defi-
nition of essential complexity corresponds to any natural intuition about
structural complexity. For example, in Figure 9.13, the flowgraph on the
right has a higher essential complexity value than the spaghetti structure
on the left. This unusual circumstance happens because essential com-
plexity is additive on sequences, except when the sequential components
are D-structured. Another counterintuitive feature of essential complex-
ity occurs when a nonstructured prime is nested onto a structured prime;
the cyclomatic number of the structured prime is added to the overall
essential complexity (because the structured prime is not a proper sub-
flowgraph). This phenomenon is present in the flowgraph of Figure 9.12,
where there is a D0 at the highest level.

A more intuitive notion of essential complexity may simply be the
cyclomatic number of the largest prime in the decomposition tree. This
approach is similar to the largest prime metric described in Figure 9.11.

9.2.3 Code Structure and Test Coverage Measures

Many researchers approach the problem of measuring structure from
the view of needing to understand how the module works. But there are
other aspects of structure that reflect a different perspective. In particular,

FIGURE 9.13 An unstructured prime.

Measuring Internal Product Attributes ◾ 395

the structure of a module is related to the difficulty we find in testing it.
We now turn to the application of control structure and decomposition
for calculating the minimum number of test cases required to implement
a test strategy.

We begin with the definitions and assumptions. Suppose that program P
has been produced for a known specification S. To test P, we run P with an
input i and check to see that the output satisfies the specification. We can for-
malize this procedure by defining a test case to be a pair, (i, S(i)). We are inter-
ested in whether S(i), the expected output, is equal to P(i), the actual output.

EXAMPLE 9.17

Suppose P is a program produced to meet the following specification, S:

The inputs to the program are exam scores expressed as percentages. The
outputs are comments, generated according to the following rules:
For scores under 45, the program outputs “fail”
For scores between 45 and 80 inclusive, the program outputs “pass”
For scores above 80, the program outputs “pass with distinction”

Any input other than a numeric value between 0 and 100 should produce
the error message “invalid input”

A set of five test cases for P is

(40, “fail”)
(60, “pass”)
(90, “pass with distinction”)
(110, “invalid input”)
(fifty, “invalid input”)

Suppose that on input “40,” program P outputs “fail.” Then we say that P is
correct on that input. If, for the input “110,” the program P outputs “pass with
distinction,” then P fails on this input; the correct output should have been
the error message “invalid input.”

As discussed in Section 8.6.3, the objective of a software testing strat-
egy is to devise and run a set of test cases that satisfy or cover a set of test
requirements. The test requirements are defined in terms of a software
artifact or model of a software artifact, where an artifact may be the
requirements, specification, design, program code, etc. (Ammann and
Offutt 2008). These models are often graphs, for example, flowgraphs.

396 ◾ Software Metrics

One testing strategy is to select test cases so that every program state-
ment is executed at least once. This approach is called statement coverage—
each statement is a test requirement. For deterministic software, each test
case causes one test path through the program to execute. In terms of the
program flowgraph, statement coverage is achieved by finding a set of test
cases that execute test paths such that every flowgraph node lies on at least
one test path.

EXAMPLE 9.18

Figure 9.14 contains a program written to meet the specification S of Example
9.17. We can achieve 100% statement coverage for this program by choos-
ing just two of the test cases: one with input “90,” and one with input “40.”
For “90,” the program executes the path <ABDEFG>. For “40,” the program
executes the path <ABCEG>. Thus, C is covered in the second case, and all
the other nodes are covered in the first case, so we have a complete state-
ment coverage.

Another testing strategy is to select test cases so that every program
branch is executed at least once. This approach, called branch (or edge)
coverage, means finding test cases that cause the execution of a set of test
paths such that every edge lies on at least one test path.

EXAMPLE 9.19

The set of test cases selected in Example 9.18 satisfies branch as well as state-
ment coverage. However, this will not always be true. In the same program,
the two paths ABCEFG and ABDEFG satisfy 100% statement coverage, but
fail to cover the edge EG.

A Input(score);
B If score < 45
C then print (“fail”)
D else print (“pass”);
E If score > 80
F then print (“with distinction”);
G End

A

B
C D

E
F

G

t f

t
f

FIGURE 9.14 A simple program and corresponding flowgraph.

Measuring Internal Product Attributes ◾ 397

The most exhaustive structural testing strategy is to select test cases
such that every possible test path is executed at least once. This approach
is called complete path coverage. In terms of the program flowgraph, com-
plete path coverage requires running every single test path through the
flowgraph. This strategy, although appealing in theory, is normally impos-
sible in practice. If the program has even a single loop, then complete path
coverage can never be achieved because a loop gives rise to an infinite
number of test paths.

There is another fundamental impediment to any structural testing
strategy: infeasible paths. An infeasible path is a program path that cannot
be executed for any input. In practice, infeasible paths can appear even in
the simplest of programs.

EXAMPLE 9.20

In the program of Figure 9.14, the path ABCEFG is infeasible. To see why,
notice that node C is executed only when the score is less than 45, while
node F is executed only when the score is more than 80. Thus, no input score
can cause the program to execute both nodes C and F.

The existence of infeasible paths can mean that, in practice, we may not
be able to achieve 100% coverage for any structural testing strategy (even
statement coverage).

Numerous other structural testing strategies have been proposed
(see (Ammann and Offutt 2008) for a thorough account). In particular,
researchers have tried to define strategies so that

 1. They are more comprehensive than statement and branch coverage
(in the sense of requiring more test cases).

 2. The number of test cases required is finite even when there are
loops.

Ammann and Offutt described numerous testing criteria for such strat-
egies. Several of these strategies make use of the notion of simple paths
and prime paths. They define a simple path as a path that does not con-
tain the same node more than once except for the first and last node. A
prime path is a simple path that “does not appear as a proper subpath of

398 ◾ Software Metrics

any other simple path.” The following examples are from (Ammann and
Offutt 2008):

• Edge-pair coverage: Testing “each reachable path of length up to 2”
in the flowgraph.

• Simple-round-trip coverage: Testing “at least one round-trip path
for each reachable node in” the flowgraph “that begins and ends a
round-trip path,” where a round-trip path is a prime path that starts
and ends at the same node. This requires every cycle through a loop
to be tested, but does require branch coverage or all cycles through
loops that contain decisions.

• Prime path coverage: Testing all prime paths in the flowgraph.
This requires testing all cycles that start at reachable nodes, and,
depending on the branches inside a loop, requires testing execu-
tion paths that cause a loop to cycle two or more times. Prime path
coverage satisfies branch coverage, and requires a finite number of
tests.

We have already noted one problem with structural testing strategies
(namely, infeasible paths). In practice, there are two further important
obstacles:

 1. No structural strategy on its own (even 100% complete path coverage
when feasible) can guarantee adequate software testing. Consider, for
example, the program in Figure 9.14, which implements the speci-
fication in Example 9.17. The path ABDEFG correctly outputs “dis-
tinction” when the input is “90.” However, the correct output for one
execution does not mean that every execution of the path ABDEFG
is correct. For instance, the input score “110” also executes the path
ABDEFG, but the program wrongly outputs “pass with distinction”
when it should be producing “invalid input.”

 2. Knowing the set of paths that satisfies a particular strategy does not
tell you how to create test cases to match the paths. This problem
is undecidable in general—no automated method is guaranteed to
either find the appropriate test cases or determine that such data
does not exist; however, some commercial testing tools provide
assistance.

Measuring Internal Product Attributes ◾ 399

Associated with every testing strategy are two important measures: the
minimum number of test cases and the test effectiveness ratio.

9.2.3.1 Minimum Number of Test Cases
It is not enough for a test team to choose a test strategy. Before testing
starts, the team members must also know the minimum number of test
cases needed to satisfy the strategy for a given program. This informa-
tion helps them to plan their testing, both in terms of generating data for
each test case but also in understanding how much time testing is likely
to take. Figure 9.15 illustrates, for some of the structural testing strate-
gies described above, the test requirements as well as a minimal set of
paths that satisfies the strategy. The flowgraph has a node corresponding
to each statement. If a branch has no node on it, then the branch models
a program in which no statement appears on that branch. For instance,
the portion of the graph labeled with edges <2, 4>, <4, 6>, and <2, 6>
represents an IF–THEN statement, rather than an IF–THEN–ELSE
statement. When statement coverage is the testing strategy, the branch

All test paths coverage (infinite number)
<1, 3, 10>, <1, 3, 5, 7, 10>, <1, 3, 5,(7, 5, 7)n, 10>,
<1, 2, 6, 10>, <1, 2, 4, 6, 8, 10>, <1, 2, 6, 8, (9,8)n,10>,
<1, 2, 4, 6, 8, (9,8)n, 10> (any n > 0)

Branch coverage (4)
Branches—test requirements: <1, 2>, <2, 4>, <2, 6>,
<3, 5>, <3, 10>, <7, 10>, <7, 5>, <8, 9>, <8, 10>. Covered
with 4 test path: <1, 3, 10>, <1, 3, 5, 7, 5, 7, 10>,
<1, 2, 6, 8, 10>, <1, 2, 4, 6, 8, 9, 8, 10>.

Statement coverage (2)
Statements—test requirements: 1, 2, 3, 4, 5, 6, 7, 8,
9, 10. Covered with 2 test paths: <1, 3, 5, 7, 10>,
<1, 2, 4, 6, 8, 9, 8, 10>.

Prime path coverage (6)
Prime paths—test requirements: <1, 2, 3, 10>,
<1, 3, 5, 7, 10>, <5, 7, 5>, <1, 2, 6, 8, 10>, <1
2, 4, 6, 8, 10>, <8, 9, 8>, <9, 8, 9>, <9, 8, 10>.
Covered with 5 test path: traverse the 4 acyclic test
paths plus a test path that cycles through each loop
twice.

1

3

5
4

6

7

9 8

10

2

FIGURE 9.15 Test paths required to satisfy various structural testing criteria.
(Numbers in parentheses represent the minimal number of test paths required
for that criterion.)

400 ◾ Software Metrics

labeled <2, 4> does not have to be covered. Thus, the minimum number
of test cases required for the branch coverage strategy in Figure 9.16 is
four.

The decomposition theorem can help us to compute the minimum
number of test cases for some criteria, including branch coverage and
statement coverage. A test case corresponds to a test path through the
flowgraph F. So to calculate the minimum number of test cases, we must
compute the minimum number of test paths, m(F), required to satisfy the
strategy. We can compute m(F) from the decomposition tree as long as
we know how to compute m(F) for the primes as well as for sequence and
nesting.

Appendix A.2 supplies tables of relevant values for the various testing
strategies. We have restricted the definition to a reasonable set of primes,
which will be sufficient for most programs. If other primes are discovered
in the decomposition tree, then their values must be added. Figure 9.16
illustrates the computation of the minimum number of test paths (or test
cases) required to satisfy the “branch coverage” criterion.

The tables in Appendix A.2 help us to compute the various test coverage
measures for arbitrary flowgraphs:

F = D1((D0; P1; P2), D0(D3))

TREE(F)

7

5

8

10

D0 P1

P3

D2

D1

D3

D0

9

6

3

4

F
2

1

Computing the minimal number of test paths for the
branch coverage criterion:
m(F) = m(D1(D0((D0; P1; D2), D0(D3)))

= m((D0; P1; P2) + D0(D3)) formula for nesting on D1
= max((m(D0), m(P1)), m(D2)) + m(D3) + 1
 sequence formula and D0 nesting formula
= max(2, 1, 1) + 1 + 1 = 4

FIGURE 9.16 Computing the minimal number of test cases required using tables
in Appendix A.1.2.

Measuring Internal Product Attributes ◾ 401

EXAMPLE 9.21

For the flowgraph in Figure 9.16, we compute the minimum number of test
cases m for statement coverage using the tables in Appendix A.2:

 m(F) = m(D1(D0;P1;D2),(m(D0(D3))

 = m(D0;P1;D2) + m(D0(D3))

 = max(m(D0),m(P1),m(D2)) + m(D3)

 = max(1,1,1) + 1 = 2

EXAMPLE 9.22

Bertolino and Marre noted several problems with using some of the strate-
gies and their lower bound to drive test case selection (Bertolino and Marre
1995). For example, if a complex program is enclosed in a loop, then theo-
retically it is possible to satisfy branch coverage with a single path. In this
case, the lower bound of one test case is not very meaningful, because it
is unlikely that the single path required will be both feasible and obvious to
construct. Thus, they propose a more practical strategy, based on finding
a set of paths that provide reasonable coverage (in a very intuitive sense)
which are much more likely to be feasible. The authors provide a hierarchi-
cal definition of the minimum number of paths needed to satisfy their testing
strategy.

9.2.3.2 Test Effectiveness Ratio
For a given program and a set of cases to test it, we would like to know the
extent to which the test cases satisfy a particular testing strategy.

EXAMPLE 9.23

Suppose we are testing the program in Figure 9.14, and we have run two test
cases with input scores “60” and “90.” The test cases traverse two paths,
ABDEG and ABDEFG, covering 6 of the 7 statements, 7 of the 9 edges, and 2
of the 4 paths in the program. Thus, we say that statement coverage is 86%,
branch coverage is 78%, and path coverage is 50%.

We can define these percentages formally. Let C be a testing criterion
that requires us to cover a class of test requirements (such as paths, simple
paths, linearly independent paths, LCSAJs, edges, or statements). For a

402 ◾ Software Metrics

given program and set of test cases, the test effectiveness ratio (TERC) is
defined as

TER

Number of requirements executed at least once
Total number ofC

C
= ttest requirements for criterion C

Some commercial tools compute various test effectiveness ratios when
presented with a program and a set of test cases. The standard UNIX util-
ity lint computes the TERs for statement and branch coverage testing of
C programs.

EXAMPLE 9.24

Using the LDRA Testbed® commercial testing tool on actual test data used on
commercial systems, Mike Hennel has made alarming observations about test
effectiveness. For example, for the modest statement coverage strategy, most
managers assume that a TER of 100% can be achieved routinely. However,
the actual TER is typically no better than 40%. The typical TER for branch
coverage is lower still, providing objective evidence that most software is not
tested as rigorously as we like to think.

9.3 DESIGN-LEVEL ATTRIBUTES
So far, we have examined the attributes of individual modules. Measures
of these are sometimes called intramodular measures. Next, we look at
collections of modules, either at the design stage or when the program is
implemented in code. It is the intermodule dependencies that interest us,
and measures of these attributes are called intermodular measures. We
restrict our discussion to design (unless we note otherwise), as the design
structure is usually carried through to the code.

9.3.1 Models of Modularity and Information Flow

Although there is no standard definition of a module, we can rely on the
one suggested by Yourdon: A module is a contiguous sequence of program
statements, bounded by boundary elements, having an aggregate identi-
fier (Yourdon and Constantine 1979). This deliberately vague definition
permits a liberal interpretation. Also, a module should be (at least theo-
retically) separately compilable. Thus, a module can be any object that, at
a given level of abstraction, you wish to view as a single construct. Thus,

Measuring Internal Product Attributes ◾ 403

for example, in C, a procedure or function may be considered a module. In
Java, a class or interface is considered a module. An individual Java or C++
method is considered a program unit, but not a module.

To describe intermodular attributes, we build models to capture the nec-
essary information about the relationships between modules. Figure 9.17
contains an example of a diagrammatic notation capturing the necessary
details about designs (or code).

This type of model describes the information flow between modules;
that is, it explains which variables are passed between modules.

When measuring some attributes, we need not know the fine details
of a design, so our models suppress some of them. For example, instead
of examining variables, we may need to know only whether or not one
module calls (or depends on) another module. In this case, we use a more
abstract model of the design, a directed graph known as the module call-
graph; a call-graph is not a flowgraph, as it has no circled start or stop
node. An example is shown in Figure 9.18.

Usually, we assume that the call-graph has a distinguished root node,
corresponding to the highest-level module and representing an abstraction

B

A

D

C

E

Module A calls B, C
Module B calls D
Module C calls D, E

FIGURE 9.18 Module call-graph.

Main

Read_Scores Average

Calc_Av Print_Av

Scores

Scores

Scores

eof

Average

Average

FIGURE 9.17 Design charts.

404 ◾ Software Metrics

of the whole system. This would correspond to a system with a centralized
control structure.

For intramodular attributes, we consider models that capture the rel-
evant details about information flow inside a module. Specifically, we look
at the dependencies among data. A data dependency graph (DDG) is a
model of information flow supporting this kind of measurement (Bieman
and Debnath 1985). For instance, Figure 9.19 shows a simple program
fragments and their corresponding DDG models.

9.3.2 Global Modularity

“Global modularity” is difficult to define because there are many different
views of what modularity means. For example, consider average module
length as an intuitive measure of global modularity. As defined by any of
the measures in Chapter 8, module length is on a ratio scale, so we can
meaningfully consider average module length for a software system in
terms of the mean length of all modules. Boehm cautions us to distinguish
this type of measure from “complexity” or “structuredness”:

“A metric was developed to calculate the average size of program mod-
ules as a measure of structuredness. However, suppose one has a software
product with n 100-statement control routines and a library of m 5-state-
ment computational routines, which would be considered well structured
for any reasonable values of m and n. Then, if n = 2 and m = 98, the aver-
age module size is 6.9, while if m = 10 and n = 10, the average module size
is 52.5 statements” (Boehm et al. 1978).

We can describe global modularity in terms of several specific views of
modularity (Hausen 1989), such as the following:

M1 = modules/procedures

M2 = modules/variables

B0 X0 Y0 C0

A2

A3

D4

X0 B0

A1

A3

0 Initialise
1 If X < Y
2 Then A = B
3 Else A = C
4 D=A

0 Initialise
1 A = B
2 While X > A D0
3 A = F(A,B)
4 End

FIGURE 9.19 A data dependency graph model of information flow.

Measuring Internal Product Attributes ◾ 405

Both Hausen’s and Boehm’s observations suggest that we focus first on
specific aspects of modularity, and then construct more general models
from them.

9.3.3 Morphology

Yourdon and Constantine have analyzed what contributes to good design,
and they suggest several ways to view design components and structure.
They use the notion of morphology to refer to the “shape” of the over-
all system structure when expressed pictorially. Morphological charac-
teristics such as width and depth can then be used to describe good and
bad designs (Yourdon and Constantine 1979). Let us consider designs
expressed in terms of dependency graphs, and determine which morpho-
logical characteristics of the graphs present important information about
design quality. Here, we use an edge to connect two nodes if there is a
defined dependence between the nodes. For instance, if a node represents
a module and one module calls the other, then we connect the two corre-
sponding nodes with an edge (similar to a call-graph, but without directed
edges). Similarly, if one module passes data to another, then we can con-
nect the corresponding nodes with an edge.

Many morphological characteristics are measurable directly, including
the following:

• Size: Measured as number of nodes, number of edges, or a combina-
tion of these.

• Depth: Measured as the length of the longest path from the root node
to a leaf node.

• Width: Measured as the maximum number of nodes at any one level.

• Edge-to-node ratio: Can be considered a connectivity density mea-
sure, since it increases as we add more connections among nodes.

Examples of these measures are illustrated in Figure 9.20.
If the likely length of each code module can be predicted within rea-

son during design, then a number of quality assurance guidelines can be
derived from the design morphology measures.

These measures are not restricted to dependency graphs. They are gen-
erally applicable to most models.

406 ◾ Software Metrics

9.3.4 Tree Impurity

The graphs in Figure 9.21 represent different system structures that might
be found in a typical design. They exhibit properties that may help us to
judge good designs. We say that a graph is connected if, for each pair of
nodes in the graph, there is a path between the two. All of the graphs
in Figure 9.21 are connected. The complete graph, Kn, is a graph with n
nodes, where every node is connected to every other node, so there are
n(n − 1)/2 edges. Graphs G4, G5, and G6 in Figure 9.21 are complete graphs
with three, four, and five nodes, respectively. The graph G1 in Figure 9.21 is
called a tree, because it is a connected graph having no cycles (i.e., no path
that starts and ends at the same node). None of the other graphs is a tree,
because each contains at least one cycle.

f

a

k

e

b c d

l

jihe

Size

Depth
Width
Edge-to-node
RatioDepth

Width

12 nodes
15 edges
3
6

1.25

FIGURE 9.20 A design and corresponding morphology measures.

G1 G2 G3

G4 G5 G6

FIGURE 9.21 Dependency graphs with varying degrees of tree impurity.

Measuring Internal Product Attributes ◾ 407

Examining the trees in a graph tells us much about the design. Ince and
Hekmatpour suggest that

The more a system deviates from being a pure tree structure towards
being a graph structure, the worse the design is … it is one of the
few system design metrics* to have been validated on a real project.

INCE AND HEKMATPOUR 1988

Thus, we seek to create a measure, called tree impurity, to tell us how far
a given graph deviates from being a tree. In what follows, we restrict our
attention to undirected graphs.

To define tree impurity, we first describe several properties of graphs
and trees. A tree with n nodes always has n − 1 edges. For every connected
graph G, we can find at least one subgraph that is a tree built on exactly the
same nodes as G; such a tree is called a spanning subtree. A spanning sub-
graph G′ of a graph G is built on the same nodes of G, but with a minimum
subset of edges so that any two nodes of G′ are connected by a path. (Thus,
a graph may have more than one spanning subgraph.) Intuitively, the tree
impurity of G increases as the difference between G and G′ increases. We
want to make our definition formal, ensuring that it is consistent with the
principles of measurement theory.

Any measure m of tree impurity must satisfy at least four properties:

Property 1: m(G) = 0 if and only if G is a tree.
 In other words, a graph that is actually a tree has no tree impu-

rity. Thus, for example, any measure m of tree impurity must record
m(G1) = 0 for G1 in Figure 9.21.

Property 2: m(G1) > m(G2) if G1 differs from G2 only by the insertion of
an extra edge (representing a call to an existing procedure).

 This property states that if we add an edge to a graph, then the
resulting graph has greater tree impurity than the original. Thus, we
have m(G3) > m(G2) in Figure 9.21.

Property 3: For i = 1 and 2, let Ai denote the number of edges
in Gi and Ni the number of nodes in Gi. Then if N1 > N2 and
A1 − N1 + 1 = A2 − N2 + 1 (i.e., the spanning subtree of G1 has

* Here, metric is synonymous with our term attribute.

408 ◾ Software Metrics

more edges than the spanning subtree of G2, but in both cases the
number of edges additional to the spanning tree is the same), then
m(G1) < m(G2).

 This property formalizes our intuitive understanding that we must
take account of size in measuring deviation from a tree. Consider the
two graphs G2 and G4 in Figure 9.21. Each has a single edge addi-
tional to its spanning subtree. However, since the spanning subtree
of G4 is smaller, we have an intuitive feeling that its tree impurity
should be greater—a single deviation represents a greater propor-
tional increase in impurity.

Property 4: For all graphs G, m(G) ≤ m(KN) = 1, where N = number of
nodes of G and KN is the complete graph of N nodes.

 This property says that, of all the graphs with n nodes, the com-
plete graph has maximal tree impurity. Since it is reasonable to
assume that tree impurity can be measured on a ratio scale, we can
consider our measure to map to some number between 0 and 1, with
the complete graph measuring 1, the worst impurity.

EXAMPLE 9.25

We can define a measure of tree impurity that satisfies all four properties:

m G() =

Number of edges more than the spanning tree
Maximal number of edgges more than the spanning tree

In a complete graph, the number of edges is computed as

e

n n
=

−()1
2

where e is the number of edges in G and n is the number of nodes. Since the
number of edges in a spanning tree is always n − 1, the maximum number of
edges more than the spanning tree is

n n

n
n n()

()
()()−

− − =
− −1

2 1
1 2
2

Measuring Internal Product Attributes ◾ 409

The actual number of edges more than the spanning subtree must be
e − n + 1, so our formal equation for the tree impurity measure is

m G

e n
n n()
()

()()=
− +

− −
2 1

1 2

We leave it as an exercise to check that m satisfies the four properties.
Applying the measure m to the graphs in Figure 9.21, we find that

m(G2) = 1/10, m(G3) = 1/5, and m(G4) = 1.

The measure m of Example 9.25 has been applied to graphs of a system
design, to characterize its tree impurity. The results suggest a relationship
between tree impurity and poor design. Thus, m may be useful for quality
assurance of designs. System designs should strive for a value of m near
zero, but not at the expense of unnecessary duplication of modules. As
with all measures of internal attributes, m should be viewed in context with
other quality measures, rather than judged by itself.

It is important to note that the measure in Example 9.25 is not the only
proposed measure of tree impurity; others appear in the Exercises at the
end of this chapter.

9.3.5 Internal Reuse

In Chapter 8, we mentioned the need to consider and measure reuse when
looking at system size. In that context, we viewed reuse as the proportion
of a system that had been constructed outside of or external to the proj-
ect. In this chapter, we consider reuse in a different sense. We call inter-
nal reuse the extent to which modules within a product are used multiple
times within the same product.

This informal definition leads to a more formally defined measure.
Consider the graph in Figure 9.22, where each node represents a module,

M5

M3
M2

M4

M1

FIGURE 9.22 Example graph.

410 ◾ Software Metrics

and two nodes are connected by an edge if one module calls the other. The
graph shows that module M5 is reused, in the sense that it is called by both
M2 and M3. However, the graph model does not give us information about
how many times a particular module calls another module. Thus, M3 is
not shown to be reused at all, but it may in fact be called several times by
module M1. If we think of module reuse solely as whether one module is
called by another, then this graph model is sufficient.

Suppose we want to define a measure of this type of reuse. The first two
properties for a tree density measure should also apply to a reuse measure.
Similarly, property 4 seems reasonable, but we must drop the provision
that m(KN) = 1. However, property 3 is not applicable, but its converse may
be a desirable property.

Yin and Winchester have proposed a simple measure of internal reuse,
r, which satisfies properties 1, 2, and 4 plus the converse of 3. Calling the
system design measure, it is defined by

 r(G) = e − n + 1

where G has e edges and n nodes (Yin and Winchester 1978). Thus, the
design measure is equal to the number of edges additional to the spanning
subtree of G.

EXAMPLE 9.26

Applying this reuse measure to the graphs in Figure 9.21, we find that

 r(G1) = 0, r(G2) = 1, r(G3) = 2, r(G4) = 1, r(G5) = 3, r(G6) = 6

The reuse measure is crude; not only does it take no account of possible
different calls from the same module, it also takes no account of the size
of the reused components. However, it gives an idea of the general level of
internal reuse in a system design. Along with morphology measures and
tree impurity, it helps to paint an overall quantifiable picture of the system
structure. Empirical evidence is needed to determine the optimal balance
between tree impurity and reuse.

9.3.6 Information Flow

Much of our discussion so far has been concerned with the notion of informa-
tion flow between modules. For example, each type of coupling corresponds

Measuring Internal Product Attributes ◾ 411

to a particular type of information flowing through the module. Researchers
have attempted to quantify other aspects of information flow, including

• The total level of information flow through a system, where the mod-
ules are viewed as the atomic components (an intermodular attribute)

• The total level of information flow between individual modules and
the rest of the system (an intramodular attribute)

Let us examine Henry and Kafura’s information flow measure, a well-
known approach to measuring the total level of information flow between
individual modules and the rest of a system (Henry and Kafura 1981).
To understand the measurement, consider the way in which data move
through a system. We say a local direct flow exists if either

 1. A module invokes a second module and passes information to it, or

 2. The invoked module returns a result to the caller

Similarly, we say that a local indirect flow exists if the invoked module
returns information that is subsequently passed to a second invoked mod-
ule. A global flow exists if information flows from one module to another
via a global data structure.

Using these notions, we can describe two particular attributes of the
information flow. The fan-in of a module M is the number of local flows
that terminate at M, plus the number of data structures from which infor-
mation is retrieved by M. Similarly, the fan-out of a module M is the num-
ber of local flows that emanate from M, plus the number of data structures
that are updated by M.

Based on these concepts, Henry and Kafura measure information flow
“complexity” as

 Information flow complexity(M) = length(M) × ((fan-in(M)
 × (fan-out(M))2

Figure 9.23 shows an example of how this measure is calculated from a
design’s modular structure.

Briand, Morasca, and Basili evaluated the Henry–Kafura measure to
see if it satisfies the properties of a structural complexity measure that are
described in Section 9.1.1 (Briand et al. 1996). They found that properties

412 ◾ Software Metrics

1 through 4 are satisfied, but property 5, additivity, is violated due to the
exponent in the equation and hybrid nature of the measure—it uses the
product of fan-in and fan-out. Measured individually and without the
exponent, fan-in and fan-out satisfy all of the complexity properties, as
well as the coupling properties described in Section 9.1.3. Thus, fan-in and
fan-out are often used as coupling measures.

9.3.7 Information Flow: Test Coverage Measures

We have discussed the use of control flow in structural testing, noting the
utility of measuring the minimum number of test cases required to satisfy
a given criterion. Now, we look at the role of data flow, or of a combination
of data and control flow.

Most data-flow testing strategies focus on the program paths that link
the definition and use of variables. Such a path is called a du-path. We
distinguish between

• Variable uses within computations (c-uses)

• Variable uses within predicates or decisions (p-uses)

Figure 9.24 illustrates du-paths and describes the c-uses, p-uses, and
definitions for each of the basic blocks of code.

WC

FD

GDN RD FWS PW

DRCW

DOC

Module
WC
FD
CW
DR

GDN
RD

FWS
PW

Fan-in
2
2
3
1
0
2
1
1

Fan-out
2
2
3
0
1
1
1
1

[(Fan-in)(Fan-out)]2

16
16
27
0
0
4
1
1

Length
30
11
40
23
14
28
46
29

“Complexity”
480
176

1080
0
0

112
46
29

FIGURE 9.23 Calculating the Henry and Kafura measure of information flow
complexity.

Measuring Internal Product Attributes ◾ 413

The most stringent and theoretically effective data-flow strategy is to
find enough test cases so that every du-path lies on at least one program
path executed by the test cases; this is the all du-paths criterion. Weaker
testing criteria involve all c-uses, all p-uses, all defs, and all uses.

Rapps and Weyuker note that, although the all du-paths criterion is the
most discriminating, it requires a potentially exponential number of test
cases (Rapps and Weyuker 1985). Specifically, if t is the number of condi-
tional transfers in a program, then in the worst case there are 2t du-paths.
Despite this characteristic, empirical evidence suggests that du-paths testing
is feasible in practice, and that the minimal number of paths P required for
all du-path testing is a very useful measure for quality assurance purposes.

EXAMPLE 9.27

The worst-case scenario for the all du-paths criterion in Figure 9.24 is eight tests.
Yet, in this case, P is 3, because just three paths can cover the set of du-paths:

 <s,1,2,3,4,2,3,4,2,6,t>, <s,1,2,3,5,2,3,5,2,6,t>, <s,1,2,6,t>

EXAMPLE 9.28

An empirical study evaluated the the practicability of the all du-paths test-
ing criterion (Bieman and Schultz 1992). The study looked at a commercial
system consisting of 143 modules. For each module, they computed P, the

Proc Search (a: list;
n,x: integer;
var found: Boolean)

var lower, upper, middle: integer;

Begin
 lower := 1; upper:= n;

while lower < upper do

begin
 middle := (lower + upper) div 2;
 if x > a[middle]

then lower := middle + 1
 else upper := middle

found := (a[lower] = x)
end

end

s

t

1

2

3

4

5

6

s

1

2

3

4 5

6

t

Lower,
upper

x, a,
middle

n

Lower,
upper

Middle

Middle

a, lower, x

a,n,x

Lower,
upper

Middle

Lower

Upper

Found

c-uses p-uses defs

DU paths

 <s,1>
<s,1,2,3,4>
<s,1,2,3,5>
<s,1,2,6>

<5,2,6>
<5,2,3>
<4,2,6>
<4,2,3>
<3,5>
<3,4>

<1,2,6>
<1,2,3>

FIGURE 9.24 Example program and its du-paths.

414 ◾ Software Metrics

minimum number of test paths required to satisfy all du-paths. Bieman and
Schultz found that, for 81% of all modules, P was less than 11, and in only
one module was P prohibitively large. Thus, the strategy seems to be practi-
cal for almost all modules. Moreover, Bieman and Schultz noted that the
module with excessively high P was known to be the “rogue” module of the
system. Thus, P may be a useful quality assurance measure, especially when
used with outlier analysis as discussed in Chapter 6. To assure quality, we
may want to review (and, if necessary, rewrite) those few modules with infea-
sible values of P, since it is likely that they are overly complex.

The prime path coverage criteria described in Section 9.2.3 actually sub-
sumes the all du-paths criteria (Ammann and Offutt 2008). Thus, if your
set of test cases achieves prime path coverage, the test set also achieves all
of the data-flow testing criteria. The advantage of the prime path crite-
ria is that you can identify the test requirements needed to achieve prime
path coverage without any dataflow analysis—you only need to analyze
the control flow graph. However, prime path coverage may require testing
many additional requirements, including the testing of paths that do not
involve related definitions and uses.

9.4 OBJECT-ORIENTED STRUCTURAL ATTRIBUTES
AND MEASURES

Object-orientation has become a predominant way to structure software
implementations, designs, and requirements. Object-oriented designs
and implementations are built using classes, where each class defines a set
of objects that may be instantiated. Classes contain methods that corre-
spond to functions in procedural languages like C. Classes may be abstract
because all methods may not be implemented. A system may be designed
using the Java interface construct, which does not include implementa-
tions. Classes are generally part of a hierarchy of packages or namespaces,
depending on the language. There are inheritance relations between classes
and between interfaces. The use of dynamic binding, generics (Java), and
templates (C++) allows names in programs to be bound to a wide variety
of objects at run time or compile time. All of these constructs enhance
the expressability of developers but can make designs and implementations
more complicated.

Various tools and techniques have emerged to help manage the intri-
cacies involved in developing and describing object-oriented systems.
For example, the object management group (OMG) defined the unified

Measuring Internal Product Attributes ◾ 415

modeling language (UML), which includes a set of diagram types for mod-
eling object-oriented systems at various levels of abstraction to describe
the structure, behavior, and interactions of a system. The commonly used
UML diagram types include the following:

• Class diagrams: Model each class and its connections to other classes.

• Object diagrams: Model a configuration of run-time objects.

• Activity diagrams: Model the steps taken for a system to complete a
task.

• State machine diagrams: Model of finite-state machine
representations.

• Use case diagrams: Model external actors, the “use cases” that they
take part in, and the dependencies between use cases.

• Sequence diagrams: Model the sequences of messages passed between
objects in order to complete a task.

All of these diagram types can be treated as graphs with nodes and
edges. Thus, we can apply the graph analysis described earlier in this chap-
ter. For example, activity diagrams closely resemble control flow graphs.
The UML diagrams have labels on their edges, and the nodes have content
of various types. A class diagram node represents a class and contains a
name, a set of attributes or instance variables, and a set of methods. Each
class diagram component uses a different syntax. Class diagram edges
represent inheritance or implements relationships, associations, or use
dependencies. Associations may be labeled with names and multiplicity
values. The UML diagrams are thus information-rich.

Different object-oriented languages have different constructs with dif-
ferent semantics for implementing similar structures. For example, Java
generic classes support parameterized types in a manner that is different
from C++ templates. While C++ supports multiple inheritance, Java does
not. Java includes interfaces with inheritance hierarchies, while C++ does
not. While C++ uses the friend construct to allow access to encapsulated
entities, Java does not. The multitude of ways that object-oriented entities
are defined and connected affect structural attributes can and should be
measured. In the following sections, we will examine the various options
for measuring key attributes.

416 ◾ Software Metrics

9.4.1 Measuring Coupling in Object-Oriented Systems

Briand, Daly, and Wüst developed a framework for the measurement and
analysis of coupling in object-oriented systems (Briand et al. 1999b). The
framework supports a variety of perspectives on the notion of coupling,
as well as mechanisms that couple object-oriented entities. Many object-
oriented connections tend to be persistent—the connected entities can
remain connected between method invocations, and may persist over
the lifetime of an object. Persistent connections include objects coupled
through associations that are implemented using instance or state vari-
ables. Generalization/specialization relations that are implemented using
inheritance are persistent. There are also persistent connections between
language-defined types, user-defined types, and classes.

Other connections may be transient. For example, a method call con-
nects the calling entity (the client) with the called entity (server), but only
while the server is active. The connection between a method body and
the method’s actual parameters lasts only as long as the method is active.
When the method is called again, it is likely to be connected to different
objects of the same type.

In addition to the coupling properties in Section 9.1.3, several orthogo-
nal coupling properties can help to evaluate coupling measures (Briand
et al. 1999b):

• Type: What kinds of entities are coupled?

• Strength: How many connections of a particular kind?

• Import or export: Are the connections import and/or export?

• Indirect: Is indirect coupling measured?

• Inheritance: Are connections to or from inherited entities counted?

• Domain: Are the measures used to indicate the coupling of individ-
ual attributes, methods, classes, sets of classes (e.g., packages), or the
system as a whole?

Briand, Daly, and Wüst evaluated 30 different class-coupling measures
in terms of these properties (Briand et al. 1999b). Most of the measures satis-
fied the coupling properties in Section 9.1.3. However, eight of the measures
violated one or more coupling property. There is clearly a wide variety of
ways to measure object-oriented coupling. However, most of the published

Measuring Internal Product Attributes ◾ 417

coupling measures quantify coupling between classes, not objects. Thus,
they are based on static connections—connections that can be identified at
compile time, and do not account for run-time dependencies.

EXAMPLE 9.29

The coupling between object classes (CBO) is metric 4 in a commonly refer-
enced suite of object-oriented metrics (Chidamber and Kemerer 1994). CBO is
defined to be the number of other classes to which the class of interest is cou-
pled. Briand et al. identified several problems with CBO (Briand et al. 1999b).
One problem is that the treatment of inherited methods is ambiguous. Another
problem is that CBO does not satisfy property 5, disjoint module additivity, one
of the coupling properties given in Section 9.1.3. If class A is coupled to classes
B and C, both classes B and C have CBO = 1, assuming no other coupling con-
nections. Now assume that classes B and C are merged creating new class D.
Class D will have CBO = 1, as it is only coupled to class A. Property 5 is not
satisfied because the original classes A and B were disjoint, and the property
requires that the coupling of the merged classes be the sum of their coupling.
Property 5 would be satisfied if the measure counted the number of connec-
tions rather than the number of classes that the class of interest is coupled to.

EXAMPLE 9.30

Chidamber and Kemerer defined another coupling measure, response for
class (RFC), which is metric 5 in their suite of metrics (Chidamber and Kemerer
1994). RFC captures the size of the response set of a class. The response set
of a class consists of all the methods called by local methods. RFC is the
number of local methods plus the number of external methods called by local
methods. Consider again the merging of classes B and C that use methods in
class A, and assume that B and C are disjoint—they do not call each other’s
methods. The RFC of the merged class D will not be the sum of the RFC of B
and C if classes B and C used one or more of the same methods in class A. If
RFC was measured by counting the number of uses of external methods rather
than counting the number of methods invoked, property 5 would be satisfied.

EXAMPLE 9.31

Message passing coupling (MPC) was introduced by Li and Henry and for-
malized by Briand, Daly, and Wüst (Li and Henry 1993, Briand et al. 1999b).
The MPC value of a class is a count of the number of static invocations (call
statements) of methods that are external to the class. MPC satisfies all of the
properties in Section 9.1.3 including property 5.

418 ◾ Software Metrics

EXAMPLE 9.32

Robert C. Martin defines two package-level coupling measures (Martin
2003). These indicate the coupling of a package to classes in other packages:

 1. Afferent coupling (Ca): “The number of classes from other packages
that depends on the classes within the subject package.” Only “class
relationships” are counted, “such as inheritance and association.” Ca is
really the fan-out (see Section 9.3.8) of a package.

 2. Efferent coupling (Ce): “The number of classes in other packages that
the classes in the subject package depend on” via class relationships.
Ce is a form of the fan-in of a package.

These measures satisfy all of the properties in Section 9.1.3, including
property 5 as long as a class can only belong to a single package.

Martin suggests that high efferent coupling makes a package unstable as it
depends on too many imported classes. He defines the following instability
(I) metric:

I

C
C C

e

a e
=

+

Thus, a package becomes unstable as its efferent (fan-in) increases. This
is because the package depends on a relatively greater number of imported
classes, which makes the package more prone to problems due to changes,
faults, etc. in imported classes. Martin does not provide an empirical relation
system or set of properties that we can use to evaluate the intuition behind
the instability metric.

9.4.2 Measuring Cohesion in Object-Oriented Systems

As described in Section 9.1.4, the cohesion of a module depends on the
extent that related entities are contained within a module. Depending on
the level of abstraction of interest, a module may be a method, class, or
package. Method cohesion is conceptually the same as the cohesion of an
individual function or procedure. Thus, you can measure method cohe-
sion using the techniques and measures described in Section 9.3.7.

Class cohesion is an intraclass attribute. It reflects the degree to which
the parts of a class—methods, method calls, fields, and attributes belong
together. A class with high cohesion has parts that belong together because
they contribute to a unified purpose. Most of the proposed cohesion met-
rics are class-level metrics.

Measuring Internal Product Attributes ◾ 419

Similar to their framework for measuring coupling, Briand et al. (1998)
also developed a framework for measuring and analyzing cohesion in object-
oriented systems. The framework identifies options for structuring classes
and their effects on cohesion metrics. For example, methods, attributes, and
types (or Java interfaces) can be declared locally, imported, or inherited; the
declarations can be inherited and implemented locally. Connections between
entities can be through invocations, and references to common attributes.
The connections can be direct or indirect. Indirect method connections can
be through a series of method calls, or through inherited entities. A measure
can be analyzed in terms of (1) its definition (is the definition complete, oper-
ational, and objective?), (2) its scale type (can it be used during early phases
such as analysis and design?), (3) its dependence on a particular language,
and (4) its validation, which can be analytical or empirical. The analytical
evaluation focuses on a measure’s consistency with the cohesion properties
in Section 9.1.4. Only three of the 10 cohesion measures analyzed by Briand,
Daly, and Wüst satisfy all of the cohesion properties.

EXAMPLE 9.33

Lack of cohesion metric (LCOM) is metric 6 in the Chidamber and Kemerer
suite of metrics (Chidamber and Kemerer 1994). Here, the cohesion of a class
is characterized by how closely the local methods are related to the local
instance variables in the class. LCOM is defined as the number of disjoint
(i.e., nonintersecting) sets of local methods. Two methods in a class inter-
sect if they reference or modify common local instance variables. LCOM is
an inverse cohesion measure; higher values imply lower cohesion. Briand,
Daly, and Wüst found that LCOM violates property 1 of Section 9.1.4, as it is
not normalized (Briand et al. 1998). Since LCOM indicates inverse cohesion,
properties 2 through 4 are also not satisfied.

EXAMPLE 9.34

Tight class cohesion (TCC) and loose class cohesion (LCC) are based on con-
nections between methods through instance variables (Bieman and Kang
1995). Two or more methods have a direct connection if they read or write to
the same instance variable. Methods may also have an indirect connection if
one method uses one or more instance variables directly and the other uses
the instance variable indirectly by calling another method that uses the same
instance variable. TCC is based on the relative number of direct connections:

 TCC(C) = NDC(C)/NP(C)

420 ◾ Software Metrics

where NDC(C) is the number of direct connections in class C and NP(C) is
the maximum number of possible connections. LCC is based on the relative
number of direct and indirect connections:

 LCC(C) = (NDC(C) + NIC(C))/NP(C)

where NIC(C) is the number of indirect connections. The measures do
not include constructor and destructor methods in the computation, since
they tend to initialize and free all instance variables and will thus artificially
increase the measured cohesion. Both TCC and LCC satisfy all four cohesion
properties in Section 9.1.4.

EXAMPLE 9.35

Ratio of cohesive interactions (RCI) is defined in terms of cohesive interac-
tions (CIs), which include interactions between public data declarations and
interactions between method parameters and return types in public method
interfaces (Briand et al. 1998). RCI is the relative number of CIs:

 RCI(C) = NCI(C)/NPCI(C)

where NCI(C) is the number of actual CIs in class C and NPCI(C) is the
maximum possible number of CIs. RCI satisfies all four cohesion properties
in Section 9.1.4.

Package cohesion concerns the degree to which the elements of a pack-
age—classes and interfaces—belong together.

EXAMPLE 9.36

Robert C. Martin defines the cohesion of a package in a manner similar to
that of class cohesion (Martin 2003):

 Package relational cohesion RC(P) = (R(P) + 1)/N(P)

where R(P) is the number of relations between classes and interfaces in a
package and N(P) is the number of classes and interfaces in the package. A
one is added to the numerator so that a package with one class or interface
will have H = 1. H does not satisfy property 1 of the cohesion properties in
Section 9.1.4 because H is not normalized between zero and one. Property
1 can easily be satisfied by changing the denominator to the number of
possible relations, which is N(P) × (N(P) − 1), assuming a maximum of one

Measuring Internal Product Attributes ◾ 421

relation between two classes or interfaces. H also does not satisfy property 2
of the cohesion properties since H cannot be zero. However, it can approach
zero as more unrelated classes are added. Thus, we revise package relational
cohesion as follows:

 RC′(P) = (R(P) + 1)/NP(P)

where NP(P) is the number of possible relations between classes and inter-
faces in the package

Martin’s package relational cohesion measure captures the notion of
cohesion in a manner very similar to that of class cohesion. However,
this model may not reflect the desired structuring for a package.
Interdependency may not be the primary reason for placing modules into
the same package. We may want modules that will often be reused by the
same clients to reside in the same package. Thus, we may include an analy-
sis of the context in which a package is used to evaluate package coupling
(Ponisio and Nierstrasz 2006, Zhou et al. 2008).

In structuring a package, we may really seek logical cohesion as defined
by Yourdon and Constantine’s as an ordinal scale measure and is described
as a weak form of cohesion (Yourdon and Constantine 1979). Classes and
interfaces are placed in the same package because they perform similar
functions, but with different properties and features. Another concern for
evaluating package cohesion is determining the package boundaries. For
example, in Java, packages are arranged in a hierarchy that reflects the
directory structure of the program files—classes and interfaces. We could
evaluate package cohesion in terms of a local directory, or include contain-
ing directories. The choice would depend on the goal for measurement.

9.4.3 Object-Oriented Length Measures

Generally, length measures indicate the distance from one element to
another. In object-oriented systems, distances depend on the perspec-
tive and the model representing an appropriate view of the system. One
common application of distance measures involves inheritance trees as
depicted in UML class diagrams.

EXAMPLE 9.36

The depth of inheritance tree (DIT) is metric 3 in the Chidamber and Kemerer
suite of object-oriented metrics (Chidamber and Kemerer 1994). Inheritance

422 ◾ Software Metrics

in a class diagram is represented as a hierarchy or tree of classes. The nodes
in the tree represent classes, and for each such class, the DIT metric is the
length of the maximum path from the node to the root of the tree. Chidamber
and Kemerer claim that DIT is a measure of how many ancestor classes can
potentially affect this class. This claim could only pertain to effects due to
inheritance relations, and would not be accurate due to multiple inheritance
in C++ or the use of hierarchies of interfaces in Java (which were unknown
in 1994).

The DIT metric tells us how deep a class is in an inheritance hierarchy.
We also learn something about inheritance by determining the distribu-
tion of DIT values for all classes in a system, subsystem, and package.

EXAMPLE 9.37

Bieman and Zhao studied inheritance in 19 C++ systems containing 2744
classes (Bieman and Zhao 1995). The systems included language tools, GUI
tools, thread software, and other systems. They found that the median DIT of
the classes in 11 of the systems was either 0 or 1. Classes in the studied GUI
tools used inheritance the most with a mean class DIH of 3.46 and median
class DIH values ranging from 0 to 7. The maximum measured DIH for all
GUI tool classes was 10.

We can also measure the distance between connected objects following
other connections in class diagrams. Distances between classes through
associations can tell us about the potential configurations of objects that
may be built at run time. Distances in sequence diagrams indicate the
number of object connections required to complete a task requiring col-
laboration between objects.

9.4.4 Object-Oriented Reuse Measurement

One of the key benefits of object-oriented development is its support for
reuse through data abstraction, inheritance, encapsulation, etc. This sup-
port helps developers to reuse existing software components in several
ways. Depending on the development language, they can reuse existing
packages and classes in a verbatim fashion without changes. Developers
can also reuse existing packages and classes as well as interfaces,
types, generics, and templates in a leveraged fashion by overriding and

Measuring Internal Product Attributes ◾ 423

overloading inherited methods, by implementing interfaces, instantiating
generic classes or templates. Measurement of reuse involves an analysis
of the structures and models used to design and implement an object-
oriented system. In addition, you can measure reuse from one or both of
two perspectives: (1) client perspective: the perspective of a new system
or system component that can potentially reuse existing components,
and (2) server perspective: the perspective of the existing components that
may potentially be reused, for example, a component library or package
(Bieman and Karunanithi 1995).

From the client perspective, the potential reuse measures include the
number of direct and indirect server classes and interfaces reused. An
indirect server class would include the classes that direct servers use either
directly or indirectly—this is essentially the number of ancestor classes in
an inheritance hierarchy. Another aspect of reuse involves the structure
of the connections between clients and servers. To quantify this structure,
we can measure the number and length of paths through a UML diagram
that connects a client to indirect servers.

From the server perspective, we are concerned with the way a particu-
lar entity is being reused by clients.

EXAMPLE 9.38

The number of children (NOC) is metric 3 in the Chidamber and Kemerer
suite of object-oriented metrics (Chidamber and Kemerer 1994). This metric
relates to a node (class or interface) in an inheritance tree or UML class dia-
gram. NOC is computed by counting the number of immediate successors
(subclasses or subinterfaces) of a class or interface. NOC is a direct server
reuse measure.

The NOC measure defined in Example 9.38 only gives us partial infor-
mation about the reuse of a class or interface. We really learn how useful a
server class is by taking the relevant indirect measure, which is the num-
ber of descendants via inheritance in the inheritance tree or UML class
diagram.

9.4.5 Design Pattern Use

Object-oriented design patterns describe commonly used solutions
to recurring software design problems. The book by Gamma, Helm,

424 ◾ Software Metrics

Johnson, and Vlissides describes 23 creational, structural, and behav-
ioral patterns (Gamma et al. 1994). This book was followed by numerous
other design pattern books, papers, websites, etc. When used, design pat-
terns impact the structure of a system at various levels of abstraction. An
architectural pattern such as model–view–controller imparts an overall
structure to a system where the functional (model) portion of the system
is separated from the user interface (views and controllers) portion of
the system. Other patterns, such as an adaptor, create a microarchitecture
in a system. It affects how a cluster of classes and associated objects are
arranged.

The use of design patterns provides a way to understand the structure
of a system and the evolution of system structure.

EXAMPLE 9.39

Izurieta and Bieman studied the evolution and potential decay of three
open-sources systems (Izurieta and Bieman 2013). They identified design
pattern realizations in early versions and determined the effects of
changes on the functionality, adaptability, and testability of the design pat-
tern code. The changes did not break the functional or structural integ-
rity of the patterns. However, the changes did introduce grime, which is
nonpattern-related code that can obscure the pattern. The results show
that the introduced grime increased the dependencies between pattern
components causing an increase in both coupling and the number of test
requirements.

The commonly used design structures may actually be detrimental.
They may make it more difficult to test and adapt a system.

EXAMPLE 9.40

Brown, Malveau, McCormick, and Mowbray describe numerous object-
oriented antipatterns, which are “a commonly occurring solution to a prob-
lem that generates decidedly negative consequences” (Brown et al. 1998).
The Swiss Army Knife (also known as the kitchen sink) is one antipattern
that is identified by an overly complicated class interface with many method
signatures that support as many options as possible. These antipatterns “are
prevalent in commercial software interfaces” and can be difficult to under-
stand, maintain, and test.

Measuring Internal Product Attributes ◾ 425

EXAMPLE 9.41

Several antipatterns reduce the testability of a system. For example, the con-
current use antipattern occurs when transitive dependencies occur due to an
inheritance hierarchy creating several paths to a class (Baudry et al. 2002).
Another testing antipattern is called the self-use relationship, which occurs
when classes reference themselves through transitive use dependencies
(Baudry and Sunye 2004).

Izurieta and Bieman found that instances of the Swiss Army Knife,
concurrent use, and self-use relationship design antipatterns appeared in
software implementations as they age (Izurieta and Bieman 2008, Izurieta
and Bieman 2013).

To measure properties in software relevant to design patterns, you must
be able to identify them in a design or code. Izurieta and Bieman used
a very lightweight method; they searched code and documentation for
known pattern names and then confirmed that the patterns were genu-
ine through inspection. More sophisticated pattern identification meth-
ods may employ a variety of approaches, including explanation constraint
programming (Gueheneuc and Antoniol 2008) and feature-based searches
(Rasool and Mader 2011).

9.5 NO SINGLE OVERALL “SOFTWARE COMPLEXITY”
MEASURE

We have discussed the need for viewing overall “software complexity” as
the combination of several attributes, and we have shown the importance
of examining each attribute separately, so that we can understand exactly
what it is that is responsible for the overall “complexity.” Nevertheless,
practitioners and researchers alike find great appeal in generating a sin-
gle, comprehensive measure to express overall “software complexity.” The
single measure is expected to have powerful properties, being an indica-
tor of such diverse notions as comprehensibility, correctness, maintain-
ability, reliability, testability, and ease of implementation. Thus, a high
value for “complexity” should indicate low comprehensibility, low reli-
ability, etc. Sometimes, this measure is called a “quality” measure, as it
purportedly relates to external product attributes such as reliability and
maintainability. Here, a high “quality” measure suggests a low-quality
product.

426 ◾ Software Metrics

The danger in attempting to find measures to characterize a large col-
lection of different attributes is that often the measures address conflicting
goals, counter to the representational theory of measurement.

EXAMPLE 9.42

Suppose we define a measure, M, that characterizes the quality of people. If
M existed, it would have to satisfy at least the following conditions:

M(A) > M(B) whenever A is stronger than B and

M(A) > M(B) whenever A is more intelligent than B

The fact that some highly intelligent people are very weak physically
ensures that no M can satisfy both these properties.

Example 9.42 illustrates clearly why single-valued measures of “soft-
ware complexity” are doomed to failure. Consider, for example, the list of
properties in Table 9.2. Proposed by Weyuker, they are described as prop-
erties that should be satisfied by any good “software complexity” metric
(Weyuker 1988). In Table 9.2, P, Q, and R denote any program blocks.

Zuse has used the representational theory of measurement to prove that
some of these properties are contradictory; they can never all be satisfied by
a single-valued measure (Zuse 1992).

TABLE 9.2 Weyuker’s Properties for Any Software Complexity Metric M

Property 1: There are programs P and Q for which M(P) ≠ M(Q).
Property 2: If c is a nonnegative number, then there are only finitely many programs P
for which M(P) = c.

Property 3: There are distinct programs P and Q for which M(P) = M(Q).
Property 4: There are functionally equivalent programs P and Q for which M(P) ≠ M(Q).
Property 5: For any program bodies P and Q, we have M(P) ≤ M(P;Q) and
M(Q) ≤ M(P;Q).

Property 6: There exist program bodies P, Q, and R such that M(P) = M(Q) and
M(P;R) ≠ M(Q;R).

Property 7: There are program bodies P and Q such that Q is formed by permuting the
order of the statements of P and M(P) ≠ M(Q).

Property 8: If P is a renaming of Q, then M(P) = M(Q).
Property 9: There exist program bodies P and Q such that M(P) + M(Q) < M(P;Q).

Measuring Internal Product Attributes ◾ 427

EXAMPLE 9.43

We can see intuitively why properties 5 and 6 in Table 9.2 are mutually
incompatible. Property 5 asserts that adding code to a program cannot
decrease its complexity. This property reflects the view that program size
is a key factor in its complexity. We can also conclude from property 5
that low comprehensibility is not a key factor in complexity. This state-
ment is made because it is widely believed that, in certain cases, we can
understand a program more easily as we see more of it. Thus, while a
complexity measure M based primarily on size should satisfy property
5, a complexity measure M based primarily on comprehensibility cannot
satisfy property 5.
On the other hand, property 6 asserts that we can find two program bodies
of equal complexity, which, when separately concatenated to a same third
program, yield programs of different complexity. Clearly, this property has
much to do with comprehensibility and little to do with size.

Thus, properties 5 and 6 are relevant for very different, and incompatible,
views of complexity. They cannot both be satisfied by a single measure that
captures notions of size and low comprehensibility. The above argument is
not formal. However, Zuse reinforces the incompatibility; he proves formally
that while property 5 explicitly requires the ratio scale for M, property 6
explicitly excludes the ratio scale.

Cherniavsky and Smith also offer a critique of Weyuker’s properties
(Cherniavsky and Smith 1991). They define a code-based “metric” that sat-
isfies all of Weyuker’s properties but, as they rightly claim, is not a sensible
measure of complexity. They conclude that axiomatic approaches may not
work.

Cherniavsky and Smith have correctly found a problem with the
Weyuker axioms. But they present no justification for their conclusion
about axiomatic approaches in general. They readily accept that Weyuker’s
properties are not claimed to be complete. But what they fail to observe is
that Weyuker did not propose that the axioms were sufficient; she only
proposed that they were necessary. The Cherniavsky and Smith “metric”
is not a real measure in the sense of measurement theory, since it does
not capture a specific attribute. Therefore, showing that the “metric” satis-
fies a set of axioms necessary for any measure proves nothing about real
measures.

These problems could have been avoided by heeding a basic principle
of measurement theory: defining a numerical mapping does not in itself

428 ◾ Software Metrics

constitute measurement. Software engineers often use the word “metric”
for any number extracted from a software entity. But while every measure
is a metric, the converse is certainly not true. The confusion in analyses
such as Cherniavsky and Smith’s or Weyuker’s arises from wrongly equat-
ing these two concepts, and from not viewing the problem from a mea-
surement theory perspective.

The approach in this chapter is to identify necessary, but not suf-
ficient properties for notions of complexity, coupling, cohesion, and
length in Section 9.1, as proposed by Briand et al. (1996). We do not
claim that measures of any of these attributes capture the overall “soft-
ware complexity” of a system. No single measure can, with a single
number, indicate how difficult it will be to understand, maintain, and
test a software system. However, narrowly defined measures can quan-
tify specific attributes.

9.6 SUMMARY
It is widely believed that a well-designed software product is character-
ized largely by its internal structure. Indeed, the rationale behind most
software engineering methods is to ensure that software products are built
with certain desirable structural attributes. Thus, it is important to know
how to recognize and measure these attributes, since they may provide
important indicators of key external attributes, such as maintainability,
testability, reusability, and even reliability.

We have described how to perform measurements of what are gener-
ally believed to be key internal structural attributes, including structural
complexity, coupling, cohesion, length, modularity, tree impurity, reuse,
and information flow. These attributes are relevant for design documents
and their models as well as code. Indeed, knowing these attributes, we can
identify components that are likely to be difficult to implement, test, and
maintain.

We looked in detail at control flow attributes of function, procedure, and
method bodies. We showed how a program unit is built up in a unique way
from the so-called prime structures, which are the building blocks of func-
tion, procedure, and method bodies. A program unit body can therefore
be characterized objectively in terms of its prime decomposition, which
may be automatically computed. Many measures of internal attributes of
programs (including test coverage measures) can be computed easily once
we know a program unit’s prime decomposition. These measures are called

Measuring Internal Product Attributes ◾ 429

hierarchical. The prime decomposition is a definitive representation of the
control structure of a flowgraph; it can also be used as the basis for optimal
restructuring of code, and hence as a reverse engineering tool.

Object-orientation affects the structure of most elements of a software
implementation, design, and requirements. In particular, we examined
how coupling and cohesion can be measured in object-oriented systems
at various levels of abstraction. We applied specific coupling and cohesion
measurement properties, and examined the measurement of inheritance,
object-oriented reuse, and measurement involving design pattern use and
misuse.

It is unrealistic to expect that general complexity measures (of either
the code or system design) will be good predictors of many different attri-
butes. Complexity is an intuitive attribute that includes the specific inter-
nal attributes discussed in this chapter. Rather than seek a single measure,
we should identify specific attributes of interest and obtain accurate mea-
sures of them; in combination, we can then paint an overall picture of
complexity.

EXERCISES

 1. Show that there are valid flowgraphs in which not every node lies
on a simple path from start to stop. (Hint: Consider one of the flow-
graphs in Figure 9.3.)

 2. The following sets of edges form flowgraphs on five nodes, labeled
from 1 to 5. Draw the flowgraphs using the conventions of Figure
9.2. Which of the flowgraphs are primes? For those that are not, rep-
resent the flowgraphs by expressions using sequencing and nesting
applied to the flowgraphs of Figure 9.2.

 a. Edges (1, 2), (2, 3), (3, 4), (4, 3), (3, 5)

 b. Edges (1, 2), (2, 3), (1, 4), (3, 4), (4, 3), (3, 5)

 c. Edges (1, 2), (2, 3), (3, 2), (3, 4), (4, 3), (2, 5)

 d. Edges (1, 2), (2, 3), (2, 5), (3, 4), (4, 1)

 3. Draw the decomposition trees for each flowgraph in Exercise 2.

 4. Draw three flowgraphs that have equal cyclomatic number but which
seem intuitively to rank differently in terms of structural complexity.

430 ◾ Software Metrics

What actual structural attributes are contributing to “complexity” in
your examples? Find hierarchical measures that capture these attri-
butes. (Hint: Example 9.7 and the largest prime in Figure 9.11 are
likely candidates.)

 5. For each hierarchical measure in Figure 9.11, calculate the value of
the measure for the flowgraph in Figure 9.15.

 6. Look at the program in Figure 9.14. How many feasible paths are
there for this program? Define a set of test cases that give you 100%
coverage of all the feasible paths.

 7. Use the tables in Appendix A.2. to compute the branch coverage
measure for the flowgraph in Figure 9.15.

 8. Show that the measure m defined in Example 9.25 satisfies the four
properties of tree impurity. Compute the measure m for the graphs
G1, G5, and G6 in Figure 9.21.

 9. A measure of tree impurity proposed by Ince and Hekmatpour is
given by Ince and Hekmatpour (1988):

m G id n

n G

() (())= ∑ 2

∈

 where n represents a node of G, and id(n) is the in-degree of node n.
Show that this measure fails to satisfy properties 1 and 3.

 10. Yin and Winchester define a family of system design measures,
Ci = ei − ni + 1, where ei is the number of arcs up to level i, and ni is
the number of nodes up to level i. Taking i to be the last level, they
define tree impurity m2 of the whole design G by m2(G) = e − n + 1,
where e is the total number of edges and n is the total number of
nodes of G. Show that properties 1 and 2 are satisfied by m2 but not
property 3 (Yin and Winchester 1978).

 11. Explain why the converse of property 3 in Section 9.3.4 is reasonable
for private reuse. Show that the Yin and Winchester measure r satis-
fies the four proposed properties.

 12. Compute the Yin and Winchester measure for the graph in Figure 9.20.

Measuring Internal Product Attributes ◾ 431

 13. What is the rationale behind squaring the product of fan-in and fan-
out in the Henry–Kafura (Henry and Kafura 1981) measure? (Hint:
Examine the effect of squaring in the example in Figure 9.23.)

 14. Consider the following proposed measure of object-oriented design
pattern realization complexity: DPRC(p) = NC + NI + NA, where NC
is the number of classes in pattern realization p, NI is the number of
inheritance links in pattern realization p, and NA is the number of
associations in pattern realization p. Using simple UML class dia-
grams representing design pattern realizations, demonstrate why
this proposal may be unreasonable.

 15. Consider a new complexity measure, Cnew. The Cnew complex-
ity of a module m is defined as follows: Cnew = lengthm × (fan-
inm – 0.5 × fan-outm). The rationale is that high fan-out aids
understanding of a module because fan-out is associated with del-
egation of responsibility. However, fan-out does not lower the com-
plexity as much as length and fan-in add to complexity. Therefore,
fan-out is multiplied by the weight 0.5. The Cnew complexity of a
system composed of modules 1, 2,…, n is defined as follows:

CnewSyst length fan in fan out

i

n

i
i

n

i
i

n

i= × − ×
⎛

⎝⎜
⎞

⎠⎟= = =
∑ ∑ ∑

1 1 1

0 5- -.

 Show which of the Briand et al. properties for complexity measures
(described in Section 9.1.1) are satisfied or dissatisfied by the Cnew
and CnewSyst measures and why.

 16. Below is a list of measures that can be applied to program bodies. In
each case, determine which of the Weyuker properties hold:

• LOC

• Cyclomatic number

• Is-D-structured

• Henry–Kafura measure

• Function points

 17. “A good design should exhibit high module cohesion and low mod-
ule coupling.” Briefly describe what you understand this assertion to
mean.

432 ◾ Software Metrics

 18. McCabe’s cyclomatic number is a classic example of a software
metric. Which software entity and attribute do you believe it really
measures?

 19. Explain briefly the principles behind the statement coverage testing
criterion.

 20. Explain why exhaustive path testing is generally infeasible by giving
an example using a flowgraph.

 21. What is a prime flowgraph? Give examples of two prime flowgraphs
that are not building blocks of the traditional D-structured pro-
gramming, but that are (in a sense you should explain briefly) natu-
ral control constructs.

 22. By considering the formal definition of D-structured programs in
terms of prime flowgraphs, deduce that the following procedure is
D-structured:

List
empty?

Start

Input
list

sum: = 0Output
“list empty”

Read next
list entry a

sum: = sum + a

End of
list?Output sumStop

yes

yes no

 23. The following algorithm describes a simple control system. What
can you say about the structuredness of this algorithm?

Measuring Internal Product Attributes ◾ 433

Start

End

Apply
substance A

Temperature
above
max

threshold?
Apply

substance B

Pressure
above
max

threshold?

No

Yes

No

Yes

APPENDICES TO CHAPTER 9

A.1 McCabe’s Testing Strategy
A.1.1 Background
In a strongly connected graph G for any nodes x,y there is a path from x to
y and vice versa. For example, in the graph G of Figure 9.24 each path can
be represented as a 6-tuple (vector with six components):

1

2
3

6

5

4
G

FIGURE 9.A.24 A strongly connected graph.

434 ◾ Software Metrics

2.5in <1,2,3,4> = (1 1 1 1 0 0)
<1,5,6,2,3,4,1 > = (2 1 1 1 1 1)
<1,5,4> = (1 0 0 1 1 0), etc.

That is, the ith position in vector is the number of occurrences of edge i.
A circuit is a path which begins and ends at the same node, for example,

<1,2,3,6,5,4>. A cycle is a circuit with no node (other than the starting
node) included more than once, for example, <1,2,3,4> and <5,6>.

A path p is said to be a linear combination of paths p1, …, pn if there are
integers a1, …, an such that p = ∑ aipi in the vector representation.

For example, path <1,2,3,4,5,6,2> is a linear combination of
paths <1,2,3,4> and <5,6,2> since

(1 2 1 1 1 1) = (1 1 1 1 0 0) + (0 1 0 0 1 1)

As another example, let:

a = <1,2,3,4> = (1 1 1 1 0 0)
b = <5,6> = (0 0 0 0 1 1)
c = <1,5,4> = (1 0 0 1 1 0)
d = <2,3,6> = (0 1 1 0 0 1)

Then a + b − c = d (*)
A set of paths is linearly independent if no path in the set is a linear

combination of any other paths in the set. Thus {a,b,c} is linearly indepen-
dent, but {a,b,c,d} is not by virtue of (*).

A basis set of cycles is a maximal linearly independent set of cycles. In
a graph of e edges and n nodes the basis has e − n + 1 cycles. Although the
size of the basis is invariant, its content is not. For example, for the graph
G above:

 {a,b,c},{a,b,d},{b,c,d},{a,c,d}

are different basis sets of cycles. Every path is a linear combination of basis
cycles.

A.1.2 The Strategy
Any flowgraph can be transformed into a strongly connected graph by
adding an edge from stop node to start node. Figure 9.25 shows how we
transform a flowgraph to obtain the same graph as that in Figure 9.24.

Measuring Internal Product Attributes ◾ 435

McCabe’s test strategy is based on choosing a basis set of cycles in the
resulting graph G.

As we have seen above, the number of these, ν(G) – McCabe’s “cyclo-
matic complexity” satisfies

 ν(G) = e − n + 1.

Since the original flowgraph has had one edge added, the formula for
computing ν (G) for an arbitrary flowgraph G with e edges and n nodes is

 ν(G) = e − n + 2.

The idea is that these cycles are “representative” of all the paths since
every path is a linear combination of basis cycles. In the example, one pos-
sible basis set of cycles is

 {<4,1,2,3>, <6,5>, <6,2,3>}.

Unfortunately these do not correspond to paths through the flowgraph
(because of the artificial introduction of edge 3) which is what we need for
a structural testing strategy. We thus have to derive the “smallest” associ-
ated paths. These are:

 <4,1,2>, <6,5,6,2>, <6,2>.

Note that a different basis set of cycles, for example,

 {<6,5>, <6,2,3>, <4,1,5>}

1

2 3

6

5
4

FIGURE 9.25 Transforming a flowgraph into a strongly connected graph.

436 ◾ Software Metrics

leads to a different set of testing paths:

 < 6,5,6,2>, <6,2>, <4,1,5,6,2>.

In fact, we can show that if all predicate nodes have outdegree 2 then
ν(G) = d + 1 where d is the number of predicate nodes in G. For if there are
p procedure nodes, then n = p + d + 1 since the nodes of G are the proce-
dure nodes, the predicate nodes, plus a single stop node. Now, e = p + 2d
since each procedure node contributes 1 to the total number of edges and
each predicate node contributes 2. Thus, e − n + 2 = (p + 2d) − (p + d + 1) +
2 = d + 1.

A.2 Computing Test Coverage Measures

Measurement Values for Primes
Test Strategy P1 D0 D1 Cn D2 D3 D4 L2

All-path coverage 1 2 2 n — — — —
Branch coverage 1 2 2 n 1 1 1 2
Statement coverage 1 1 2 n 1 1 1 1

Sequencing Function
Test Strategy F1;…Fn

All-path coverage
i

n

iF
=∏ 1
μ()

Branch coverage max(μ(F1),…, μ(Fn))
Statement coverage max(μ(F1),…, μ(Fn))

Nesting Function
Test Strategy D1(F1,F2) Cn(F1,…, Fn) D0(F) D2(F)
All − path coverage μ(F1) + μ (F2)

i

n

iF
=∑ 1
μ() μ(F) + 1 —

Branch coverage μ(F1) + μ (F2)
i

n

iF
=∑ 1
μ() μ(F) + 1 1

Statement coverage μ(F1) + μ (F2)
i

n

iF
=∑ 1
μ() μ(F) 1

Test Strategy D3(F) D4(F1,F2) L2(F1,F2)
All-path coverage — — —
Branch coverage 1 1 2
Statement coverage 1 1 1

Measuring Internal Product Attributes ◾ 437

FURTHER READING
Many of the measures introduced in this chapter rely on an understanding of
graph theory. Wilson’s book provides a standard and accessible reference to
graph theory concepts and techniques.

Wilson R.I., Introduction to Graph Theory, 5th Edition, Prentice-Hall, Harlow,
New York, 2010.

More detailed accounts of our particular approach to prime decomposition may
be found in these references:

Fenton N.E. and Kaposi A.A., Metrics and software structure, Journal of
Information and Software Technology, 29, 301–320, July 1987.

Fenton N.E. and Whitty R.W., Axiomatic approach to software metrication
through program decomposition, Computer Journal, 29(4), 329–339, 1986.

A comprehensive treatment of the generalized theory of structuredness can be
found in these publications:

Fenton N.E. and Hill G., Systems Construction and Analysis: A Mathematical and
Logical Approach, McGraw-Hill, New York, 1992.

Fenton N.E., Whitty R.W., and Kaposi A.A., A generalized mathematical theory of
structured programming, Theoretical Computer Science, 36, 145–171, 1985.

Van den Broek and van den Berg generalize the prime decomposition of flow-
graphs by allowing arbitrary decomposition operations. They also describe a
flowgraph-type model for functional programs and apply the theory of decom-
position as described in this chapter.

Berg van den K.G. and Broek van den P.M., Static analysis of functional programs,
Information and Software Technology, 37(4), 213–224, 1995.

Broek van den P.M. and Berg van den K.G., Generalised approach to software
structure metrics, Software Engineering Journal, 10(2), 61–68, 1995.

The following papers discuss axiomatic-type properties that should be satisfied
by so-called software complexity metrics. Melton and his colleagues restrict
their discussion to control flow structure and adopt a measurement theory-type
approach by defining a partial order on flowgraphs. The partial order preserves
an intuitive notion of the relation “more complex than.” Lakshmanan and col-
leagues also restrict their properties to control flow measures.

Lackshmanan K.B., Jayaprakesh S., and Sinha P.K., Properties of control-flow
complexity measures, IEEE Transactions on Software Engineering, 17(12),
1289–1295, 1991.

Melton A.C., Bieman J.M., Baker A., and Gustafson D.A., Mathematical perspec-
tive of software measures research, Software Engineering Journal, 5(5), 246–
254, 1990.

438 ◾ Software Metrics

Weyuker E.J., Evaluating software complexity measures, IEEE Transactions on
Software Engineering, SE, 14(9), 1357–1365, 1988.

Briand, Morasca, and Basili propose properties that any measure of well-defined
notions of size, complexity, coupling, cohesion, and length should satisfy.

Briand L.C., Morasca S., and Basili V.R., Property-based software engineering
measurement. IEEE Transactions on Software Engineering, 22(1), 68–86,
January 1996.

Bieman and Ott define a range of intramodular measures of functional cohesion
based on the notion of data slices. This paper is also especially interesting from
our perspective, because the authors discuss the scale properties of their mea-
sures using measurement theory. Bieman and Kang derive a measure of cohesion
at the design level focusing on a module’s interface.

Bieman J.M. and Kang B.-K., Measuring design level cohesion, IEEE Transactions
on Software Engineering, 24(2), 111–124, February 1998.

Bieman J.M. and Ott L.M., Measuring functional cohesion, IEEE Transactions on
Software Engineering, 20(8), 644–657, 1994.

Briand, Daly, and Wüst develop comprehensive frameworks for measuring cou-
pling and cohesion in object-oriented systems. Bieman and Kang define and
apply an object-oriented cohesion measure that satisfies the requirements of the
cohesion framework.

Bieman J.M. and Kang B.-K., Cohesion and reuse in an object-oriented system,
Proceedings of the ACM Symposium Software Reusability (SSR’95), Seattle,
Washington, 259–262, 1995.

Briand L.C., Daly J.W., and Wüst J.K., Unified framework for coupling measure-
ment in object-oriented systems, IEEE Transactions on Software Engineering,
25(1), 91–121, Jan/Feb 1999.

Briand L.C., Daly J.W., and Wüst J.K., Unified framework for cohesion measure-
ment in object-oriented systems, Empirical Software Engineering, 3, 65–117,
1998.

Zuse provides a comprehensive review of almost every control structure measure
appearing in the literature from the viewpoint of measurement theory.

Zuse H., Software Complexity: Measures and Methods, De Gruyter, Berlin, 1991.

Bertolino and Marre have written an excellent paper that explains the practical prob-
lems with the branch coverage metric and proposes an alternative metric for branch
coverage. The theoretical minimum number of paths for this strategy is more closely
aligned to minimum number of practically feasible paths. The paper also shows how
the metric can be formulated using the prime decomposition approach.

Measuring Internal Product Attributes ◾ 439

Bertolino A. and Marre M., How many paths are needed for branch testing?
Journal of Systems and Software, 35(2), 95–106, 1995.

Ammann and Offutt’s book on testing provides a thorough account of many
model-based testing strategies. This book gives a comprehensive account of both
control-flow and data-flow-oriented test coverage criteria along with details con-
cerning the specification and identification of test requirements and test paths.
This book introduced the notion of prime path coverage discussed in this chapter.

Ammann P. and Offutt J., Introduction to Software Testing, Cambridge University
Press, 2008.

Rapps and Weyuker provide an extensive account of data-flow testing strategies.
An excellent account of these strategies may also be found in Bieman and Schultz.

Bieman J.M. and Schultz J.L., An empirical evaluation (and specification) of the
all-du-paths testing criterion, Software Engineering Journal, 7(1), 43–51, 1992.

Rapps S. and Weyuker E.J., Selecting software test data using data flow informa-
tion, IEEE Transactions on Software Engineering, 11(4), 367–375, 1985.

441

C h a p t e r 10

Measuring External
Product Attributes

A principal objective of software engineering is to improve the
quality of software products. But quality, like beauty, is very much in

the eyes of the beholder. In the philosophical debate about the meaning of
software quality, proposed definitions include:

• Fitness for purpose

• Conformance to specification

• Degree of excellence

• Timeliness

However, from a measurement perspective, we must be able to define
quality in terms of specific software product attributes of interest to
the user. That is, we want to know how to measure the extent to which
these attributes are present in our software products. This knowledge
will enable us to specify (and set targets for) quality attributes in mea-
surable form.

In Chapter 3, we defined external product attributes as those that can
be measured only with respect to how the product relates to its envi-
ronment. For example, if the product is software code, then its reliabil-
ity (defined in terms of the probability of failure-free operation) is an
external attribute; it is dependent on both the machine environment

442 ◾ Software Metrics

and the user. Whenever we think of software code as our product and
we investigate an external attribute that is dependent on the user, we
inevitably are dealing with an attribute synonymous with a particular
view of quality (i.e., a quality attribute). Thus, it is no coincidence that
the attributes considered in this chapter relate to some popular views of
software quality.

In Chapter 9, we considered a range of internal attributes believed to
affect quality in some way. Many practitioners and researchers measure
and analyze internal attributes because they may be predictors of external
attributes. There are two major advantages to doing so. First, the inter-
nal attributes are often available for measurement early in the life cycle,
whereas external attributes are measurable only when the product is com-
plete (or nearly so). Second, internal attributes are often easier to measure
than external ones.

The objective of this chapter is to focus on a small number of especially
important external attributes and consider how they may be measured.
Where relevant, we indicate the relationships between external and inter-
nal attributes. We begin by considering several general software quality
models, each of which proposes a specific set of quality attributes (and
internal attributes) and their interrelationships. We use the models to iden-
tify key external attributes of interest, including reliability, maintainabil-
ity, usability, and security. Given the increasing use of software in systems
that are crucial to our life and health, software reliability is particularly
important. Because reliability has received a great deal of scrutiny from
practitioners and researchers, spawning a rich literature about its mea-
surement and behavior, we postpone our discussion of it until Chapter 11,
where we present a detailed account. In this chapter, we focus primarily on
how usability, maintainability, and security may be measured.

10.1 MODELING SOFTWARE QUALITY
Because quality is really a composite of many characteristics, the notion
of quality is usually captured in a model that depicts the composite char-
acteristics and their relationships. Many of the models blur the distinc-
tion between internal and external attributes, making it difficult for us to
understand exactly what quality is. Still, the models are useful in articulat-
ing what people think is important, and in identifying the commonalities
of view. In this section, we look at some very general models of software
quality that have gained acceptance within the software engineering com-
munity. By extracting from them several common external attributes of

Measuring External Product Attributes ◾ 443

general interest, we show how the models and their derivatives may then
be tailored for individual purpose.

In Chapter 1, we introduced the notion of describing quality by enumer-
ating its component characteristics and their interrelationships. Figure 1.2
presented an example of such a quality model. Let us now take a closer
look at this type of model to see how it has been used by industry and what
we can learn from the results.

10.1.1 Early Models

Two early models described quality using a decomposition approach
(McCall et al. 1977; Boehm et al. 1978). Figure 10.1 presents the Boehm et al.
view of quality’s components, while Figure 10.2 illustrates the McCall et al.
view.

In models such as these, the model-builders focus on the final product
(usually the executable code), and identify key attributes of quality from
the user’s perspective. These key attributes, called quality factors, are nor-
mally high-level external attributes like reliability, usability, and main-
tainability. But they may also include several attributes that arguably are
internal, such as testability and efficiency. Each of the models assumes that
the quality factors are still at too high a level to be meaningful or to be
measurable directly. Hence, they are further decomposed into lower-level
attributes called quality criteria or quality subfactors.

Device independence

Completeness

Accuracy

Consistency

Device efficiency

Accessibility

Communicativeness

Structuredness

Self-descriptiveness

Conciseness

Legability

Augmentability

Portability

Reliability

Efficiency

Human engineering

Testability

Understandability

Modifiability

Metrics

As is utility

Maintainability

General utility

Primitive constructsPrimary uses Intermediate constructs

FIGURE 10.1 Boehm software quality model.

444 ◾ Software Metrics

EXAMPLE 10.1

In McCall’s model, the factor reliability is composed of the criteria (or subfac-
tors) consistency, accuracy, error-tolerance, and simplicity.

Sometimes the quality criteria are internal attributes, such as structured-
ness and modularity, reflecting the developers’ belief that the internal attri-
butes have an affect on the external quality attributes. A further level of
decomposition is required, in which the quality criteria are associated with
a set of low-level, directly measurable attributes (both product and process)
called quality metrics. For instance, Figure 10.3 shows how maintainability
can be described by three subfactors and four metrics, forming a complete
decomposition. (This structure has been adapted from an IEEE standard for
software quality metrics methodology, which uses the term subfactor rather
than criteria (IEEE Standard 1061 2009).)

Operability
Training

Communicativeness
I/O volume

I/O rate
Access control

Access audit
Storage efficiency

Execution efficiency
Traceability

Completeness
Accuracy

Error tolerance
Consistency

Instrumentation
Expandability

Generality
Self-descriptiveness

Modularity
Machine independence
S/w system indpendence
Comms commonality

Data commonality

Simplicity
Conciseness

Reliability

Efficiency

Testability

Product
operation

Use Criteria

Usability

Factor

Integrity

Correctness

Maintainability

Flexibility

Reusability

Portability

Interoperability

Product
revision

Product
transition

Metrics

FIGURE 10.2 McCall software quality model.

Measuring External Product Attributes ◾ 445

This presentation is helpful, as we may use it to monitor software qual-
ity in two different ways:

 1. The fixed model approach: We assume that all important quality fac-
tors needed to monitor a project are a subset of those in a published
model. To control and measure each attribute, we accept the model’s
associated criteria and metrics and, most importantly, the proposed
relationships among factors, criteria, and metrics. Then, we use the
data collected to determine the quality of the product.

 2. The “define your own quality model” approach: We accept the gen-
eral philosophy that quality is composed of many attributes, but we
do not adopt a given model’s characterization of quality. Instead, we
meet with prospective users to reach a consensus on which quality
attributes are important for a given product. Together, we decide on
a decomposition (possibly guided by an existing model) in which
we agree on specific measures for the lowest-level attributes (crite-
ria) and specific relationships between them. Then, we measure the
quality attributes objectively to see if they meet specified, quantified
targets.

The Boehm and McCall models are typical of fixed quality models.
Although it is beyond the scope of this book to provide a detailed and
exhaustive description of fixed model approaches, we present a small pic-
ture of how such a model can be used.

Closure time
Isolate/fix time

Maintainability

Expandability

Testability

Correctability
Fault counts

Degree of testing

Effort

Change counts

Quality subfactorQuality factor Metric

Fault rate

Statement coverage
Branch coverage
Test plan completeness

Resource prediction
Effort expenditure
Change effort
Change size
Change rate

FIGURE 10.3 A decomposition of maintainability.

446 ◾ Software Metrics

EXAMPLE 10.2

The McCall model, depicted in Figure 10.2, includes 41 metrics to measure
the 23 quality criteria generated from the quality factors. Measuring any fac-
tor requires us first to consider a checklist of conditions that may apply to the
requirements (R), the design (D), and the implementation (I). The condition
is designated “yes” or “no,” depending on whether or not it is met. To see
how the metrics and checklists are used, consider measuring the criterion
completeness for the factor correctness. The checklist for completeness is:

 1. Unambiguous references (input, function, output) [R,D,I].
 2. All data references defined, computed, or obtained from external

source [R,D,I].
 3. All defined functions used [R,D,I].
 4. All referenced functions defined [R,D,I].
 5. All conditions and processing defined for each decision point [R,D,I].
 6. All defined and referenced calling sequence parameters agree [D,I].
 7. All problem reports resolved [R,D,I].
 8. Design agrees with requirements [D].
 9. Code agrees with design [I].

Notice that there are six conditions that apply to requirements, eight to
design and eight to implementation. We can assign a 1 to a yes answer and 0
to a no, and we can compute the completeness metric in the following way
to yield a measure that is a number between 0 and 1:

1
3 6 8 8

Number of yes for R Number of yes for D Number of yes for I
+ +

⎛
⎝⎜

⎞
⎠⎟

Since the model tells us that correctness depends on completeness, trace-
ability, and consistency, we can calculate analogous measures for the latter
two. Then, the measure for correctness is the mean of their measures:

Correctness =

x y z+ +
3

That is, x, y, and z are the metrics for completeness, traceability, and
 consistency, respectively.*

* In this example, all of the factors are weighted the same. However, it is possible to use different
weightings, so that the weights reflect importance, cost, or some other consideration important to
the evaluator.

Measuring External Product Attributes ◾ 447

The McCall model was originally developed for the U.S. Air Force, and
its use was promoted within the U.S. Department of Defense for evaluat-
ing software quality. But, many other standard (and competing) measures
have been employed in the Department of Defense; no single set of mea-
sures has been adopted as a department-wide standard.

10.1.2 Define-Your-Own Models

Gilb, Kitchenham, and Walker pioneered the define-your-own-model
approach (Gilb 1976, 1988; Kitchenham and Walker 1989). Gilb’s method
can be thought of as “design by measurable objectives”; it complements
his philosophy of evolutionary development. The software engineer deliv-
ers the product incrementally to the user, based on the importance of the
different kinds of functionality being provided. To assign priorities to the
functions, the user identifies key software attributes in the specification.
These attributes are described in measurable terms, so the user can deter-
mine whether measurable objectives (in addition to the functional objec-
tives) have been met. Figure 10.4 illustrates an example of this approach.
This simple but powerful technique can be used to good effect on projects
of all sizes, and can be applied within agile processes.

10.1.3 ISO/IEC 9126-1 and ISO/IEC 25010 Standard Quality Models

For many years, the user community sought a single model for depicting and
expressing quality. The advantage of a universal model is clear: it makes it eas-
ier to compare one product with another. In 1992, a derivation of the McCall
model was proposed as the basis for an international standard for software

% of planned system uptime

Availability User-friendliness

Quality objectives

Days on the job for employees to learn
tasks supplied by the new system

Worst: 95%
Best: 99%

Worst: 95%
Best: 99%

FIGURE 10.4 Gilb’s attribute expansion approach.

448 ◾ Software Metrics

quality measurement and adopted. It evolved into ISO/IEC Standard 9126-1
(ISO/IEC 9126-1 2003). In 2011, ISO/IEC 25010 “Systems and Software
Engineering—Systems and Software Quality Requirements and Evaluation
(SQuaRE)” replaced ISO/IEC 9126-1 (ISO/IEC 25010 2011). In the ISO/IEC
25010 standard, software quality is defined to be the following: “The degree
to which a software product satisfies stated and implied needs when used
under specified conditions.”

Then quality is decomposed into eight characteristics:

 1. Functional suitability

 2. Performance efficiency

 3. Compatibility

 4. Usability

 5. Reliability

 6. Security

 7. Maintainability

 8. Portability

The standard claims that these eight are comprehensive; that is, any
component of software quality can be described in terms of some aspect
of one or more of the eight characteristics. In turn, each of the eight is
defined in terms of other attributes on a relevant aspect of software, and
each can be refined through multiple levels of subcharacteristics.

EXAMPLE 10.3

In ISO/IEC 25010:2011, reliability is defined as the

degree to which a system, product or component performs specified
functions under specified conditions for a specified period of time…

while portability is defined as the

degree of effectiveness and efficiency with which a system, product
or component can be transferred from one hardware, software or
other operational or usage environment to another.

Measuring External Product Attributes ◾ 449

ISO/IEC 25010:2011 contains definitions of numerous subcharacteris-
tics and metrics; many of these were derived from those in three technical
reports issued as part of ISO/IEC 9126 (ISO/IEC 9126-2 2003, ISO/IEC
9126-3 2003, ISO/IEC 9126-4 2004).

Another standards document describes an evaluation process for eval-
uating software product quality (ISO/IEC 25040:2011 2011). The process is
described in terms of five major stages:

 1. Establish evaluation requirements by determining the evaluation
objectives, quality requirements, and the extent of the evaluation.

 2. Specify the evaluation by selecting measures, criteria for measure-
ment, and evaluation.

 3. Design the evaluation activities.

 4. Conduct the evaluation.

 5. Conclude the evaluation by analyzing results, preparing reports,
providing feedback, and storing results appropriately.

The standard also describes the roles of various stakeholders involved
in software quality evaluations.

10.2 MEASURING ASPECTS OF QUALITY
Many software engineers base their quality assessments on measures
defined for a specific purpose, separate from any formal quality model.
These definitions often reflect the use to which the software will be put, or
the realities of testing a system. For example, certain systems have strin-
gent requirements for portability (the ability to move an application from
one host environment to another) and integrity (the assurance that modi-
fications can be made only by authorized users). The user or practitioner
may offer simple definitions of these terms, such as

Portability 1= −

ET
ER

where ET is a measure of the resources needed to move the system to the
target environment, and ER is a measure of the resources needed to create
the system for the resident environment. Gilb recommends that the onus
for setting measurable targets for these attributes should lie with the user.

450 ◾ Software Metrics

Measuring many of the quality factors described in formal models,
including McCall’s, Boehm’s, and those given in various standards docu-
ments are dependent on subjective ratings. Although objective measures
are preferable, subjectivity is better than no measurement at all. However,
those performing the rating should be made aware of the need for consis-
tency, so that variability is limited wherever possible.

10.2.1 Defects-Based Quality Measures

Software quality measurement using decomposition approaches clearly
requires careful planning and data collection. Proper implementation
even for a small number of quality attributes uses extra resources that
managers are often reluctant to commit. In many situations, we need only
a rough measure of overall software quality based on existing data and
requiring few resources. For this reason, many software engineers think
of software quality in a much narrower sense, where quality is considered
only to be a lack of defects. Here, “defect” is interpreted to mean a known
error, fault, or failure, as discussed in Chapter 5.

10.2.1.1 Defect Density Measures
A de facto standard measure of software quality is defect density. For a given
product (i.e., anything from a small program function to a complete sys-
tem), we can consider the defects to be of two types: the known defects that
have been discovered through testing, inspection, and other techniques,
and the latent defects that may be present in the system but of which we
are as yet unaware. Then, we can define the defect density as the following:

Defectdensity

Number of known defects
Product size=

Product size is usually measured in terms of lines of code or one of the
other length measures described in Chapter 8; some organizations (nota-
bly in the financial community) use function points as their size measure.
The defect density measure is sometimes incorrectly called a defect rate.

EXAMPLE 10.4

Coverity reports the number of defects per thousand source statements
(KNCSS) in three well-known open source systems: Linux 2.6 (6849 KLOC),

Measuring External Product Attributes ◾ 451

PHP 5.3 (538 KLOC), and PostreSQL 9.1 (1106 KLOC). Figure 10.5 shows
how the defect density can vary (Coverity 2011). Note that the defect densities
reported by Coverity in these three open source systems are approximately
100 times lower than defect densities reported in commercial systems 25
years ago (Grady and Caswell 1987).

Defect density is certainly an acceptable measure to apply to your proj-
ects, and it provides useful information. However, the limitations of this
metric were made very clear in prior chapters. Before using it, either for
your own internal quality assurance purposes or to compare your perfor-
mance with others, you must remember the following:

 1. As discussed in Chapter 5, there is no general consensus on what
constitutes a defect. A defect can be either a fault discovered during
review and testing (which may potentially lead to an operational fail-
ure), or a failure that has been observed during software operation.
In published studies, defect counts have included

 a. Post-release failures

 b. Residual faults (i.e., all faults discovered after release)

 c. All known faults

 d. The set of faults discovered after some arbitrary fixed point in the
software life cycle (e.g., after unit testing)

Linux 2.6
0

0.0

0.2

0.3
0.4

0.5

0.6

0.7

PHP 5.3

Defect density (defects/KLOC)

PostgreSQL 9.1

FIGURE 10.5 Reported defect densities (Defects/KLOC) in three open source
systems (Coverity 2011).

452 ◾ Software Metrics

 The terminology differs widely among studies; fault rate, fault
density, and failure rate are used almost interchangeably. Thus, to
use defect density as a comparative measure, you must be sure that
all parties are counting the same things in the same ways.

 2. The implication of the phrase “defect rate” is that the number of
defects is being recorded with respect to a measure of time (such as
operational time or clock time). This measure can be very impor-
tant. For example, when recording information about operational
failures, a defect rate can be calculated based on interfailure times.
In this case, the defect rate, defined with respect to time, is an
accurate measure of reliability. However, many studies capture
size information but present it as part of a defect rate. Here, size
is being used as a surrogate measure of time (usually when time
is considered to be too difficult to record). Be sure that when you
evaluate a study’s results, you separate the notion of defect rate
from defect density.

 3. As discussed in Chapter 8, there is no consensus about how to mea-
sure software size in a consistent and comparable way. Unless defect
densities are consistently calculated using the same definition of size,
the results across projects or studies are incomparable.

 4. Although defect density is a product measure in our sense, it is
derived from the process of finding defects. Thus, defect density
may tell us more about the quality of the defect-finding and defect-
reporting process than about the quality of the product itself.
Chapter 7 explained how causal Bayesian network models enable us
to properly incorporate the impact such process factors.

 5. Even if we were able to know exactly the number of residual faults
in our system, we would have to be extremely careful about making
definitive statements about how the system will operate in practice.
Our caution is based on two key findings:

 a. It is difficult to determine in advance the seriousness of a fault.

 b. There is great variability in the way systems are used by differ-
ent users, and users do not always use the system in the ways
expected or intended. Thus, it is difficult to predict which faults
are likely to lead to failures, or to predict which failures will
occur often.

Measuring External Product Attributes ◾ 453

Adams, who examined IBM operating system data, has highlighted the
dramatic difference in rate of failure occurrence.

EXAMPLE 10.5

Ed Adams at IBM examined data on nine software products, each with many
thousands of years of logged use worldwide (Adams 1984). He recorded the
information in Table 10.1, relating detected faults to their manifestation as
observed failures. For example, Table 10.1 shows that for product 4, 11.9% of
all known defects led to failures that occur on average every 160–499 years
of use.

Adams discovered that about a third of all detected faults lead to the
“smallest” types of failures, namely, those that occur on average every 5000
years (or more) of run-time. Conversely, a small number of faults (<2%) cause
the most common failures, namely those occurring at least once every 5
years of use. In other words, a very small proportion of the faults in a sys-
tem can lead to most of the observed failures in a given period of time;
conversely, most faults in a system are benign, in the sense that in the same
given period of time they will not lead to failures. In addition, less than 2%
of the failures were classified as “important failures.” Figure 10.6 summarizes
the relationship between faults, failures, and the distribution of the severity
of the failures.

It is quite possible to have products with a very large number of faults
failing very rarely, if at all. Such products are certainly high quality, but
their quality is not reflected in a measure based on fault counts. It follows

TABLE 10.1 Adams Data: Fitted Percentage Defects—Mean Time to Problem
Occurrence in Years

Product
1.6

Years
5

Years
16

Years
50

Years
160

Years
500

Years
1600
Years

5000
Years

1 0.7 1.2 2.1 5.0 10.3 17.8 28.8 34.2
2 0.7 1.5 3.2 4.5 9.7 18.2 28.0 34.3
3 0.4 1.4 2.8 6.5 8.7 18.0 28.5 33.7
4 0.1 0.3 2.0 4.4 11.9 18.7 28.5 34.2
5 0.7 1.4 2.9 4.4 9.4 18.4 28.5 34.2
6 0.3 0.8 2.1 5.0 11.5 20.1 28.2 32.0
7 0.6 1.4 2.7 4.5 9.9 18.5 28.5 34.0
8 1.1 1.4 2.7 6.5 11.1 18.4 27.1 31.9
9 0.0 0.5 1.9 5.6 12.8 20.4 27.6 31.2

454 ◾ Software Metrics

that finding (and removing) large numbers of faults may not necessarily
lead to improved reliability, as reliability measures are based on failure data,
not fault data. It also follows that a very accurate residual fault density (or
even rate) prediction may be a very poor predictor of operational reliability.

EXAMPLE 10.6

Mockus and Weiss investigated the external attribute of customer perceived
quality, which is measured using interval quality—”the probability that a cus-
tomer will observe a failure within a certain interval after software release.”
In a 4-year study of telecommunications software developed at Avaya, they
found that defect density was inversely related to perceived quality (Mockus
and Weiss 2008).

Despite these and other serious problems with using defect density, we
understand the need for such a measure and the reason it has become a
de facto standard in industry. Commercial organizations argue that they

Failures classified by the importance (MTTF)

“Important failures” (2%)

“Unimportant important
failures” (30%)

“Totally irrelevant failures” (68%)

Assume each fault
triggers one
distinct failure

Failure 1
Failure 2

Fault 1
Fault 2

Fault 32

Fault 66

Fault 99
Fault 100

Failure 32

Failure 66

Failure 99
Failure 100

Imagine 100 faults
in the system

FIGURE 10.6 Faults, failures, and failure severity. (Adapted from Adams E.,
IBM Journal of Research and Development, 28(1), 2–14, 1984.)

Measuring External Product Attributes ◾ 455

avoid many of the problems with the measure by having formal defini-
tions that are understood and applied consistently in their own environ-
ment. Thus, what works for a particular organization may not transfer to
other organizations, so cross-organizational comparisons are dangerous.
Nevertheless, organizations are hungry both for benchmarking data and
for predictive models of defect density. To meet these goals, we must make
cross-project comparisons and inferences. We have seen in Chapter 4 that
good experimental design can help us to understand when such compari-
son makes sense.

Benchmarking is also performed using function points as a size mea-
sure, rather than lines of code. Jones reports an average of 5.87 defect
potentials per function point, where defect potentials are the sum of all
defects discovered during development and by users after delivery. This
result is based on data from a variety of commercial sources from many
application domains (Jones 2008).

10.2.1.2 Other Quality Measures Based on Defect Counts
Defect density is not the only useful defect-based quality measure. For
many years, Japanese companies have defined quality in terms of spoilage.
Specifically, they compute it as

Systemspoilage

Timetofix post Releasedefects
Totalsystemdeve=

−
llopment time

For example, Tajima and Matsubara described quality improvements in
the 1970s at Hitachi in terms of this measure. The results are displayed in
Figure 10.7 (Tajima and Matsubara 1981).

1976 1977 1978 1979

0.5

1

1.5

Ra
tio

 (%
)

Date

Cost to fix postrelease defects
Total project cost × 100

FIGURE 10.7 Quality improvements at Hitachi in the 1970s.

456 ◾ Software Metrics

Inglis describes a set of “standard software quality measures used at
AT&T Bell Laboratories,” all of which are derived from defects data col-
lection (Inglis 1985):

• Cumulative fault density—faults found internally

• Cumulative fault density—faults found by customers

• Total serious faults found

• Mean time to close serious faults

• Total field fixes

• High-level design review errors per thousand NCLOC

• Low-level design errors per thousand NCLOC

• Code inspection errors per inspected thousand NCLOC

• Development test and integration errors found per thousand NCLOC

• System test problems found per developed thousand NCLOC

• First application test site errors found per developed thousand
NCLOC

• Customer found problems per developed thousand NCLOC

Clearly, some of these measures require careful data collection.
Assuming that appropriate data-collection procedures are in place, all of

the defect-based measures we have discussed may be used for general mon-
itoring purposes and for establishing baselines. In the absence of measures
of specific quality attributes, we strongly recommend that these kinds of
measures be used. However, it is also important to be aware of the dan-
gers of misinterpreting and misusing these measures. The drawback with
using low “defect” rates as if they were synonymous with quality is that, in
general, the presence of defects may not lead to subsequent system quality
problems. In particular, software faults do not necessarily lead to software
failures. Only failures are seen by users, so perceived quality reflects only
failure information. As we saw with startling clarity from the Adams study,
a preoccupation with faults can paint a misleading picture of quality.

10.3 USABILITY MEASURES
As developers, we sometimes focus on implementing functionality, with-
out much regard for how the user will actually be interacting with the

Measuring External Product Attributes ◾ 457

system. The usability of the system plays a big role, not only in customer
satisfaction but also in terms of additional functionality and life-cycle
costs. The ISO/IEC 25010 standard defines usability as follows:

Usability is the degree to which a product or system can be used by
specified users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use.

ISO/IEC 25010 2011

This standard definition clearly specifies that usability is an external
attribute. The usability of a system is a function of the system, users, and
the context of use. The common intuitive notion of usability is often called
user-friendliness, which includes many characteristics or subattributes.
We need to know how easy it is to learn to use a system, how efficient
we can be when using it, how well we remember how to use it, and how
frequently we make errors (Holzinger 2005). Usability also includes the
subjective characteristic of user satisfaction, which clearly depends on
the skills, knowledge, and personal preferences of users. We can say that
usability is an indirect measure, because it cannot be directly measured in
terms of only one attribute (Hornbaek 2006).

One can develop models to predict usability based on measures of inter-
nal attributes of the structure of the interface (e.g., the number of button
clicks required to complete a use case). However, these models can be used
only to predict usability, not to measure it. To measure usability, we need
to include the user and the context of use in the measurement system.

10.3.1 External View of Usability

Hornbaek reviewed 180 published studies that involved various measures
of usability (Hornbaek 2006). He classified the measures used in the stud-
ies into the three areas specified in ISO/IEC 25010 definition of usability:
effectiveness, efficiency, and satisfaction.

 1. Effectiveness measures indicate the degree to which users can cor-
rectly complete tasks. Thus, counts or percentages of completed
tasks, as well as errors made can measure effectiveness. These errors
can be mental errors—misunderstanding a system option—or
physical errors—problems in accurately pointing and selecting an
option. We are also concerned with the completeness of the solutions
generated by the users’ interactions. User interface effectiveness also
includes user recall, which indicates whether a user can remember

458 ◾ Software Metrics

information provided by an interface. Researchers have measured
users’ understanding of a system through testing methods, and
experts have rated users’ interactions in terms of effectiveness.

 2. Efficiency measures generally involve the time required to complete
tasks. They may be concerned with the rate at which a user can input
data via a keyboard, mouse, or other means. Studies have employed
questionnaires, expert ratings, and users’ ratings to measure the
mental effort required for users to complete a task.

 3. Satisfaction measures indicate subjective notions of the quality of
interactions with a software system. It can be measured using stan-
dard questionnaires about users’ experiences. Preferences between
alternatives can be determined by users’ rankings or by observations
of user behavior. Satisfaction can be evaluated during use using bio-
logical measurements such as pulse rates and facial expressions.

The MUSiC project was specifically concerned with defining measures
of software usability that include indicators of effectiveness, efficiency, and
satisfaction (Bevan 1995). For instance, task effectiveness is defined as

Tast effectiveness Quantity Quality

=
×

100 %

The measure tries to capture the notion that the effectiveness with which
a user carries out a task has two components: quantity of task completed,
and quality of the goals achieved. Both quantity and quality are measured
as percentages. For example, suppose the desired goal is to transcribe a
two-page document into a specified format. We could measure quantity as
the proportion of transcribed words to original words, and quality as the
proportion of nondeviations from the specified format. If we then manage
to transcribe 90% of the document, with 3 out of 10 deviations, the task
effectiveness is 63%.

MUSiC efficiency measures are

Temporal efficiency Effectivness

Tast time=

Productive period Tast time Unproductive time

Task time=
−

× 100%%

Measuring External Product Attributes ◾ 459

Relativeuser efficiency

User efficiency
Expert efficiency= × 100%

The MUSiC project captures user satisfaction, convenience, or ease of
use through surveys of actual users that indicate the proportion who “like
to work with the product.” The MUSiC project developed an internation-
ally standardized 50-item questionnaire (taking 10 min to complete) to
assess user satisfaction. This software usability measurement inventory pro-
vides an overall assessment and usability profile.

It is possible to more directly measure attributes relevant to subjective
attributes of user satisfaction, at least in a laboratory setting.

EXAMPLE 10.7

Factors that affect user satisfaction include the aesthetics of users experiences
as well as users emotional responses. Through a series of experiments involv-
ing human subjects, Thuring and Mahlke (2007) found that well-designed user
interfaces led to greater user satisfaction. The study used the same system with
combinations of well-designed and poorly designed user interfaces, visually
attractive and visually unattractive interfaces. In addition to the subjects’ quality
perceptions, the study measured users emotional response in terms of changes
in heart rates and facial expressions. Both well-designed user interfaces and
good visual aesthetics led to higher levels of user satisfaction. However, well-
designed interfaces were more important than visual aesthetics.

Three important usability attributes that are not included in the ISO/
IEC 25010 definition are accessibility, universality, and trustfulness (Seffah
et al. 2006). People with disabilities can use a system with accessibility.
Disabilities include visual impairments, hearing loss, or physical impair-
ments. Universality is related to the affects of varying cultural norms on
the use of a system—certain layouts and naming conventions may have
negative (or positive) connotations in some cultures. Trustfulness indicates
the relative level of trust that users should have in the system. We will deal
further with the notion of trust in the discussion of security measurement
in Section 10.5.

10.3.2 Internal Attributes Affecting Usability

Collecting early data on usability is often very difficult, especially before
a system is released. One popular technique is to look for internal

460 ◾ Software Metrics

characteristics that we think lead to good usability. For example, we often
assume that evidence of good usability includes

• Good use of menus and graphics

• Informative error messages

• Help functions

• Consistent interfaces

• Well-structured manuals

Unfortunately, we know of no explicit relationships between these
internal attributes and the external notion of usability, so the artifacts of
good usability do not help us in defining it.

Thus, although we can measure the internal attributes (e.g., by count-
ing the number of help screens and error messages, or measuring the
structuredness of user manuals), we cannot define them to be measures of
usability, just as we could not define structural complexity measures to be
measures of quality.

With the exception of the counting measures, such as number of help
screens and menu options, most proposed measures of usability based
on internal attributes are actually measures of text structure. These in
turn are claimed to be measures of text readability or comprehensibil-
ity. Again we have an instance of measures of internal attributes being
claimed to be measures of an external attribute; it is claimed that when
the measures are applied to user manuals and error messages, they
measure usability. However, their use is suspect, and we do not recom-
mend them.

10.4 MAINTAINABILITY MEASURES
Most software is exercised repeatedly, and some of us are responsible for
the upkeep of delivered software. Both before and during this mainte-
nance period, software measurement can be extremely valuable. We want
our software to be easy to understand, enhance, or correct; if it is, we say
that our software is maintainable, and measurements during development
can tell us the likelihood that we will meet this goal. Once the software is
delivered, measurements can guide us during the maintenance process, so
that we can evaluate the impact of a change, or assess the relative merits of
several proposed changes or approaches.

Measuring External Product Attributes ◾ 461

The ISO/IEC 25010 standard defines maintainability as follows:

Maintainability is the degree of effectiveness and efficiency with
which a product or system can be modified by the intended
maintainers.

ISO/IEC 25010 2011

We noted in Chapter 5 that maintenance involves several types of
changes. The change may be corrective, in that it is correcting a fault that
has been discovered in one of the software products. Thus, corrective main-
tenance involves finding and fixing faults. Or the change may be adap-
tive: the system changes in some way (the hardware is changed, or some
part of the software is upgraded), and a given product must be adapted to
preserve functionality and performance. Implementing these changes is
called adaptive maintenance. Changes also occur for preventive reasons;
developers discover faults by combing the code to find faults before they
become failures. Thus, maintainers are also involved in preventive main-
tenance, where they fix problems before the user sees them. And finally,
developers sometimes make perfective changes, rewriting documentation
or comments, or renaming a variable or routine in the hope of clarifying
the system structure so that new faults are not likely to be introduced as
part of other maintenance activities. This perfective maintenance differs
somewhat from preventive, in that the maintainers are not looking for
faults; they are looking for situations that may lead to misinterpretation
or misuse. Perfective maintenance may also involve the addition of new
functionality to a working, successful system (Pfleeger and Atlee 2006).

Maintainability is not restricted to code; it is an attribute of a number
of different software products, including specification and design docu-
ments, and even test plan documents. Thus, we need maintainability mea-
sures for all of the products that we hope to maintain. As with usability,
there are two broad approaches to measuring maintainability, reflecting
external and internal views of the attribute. Maintainability is an external
product attribute, because it is clearly dependent not only on the product,
but also on the person performing the maintenance, the supporting docu-
mentation and tools, and the proposed usage of the software. The exter-
nal and more direct approach to measuring maintainability is to measure
the maintenance process; if the process is effective, then we assume that
the product is maintainable. The alternative, internal approach is to iden-
tify internal product attributes (e.g., those relating to the structure of the

462 ◾ Software Metrics

product) and establish that they are predictive of the process measures.
We stress once again that, although the internal approach is more practi-
cal since the measures can be gathered earlier and more easily, we can
never define maintainability solely in terms of such measures.

10.4.1 External View of Maintainability

Suppose we seek measures to characterize the ease of applying the mainte-
nance process to a specific product. All four types of maintenance activity
(corrective, adaptive, preventive, and perfective) are concerned with mak-
ing specific changes to a product; for simplicity, we refer simply to making
changes, regardless of the intent of the change. Once the need for a change
is identified, the speed of implementing that change is a key characteristic
of maintainability. We can define a measure called mean time to repair
(MTTR), sometimes measured alternatively as the median time to repair;
it is the average time it takes the maintenance team to implement a change
and restore the system to working order. Many measures of maintainabil-
ity are expressed in terms of MTTR.

To calculate this measure, we need careful records of the following
information:

• Problem recognition time

• Administrative delay time

• Maintenance tools collection time

• Problem analysis time

• Change specification time

• Change time (including testing and review)

EXAMPLE 10.8

Brewer reports that reducing MTTR is more effective in improving the avail-
ability of evolving systems providing giant-scale web services than increasing
the mean-time-between-failures. He found that it is easier to reduce repair
time than the failure rate in these systems (Brewer 2001).

Maintainability is also related to the number of required changes,
which in turn is dependent on the number of faults or failures as described

Measuring External Product Attributes ◾ 463

in Section 10.2.1. Other (environment-dependent) measures may be useful
if the relevant data are collected and available:

• Ratio of total change implementation time to total number of
changes implemented

• Number of unresolved problems

• Time spent on unresolved problems

• Percentage of changes that introduce new faults

• Number of modules modified to implement a change

All of these measures in concert paint a picture of the degree of mainte-
nance activity and the effectiveness of the maintenance process. An actual
measure of maintainability can be derived from these component mea-
sures, tailored to the goals and needs of the organization.

EXAMPLE 10.9

Gilb’s approach to measuring quality attributes, introduced in Figure 10.4,
is particularly useful for maintainability. Table 10.2 illustrates his suggestions
for decomposing maintainability into seven aspects, each of which reveals
 useful information about overall maintainability (Gilb 1988).

10.4.2 Internal Attributes Affecting Maintainability

Numerous measures of internal attributes have been proposed as indica-
tors of maintainability. In particular, a number of the “complexity” mea-
sures described in Chapter 9 have been correlated significantly with levels

TABLE 10.2 Gilb’s Approach to Measuring Maintenance

Maintainability
SCALE = minutes/NCLOC maintained/year
TEST = logged maintenance minutes for system/estimated NCLOC
WORST (new code, created by new process) = 0.2 min/NCLOC/year
WORST (old code, existing now) = 0.5 min/NCLOC/year
PLAN (new code) = 0.1 min/NCLOC/year (based on Fagan’s inspection experience)
PLAN (old code) = 0.3 min/NCLOC/year
REFERENCE = estimate based on 5000 programs, average 5000 NCLOC/program, 70%
of 250 programmers in maintenance

464 ◾ Software Metrics

of maintenance effort. As we have noted previously, correlation with a
characteristic does not make something a measure of that characteristic, so
we continue to separate the structural measures from maintainability mea-
sures. Nevertheless, some of the structural measures can be used for “risk
avoidance” with respect to maintainability. There is a clear intuitive con-
nection between poorly structured and poorly documented products and
the maintainability of the implemented products that result from them.

To determine which measures (relating to specific internal attributes)
most affect maintainability, we must gather them in combination with
external maintainability measures. On the basis of accumulated evidence,
we may, for example, identify a particular module having measurably poor
structure. We cannot say that such a module will inevitably be difficult to
maintain. Rather, past experience tells us that modules with the identified
profile have had poor maintainability, so we should investigate the reasons
for the given module’s poor structure and perhaps restructure it. (There
may be other options, such as changing the documentation or enhancing
the error-handling capabilities.)

EXAMPLE 10.10

Many organizations investigate the relationship between cyclomatic numbers
and other structural attributes and maintenance effort. Based on past his-
tory, they develop structural guidelines for code development. The most well
known of such guidelines is McCabe’s; he suggests that no module be allowed
a cyclomatic number above 10 (McCabe 1976). Many studies suggest that
cyclomatic number correlates most closely with module size. Thus, module
size can predict maintenance effort about as well as the cyclomatic number.

EXAMPLE 10.11

Menzies, Greenwals, and Frank use data mining techniques to explore the
relationships between static code attributes and faults (Menzies et al. 2007).
This approach includes module length, cyclomatic number, Halstead mea-
sures, and various other primitive metrics as predictors. Results show that
a naive Bayes data miner was effective as a defect predictor, and that the
choice of a good predictor is more important than the set of attributes.

As described in Chapter 9, design constructs that concern the inter-
connections between modules can potentially affect maintainability.

Measuring External Product Attributes ◾ 465

Object-oriented design patterns are one structuring method that is often
touted as supporting adaptability (Gamma et al. 1995). However, there is
not clear evidence of their beneficial effects on adaptability.

EXAMPLE 10.12

Bieman et al. studied the relationship between object-oriented design pattern
use and change proneness in five systems—three commercial Java systems
and two open source systems (Netbeans and JRefactory). They examined
changes over multiple releases and found that pattern classes tend to be more
change prone than nonpattern classes in four of the five systems (Bieman
et al. 2001, 2003b).

For textual products, readability is believed to be a key aspect of
maintainability. In turn, the internal attributes determining the struc-
ture of documents are considered to be important indicators of read-
ability. The most well-known readability measure is Gunning’s fog
index F, defined by

F = × +0 4.
Number of words

Number of sentences Percentage of words
of tthree or more syllables

The measure is supposed to correspond roughly with the number of
years of schooling a person would need in order to be able to read a passage
with ease and understanding. For large documents, the measure is nor-
mally calculated on the basis of an appropriate sample of the text. The fog
index is sometimes specified in contracts; documentation must be written
so that it does not exceed a certain fog index level, making it relatively easy
for the average user to understand (Gunning 1968).

There are other readability measures that are specific to software prod-
ucts, such as source code.

EXAMPLE 10.13

De Young and Kampen defined the readability R of programs as

 R = 0.295a − 0.499b + 0.13c

466 ◾ Software Metrics

where a is the average normalized length of variables (where “length of vari-
able” is the number of characters in a variable), b is the number of lines
containing statements, and c is McCabe’s cyclomatic number. The formula
was derived using regression analysis of data about subjective evaluation of
readability (De Young and Kampen 1979).

10.5 SECURITY MEASURES
We want to be able to use software systems without fear that external
attackers will hijack our computers, data files, passwords, and/or accounts.
Software security measures can potentially indicate the relative level of
security of computer systems from various perspectives. The ISO/IEC
25010 standard defines security as follows:

Security is the degree to which a product or system protects infor-
mation and data so that persons or other products or systems have
the degree of data access appropriate to their types and levels of
authorization.

ISO/IEC 25010:2011

The standard definition focuses on the internal information that
needs to be protected. However, in general, we need to be protected
from external threats. When we measure software reliability or fault
proneness, we generally accept the competent programmer hypothesis
(Demillo et al. 1978). That is, the developers were diligent and were try-
ing to build correct systems, programs will be nearly correct, and faults
will tend to be simple in nature. However, we make no such assump-
tion for security. We assume that there are external entities that are
diligently working to overcome any security protections in place and
attackers will aim to hide their activities.

Security is an external attribute primarily because of the interactions
between external attackers and the systems. Attackers gain entry into a
system through some security vulnerability. Although vulnerability is an
internal characteristic, it is only a vulnerability with respect to particu-
lar attacks. You can remove identified vulnerabilities and/or put defense
mechanisms in place once the nature of an attack is identified. A highly
secure system becomes insecure when attackers develop new strategies to
overcome protection mechanisms.

Measuring External Product Attributes ◾ 467

10.5.1 External View of Security

Berger suggests conducting security risk assessments both qualitatively
and quantitatively (Berger 2003). Using either method, the security risk to
an organization or individual is the product of the following factors:

• Impact

• Likelihood

• Threat

• Vulnerability

We would like to be able to assess each of the factors independently.
However, the specific threat partially determines the other three fac-
tors. The impact of a successful attack depends on the nature of the
threat. The likelihood of an attack depends on the prevalence and
source of the threat. The vulnerability of a system depends on the exis-
tence and quality of protections against specific threats—a system may
be completely protected against one type of attack, but vulnerable to
another threat.

To assess security risks, we need ways to balance several interdepen-
dent factors. A widely used method, developed by the Forum of Incident
Response and Security Teams (FIRST), is the Common Vulnerability
Scoring System (CVSS) (Mell et al. 2007). The CVSS base metric group
can have a score between zero and one, with zero representing no vulner-
ability and one representing the maximum vulnerability. The base metric
group includes six individual measures related to the required access to
exploit vulnerability and the impact of the vulnerability:

 1. Access vector (AV) indicates how remote an attacker can be to
exploit the vulnerability. The AV can be local (AV = 0.395), adjacent
network accessible (AV = 0.646), or network accessible (AV = 1.0).

 2. Access complexity (AC) indicates how complex the attack method
needs to be in order to mount a successful attack. Attack com-
plexity is rated as high (AC = 0.35), medium (AC = 0.61), or low
(AC = 0.71).

468 ◾ Software Metrics

 3. Authentication (Au) indicates whether an attacker needs to authen-
ticate two or more times (Au = 0.45), once (Au = 0.56), or no authen-
tication (0.704) to exploit the vulnerability after gaining access to
the system.

 4. Confidentiality impact (C) indicates whether there is no impact
to system confidentiality (C = 0), partial impact to confidentiality
(C = 0.275), or complete impact—all files are revealed (C = 0.660).

 5. Integrity impact (I) indicates whether there is no impact to system
integrity (I = 0), partial impact to integrity—some system files may
be modified (I = 0.275), or complete impact—all files may be cor-
rupted (I = 0.660).

 6. Availability impact (A) indicates whether there is no impact to sys-
tem availability (A = 0), reduced performance (A = 0.275), or no
availability—a total system shutdown (A = 0.660).

An overall base score is computed through a fairly complicated combi-
nation of the six individual measures to produce a single overall metric. In
addition, the CVSS includes temporal metrics that indicate evolving attri-
butes of a vulnerability, and environmental metrics that indicate attributes
of a vulnerability that depend on characteristics of individual applications
that are targets of the vulnerability. Generally, CVSS base and temporal
metrics are computed by security experts and posted at sites such as the one
managed by NIST.* The developers and users who are most familiar with the
potential impact on their own systems determine environmental metrics.

Another way to make sense of the many factors that contribute to secu-
rity or lack of security is to use multiattribute analyses.

EXAMPLE 10.14

The security attribute analysis method (SAEM) applies multiattribute analy-
sis to rank a set of threat types in terms of their frequencies, and outcomes
in terms of lost revenue, reputation, and productivity. The method sup-
ports a mixture of units—lost revenue is reported as dollars, while lost
reputation uses an ordinal scale, and lost productivity uses hours. Security
managers rank and assign a weight to each attribute. An overall threat
index is the sum of weighted and normalized individual attribute values.

* http://nvd.nist.gov/nvd.cfm.

http://nvd.nist.gov

Measuring External Product Attributes ◾ 469

Although the procedure includes transformations that are not “meaning-
ful” as defined in Chapter 2, the SAEM does encourage security managers
to provide explicit assumptions and then allows them to view the results.
It gives them a basis for selecting between security solutions (Butler 2002;
Butler and Fischbeck 2002).

If you can convert the likelihood of an attack as a probability and its
cost in monetary units, you can apply Bayesian analyses to evaluate secu-
rity risks.

EXAMPLE 10.15

Poolsappasit et al. show that you can use the CVS metrics along with a
Bayesian analysis of network states to quantify security risks. Their method
is based on the notion of a Bayesian attack graph, which represents causal
dependencies between network states along with probabilities of the sys-
tem being in a particular state. Transitions in the graph represent the likeli-
hood that an attacker can successfully perform an exploit. This method
depends on an initial risk assessment based on analyses of subjective
belief that a known threat turns into an actual attack. Risk assessments
are adjusted following attack incidents using Bayesian propagation meth-
ods. This approach allows one to adjust a security plan to more efficiently
reduce risks. The CVSS metrics are used to determine the probabilities of
attack occurrences (Poolsappasit et al. 2012).

We might expect that security vulnerabilities are more likely if there
are other problems in a system.

EXAMPLE 10.16

Alhazmi et al. developed models for predicting the number of security
vulnerabilities based on the number of reported faults in multiple versions
of the Windows and Linux operating systems. The models normalized the
counts of faults and vulnerabilities using fault density (faults per KLOC) and
vulnerability density (vulnerabilities per KLOC). The ratio of vulnerabilities
to defects was generally between 1% and 5%. The study also analyzed the
vulnerability discovery rates over time on these systems. The increase in the
number of vulnerabilities for these systems followed a linear trend (Alhazmi
et al. 2007).

470 ◾ Software Metrics

10.5.2 Internal Attributes Affecting Security

Software security is clearly an external attribute, as security depends on
the how vulnerable a system is to attacks from external sources. Many
attacks exploit program constructs that are vulnerable to an attack. Thus
we ask the question, can we assess the relative security of a system through
an analysis of internal attributes of a system?

Since attacks generally come from external sources, we can expect “that
functions near a source of input are most likely to contain a security vul-
nerability” that can be exploited (DaCosta et al. 2003). Thus, we can evalu-
ate internal security attributes with respect to their relative proximity to
external attack points.

EXAMPLE 10.17

Manadhata and Wing introduce an attack surface metric, which quanti-
fies the security of an implementation independently from external threats
(Manadhata and Wing 2011). The attack surface metric is calculated using
the number and properties of entry points (i.e., input methods), exit points
(i.e., output methods), channels, and untrusted persistent data items (i.e., a
file accessed by both the system and a user) in a system implementation.
The individual counts of methods, channels, and data items are multiplied by
damage potential–effort ratio (der) values. The numerator of a der is based
on the privilege value of the entity and the denominator is the entity’s access
rights value. The privilege and access rights values are determined by domain
experts’ judgments of the relative security risk of an entity’s privilege and
access rights.

Mandadhata and Wing demonstrate that the attack surface metric is inter-
nally valid by showing that it is consistent with an empirical relation sys-
tem, and thus satisfies the representation condition of measurement. They
also show that the measure can predict exploitable vulnerabilities found in
Microsoft software. The attributes in the attack surface metric can predict
damage potential and effort. The attack surface metric also correlates with
the software security risk indicated by patches in Firefox and ProFTP open
source systems. Thus, since the attack surface metric is internally valid and
appears to be a component of a valid prediction system, we can consider it
to be valid in the wide sense, as defined in Chapter 3.

10.6 SUMMARY
The external attributes that interest us are synonymous with aspects of
software quality that, in combination, present a comprehensive picture of
quality. Most practitioners focus on reliability, maintainability, usability,

Measuring External Product Attributes ◾ 471

and security with debate continuing about what other components of qual-
ity may be important. However, users and developers can agree among
themselves how to measure a particular attribute that interests them.
Normally, this measurement involves decomposing an attribute into mea-
surable components, sometimes guided by published quality models or
standards. The models make specific assumptions about relationships
among attributes. Although it is relatively easy to compute measures using
models, the measures are heavily dependent on subjective assessments.

A different but popular view equates quality with few defects. Under
certain circumstances, defect-based measures can be useful, but we can-
not assume that they are always accurate indicators of quality as perceived
by the user. One limitation is that software defects discovered during test-
ing, review, or compilation may not lead to failures in operation. Thus,
high defect levels do not always indicate low quality, and low defect levels
may not mean high quality. Nevertheless, defect-based measures provide a
powerful basis for baselining and monitoring quality changes.

Measuring maintainability involves identifying the number and types
of changes to software components. It also involves monitoring the main-
tenance process, capturing process measures such as the time to locate
and fix faults. Some internal attribute measures, notably structural mea-
sures described in Chapter 9, may be used as indicators of likely maintain-
ability. Usability must involve assessing people who use the software, and
we described several external approaches to usability measurement. There
are no internal attributes that obviously predict usability.

Security depends on external attackers, and vulnerabilities are discov-
ered by attacks, and then quantified in terms of their likelihood of success
and potential damage. Security experts generally provide the metric values
for vulnerabilities. There are internal attributes that can predict security.

EXERCISES

 1. Software engineering practices are intended to lead to software prod-
ucts with certain desirable quality attributes. For products that might
be used in safety-critical environments, dependability is a particularly
important requirement. Briefly describe three key attributes of soft-
ware dependability. List three other quality attributes that might gen-
erally be expected to result from good software engineering practice.

 2. The most commonly used software quality measure in industry is the
number of faults per thousand lines of product source code. Compare

472 ◾ Software Metrics

the usefulness of this measure for developers and users. List some
possible problems with this measure.

 3. Suppose you have overall responsibility for a number of ongoing
software projects (some of which are being beta-tested). There are
wide quality variations among the projects, and you have available
the following measures for each project:

 a. Mean time to failure.

 b. MTTR reported defects.

 c. Total number of user-reported failures.

 d. Total number of defects found during system testing.

 e. Total number of changes made during development.

 f. Maximum cyclomatic number.

 g. Total project overspend/underspend.

 h. Average number of function points produced per month of pro-
grammer effort.

Discuss the relative merits of these measures for purposes of com-
parison. Are there any other measures (that are relatively straight-
forward to collect) that might help you?

 4. List five factors (not described in this chapter) that can potentially
affect the maintainablility of software. For each one, name the
entity and the relevant measurable attribute and propose a measure
of the attribute.

 5. Compute the fog index for

a. This book

b. A recent document of your own

 6. Comment on how Gunning’s interpretation of the fog index corre-
sponds to your intuitive perception.

 7. Explain why is it not possible (or at least very difficult) to measure
software security directly and precisely.

Measuring External Product Attributes ◾ 473

FURTHER READING
Heston and Phifer provide a practical way to take advantage of the key concepts in
a set of six different software quality models and standards.

Heston K.M. and Phifer W., The multiple quality models paradox: How much
‘best practice’ is just enough? Journal of Software Maintenance and Evolution:
Research and Practice, 23, 517–531, 2011.

Haigh reports on the results of a survey of professionals with an MBA background.
The subjects are classified into one of the following groups: (1) user and man-
ager, (2) user and nonmanager, (3) developer and manager, and (4) developer
and nonmanager. The subjects rated the importance of 11 nonfunctional qual-
ity attributes and 2 functional attributes (correctness and accuracy). There are no
significant differences between the groups in their “conceptions of software qual-
ity.” However, there are differences in the priorities of the groups. Users favored
usability, managers of users favored accuracy, and developers favored testability
and maintainability.

Haigh M., Software quality, non-functional software requirements and IT-business
alignment, Software Quality Journal, 18, 361–385, 2010.

Riaz, Mendes, and Tempero published a systematic literature review that identifies
15 published research papers that report on empirical validation of methods for
predicting software maintainability. They conclude that there is little evidence that
the methods are effective.

Riaz M., Mendes E., and Tempero E., A systematic review of software maintainabil-
ity prediction and metrics, Proceedings of the Third International Symposium
on Empirical Software Engineering and Measurement, Lake Buena Vista,
Florida, pp. 367–377, 2009.

475

C h a p t e r 11

Software Reliability
Measurement and Prediction*

All the software-quality models discussed in Chapter 10
 identified software reliability as a key high-level attribute. In

Chapter 7, although we did not refer to reliability explicitly, the main
examples treated software “quality” as a surrogate for software reliability.
So, it is not surprising that software reliability has been the most exten-
sively studied of all the quality attributes. Quantitative methods for its
assessment date back to the early 1970s, evolving from the theory of hard-
ware reliability. In this chapter, we describe these methods, highlight-
ing their limitations as well as their benefits. Building on this work, we
describe an approach to software reliability assessment that can provide
us with truly accurate predictive measures, providing we have been able to
collect data about past failures. The approach to measuring software reli-
ability described in this chapter can also be incorporated with the causal
modeling approach described in Chapter 7 to achieve improved decision
making by software quality and test managers, even when there is mini-
mal data available.

We begin by introducing the basics of reliability theory. Then we address
what has become known as the software reliability growth problem: esti-
mating and predicting the reliability of a program as faults are identified
and attempts are made to fix them. In the approach described here, no
individual technique is singled out for unreserved recommendation from

* Including contributions from prior editions by Bev Littlewood (City University, London).

476 ◾ Software Metrics

many that have been proposed over the years. We explain in some detail
that we reserve judgment, because empirical observation suggests that no
such technique has been able to consistently give accurate results over dif-
ferent data sources. Instead, we emphasize the need to examine the accu-
racy of the actual reliability measures, obtained from several techniques
in a particular case, with a view to selecting the one (if any) that yields
trustworthy results.

It is important to note that no current methods can feasibly assure
software systems with ultra-high reliability requirements. However, the
techniques we describe apply to the vast majority of the systems we build:
those with relatively modest reliability requirements. Our suggested
approach is more computationally intensive than simply adopting a single
technique, and it involves some novel statistical techniques. However, we
explain the new methods intuitively, and you can apply the methods in
practice by using commercially available software tools. The result is reli-
ability measures that are known to be trustworthy; so, this approach is
well worthwhile.

11.1 BASICS OF RELIABILITY THEORY
The theory of software reliability has its roots in the more general
theory of systems and hardware reliability; the hardware approaches
are described in many textbooks (e.g., Rausand and Hoyland 2004;
Modarres et al. 2010; Birolini 2007). We apply many of the basic con-
cepts of this general theory to software reliability problems in the dis-
cussion in this chapter.

The basic problem of reliability theory is to predict when a system will
eventually fail. In hardware reliability, we are normally concerned with
component failures due to physical wear; they can be caused, for exam-
ple, by corrosion, shock, or overheating. Such failures are probabilistic
in nature; that is, we usually do not know exactly when something will
fail, but we know that the product eventually will fail; so, we can assign
a probability that the product will fail at a particular point in time. For
example, suppose we know that a hose will eventually dry out, and that
the average usage time for the hose is 3 years. In other words, we can
expect that some time around the 3-year mark, the hose will begin to
leak. The probability of failure of the hose does not go from 0 on day 1094
(1 day short of 3 years) to 1 on day 1095; rather, the probability may start
at 0 on day 1 and then increase slowly as we approach the 3-year mark.
We can graph these daily probabilities over time, and the shape of the

Software Reliability ◾ 477

curve depends on the characteristics of the hose that affect the failure: the
materials, pressure, usage, etc. In this way, we build a model to describe
the likely failure.

The same approach applies in software. We build a basic model of com-
ponent reliability and create a probability density function (pdf) f of time t
(written as f(t)) that describes our uncertainty about when the component
will fail.

EXAMPLE 11.1

Suppose we know that a component has a maximum life span of 10 h. In
other words, we know it is certain to fail within 10 h of use. Suppose also
that the component is equally likely to fail during any two time periods of
equal length within 10 h. Thus, for example, it is just as likely to fail in the
first 2 min as in the last 2 min. Then we can illustrate this behavior with
the pdf f(t) shown in Figure 11.1. The function f(t) is defined to be 1/10 for
any t between 0 and 10, and 0 for any t > 10. We say it is uniform in the
interval of time from t = 0 to t = 10. (Such an interval is written as [0,10].)
In general, for any x, we can define the uniform pdf over the interval [0,x]
to be 1/x for any t in the interval [0,x] and 0 elsewhere. Of special interest
(for technical reasons) is the pdf that is uniform on the interval [0,1].

The uniform distribution in Example 11.1 has a number of limitations
for reliability modeling. For example, it applies to components only where
the failure time is bounded (and where the bound is known). In many situ-
ations, no such bound exists, and we need a pdf that reflects the fact that
there may be an arbitrarily long time to failure.

f(t)

1/10

0 10 t

FIGURE 11.1 Uniform pdf.

478 ◾ Software Metrics

EXAMPLE 11.2

Figure 11.2 illustrates an unbounded pdf that reflects the notion that the failure
time occurs purely randomly (in the sense that the future is statistically inde-
pendent of the past). The function is expressed as the exponential function

 f t e t() = −λ λ

In fact, the exponential function follows inevitably from the randomness
assumption. As you study reliability, you will see that the exponential is cen-
tral to most reliability work.

Having defined a pdf f(t), we can calculate the probability that the com-
ponent fails in a given time interval [t1, t2]. Recall from calculus that this
probability is simply the area under the curve between the endpoints of
the interval. Formally, we compute the area by evaluating the integral:

Probability of failure between time t1 and t f t dt
t

t

2
2

1

= ∫ () .

EXAMPLE 11.3

For the pdf in Example 11.1, the probability of failure from time 0 to time 2 h
is 1/5. For the pdf in Example 11.2, the probability of failure during the same
time interval is

 λ λ λ λe dt e et t− − −∫ = −⎡⎣ ⎤⎦ = −
0

2

0

2 21

When λ = 1, this value is equal to 0.63; when λ = 3, it is equal to 0.998.

It follows from our definition that it does not make sense to consider the
probability of failure at any specific instance of time t because this is always

f(t)

0 t

λ

FIGURE 11.2 Pdf f(t) = λ eλt.

Software Reliability ◾ 479

equal to 0 (because the time interval has length 0). Instead, we always con-
sider the probability of failure during some nonzero time interval.

Usually, we want to know how long a component will behave correctly
before it fails. That is, we want to know the probability of failure from time
0 (when the software first begins operation) to a given time t. The distribu-
tion function (also called the cumulative density function) F(t) is the prob-
ability of failure between time 0 and t, expressed as

F t f t dt

t
() ()= ∫0

We say that a component survives until it fails for the first time, so that
we can think of survival as the opposite concept to failure. Thus, we define
the reliability function (also called the survival function) R(t) as

 R(t) = 1 − F(t)

This function generates the probability that the component will func-
tion properly (i.e., without failure) up to time t. If we think of t as the “mis-
sion” time of a component, then R(t) is the probability that the component
will survive the mission.

EXAMPLE 11.4

Consider the pdf that is uniform over the interval [0,1] (as described in
Example 11.1). Then f(t) = 1 for each t between 0 and 1, and

F t f t dt dt t t

t t
t() ()= = = [] =∫ ∫0 0
0

1

for each t between 0 and 1. The graphs of both F(t) and R(t) are shown in
Figure 11.3.

EXAMPLE 11.5

The distribution function F(t) for the pdf of Example 11.2 is

F t e dt e et

t
t t t() = = −⎡⎣ ⎤⎦ = −− − −∫ λ λ λ λ

0 0
1

480 ◾ Software Metrics

Thus,

 R(t) = e−λt

which is the familiar exponential reliability function. Both F(t) and R(t) are
shown in Figure 11.4.

Clearly, any one of the functions f(t), F(t), or R(t) may be defined in
terms of the others. If T is the random variable representing the yet-to-be-
observed time to failure, then any one of these functions gives a complete
description of our uncertainty about T. For example,

 P T t R t F t() () ()> = = −1

where P stands for the probability function. The equation tells us that the
probability that the actual time to failure will be greater than a given time
t is equal to R(t) or 1 − F(t). Thus, having any one of these functions allows
us to compute a range of specific reliability measures:

1

0 1 0 1 tt

F(t) R(t)
R(t) = 1–t

F(t) = t

FIGURE 11.3 Distribution function and Reliability function for uniform [0,1]
density function.

F(t) R(t)
1 1

0 t t0

FIGURE 11.4 Distribution function and reliability function for exponential pdf.

Software Reliability ◾ 481

The mean time to failure (MTTF) is the mean of the pdf, also called the
expected value of T (written as E(T)). We can compute the mean of the pdf
f(t) as

E t tf t dt() ()= ∫

EXAMPLE 11.6

For the pdf in Example 11.1, the MTTF is 5 h. The MTTF for the pdf in Example
11.5 is 1/λ.

The median time to failure is the point in time t at which the probability
of failure after t is the same as the probability of failure before t. It follows
that we can calculate its value by finding the m satisfying F(m) = 1/2.

EXAMPLE 11.7

For the pdf of Example 11.1, the median time to failure is 5 h. For the pdf of
Example 11.2, we find the median time to failure by solving the following
equation for m:

1
2 1

0
= = = −− −∫F m e dt et

m
m() λ λ λ

Rearranging this equation gives us:

m e=

1
2

λ
log

So, for example, when λ = 1, we have m = 0.69; when λ = 2, we have
m = 0.35.

In some sense, the median time to failure gives us a “middle value” that
splits the interval of failure possibilities into two equal parts. We can also
consider a given interval, and calculate the probability that a component
will fail in that interval. More formally, we define the hazard rate h(t) as

482 ◾ Software Metrics

h t f t

R t() ()
()=

h(t)δt is the probability that the component will fail during the interval [t,
t + δt], given that it had not failed before t.

EXAMPLE 11.8

The hazard rate for the important exponential pdf of Example 11.2 is λ.

So far, we have been concerned only with the uncertainty surrounding
the time at which the system fails for the first time. But, in many cases,
systems fail repeatedly (not always from the same cause), and we want to
understand the behavior of all these failures collectively. Thus, suppose
that a system fails at time t1. We attempt to fix it (e.g., by replacing a par-
ticular component that has failed), and the system runs satisfactorily until
it fails at time t2. We fix this new problem, and again, the system runs until
the next failure. After a series of i − 1 failures, we want to be able to predict
the time of the ith failure. This situation is represented in Figure 11.5.

For each i, we have a new random variable ti representing the time of
the ith failure. Each ti has its own pdf fi (and so, of course, also its own Fi
and Ri). In classical hardware reliability, where we are simply replacing
failed components with identical working components, we might expect
the series of pdfs to be identical. However, sometimes, we can replace each
failed component with one of superior quality. For example, we may be
able to make a design change to minimize the likelihood of recurrence of
the fault that caused the previous one to fail. Here, we expect the pdf of
ti+1 to be different from that of the pdf of ti. In particular, we would expect

t1 t2 ti–2 ti–1 ti Time

FuturePast

... ...

Now

Time of last
(i – 1th) failure

Time of next (ith) failure
—to be predicted

FIGURE 11.5 Reliability problem for the scenario of attempting to fix failures
after each occurrence.

Software Reliability ◾ 483

the mean of fi+1 to be greater than that of fi; in other words, the new com-
ponent should fail less often than the old one. In such a situation, we have
reliability growth: successive observed failure times tend to increase. This
situation is not normally considered in hardware reliability, but reliability
growth is a goal of software maintenance; so, we assume it in our study of
software reliability.

In this scenario, there are several other measures that may be useful
to us. The hazard rate helped us to identify the likely occurrence of a first
failure in an interval. We can define a similar measure to tell us the likeli-
hood of any failure, whether or not it is the first one. The rate of occurrence
of failures (ROCOFs) λ(τ) is defined so that λ(τ)δt is the probability of a
failure, not necessarily the first, in the interval [t, t + δt]. ROCOF can be
quite difficult to compute in practice. For this reason, ROCOF is often
crudely (but wrongly) defined as the number of failures in a unit interval.

A system runs successfully for a time, and then it fails. The measures
we have introduced so far have focused on the interruption to success-
ful use. However, once a failure occurs, there is additional time lost as the
faults causing the failure are located and repaired. Thus, it is important
to know the mean time to repair (MTTR) for a component that has failed.
Combining this time with the mean time to failure tells us how long the sys-
tem is unavailable for use: the mean time between failures (MTBF) is simply

 MTBF = MTTF + MTTR

These measures tell us about the system’s availability for use at a given
point in time. In particular, Pressman (2010) and others define availability as

Availability =

+
×

MTTF
MTTF MTTR 100%

However, this formulation is not always meaningful for software.
In the discussion so far, we have assumed that time is measured as

continuous operational time. Although we do not address it here, there
is an analogous theory in which operational time is treated in discrete
units that are normally regarded as demands on the system.* For example,
any control device (such as a simple thermostat) is called into action only

* We can justify addressing only the continuous case; in practice, we can treat counts of demands as
continuous variables with little error, since these interfailure counts are usually very large.

484 ◾ Software Metrics

when certain environmental conditions prevail. Every time this happens,
we have a demand on the device, which is expected to operate in a certain
way. It will either succeed or fail. In such situations, the most important
measure of reliability may be the probability of failure on demand. In soft-
ware, the discrete scenario is highly relevant when a program is regarded
as executing a sequence of inputs or transactions.

11.2 THE SOFTWARE RELIABILITY PROBLEM
There are many reasons for software to fail, but none involves wear and
tear. Usually, software fails because of a design problem, that is, the intro-
duction of a software fault into the code (as explained in Chapter 5), or
when changes to the code are introduced to a working system. These
faults, resulting from the existing, new or changed requirements, revised
designs, or corrections of existing problems, do not always create failures
immediately (if they do at all); as explained in Chapter 5, the failures are
triggered only by certain states and inputs. Ideally, we want our changes to
be implemented without introducing new faults, so that by fixing a known
problem, we increase the overall reliability of the system. If we can fix
things cleanly in this way, we have reliability growth.

In contrast, when hardware fails, the problem is fixed by replacing
the failed component with a new or repaired one, so that the system is
restored to its previous reliability. Rather than growing, the reliability is
simply maintained. Thus, the key distinction between software reliabil-
ity and hardware reliability is the difference between intellectual failure
(usually due to design faults) and physical failure. Although hardware
can also suffer from design faults, the extensive theory of hardware
reliability does not deal with them. For this reason, the techniques we
present represent a theory of design reliability, equally applicable to
software and hardware. However, we discuss reliability solely in terms
of software.

In the discussion that follows, we make two assumptions about the soft-
ware whose reliability we wish to measure:

 1. The software is operating in a real or simulated user environment.

 2. When software failures occur, attempts are made to find and fix the
faults that caused them.

In the long run, we expect to see the reliability improve; however, there
may be short-term decreases caused by ineffective fixes or the introduction

Software Reliability ◾ 485

of novel faults. We can capture data to help us assess the short- and long-
term reliability by monitoring the time between failures. For example, we
can track execution time, noting how much time passes between succes-
sive failures.

Table 11.1 displays this type of data, expressing the successive execution
times, in seconds, between failures of a command-and-control system
during in-house testing using a simulation of the real operational envi-
ronment (Musa 1979). This data set is unusual, in that Musa took great
care in its collection. In particular, it was possible to obtain the actual
execution time, rather than merely calendar time (the relevance of which
was described in Chapter 5). As we read across the columns and down the
rows, our cursory glance detects improvement in reliability in the long
run: later periods of failure-free working tend to be significantly longer
than earlier ones. Figure 11.6 plots these failure times in sequence, and the
improvement trend is clearly visible.

However, the individual times vary greatly, and quite short times are
observed even near the end of the data set. Indeed, there are several zero
observations recorded, denoting that the system failed again immediately
after the previous problem was fixed. It is possible that the short inter-
failure times are due to inadequate fixes, so that the same problem per-
sists, or the fix attempt has introduced a new and severe problem. Musa
claimed that the zero times are merely short execution times rounded, as
are all these data, to the nearest second.

TABLE 11.1 Execution Times in Seconds between Successive Failures

3 30 113 81 115 9 2 91 112 15
138 50 77 24 108 88 670 120 26 114
325 55 242 68 422 180 10 1146 600 15
36 4 0 8 227 65 176 58 457 300
97 263 452 255 197 193 6 79 816 1351
148 21 233 134 357 193 236 31 369 748
0 232 330 365 1222 543 10 16 529 379
44 129 810 290 300 529 281 160 828 1011
445 296 1755 1064 1783 860 983 707 33 868
724 2323 2930 1461 843 12 261 1800 865 1435
30 143 108 0 3110 1247 943 700 875 245
729 1897 447 386 446 122 990 948 1082 22
75 482 5509 100 10 1071 371 790 6150 3321
1045 648 5485 1160 1864 4116

Note: Read left to right in rows.

486 ◾ Software Metrics

We capture this data sequentially, and at any time, we can ask several
questions about it:

• How reliable is the software now?

• Is it sufficiently reliable that we can cease testing and ship it?

• How reliable will it be after we spend a given amount of further
 testing effort?

• How long are we likely to have to wait until the reliability target is
achieved?

Reliability measures address each of these questions. The remainder of
this section explains how we can answer the first question.

Inherent in the data of Table 11.1 is a natural uncertainty about the
sequence of numbers: even if we had complete knowledge of all the faults
in the software, we would not be able to state with certainty when next it
would fail. This result may seem counterintuitive, but it rests on the fact
that we do not know with certainty what inputs will be supplied to the
software and in what order; so, we cannot predict which fault will be trig-
gered next (and result in failure). In other words, at a given point in time,

0

1000

2000

3000

4000

5000

6000

7000

Failures (in order of occurrence)

Ti
m

e (
s)

FIGURE 11.6 Plot of failure times in order of occurrence for the Musa dataset.

Software Reliability ◾ 487

the time to the next failure is uncertain: it is a random variable. But the
randomness means that we can apply the reliability theory and functions
introduced in Section 11.1.

Assume that we have seen i − 1 failures, with recorded inter-failure
times

 t1, t2,. . ., ti−1

as illustrated by Musa’s data. Fixes have been attempted to correct the
underlying faults, and the program has just been set running. Denote by
Ti the random variable that represents the yet-to-be-observed next time
to failure.* To answer our first question, the current reliability must be
expressed in terms of probability statements about Ti. As we saw earlier,
we can describe this probability by knowing one of the pdf (fi), the dis-
tribution function (Fi), or the reliability function (Ri); we have seen that
once we know one of them, then we can easily compute the others. We can
express the reliability function as

 Ri(t) = P(Ti > t) = 1 − Fi(t)

Recall that Ri(t) is the probability that the program will survive for a
time t before failing next, and Fi(t) is the distribution function of the ran-
dom variable Ti. We can now compute several measures of the current
reliability. For example, the mean time to failure is

E T tf t dti i() ()= ∫

and the median time to failure is the value of mi satisfying Fi(mi) = 1/2. We
can use similar measures to compute the reliability at some specified time
in the future.

These theoretical measures answer our question, but in reality, we are
far from done. The actual functions fi and Fi (for each i) are unknown to
us; so, we cannot compute numerical reliability measures. Instead, we
must use the observed failure times together with an understanding of
the nature of the failure process to obtain estimates F ti i() of the unknown

* Note the convention that random variables are uppercase, while observations of random variables
(i.e., data) are lowercase.

488 ◾ Software Metrics

distribution functions F ti i(). In other words, we are not computing an
exact time for the next failure; we are using past history to help us make
a prediction of the failure time. This point is quite important; so, we
emphasize it: all attempts to measure reliability, however expressed, are
examples of prediction. Even the simplest questions about current reli-
ability relate to a random variable, Ti, that we shall observe in the future.
Thus, we are not assessing a product’s reliability; rather, software reliabil-
ity measurement is a prediction problem, and we use the data we have
available (namely t1, t2,. . ., ti−1) to make accurate predictions about the
future Ti, Ti+1,…

Chapter 2 tells us that to solve a prediction problem, we must define a
prediction system. Consequently, we need:

 1. A prediction model that gives a complete probability specification of
the stochastic process (such as the functions Fi(Ti) and an assump-
tion of independence of successive times).

 2. An inference procedure for the unknown parameters of the model
based on realizations of t1, t2,. . ., ti−1.

 3. A prediction procedure that combines the model and inference pro-
cedure to make predictions about future failure behavior.

EXAMPLE 11.9

We can construct a crude prediction system in the following way:

 1. The model. If we assume that failures occur purely randomly, then
Example 11.2 tells us that the model is exponential. Thus, for each i, we
can express the distribution function as

 F t ei i
ti i() = − −1 λ

 2. Inference procedure. There is one unknown parameter for each i,
namely λi. We have seen in Example 11.6 that, for this model, the mean
time to the next failure is 1/λi. A naive inference procedure for comput-
ing λi is to calculate the average of the two previously observed values
of ti. That is, we estimate that

1
2

2 1

λ i

i it t
=

+− −

Software Reliability ◾ 489

 and solve for λi

λ i

i it t=
+− −

2
2 1

 3. Prediction procedure. We calculate the mean time to ith failure by
substituting our predicted value of λi in the model. The mean time to
failure is 1/λi; so we have the average of the two previously observed
failure times. Alternatively, we can predict the median time to ith fail-
ure, which we know from Example 11.7 is equal to 1/λi log 2.

 We can apply this prediction system to the data in Table 11.1. When
i = 3, we have observed t1 = 1 and t2 = 30. So, we estimate the mean of
the time to failure T3 to be 31/2 = 15.5. We continue this procedure for
each successive observation, ti, so that we have:

 a. For i = 4, we find that t2 = 30 and t3 = 113; so, we estimate T4 to be
71.5

 b. For i = 5, we have t3 = 113 and t4 = 81; so, we estimate T5 to be 97
 c. and so on

The results of this prediction procedure are depicted in Figure 11.7. Many
other, more sophisticated procedures could be used for the prediction. For
example, perhaps, our predictions would be more accurate if, instead of
using just the two previously observed values of ti, we use the average of the
10 previously observed ti. A plot for this variation, and for using the previous
20 observed ti, is also shown in Figure 11.7.

20 30 40 50 60 70 80 90 100 120 130 140100

1000

2000

3000

Predicted mean time to failure (s)

av10

av2

av20

FIGURE 11.7 Plots from various crude predictions using data from Table 11.1.
The x-axis shows the failure number, and the y-axis is the predicted mean time to
failure (in seconds) after a given failure occurs.

490 ◾ Software Metrics

For predicting the median time to the next failure, our procedures are
similar. For this distribution, the median is 1/λi log 2 and the mean is 1/λi; so,
the procedure is the same, except that all the results above are multiplied by
log 2 (i.e., by a factor of about 0.7).

Many prediction systems have been proposed, some of which use mod-
els and procedures far more sophisticated than Example 11.9. We as users
must decide which ones are best for our needs. In the next section, we
review several of the most popular models, each of which is parametric
(in the sense that it is a function of a set of input parameters). Then, we
can turn to questions of accuracy, as accuracy is critical to the success of
reliability prediction.

11.3 PARAMETRIC RELIABILITY GROWTH MODELS
Suppose we are modeling the reliability of our program according to the
assumptions of the previous sections, namely that the program is operat-
ing in a real or simulated user environment, and that we keep trying to fix
faults after failures occur. We make two further assumptions about our
program:

 1. Executing the program involves selecting inputs from some space I
(the totality of all possible inputs).

 2. The program transforms the inputs into outputs (comprising a
space O).

This transformation is schematically shown in Figure 11.8, where P is
a program transforming the inputs of I into outputs in O. For a typical
program, the input space is extremely large; in most cases, a complete
description of the input space is not available. Also, different users may

P

I O

Unacceptable

Acceptable

IF

FIGURE 11.8 Basic model of program execution.

Software Reliability ◾ 491

have different purposes in using the program, or they may have different
habits; so, the probability that one user will select a given input may be
different from the probability for another user. For example, in a word-
processing program, one user may use a menu button to run a spellcheck,
while a second may use a keyboard combination. Thus, we make a sim-
plifying assumption that a single user is running and using the program.

The output space consists of two types of outputs: those that are accept-
able (the program runs as it should), and those that are not (a failure
occurs). In other words, a program fails when an input is selected that
cannot be transformed into an acceptable output. The totality of inputs
leading to unacceptable outputs is labeled IF in Figure 11.8. In practice,
a failure is detected when the output obtained by processing a particu-
lar input is compared with the output that ought to have been produced
according to the program’s specification. Detection of failures is, of course,
not a trivial task, and we do not address this problem here.

Given these assumptions, there are two sources of uncertainty in the
failure behavior:

 1. Uncertainty about the operational environment. Even if we were to
know IF completely, we cannot know when next we will encounter it.

 2. Uncertainty about the effect of fault removal. We do not know
whether a particular attempt to fix a fault has been successful. And
even if the fix is successful, we do not know how much improvement
has taken place in the failure rate. That is, we do not know whether
the fault that has been removed causes a large or small increase in the
resulting reliability.

Good reliability models must address both types of uncertainty.
Modeling type-1 uncertainty is easiest, as it seems reasonable to assume
that the set IF is encountered purely randomly during program execution.
That is, the time to the next failure (and so the inter-failure times) has,
conditionally, an exponential distribution. As we saw in Example 11.9, if
T1, T2,… are the successive inter-failure times, then we have a complete
description of the stochastic process if we know the rates λ1, λ2,…

Thus, the most difficult problem is to model type-2 uncertainty: the way
in which the value of λ changes as debugging proceeds. The popular soft-
ware reliability models can be characterized by the way they handle this
uncertainty. We present the details of each model, but we acknowledge that

492 ◾ Software Metrics

the mathematics can be daunting; complete understanding of the details
is not necessary for comparing and contrasting the models. However, the
details are useful for implementing and tailoring the models.

11.3.1 The Jelinski–Moranda Model

The Jelinski–Moranda model (denoted JM in subsequent figures) is the
earliest and probably the best-known reliability model (Jelinski and
Moranda 1972). It assumes that, for each i,

 F t ei i
ti i() = − −1 λ

with

 λi = (N − i + 1) ϕ

Here, N is the initial number of faults, and ϕ is the contribution of each
fault to the overall failure rate. Thus, the underlying model is the expo-
nential model, so that the type-1 uncertainty is random and exponential.
There is no type-2 uncertainty in this model; it assumes that fault detec-
tion and correction begin when a program contains N faults, and that
fixes are perfect (in that they correct the fault causing the failure, and they
introduce no new faults). The model also assumes that all faults have the
same rate. Since we know from Example 11.8 that the hazard rate for the
exponential distribution is λ, it follows that the graph of the JM hazard
rate looks like the step function in Figure 11.9. In other words, between the
(i − 1)th and ith failure, the hazard rate is (N − i + 1) ϕ.

Step sizes equal
Nϕ

(N – 1)ϕ

(N – 2)ϕ

(N – 3)ϕ

t1 t2 t3 t4

FIGURE 11.9 JM model hazard rate (y-axis) plotted against time (x-axis).

Software Reliability ◾ 493

The inference procedure for JM is called maximum likelihood estimation;
its details need not concern us here, but a simple overview is provided in
Fenton and Neil (2012) while a description in the specific context of reli-
ability may be found in textbooks such as Rausand and Hoyland (2004),
Modarres et al. (2010), and Birolini (2007). In fact, maximum likelihood is
the inference procedure for all the models we present. For a given set of fail-
ure data, this procedure produces estimates of Ni and ϕi. Then, ti is predicted
by substituting these estimates in the model. (We shall see the JM median
time to failure predictions in Figure 11.10, based on the data of Table 11.1.)

EXAMPLE 11.10

We can examine the reliability behavior described by the JM model to deter-
mine whether it is a realistic portrayal. Consider the successive inter-failure
times where N = 15 and ϕ = 0.003. Table 11.2 shows both the mean time
to the ith failure and also a simulated set of failure times (produced using
random numbers in the model). In the simulated data, the nature of the

30 40 50 60 70 80 90 100 120 130 140
i

M
ed

ia
n

1000

2000

3000
JM

LM

LV
(KL, MO
almost
identical)

LNHPP

GO

DU

FIGURE 11.10 Data analyzed using several reliability growth models. The cur-
rent median time to the next failure is plotted on the y-axis against failure num-
ber on the x-axis. We use the model abbreviations introduced in the previous
sections. Two additional models are considered here: KL (Keiller–Littlewood)
and MO (Musa–Okumoto).

494 ◾ Software Metrics

exponential distribution produces high variability, but generally, there is reli-
ability growth. Notice that as i approaches 15, the failure times become large.
Since the model assumes there are no faults remaining after i = 15, the mean
time to the 16th failure is said to be infinite.

There are three related criticisms of this model.

 1. The sequence of rates is considered by the model to be purely deter-
ministic. This assumption may not be realistic.

 2. The model assumes that all faults equally contribute to the hazard
rate. The Adams example in Chapter 10 provides empirical evi-
dence that faults vary dramatically in their contribution to program
unreliability.

 3. We show that the reliability predictions obtained from the model are
poor; they are usually too optimistic.

11.3.2 Other Models Based on JM

Several models are variations of JM. Shooman’s model is identical
(Shooman 1983). The Musa model (one of the most widely used) has JM as
a foundation but builds some novel features on top (Musa 1975). It was the

TABLE 11.2 Successive Failure Times for JM when
N = 15 and ϕ = 0.003

i Mean Time
to ith Failure

Simulated Time
to ith Failure

1 22 11
2 24 41
3 26 13
4 28 4
5 30 30
6 33 77
7 37 11
8 42 64
9 48 54
10 56 34
11 67 183
12 83 83
13 111 17
14 167 190
15 333 436

Software Reliability ◾ 495

first model to insist on using execution time to capture inter-failure times.
However, it also includes a model of calendar time, so that we can make
project management estimates, such as the time until target reliability is
achieved. By tying reliability to project management, Musa encouraged
the widespread use of reliability modeling in many environments, par-
ticularly telecommunications.

11.3.3 The Littlewood Model

The Littlewood model (denoted LM in subsequent figures) attempts to be a
more realistic finite fault model than JM by treating the hazard rates (cor-
responding to the different faults) as independent random variables. Thus,
while JM is depicted with equal steps, Littlewood has steps of differing
size. In fact, these rates are assumed to have a γ-distribution with param-
eters (α, β). Unlike the JM model, Littlewood introduces two sources of
uncertainty for the rates; thus, we say that the model is doubly stochas-
tic. In this model, there is a tendency for the larger-rate faults (i.e., the
faults with larger “steps,” and so larger contribution to unreliability) to
be encountered (and so removed) earlier than the smaller ones, but this
sequence is itself random. The model therefore represents the diminishing
returns in improved reliability that comes from additional testing.

Both the JM and Littlewood models are in a general class called
 exponential-order statistic models (Miller 1986). In this type of model,
the faults can be seen as competing risks: at any point in time, any of
the remaining faults can cause a failure, but the chance that it will be a
particular fault is determined by the hazard rate for that fault. It can be
shown that the times, Xj, at which the faults show themselves (measured
from when observation of the particular program began) are independent,
identically distributed random variables. For the JM model, this distribu-
tion is exponential with parameter ϕ. For the Littlewood model, this dis-
tribution has a Pareto distribution:

P X x xj

a

()< = −
+

⎛
⎝⎜

⎞
⎠⎟

1 β
β

11.3.4 The Littlewood–Verrall Model

The Littlewood–Verrall model (denoted LV in subsequent figures) is a
simple one that, like the Littlewood model, captures the doubly stochas-
tic nature of the conceptual model of the failure process (Littlewood and

496 ◾ Software Metrics

Verrall 1973). Here, we make the usual assumption that the inter-failure
times, Ti, are conditionally independent exponentials with pdfs given by

 pdf(|)ti i i i
te i iΛ = = −λ λ λ

The λi are assumed to be independent γ-variables:

pdf()λ

ψ λ
α

α α ψ λ

i
i

ii e
=

− −()
()

()1

Γ

In this model, reliability growth (or decay) is controlled by the sequence
ψ(i). If this sequence is an increasing function of i, it can be shown that
the λis are stochastically decreasing and hence, the Tis are stochastically
increasing. The user chooses the ψ family; usually, ψ(i) = β1 + β2i works
quite well. The sign of β2 then determines whether there is growth or
decay in reliability; therefore, the data themselves are allowed to deter-
mine whether the reliability is increasing, decreasing, or constant via the
estimate of β2.

11.3.5 Nonhomogeneous Poisson Process Models

Consider again the Musa data in Table 11.1. It consists of a sequence of
“point events,” where each point has no “memory.” In other words, the
future of the process is statistically independent of the past. We call this
behavior nonstationary, and it can be modeled by what is called a nonho-
mogeneous Poisson process (NHPP) (Raus and Hoyland 2004). The behav-
ior of the process is in a sense completely random, determined entirely
by the rate at which failures are occurring. A minor drawback to this
approach is that most such processes have rate functions that change con-
tinuously in time. This behavior may not be realistic for software reliabil-
ity; it can be argued that, for software, the only changes that take place are
the jumps in reliability occurring when a fix is made. However, one way
of constructing an NHPP is to assume that N (the total number of initial
faults) is Poisson distributed; we can use this process as the probability
specification in models such as JM and Littlewood (Miller 1986).

The Goel–Okumoto model (denoted GO in subsequent figures) is an
NHPP variant of JM (Goel and Okumoto 1979). Similarly, the Littlewood
NHPP model (denoted LNHPP in subsequent figures) is an NHPP vari-
ant of the original Littlewood model. Numerous other rate functions have

Software Reliability ◾ 497

been proposed for NHPP models, including the Duane model (DU), origi-
nally devised for hardware reliability growth arising from burn-in testing
(eliminating faulty components in complex systems by forcing them to fail
early in testing) (Duane 1964).

11.3.6 General Comments on the Models

We have introduced only a few of the many models proposed over the
years. All of the above are parametric models, in the sense that they are
defined by the values of several parameters. For example, the JM model is
defined by the values of ϕ and N. As we have noted, using a model involves
a two-step process: selecting a model, and then estimating the unknown
parameter values from available data. You can think of this estimation as
computing the likely values of the parameters, and in fact, you calculate the
maximum likelihood estimates. Fortunately, practitioners can use available
software to perform the extensive calculations such as the R open-source
statistical package (http://www.r-project.org/). A full Bayesian approach
(along with supporting software) is described (Neil et al. 2010).

For the rest of this chapter, we shall assume that you have access to a tool
or spreadsheet to perform the calculations necessary to use the various reli-
ability models. The next step in choosing an appropriate reliability model is
evaluating model accuracy. We assist your evaluation by describing a for-
mal procedure for determining which models perform best on a given set of
data. In fact, our technique is useful regardless of the models’ assumptions.

11.4 PREDICTIVE ACCURACY
Experience reveals great variation in the accuracy of software reliability
prediction models (Abdel-Ghaly et al. 1986). Certainly, no single method
can be trusted to give accurate results in all circumstances. In fact, accu-
racy is likely to vary from one data set to another, and from one type of
prediction to another.

Figure 11.10 displays the results of applying several models to the data
of Table 11.1; it clearly illustrates the variability of prediction. Each model
is used to generate 100 successive estimates of current reliability, expressed
as the median time to the next failure. Although all models agree that reli-
ability is increasing, there is considerable disagreement about what has
actually been achieved, particularly at later stages of testing. Not only are
some models more optimistic in their estimates of reliability than others,
but also, some are also more “noisy,” giving highly fluctuating predictions
as testing proceeds.

http://www.r-project.org

498 ◾ Software Metrics

Results such as these are typical, and they can be disappointing for
potential users of the techniques. Users want trustworthy predictions; so,
we must question predictive accuracy and devise means of detecting inac-
curate results.

There are two main ways in which reliability predictions can be
inaccurate:

• Predictions are biased when they exhibit a reasonably consistent
departure from the truth (i.e., the true reliability). We will see that
the most optimistic of the predictions in Figure 11.10, JM’s, are
indeed truly optimistic in comparison with the true median, and the
most pessimistic, LV’s, is truly pessimistic.

• Predictions are noisy when successive predictions of, say, the median
times to the next failure fluctuate in magnitude more than is the case
for the true medians.

To see the difference between bias and noise, consider reliability esti-
mates with fluctuations centered approximately on the truth. That is, the
positive and negative errors have about the same magnitude. This consis-
tency of departure means that the estimates are not biased. However, there
is a great deal of noise; so, no single prediction can be trusted, since it may
exhibit a large error.

It is common for poor predictions to exhibit both bias and unwarranted
noise. The difficulty we face in detecting bias and noise is that, of course,
we do not know the true reliabilities against which the predictions are to
be judged. There is no evidence merely from Figure 11.10 to indicate which,
if any, of the series of predictions is accurate. In particular, we must bear
in mind that Figure 11.10 only shows a simple summary (the medians) of
the successive reliability predictions; usually, we are interested in bias or
noise in the complete sequence of predictive distribution functions

F ti i().
To address this problem, we introduce some formal techniques for ana-

lyzing the accuracy of reliability predictions. The techniques emulate how
users would actually behave (similar to the descriptions in Examples 10.9
and 10.10). Typically, users make a prediction, observe the actual outcome
of the predicted event, and repeat this process several times to obtain a
sequence of predictive and actual data. Finally, they evaluate this evidence
to determine whether the actual observations differ significantly from
what had been predicted.

Software Reliability ◾ 499

11.4.1 Dealing with Bias: The u-Plot

We consider first the problem of bias. To detect bias in the medians (as
plotted in Figure 11.10), we can count the number of times the observed ti
is smaller than the (earlier) predicted median. If, for n observations, this
count differs significantly from n/2, then we are likely to have bias. For
example, in the data plotted in Figure 11.10, the JM model has 66 of 100
instances where the actual observations are smaller than the predicted
median. The predicted medians are consistently too large, confirming that
JM is too optimistic in its portrayal of the software reliability growth, as
expressed by the medians. If we consider only the last 50 predictions in the
data, we find the effect to be even more dramatic: 39 out of the 50 obser-
vations are smaller than the corresponding predicted medians. Thus, the
clear increase in reliability predicted by JM and displayed in Figure 11.10
(about half-way through the plot) is misleading. Yet, this result is quite
surprising. Intuitively, we would expect a model to produce more accurate
answers later (when more data are available) than earlier (with less data).
Similarly, the medians of the LV model show that the model is actually
too pessimistic in its median predictions. On the other hand, there is no
evidence here to suggest that the medians of LNHPP are biased.

Of course, lack of bias in the median does not guarantee lack of bias in
other reliability measures. What we really seek is evidence of consistent
differences between the sequences of functions

F ti i() (the predictions) and
Fi(ti) (the actual values). To tackle this problem, we introduce the notion
of the u-plot.

To construct a u-plot for a reliability model, we begin by computing the
sequence of numbers {ui} given by

 u F ti i= ()

Each element of the sequence is simply the estimate of P(Ti < ti) (the
probability that the observed inter-failure time is less than the previously
predicted probability). In other words, we are estimating the likelihood that
the actual observation was less than what we had predicted it would be.

EXAMPLE 11.11

In Example 11.9, we defined a crude prediction system in which the mean
time to the next failure (based on the exponential model) was the average of
the two previously observed failure times. If we apply this prediction system

500 ◾ Software Metrics

to the successive failure time data of the Musa data, we generate the predic-
tions shown in the third column of Table 11.3.

In this case, the estimated distribution function is

�
F t ei i

ti i() = − −1 λ�

where

λ i i
=

1
predicted mean time to th failure

From this information, we can compute the sequence of uis. For example,

 u F t F e2 2 2 2

1
16 5

30
30 1 0 84= = = − =

−

() () ..

Similarly, we compute the rest of the uis as shown in the final column of
Table 11.3.

Next, we construct the u-plot, shown in Figure 11.11, by placing the val-
ues of the uis along the horizontal axis (which runs from 0 to 1) and then
drawing the step function where each step has height 1/(n + 1) (assuming
there are n uis).

A set of predictions is said to be perfect if

F t F ti i i i() ()=

TABLE 11.3 Generating ui Values for the Crude Prediction System of
Example 10.9 (Based on the Musa Data)

i ti
Predicted Mean

Time to ith Failure λ i ui

1 3
2 30 16.5 0.061 0.84
3 113 71.5 0.014 0.79
4 81 97 0.010 0.57
5 115 98 0.010 0.69
6 9 62 0.016 0.14
7 2 5.5 0.182 0.30
8 91 46.5 0.022 0.86
9 112 101.5 0.010 0.67
10 15 63.5 0.016 0.21

Software Reliability ◾ 501

for all i. If we have perfect predictions, then the set of ui will look like
realizations of independent random variables with a uniform distribution
on the interval (0,1) (Dawid and Vouk 1999). Thus, we draw the uniform
distribution (which is the line of unit slope) on the u-plot and compare
the two. Any significant difference between them indicates a deviation
between predictions and observations. We measure the degree of devia-
tion by using the Kolmogorov distance (the maximum vertical distance),
as shown in Figure 11.11.

We leave as an exercise the drawing of the u-plot for the sequence of uis
calculated in Example 11.11.

EXAMPLE 11.12

Figure 11.12 shows two u-plots for the most extreme reliability models of
Figure 11.10: JM and LV, using the data of Table 11.1. To see whether the
two plots differ significantly from the line of unit slope, we measure the
Kolmogorov distance (the greatest vertical distance) of a plot from the line
of unit slope. For JM, this distance is 0.190, which is statistically significant at
the 1% level; for LV, the distance is 0.144, which is significant at the 5% level.
Thus, this dataset provides very strong evidence against the accuracy of the
JM predictions, and quite strong evidence against those from LV.

Pr
ob

ab
ili

ty

Kolmogorov distance

Here u6 = 0.14, u10 = 0.21, etc.

1

0 1u6 u10 u7 u4

ui values
u9u5 u3 u2u8

For n ui’s step
size is
1/(n + 1)
(here n = 9)

FIGURE 11.11 The u-plot (computed for the first 9 values of Example 11.11).

502 ◾ Software Metrics

The plots show us something more important than the simple evidence
of inaccuracy; they tell us about the detailed nature of the prediction errors.
The plot for JM is always above the line of unit slope, indicating that there are
too many small u values. That is, the model tends to underestimate the prob-
ability of failure before ti (the later, actual, observed failure time) and so is
too optimistic. Conversely, there is evidence that LV is largely below the line
of unit slope and so is too pessimistic in its predictions. These conclusions
certainly agree with Figure 11.10, where we saw that JM was relatively more
optimistic than LV, and the earlier analysis solely in terms of the medians.
We now have evidence that JM is objectively optimistic when compared
with the truth, and this optimism exists in all measures of current reliability
(i.e., not only in the median, but also in other percentiles of the time to fail-
ure distribution). A user might reasonably conclude from this analysis that
the truth lies somewhere between LV and JM predictions. For example, in
Figure 11.10, we might expect the LNHPP predictions to be better than LV
and JM. In fact, a u-plot of these predictions is very close to uniform (the
Kolmogorov distance, 0.098, is not statistically significant), which general-
izes the result we have already seen for the median predictions.

11.4.2 Dealing with Noise

As we have seen, the other major source of inaccuracy in predictions is
noise. In fact, it is quite easy to obtain predictions that are close to being
unbiased but are useless because of their excessive noise.

LV

JM

0

1

1

FIGURE 11.12 Jelinski-Moranda (JM) and Littlewood-Verrall (LV) u-plots for
100 predictions of the one-step-ahead predictions.

Software Reliability ◾ 503

EXAMPLE 11.13

If we seek an unbiased estimate of the median of Ti, we can use the median
value of the preceding observed three inter-event times ti−1, ti−2, and ti−3. For
example, consider the data in Table 11.1. Using the three previous inter-event
times, we predict the median of T4 to be 30, the median of T5 to be 81, the
median of T6 to be 113, etc. There is only a slight pessimistic bias here if the
true reliability of the software is changing slowly. However, the individual
median estimates obtained this way are likely to be very far from the true
values, and they will fluctuate wildly even when the true median sequence
is changing smoothly.

Informally, we can think of noise as the fluctuation we find in predic-
tions. We must consider whether the underlying true reliability is also
fluctuating in a similar way. If the true reliability is not fluctuating, then
any noise in the predictions is unwarranted. On the other hand, if the true
reliability is really fluctuating, then any accurate prediction should also
fluctuate. For example, the true reliability of a system or program may in
fact suffer reversals of fortune, with frequent decreases corresponding to
the introduction of new faults during attempts to fix the old ones. In this
case, what appears to be noise in the prediction is actually there for good
reason, and we want the predictions to track these reversals; if they do so,
the predictions exhibit absolute noise.

It is possible to devise a measure of absolute noise in a sequence of pre-
dictions. Then, using such a measure, we might expect the median predic-
tions of JM in Figure 11.10 to be noisier than those of LV, which exhibits
quite smooth growth. Similarly, we might find that the simple-minded
medians proposed in Example 11.13 (based on only three data points)
would be even noisier. However, looking at absolute noise can be mislead-
ing. It is really unwarranted noise that affects the quality of prediction.

So far, no one has been able to devise a test that is sensitive solely to such
unwarranted noise. Instead, we use a more general tool, responsive to inac-
curacies of prediction of all types, including unwarranted noise and bias.

11.4.3 Prequential Likelihood Function

We have seen that different prediction models can generate vastly different
predictions for the same set of data. We can characterize the differences
in terms of noise and bias, but so far, we have seen no way of selecting
the best model for our needs. However, help is at hand. We can use the

504 ◾ Software Metrics

prequential likelihood function to compare several competing sets of pre-
dictions on the same data source, and to select the one that produces the
“globally most accurate” predictions. Details of the mathematical theory
behind prequential likelihood can be found in Dawid (1984); Dawid and
Vouk (1999); the following is an informal and intuitive interpretation.*

Assume, as before, that we want to estimate Fi(t), the distribution of Ti,
on the basis of the observed t1, t2,…, ti−1. Using a prediction system, A, we
make predictions for a range of values of i, say from i = m to i = n. After
each prediction, we eventually observe the actual ti. The prequential likeli-
hood function for these predictions, coming from model A, is defined as

PL =

=

=

∏ f ti i
i m

i n

()

where f ti i() is the estimate of the pdf of Ti. Notice how this estimating
technique works. We begin by estimating the pdf of the random variable
Ti, using the observations of previous times between failures. Then, when
the actual ti is observed, we substitute the actual observations in the pdf.
This procedure is similar to the way in which we formed the u-plot from
the distribution function.

EXAMPLE 11.14

In Example 11.9, we built a crude prediction system by using an exponential
model in which we estimated the mean time to the next failure by simply
computing the average of the two previously observed values. In this situa-
tion, the estimated pdf is described by the equation

f t ei i i
ti i() = −λ λ

where 1/λ i
 is the average of ti–2 and ti–1. Using the data of Table 11.1 and a

spreadsheet package, we can easily compute the sequence of prequential
likelihood functions. Table 11.4 shows the results of these calculations for i
ranging from 1 to 13. In the table, the right-hand column contains the pre-
quential likelihood values. For example, when i = 5,

* The word “prequential,” commonly used in the statistical community, was introduced by Phil
Dawid, who defined the prequential likelihood technique. It is a merger of the two words, “pre-
dicting” and “sequential.”

Software Reliability ◾ 505

PL = = × ×

=

=

∏ f t f t f t f ti i
i

i
 () () () ()3 3 4 4 5 5

3

5

Similarly, we can compute the sequence of prequential likelihood val-
ues of other prediction systems. For example, an exercise at the end of this
chapter asks you to calculate PL for the prediction system where the estimate
of the mean time to the next failure is the average of the three previously
observed values.

To see how prequential likelihood allows us to compare models, sup-
pose we have two candidate sets of predictions, from prediction systems A
and B. For each prediction system, we compute the respective prequential
likelihood functions, denoting them as PLA and PLB. The major theoreti-
cal result in Dawid (1984) states that if

PL
PL asA

B
→ ∞ → ∞n

then model A discredits model B, in the sense that model B can be
rejected. In a looser interpretation of this result, we can say that if
PL /PLA B increases consistently as n increases, then A is producing more
accurate predictions than B.

TABLE 11.4 Computing the Sequence of Prequential Likelihood Functions for
the Crude Prediction System of Example 11.9

i ti Ti
λ i

f ti i() PL
3 113 16.5 0.060606 0.0000643 6.43E−05
4 81 71.5 0.013986 0.0045050 2.9E−07
5 115 97 0.010309 0.0031502 9.13E−10
6 9 98 0.010204 0.0093087 8.5E−12
7 2 62 0.016129 0.0156170 1.33EE−13
8 91 5.5 0.181818 0.0000000 1.57EE−21
9 112 46.5 0.021505 0.0019342 3.04EE−24
10 15 101.5 0.009852 0.0084987 2.59EE−26
11 138 63.5 0.015748 0.0017923 4.64EE−29
12 50 76.5 0.013072 0.0067996 3.15EE−31
13 77 94 0.010638 0.0046894 1.48EE−33

506 ◾ Software Metrics

Figure 11.13 is an intuitive justification for this looser result. Here, we
examine a single prediction of Ti. We show the true pdf, fi(t), and two pre-
dictions of it. Clearly, the prediction system for A is closer to the “truth”
and is thus more accurate. When we eventually see the actual ti, it is most
likely to lie in the central body of the true pdf fi(t), from which it is sam-
pled. The body of this pdf covers the tails of both the pdf functions. The
further away that a prediction is from the truth, the smaller will be the
height of this predictive pdf at this point. In other words,

f ti

B ()

will be small compared to

f ti

A ()

(which in turn is smaller than the true value). For a consistently poor set
of predictions, this effect will tend to occur for each of the terms making
up the product in the PL equation. Thus, if model B is giving consistently
worse results than A, the ratio

PL
PL

A

B

will increase.

ttiˆ ˆfiA(t) > fiB(t)

f̂iA(t) f̂iB(t)

True fi(t)
Pr

ob
ab

ili
ty

FIGURE 11.13 How prequential likelihood works.

Software Reliability ◾ 507

This technique is responsive to the various ways in which predictions
can be inaccurate. For instance, if a set of predictions was consistently
optimistic (a special case of what we have called bias), the predictive pdf-
would tend to be displaced to the right in comparison with the true pdf. If
predictions were noisy but unbiased, the sequence of successive predictive
pdfs would be randomly displaced to the left and right. In these cases, and
for other kinds of departure from accuracy, the prequential likelihood will
detect when one series of predictions is inferior to another.

EXAMPLE 11.15

Table 11.5 shows a prequential likelihood comparison of the predictions
made by the LNHPP and JM on the data of Table 11.1. Here, n is the num-
ber of predictions on which the prequential likelihood ratio (PLR) is based.
Thus, when n = 10, the PLR involves predictions of T35,…, T44; when n = 15, it
involves T35,…, T49, etc. From this analysis, there is little difference between
the models for about the first 60 predictions (i.e., until about T95), but there-
after, there is strong evidence of the superiority of LNHPP to JM. This com-
parison confirms the earlier analysis, since it was precisely after this late
stage that the JM predictions become too optimistic.

Of course, the fact that a particular model has been producing superior
predictions in the past is no guarantee that it will continue to do so in the
future. However, experience suggests that such reversals on a given data
source are quite rare. Certainly, if method A has been producing better
predictions than method B in the recent past, then it seems sensible to
prefer A for current predictions.

TABLE 11.5 Prequential Likelihood Analysis of LNHPP
and JM Predictions for the Data of Table 11.1

n Prequential Likelihood Ratio LNHPP:JM
10 1.28
20 2.21
30 2.54
40 4.55
50 2.14
60 4.15
70 66.0
80 1516
90 8647
100 6727

508 ◾ Software Metrics

11.4.4 Choosing the Best Model

We have presented several ideas for contrasting models, including examin-
ing basic assumptions, degree of bias and noise, and prequential likelihood.
These techniques may help you to decide whether one model is less plausible
than another, but they do not point to a definite best model. The behavior of
models greatly depends on the data to which they are applied, and we have
seen how several models can produce dramatically different results even for
the same dataset. In fact, the accuracy of models also varies from one data
set to another (Abdel-Ghaly et al. 1986; Littlewood 1988). And sometimes,
no parametric prediction system can produce reasonably accurate results!

EXAMPLE 11.16

Table 11.6 shows another of Musa’s datasets. Using this data, we can plot the
median time to failure for several different prediction systems, shown in Figure
11.14. There is clear and profound disagreement among the predictions: all
but two sets are in close agreement with one another, but differ by an order
of magnitude from the remaining two (LV and Keillor–Littlewood (KL)), which
are close to one another. Advocates of majority voting might believe that the
truth probably lies closer to the more optimistic sets of predictions, but in
fact, this is not so. Prequential likelihood analysis shows that the pair of more
pessimistic prediction systems is performing significantly better than the oth-
ers. However, the u-plot analysis in Figure 11.15 shows that all are extremely
poor: six are grossly optimistic, and two are very pessimistic.

The situation in Example 11.16 presents us with a serious problem: we
can try all available prediction techniques, but we can demonstrate that
none of them produces trustworthy reliability measures. Indeed, it is pos-
sible for all of them to be very inaccurate. In the next section, we examine
a recalibration technique that can rescue us in many cases.

11.5 RECALIBRATION OF SOFTWARE RELIABILITY
GROWTH PREDICTIONS

So far, we have been using the models to make predictions about reliability
as we observe and record failure data for a given system. Each time a new
failure is observed, we have applied the models in the same way, regard-
less of the known inaccuracies that we have discussed. Now, we turn to
improving predictions as we examine the current data. In other words, if
we can learn about the nature of the inaccuracies of reliability prediction at

Software Reliability ◾ 509

TA
B

LE
 1

1.
6

M
us

a
SS

3
D

at
a

1,
07

,4
00

17
,2

20
18

0
32

,8
80

96
0

26
,1

00
44

,1
60

3,
33

,7
20

17
82

0
40

,8
60

18
,7

80
96

0
96

0
79

,8
60

24
0

12
0

18
00

48
0

78
0

37
,2

60
21

00
72

,0
60

2,
58

,7
04

48
0

21
,9

00
4,

78
,6

20
80

76
0

12
00

80
,7

00
6,

88
,8

60
22

20
7,

58
,8

80
1,

66
,6

20
82

80
9,

51
,3

54
13

20
14

,7
00

34
20

25
20

1,
62

,4
80

5,
20

,3
20

96
,7

20
4,

18
,2

00
4,

34
,7

60
54

37
80

88
20

4,
88

,2
80

48
0

54
0

22
20

10
80

1,
37

,3
40

91
,8

60
22

80
0

22
,9

20
4,

73
,3

40
3,

54
,9

01
3,

69
,4

80
3,

80
,2

20
8,

48
,6

40
12

0
34

16
74

16
0

2,
62

,5
00

8,
79

,3
00

36
0

81
60

18
0

2,
37

,9
20

12
0

70
,8

00
12

96
0

30
0

12
0

5,
58

,5
40

1,
88

,0
40

56
,2

80
42

0
4,

14
,4

64
2,

40
,7

80
20

66
40

47
40

10
,1

40
30

0
41

40
4,

72
,0

80
30

0
87

,6
00

48
,2

40
41

94
0

5,
76

,6
12

71
,8

20
83

,1
00

90
0

2,
40

,3
00

73
,7

40
1,

69
,8

00
1

30
22

80
33

60
23

40
82

,2
60

5,
59

,9
20

78
0

10
,7

40
18

0
4,

30
,8

60
16

67
40

60
0

3,
76

,1
40

51
00

5,
49

,5
40

54
0

90
0

5,
21

,2
52

42
0

51
86

40
10

20
41

40
48

0
18

0
60

0
53

,7
60

82
,4

40
18

0
27

30
00

59
,8

80
84

0
71

40
76

,3
20

1,
48

,6
80

2,
37

,8
40

45
60

19
20

16
86

0
77

,0
40

74
,7

60
7,

38
,1

80
1,

47
,0

00
76

,6
80

70
,8

00
66

,1
80

27
,5

40
55

02
0

12
0

2,
96

,7
96

90
,1

80
7,

24
,5

60
1,

67
,1

00
1,

06
,2

00
48

0
1,

17
,3

60
64

80
60

97
,8

60
3,

98
,5

80
3,

91
,3

80
18

0
18

0
24

0
54

0
33

69
00

2,
64

,4
80

8,
47

,0
80

26
,4

60
3,

49
,3

20
40

80
64

,6
80

84
0

54
0

58
99

80
co

nt
in

ue
d

510 ◾ Software Metrics

TA
B

LE
 1

1.
6

(c
on

tin
ue

d)
 M

us
a

SS
3

D
at

a
3,

32
,2

80
94

,1
40

2,
40

,0
60

27
00

90
0

10
80

11
,5

80
21

60
19

27
20

87
,8

40
84

,3
60

3,
78

,1
20

58
,5

00
83

,8
80

1,
58

,6
40

66
0

31
80

15
60

31
80

57
00

2,
26

,5
60

98
40

69
,0

60
68

,8
80

65
,4

60
4,

02
,9

00
75

48
0

3,
80

,2
20

7,
04

,9
68

5,
05

,6
80

54
,4

20
3,

19
,0

20
95

,2
20

51
00

62
40

49
44

0
42

0
6,

67
,3

20
12

0
72

00
68

,9
40

26
,8

20
4,

48
,6

20
3,

39
,4

20
48

0
1,

04
2,

68
0

7,
79

,5
80

80
40

11
,5

8,
24

0
9,

07
,1

40
58

,5
00

3,
83

,9
40

20
,3

9,
46

0
52

22
40

66
,0

00
43

,5
00

20
40

60
0

2,
26

,3
20

3,
27

,6
00

2,
01

,3
00

2,
26

,9
80

55
34

40
10

20
96

0
5,

12
,7

60
8,

19
,2

40
8,

01
,6

60
1,

60
,3

80
71

,6
40

3,
63

,9
90

90
90

2,
27

,9
70

17
,1

90
5,

97
,9

00
6,

89
,4

00
11

,5
20

23
,8

50
75

,8
70

1,
23

,0
30

26
01

0
75

,2
40

68
,1

30
8,

11
,0

50
4,

98
,3

60
6,

23
,2

80
33

30
72

90
47

,1
60

13
28

40
0

1,
09

,8
00

3,
43

,8
90

16
,1

5,
86

0
14

,9
40

6,
80

,7
60

26
,2

20
3,

76
,1

10
1,

81
,8

90
64

32
0

4,
68

,1
80

15
,6

8,
58

0
3,

33
,7

20
18

0
81

0
3,

22
,1

10
21

,9
60

3,
63

,6
00

N
ot

e:
Ex

ec
ut

io
n

tim
e

to
 fa

ilu
re

 in
 se

co
nd

s.
Re

ad
 fr

om
 le

ft
to

 ri
gh

t.

Software Reliability ◾ 511

70 100 130 160 190 220 250 280

M
ed

ia
n

tim
e t

o
fa

ilu
re

 (s
)

1000

2000

3000 LNHPP
(JM, DU similar)

LV

KL

MO

GO

i

FIGURE 11.14 Raw predictive median time to failure of T106 through T278 for
eight models, using the data of Table 11.6. The x-axis displays the failure number.

Pr
ob

ab
ili

ty

0

1

LV

KL

LNHPP
(LM, MO, DU
JM, similar)

GO

1ui values

FIGURE 11.15 u-Plots for raw predictions of T106 through T278 for eight models,
using the data of Table 11.16.

512 ◾ Software Metrics

the early stages of observation, then we can use this knowledge to improve
future predictions on the same data source. We call this process recalibra-
tion, and our recalibration technique involves the u-plot.

Consider a prediction F ti i() of the random variable Ti, when the true
(unknown) distribution is Fi(ti). Let the relationship between these be rep-
resented by the function Gi where

F t G F ti i i() [()]=

EXAMPLE 11.17

Suppose that the true distribution Fi(ti) is the one based on the JM model in
Example 10.10, with N = 15 and ϕ = 0.003. In this case,

 F t e ei i
i t i ti i() () . () .= − = −− − + −1 115 1 0 003 16 0 003

Suppose that our estimate has N = 17 and ϕ = 0.003. Then

F t e e e ei i

i t i t ti i i() () . () . () . (= − = − = −− − −1 1 118 0 003 16 0 003 2 0 003 −−2 0 003) . ()t
i i

i F t

These results tell us that we have

 F t e F ti i
t

i i
i() (()).= −0 006 1

Thus, the function Gi is defined by

 G x e xi
ti() ().= −0 006 1

By knowing Gi, we can recover the true distribution of Ti from the inac-
curate predictor, F ti i(). In fact, if the sequence <Gi> was completely stationary
(i.e., Gi = G for all i), then G would characterize the notion of consistent bias
discussed earlier. In this case, we could also estimate G from past predictions
and use it to improve the accuracy of future predictions.

Of course, in practice, it is unlikely that the sequence <Gi> will be com-
pletely stationary. But, in many cases, the sequence changes slowly as i
increases; so, in some sense, it is “approximately stationary.” This charac-
teristic is the key to our recalibration approach.

Software Reliability ◾ 513

We want to approximate Gi with an estimate Gi* and so form a new
prediction

 F t G F ti i i i i i

* *() [()]=

If we look at how Gi is defined, we observe that it is the distribution func-
tion of U F Ti i i= () . Therefore, we can base our estimate Gi* on the u-plot,
calculated from predictions that have been made prior to Ti. The new pre-
diction recalibrates the raw model output, F ti i(), in light of our knowledge
of the accuracy of past predictions for the data source under study. The new
procedure is a truly predictive one, “learning” from past errors.

The simplest form for Gi* is the u-plot with steps joined up to form a
polygon. For technical reasons, it is usually best to smooth this polygon,
as shown in Figure 11.16 (Brocklehurst et al. 1990).

Thus, we can describe a complete procedure for forming a recalibrated
prediction for the next time to failure, Ti:

 1. Check that the error in the previous predictions is approximately
stationary. (See (Abdel-Ghaly et al. 1986) for a plotting technique,
the y-plot, which detects nonstationarity.)

Fi(t)ˆ

F i*
(t)

ˆ

10

1

Smoothed u-plot
based on
predictions
before i

FIGURE 11.16 Using u-plot analysis of past predictions to improve future
predictions.

514 ◾ Software Metrics

 2. Obtain the u-plot for predictions made before Ti, that is, based on t1,
t2,…, ti–1. Join up the steps to form a polygon, and smooth it to form
Gi*, as shown in Figure 11.16.

 3. Use the basic prediction system to make a “raw” prediction, F ti i().

 4. Recalibrate the raw prediction using F t G F ti i i i i
* *() [()]= .

The procedure can be repeated at each stage, so that the functions Gi*
used for recalibration are based on more information about past errors
as i increases. This technique is not computationally daunting; by far, the
greatest computational effort is needed for the statistical inference proce-
dures used to obtain the raw model predictions. Most importantly, this
procedure produces a genuine prediction system in the sense described
earlier: at each stage, we are using only past observations to make predic-
tions about unobserved future failure behavior.

EXAMPLE 11.18

Consider the u-plots of Figure 11.15. The most notable feature of each pre-
diction system is its extreme optimism or pessimism. However, the extreme
nature is not the simple effect of a single characteristic of the system. For
example, in JM, the behavior of the plot at each extremity suggests too many
very small u values and too many very large ones. For LV, there seem to be
too many fairly large u values and too few u values near 1. Thus, although the
statements about optimism and pessimism are correct at first glance, a more
detailed look reveals that the u-plots present precise information about the
incorrect shapes of the complete predictive distributions.

The recalibration technique works dramatically well here for all eight mod-
els discussed so far. All eight raw u-plots have Kolmogorov distances that
are significant well beyond the 1% level, which is the most extreme value in
the tables of this statistic. After recalibration, all the distances are more than
halved, and none is significant at this high level. Figure 11.17 shows the dra-
matic improvement resulting from recalibrating the u-plots in comparison with
the raw predictions of Figure 11.15. The differences in the detailed median
predictions can be seen by comparing Figures 11.14 and 11.18. We have much
closer agreement among the recalibrated models than among the raw ones.

Example 11.18 provides evidence that prediction systems that were in
disagreement have been brought into closer agreement by the recalibra-
tion technique. Much more important, however, is that we have objective

Software Reliability ◾ 515

70 100 130 160 190 220 250 280
i

M
ed

ia
n

tim
e t

o
fa

ilu
re

 (s
)

1000

2000

3000

LNHPP
(JM, LM, MO, GO

similar)

LV

KL

DU

FIGURE 11.18 Medians of recalibrated predictions from eight models, using
data of Table 11.6; note how these are now in close agreement compared with the
great disagreement shown in the raw predictions of Figure 11.15.

0

1

LV*

KL*

LNHPP*
(LM, MO, DU
JM, GO similar)Pr

ob
ab

ili
ty

1ui values

FIGURE 11.17 u-Plots for eight models using data of Table 11.6 after recalibra-
tion. Note the improvement over raw u-plots of Figure 11.15.

516 ◾ Software Metrics

evidence (by comparing the u-plot with the u*-plot) that the recalibrated
predictions are less biased than the raw ones. The prequential likelihood
analysis confirms that the recalibration is working dramatically well in
this case. We see the effects of recalibration in Figure 11.19, which shows
the evolution of the PLRs for the recalibrated predictions against raw
model predictions.

There is, for example, overwhelming evidence that the PLR, LV*:LV,
is increasing rapidly; it has reached more than e40 during these predic-
tions. Therefore, we can be very confident that the LV* predictions here
are more accurate than the LV ones. A comparison of JM* and JM is even
more dramatic: the PLR reaches e90 over the range of predictions shown.
This result is due in part to the fact that raw JM predictions are signifi-
cantly less accurate than those of raw LV (although both are bad from
u-plot evidence). Thus, JM starts off with more room for improvement. In
fact, after recalibration, the two predictors LV* and JM* have comparable
accuracy on the prequential likelihood evidence, with slight evidence of
superiority for JM*.

The recalibration technique described works well in most situations.
We can evaluate its performance directly: it creates a genuine prediction

0

80

120

40

–10

LNHPP* versus LNHPP
(LM, MO
JM, GO
similar)

LV* versus LV

KL* versus KL

DU* versus DU

lo
g

of
 P

LR

70 100 130 160 190 220 250 280
i

FIGURE 11.19 Prequential likelihood analysis of recalibrated versus raw predic-
tions, using the data of Table 11.6. Note that, since this is a plot of log of the PLR,
the results give strong evidence for the superiority of the recalibrated results.

Software Reliability ◾ 517

system when it operates on a raw model; so, we can apply the usual ana-
lytic techniques to examine predictive accuracy.

11.6 IMPORTANCE OF THE OPERATIONAL ENVIRONMENT
We have seen how to investigate the accuracy of predictions of software
reliability growth emanating from several models on a single data set. Of
course, there is no guarantee of future accuracy from a model that was
accurate in the past. Intuitively, we assume that the model will be accurate
again if its conditions of use are the same as in the past. However, Example
11.19 below shows us the difficulty of assuring this similarity.

EXAMPLE 11.19

Suppose we have developed a software system, and we seek to predict its
reliability in operation. Usually, our prediction will be based on observations
of failures occurring during testing. Unfortunately, our testing environment
may not reproduce the typical use of the system in actual operation. Thus,
our reliability prediction may be an inaccurate reflection of the reliability as
seen by the user.

The problem of realism is even more difficult when there are different
modes of system use, different user experience levels, and different envi-
ronments in which the system will be placed. For example, a novice user
of a word-processor system is not likely to use the same shortcuts and
sophisticated techniques as an experienced user; so, the failure profiles for
each are likely to be quite different.

John Musa recognized these differences and pioneered an approach
to address this problem by devising a scheme to anticipate typical user
interaction with the system. The typical use is captured in an operational
profile, a description of likely user input over time. Ideally, the operational
profile is a probability distribution of inputs. The testing strategy is based
on the operational profile, and test data reflect the probability distribution.

EXAMPLE 11.20

An operational profile is often created by dividing the input space into a num-
ber of distinct classes, and assigning to each class a probability that an input
from that class will be selected. For example, suppose a program allows you
to run one of three different menu options: f, g, and h. We determine from tests

518 ◾ Software Metrics

with users that option f is selected twice as often as g or h (which is selected
equally often). We can assign a probability of 0.5 to f, 0.25 to g, and 0.25 to h.
Then, our testing strategy is to select inputs randomly so that the probability of
an input being an option on f is 0.5, on g is 0.25, and on h is 0.25.

Such a test strategy is called statistical testing, and it has at least two
benefits:

 1. Testing concentrates on the parts of the system most likely to be
used, and hence should result in a system that the user finds more
reliable.

 2. Using the techniques described in this chapter, we have confidence
that reliability predictions based on the test results will give us an
accurate prediction of reliability as seen by the user.

However, it is not easy to do statistical testing properly. There is no
simple or repeatable way of defining operational profiles. However, Mills’
cleanroom technique incorporates statistical testing. The results of clean-
room provide a body of empirical evidence to show that statistical testing
can be applied practically and effectively (Linger 1994; Stavely 1998).

11.7 WIDER ASPECTS OF SOFTWARE RELIABILITY
We have presented the software reliability growth problem in some detail,
as it has the most complete solution. However, there are many more aspects
of software reliability to be considered. In particular, measuring and pre-
dicting reliability cannot be separated from the methods for achieving it.

In Chapter 7, Section 7.3, where we described a causal modeling
approach to defect prediction, our model included three variables:

 1. Residual defects

 2. Operational usage

 3. Defects found during operation

The third was “conditioned” on the first two. In other words, what we
had there was a causal/explanatory method of assessing software reliabil-
ity (the number of defects found in operation is dependent not just on the
number of residual defects in the system but also on the amount of opera-
tional usage it is subject to). In fact, the probability table associated with

Software Reliability ◾ 519

the third variable can be considered as a reliability prediction model of the
kind described in this chapter.

The model in Section 7.3 also incorporates the (causal) process by
which defects were introduced into the software and the testing processes
that potentially led to their discovery and removal. Hence, the model there
provides a more holistic view of software reliability assessment. Extensions
of this approach to reliability modeling can be found in Neil et al. (2010);
Fenton and Neil (2012).

The role of testing in the causal model is critical. Testing addresses the
dual role of achievement and assessment. We have discussed the difficulty
of constructing testing strategies to emulate operational environments,
allowing estimates of user-perceived reliability. In addition, some prac-
titioners argue that statistical testing is an inefficient means of removing
faults and hence of achieving reliability. More conventional test strategies,
it is claimed, allow testers to use their knowledge of the likely types of
faults present to remove them more efficiently. However, the conventional
techniques do not produce data suitable for software reliability measure-
ment. There is thus an apparent conflict between testing as a means of
achieving reliability, and testing as a means of evaluation. We must resolve
the conflict by developing new testing strategies.

Ideally, we want to test in an environment that supports fault finding,
so that we can increase the likelihood of achieving reliability, and then
use the collected data to estimate and predict operational reliability. In
classical hardware reliability, this is accomplished by stress testing. A com-
ponent is tested in an environment that is more stressful, in a measured
way, than that in which it will operate. For example, the component may
be subjected to high temperature, more vibration, or greater pressure than
normal. The survival times of stressed components can then be used to
estimate the survival times of items in operational use. Unfortunately, the
notion of stress is not well understood for software, and stress is not likely
to be described as a simple scalar quantity, as it is with hardware. However,
some attempts have been made. Several software researchers have charac-
terized the environment in terms of module call frequencies and sojourn
times (Littlewood 1979; Cheung 1980). However, such architecture-based
methods remain hard to effectively use on real systems primarily because
of difficulties in collecting needed failure data (Koziolek et al. 2010).

As we increase our use of software in safety-critical systems, we com-
monly require measurement of the achievement and assurance of very
high software reliability.

520 ◾ Software Metrics

EXAMPLE 11.21

Rouquet and Traverse report that the reliability requirement for the fly-by-
wire computer system of the Airbus A320 is a failure rate of 10−9/h, because
loss of this function cannot be tolerated (Rouquet and Traverse 1986). Since
this reliability constraint is the system requirement, the software requirement
must be even more restrictive.

Example 11.21 describes ultra-high reliability, where the system can tol-
erate at most one failure in 109 h. Since this constraint translates to over
100,000 years of operation, we cannot possibly run the system and observe
the failure times to measure reliability. Thus, the reliability growth tech-
niques described in this chapter are of little help here.

Figure 11.20 illustrates this problem of assuring ultra-high reliability.
The figure depicts an analysis of the failure data from a system in opera-
tional use, for which software and hardware design changes were being
introduced as a result of the failures. Here, the current ROCOF is com-
puted at various times in the history, using the LV model. The dotted line

Elapsed time (h)

RO
CO

F

16,000 80004000 12,000

0.01

0.02

0.03

FIGURE 11.20 Successive estimates of the rate of occurrence of failures for the
data of Table 11.6. The broken line here is fitted by the eye.

Software Reliability ◾ 521

is fitted manually to give a visual impression of what seems to be a very
clear law of diminishing returns: later improvements in the MTTF are
brought about through proportionally longer testing. It is by no means
obvious how the details of the future reliability growth of this system will
look. For example, it is not clear to what the curve is asymptotic: will the
ROCOF approach zero, or is there an irreducible level of residual unreli-
ability reached when the effects of correct fault removal are balanced by
those of new fault insertion? Clearly, even if we were sure that the system
would achieve a particular very high reliability figure, the time needed to
demonstrate and measure it would be very high.

In fact, even if a program is tested for a very long time and never fails,
we still do not have the level of assurance we need.

EXAMPLE 11.22

Littlewood has shown that if a program has worked failure free for x hours,
there is about a 50:50 chance that it will survive the next x hours before fail-
ing. To have the kind of confidence apparently needed for the A320 would
require a failure-free performance of the software for several billion hours
(Littlewood 1991). It is easy to see, therefore, that even in the unlikely event
that the system had achieved such reliability, we could not assure ourselves
of that achievement in an acceptable time.

Assuring software to very high levels of reliability is one of the most
difficult, yet important challenges confronting the software industry
(Littlewood and Strigini 1993). Mathematical verification techniques may
eventually become available for larger control programs than is currently
possible, but they cannot address the fundamental and inevitable prob-
lem of faults in the specification. Moreover, despite some developments
in automated proof support, much verification still depends on humans,
meaning that there is no such thing as a foolproof “verified” system.
Research addressing ultra-high reliability has involved three techniques:
design diversity, testability, and program self-checking.

Design diversity for fault tolerance: Design diversity has been advocated
as a means of achieving high reliability in a cost-effective manner (Avizienis
and Kelly 1984). The technique involves building the same system in sev-
eral independent ways, each involving a different design, to decrease the
likelihood that all versions will fail at the same time. Several systems have
been built using such techniques (including the Airbus A320) (Rouquet and

522 ◾ Software Metrics

Traverse 1986). Unfortunately, evidence suggests that independently devel-
oped software versions will not fail independently, and so will not deliver
dramatic increases in reliability over single versions. For example, Knight
and Leveson report an experiment in which 27 versions were developed
independently but contained a high incidence of common faults (Knight
and Leveson 1986). Eckhardt and Lee present a theoretical scenario, based
on the notion of varying the difficulty of different inputs, which supports
these empirical findings (Eckhardt and Lee 1985). These problems of depen-
dence make design diversity an untrustworthy technique for achieving
ultra-high reliability. More importantly, they make the assurance problem
essentially impossible. Even if we could build a system with such ultra-high
reliability, we could not validate our achievement. We cannot apply simple
hardware-like theories of redundancy with independent failures; we must
try to estimate the dependence between versions. This problem has been
shown to be as difficult as the problem of simply testing the complete fault-
tolerant system as a black box, and so is essentially impossible (Miller 1986).

Testability: Voas and his colleagues extend the traditional reliability-
modeling approach to tackle the ultra-high reliability problem (Hamlet
and Voas 1993; Voas and Miller 1995). The authors introduce a notion of
testability as the probability that the software will fail if it is faulty. They
propose methods for improving program testability as a way of improving
reliability. The simple idea behind this approach is that if a highly testable
program has revealed no failures during testing, then we have increased
confidence that the software is truly fault free. However, there are poten-
tial dangers. By making a program highly testable, you may increase the
probability that the program is fault free, but you also increase the prob-
ability that failures will occur if faults do remain. Using this notion of
testability, a fault-tolerant system will have low testability. Bertolini and
Strigini address this and other concerns about testability (Bertolini and
Strigini 1995). Hays and Hayes find that Voas’s approach to testability
analysis can be effective in predicting the location of program faults (Hays
and Hayes 2012). We describe notions of testability based on counting test
requirements, and program design structures that make it easier or harder
to conduct testing in Chapter 10.

Program self-testing: Blum, Luby, and Rubinfield describe a theory of
program self-testing, in which programs can be shown to be correct with a
probability arbitrarily close to 1. The drawback of their approach is that it
is restricted to a narrow class of mathematical-type problems (Blum et al.

Software Reliability ◾ 523

1993), or limited to self-testing of particular algebraic, graph, or function
properties (Ron 2010).

In the absence of proven methods of assuring ultra-high software reli-
ability levels, it is surprising to find that systems are being built whose safe
functioning relies upon their achievement.

11.8 SUMMARY
Software reliability is a key concern of many users and developers of soft-
ware. Since reliability is defined in terms of failures, it is impossible to
measure before development is complete. However, if we carefully col-
lect data on inter-failure times, we can make accurate predictions of
software reliability. There are several software reliability growth models
to aid the estimation, but none can be guaranteed to produce accurate
predictions on all data sets in all environments. On the other hand, we
can objectively analyze the predictive accuracy of the models and select
those that are working best for the given data. Moreover, we can then get
improved predictions using a technique known as recalibration. In this
way, we make predictions in whose accuracy we can be confident, provid-
ing that the software’s future operational environment is similar to the
one in which the failure data were collected. If we must predict reliability
for a system that has not yet been released to a user, then we must simu-
late the target operational environment in our testing. Since there are no
current methods that can feasibly assure software systems with ultra-high
reliability requirements, the techniques described in this chapter should
be restricted to systems with relatively modest reliability requirements.
However, most software requires modest reliability; so, the techniques in
this chapter are useful.

Some of the techniques described in this chapter are computationally
intense, but tools are available to automate these procedures. Moreover,
the types of prediction systems described in this chapter can be incorpo-
rated into more holistic causal models of software reliability as described
in Chapter 7.

EXERCISES

 1. Consider the functions f(t), F(t), and R(t) defined in this chapter.
Redefine each in terms of the others.

 2. For the pdf of Example 11.4, show that the median time to failure is 5 h.

524 ◾ Software Metrics

 3. For the pdf of Example 11.5, compute the median time to failure
when λ = 4.

 4. Draw the u-plot for the sequence of uis calculated in Example 11.11.
On the same chart, plot the true values of the Fi(ti). (You can calculate
these values using Table 11.2, which gives the true means 1/λi of the
distribution.) Compare the true values with the uniform distribution.

 5. Imagine that your job is to evaluate the reliability of the software
produced by your company. This task involves establishing an in-
house testing service, whereby test cases would be generated to pro-
vide input to the reliability growth models described in this chapter.
How would you accomplish this when the software in question is
in each case, discuss whether you can justify the test procedure you
are advocating as the only testing to be carried out on the particular
product, bearing in mind that there is a fixed budget from which all
testing must be funded.

 a. A word-processing system.

 b. An air-traffic control system.

 c. A car engine management system.

 d. A controller for a domestic washing machine.

 6. Using the data of Table 11.1 and one of the most accurate sets of pre-
dictions from the median plots of Figure 11.10, obtain an approximate
plot of achieved median against total elapsed test time. Comment on
the shape of this graph. You have been asked to continue testing until
you are confident that the median time to failure is 1000 h (remem-
ber that the raw data are in seconds); comment on the feasibility of
this approach.

 7. Look at the crude prediction system described in Example 11.9
(the exponential model in which we estimate the mean time to the
next failure by simply computing the average of the two previously
observed values). Using a spreadsheet, compute successive mean and
median time to the next failure for the data of Table 11.16 (up to about
i = 20). Analyze informally the accuracy of this prediction system on
these data (if you wish, you could do this formally by carrying out
u-plot and prequential likelihood analyses), and try to address the

Software Reliability ◾ 525

issues of bias and noise as they are defined in this chapter. Does the
situation improve if you change the prediction system by

 a. Basing your prediction of the mean on the average of the three
previously observed tis ?

 b. Basing your prediction of the mean on just the one previously
observed ti?

 8. Example 11.14 shows how to compute the sequence of prequential
likelihood values for the prediction system of Example 11.9 using the
data in Table 11.1. Call this prediction system A. Repeat the compu-
tations for the prediction system B where the estimate of the mean
time to the next failure is the average of the three previously observed
values. Now, you can compute both PL(A)/PL(B) and PL(B)/PL(A)
for a number of values of i and see what happens as i increases. Does
this give you any evidence of which of A or B is superior?

 9. When faults are found and fixed in a program, we observe reliabil-
ity growth. Specifically, we see a sequence of times between succes-
sive failures t1, t2,…, tn that tend to increase in magnitude. Explain
carefully the underlying failure process, identifying the sources of
uncertainty that require us to adopt a probabilistic approach when
we wish to predict the future failure behavior of the program.

 10. Many different probability models have been proposed to represent
the growth in reliability as fault detection and correction progress.
Unfortunately, it is not possible to select one of these a priori and be
confident that it will give accurate predictions. Imagine that you are
responsible for making reliability predictions from the failure data
coming from a particular program under test. What could you learn
from the u-plots and prequential likelihood functions about the
accuracy of the predictions coming from the different models? How
could you use the u-plot to improve the accuracy of predictions?

 11. Figures 11.17 through 11.19 show, successively, one-step-ahead
median predictions, u-plots and prequential likelihood functions for
several models operating upon some software failure data obtained
in the testing of a telephone switch. State, very briefly, what you
would conclude from these figures. (Hint: There is no need to give a
detailed analysis of each model’s performance individually.) Suggest
how the analysis might be continued.

526 ◾ Software Metrics

 12. You are part of a team that is to build a critical system, the safety
of which depends on the correct functioning of its software. Your
responsibility will be to assess the system, and in particular the soft-
ware, to decide whether it is sufficiently safe to use. In discussion
with your colleagues responsible for building the system, several
sources of evidence arise that might be relevant to your eventual
assessment of the software. Comment briefly on the strengths and
weaknesses of the following:

 a. Failure data from debugging in operational testing

 b. Observation of long periods of failure-free working

 c. Design diversity, such as three versions with 2-out-of-3 voting at
run time

 d. Formal verification

 e. Quality of the development process

 13. Why is reliability an external attribute of software? List three inter-
nal software product attributes that could affect reliability.

 14. Suppose you can remove 50% of all faults resident in an operational
software system. What corresponding improvements would you
expect in the reliability of the system?

 15. Consider a design or programming methodology with which you
are familiar. List the ways in which this methodology influences the
documents produced, and propose ways in which they can increase
external quality. How can you determine that an actual increase had
been achieved?

FURTHER READING
The extensive theory of hardware reliability (including how to compute maxi-
mum likelihood estimates, and nonhomogeneous Poisson processes) is described
in the following textbooks.

Birolini A., Reliability Engineering: Theory and Practice, 5th edition. Springer,
Berlin, 2007.

Modarres M., Kaminskiy M., and Krivtsov V., Reliability Engineering and Risk
Analysis: A Practical Guide, 2nd edition. CRC Press, Boca Raton, Florida,
2010.

Software Reliability ◾ 527

Rausand M. and Hoyland A., System Reliability Theory: Models, Statistical
Methods, and Applications, 2nd edition. John Wiley & Sons, Inc., Hoboken,
New Jersey, 2004.

Neil et al. provide an extensive description of how to incorporate causal factors
effectively into reliability modeling in the following texts:

Fenton N.E. and Neil M., Risk Assessment and Decision Analysis with Bayesian
Networks. 2012, CRC Press, Boca Raton, Florida, ISBN: 9781439809105.

Neil M., Marquez D., and Fenton N.E., Improved reliability modeling using
Bayesian networks and dynamic discretization, Reliability Engineering and
System Safety, 95(4), 412–425, 2010.

Musa and Baur et al. provide practical guidance on using software reliability
modeling techniques.

Baur E., Zhang X., and Kimber D.A., Practical System Reliability, Wiley IEEE Press,
Hoboken, New Jersey, 2009.

Musa J., Software Reliability Engineering: More Reliable Software, Faster and
Cheaper, 2nd edition. Tata McGraw-Hill Education, New York, 2004

For full details of the method used for analyzing the predictive accuracy of mod-
els, see these papers by Littlewood and his colleagues.

Abdel-Ghaly A.A., Chan P.Y., and Littlewood B., Evaluation of competing software
reliability predictions, IEEE Transactions on Software Engineering, SE-12 (9),
950–967, 1986.

Brocklehurst S. and Littlewood B., New ways to get accurate software reliability
modeling, IEEE Software, 9(4), 34–42, July 1992.

Littlewood B., Predicting software reliability, Philosophical Transactions of the
Royal Society of London A, 327, 513–527, 1989.

Brocklehurst and her research team describe the details of the recalibration tech-
niques for improving predictions.

Brocklehurst S., Chan P.Y., Littlewood B., and Snell J., Recalibrating software reli-
ability models, IEEE Transactions on Software Engineering, SE-16(4), 458–
470, 1990.

Kapur, Pham, Anand, and Yadav develop a reliability modeling approach that
uses a realistic model of the fault removal process.

Kapur P.K., Pham H., Anand S., and Yadav K., A unified approach for develop-
ing software reliability growth models in the presence of imperfect debug-
ging and error generation, IEEE Transactions on Reliability, 60(1), 331–340,
March 2011.

528 ◾ Software Metrics

Zhu M. and Smidts develop a method to include software reliability analyses into
the probabilistic risk assessment technique often used to evaluate safety-critical
systems.

Zhu D., Mosleh A., and Smidts C., A framework to integrate software behav-
ior into dynamic probabilistic risk assessment, Reliability Engineering and
System Safety, 92, 1733–1755, 2007.

Crespo, Jino, Pasquini, and Maldonado develop a binomial reliability model that
is based on the achievement of various data-flow test coverage criteria.

Crespo N.C., Jino M., Pasquini P., and Maldonado J.C., A binomial software reli-
ability model based on coverage of structural testing criteria, Empirical
Software Engineering 13, 185–209, 2008.

Littlewood and Strigini provide an excellent discussion of the limitations of
assuring software systems with ultra-high reliability requirements.

Littlewood B. and Strigini L., Validation of ultra-high dependability for software-
based systems, Communications of the ACM, 36(11), 1993.

529

Appendix: Solutions to
Selected Exercises

CHAPTER 2: THE BASICS OF MEASUREMENT

 2. Answers to the questions:

 a. Nominal, ordinal, interval, ratio, and absolute are the five-scale
types.

 b. The scale type for the complexity measure is ordinal, because
there is a clear notion of order, but no meaningful notion of
“equal difference” in complexity between, say, a trivial and sim-
ple module and a simple and moderate module. A meaningful
measure of average for any ordinal scale data is the median. The
mode is also meaningful, but the mean is not.

 3. The answer is given in the following table:

Scale Type Software Measure Entity Entity Type Attribute

Nominal Classification C,
C++, Java, …

Compiler Resource Language

Ratio Lines of code Source code Product Size
Absolute Number of defects

found
Unit testing Process Defects found

 14. A statement about measurement is meaningful if its truth value is
invariant of the particular measurement scale being used.

530 ◾ Appendix: Solutions to Selected Exercises

 The statement about Windows is meaningful (although probably
not true) assuming that by size we mean something like the amount
of code in the program. To justify its meaningfulness, we must con-
sider how to measure this notion of size. We could use lines of code,
thousands of lines of code, number of executable statements, num-
ber of characters, or number of bytes, for example. In each case, the
statement’s truth value is unchanged; that is, if a Windows program
is about four times as big as the Linux program when we measure
in lines of code, then it will also be about four times bigger when we
measure in number of characters. We can say this because the notion
of size is measurable on a ratio scale.

 The rating scale for usability is (at best) ordinal, so there is no way
to say that the difference in usability from 1 to 2 is the same as from
2 to 3. Therefore, if “average” refers to the mean, then the state-
ment is not meaningful; changing to a different ordinal scale does
not necessarily preserve the order of the mean values. However, if
“average” refers to the median, then the statement is meaningful.

 17. We must assume that the complexity ranking is ordinal, in the sense
that the individual categories represent (from left to right) notions of
increasing complexity.

 a. You can use the median of the M values. This choice is meaning-
ful, because the measure M is an ordinal scale measure. Mode is
also acceptable.

 b. Consider the following statement A: “The average complexity of
modules in system X is greater than the average complexity of mod-
ules in system Y.” We must show that A is not meaningful when
“average” is interpreted as mean. To do this, we show that the truth
value of the statement is not invariant of the particular measure
used. Thus, consider the following two valid measures M and M′:

Trivial Simple Moderate Complex Very Complex Incomprehensible

M 1 2 3 4 5 6
M′ 1 2 3 4 5 10

 Suppose that the complexities of the modules in X are given by:

 x1 trivial, x2 and x3 simple, x4 moderate, x5 incomprehensible

Appendix: Solutions to Selected Exercises ◾ 531

 while the complexities of the modules in Y are given by:

 y1 simple, y2, y3, and y4 moderate, y5, y6, and y7 complex.

 Under M, the mean of the X values is 2.6, while the mean of the Y
values is 3.1; so statement A is false under the measure M. However,
under M′, the mean of the X values is 3.6, while the mean of the Y
values is 3.1. Thus, statement A is true under M′. From the definition
of meaningfulness, it follows that the mean is not a meaningful aver-
age measure for this (ordinal scale) data.

 c. Your answer might include a crude criterion based on some met-
ric value, such as McCabe’s cyclomatic complexity, v. For exam-
ple, if v(x) < 2, we assign x as trivial; if 1 < v(x) < 5, we assign x as
simple, etc. Finally, if v(x) > 100, we assign x as incomprehensible.
A more sophisticated criterion might be based on some measur-
able notion that closely matches our intuition about complexity.
For example, the complexity of software modules is (intuitively)
closely related to the difficulty of maintaining the modules. If main-
tenance data were available, such as mean time to repair (MTTR)
faults for each module, then we could base our criterion on it.
For example, if MTTR(x) < 30 min, then we assign x as trivial; if
30 min < MTTR(x) < 90 min, we assign x as simple, etc., until if
MTTR(x) > 5 days, we assign x as incomprehensible.

 22. The only way to report “number of bugs found” is to count number
of bugs found. The answer to the second part depends very much
on how you define program correctness. If you believe that a pro-
gram is either correct or not, then correctness is measurable on a
nominal scale with two values, such as (yes, no) or (1, 0). Or you
may decide that correctness is measurable on a ratio scale, where
the notion of zero incorrectness equals absolute correctness. (In
this case, the number of bugs found could be a ratio-scale measure
of program correctness.) In either of these cases, the number of
bugs found cannot be an absolute scale measure for the attribute.
Moreover, if “correctness” is taken to be synonymous with reliabil-
ity, then counting bugs found may not be a measure of correct-
ness at all, since we may not be finding the bugs that cause actual
failures.

532 ◾ Appendix: Solutions to Selected Exercises

 23. Answers to questions about the proposed application domain (AD):

 a. Clearly AD is a nominal measure as there is no notion of order-
ing; it is only a classification.

 b. The central tendency for ordinal measures is computed only as
the mode, which is 1 (WWW browsers) for the given data.

 c. The statement “my compiler has three times the AD as your
browser” is not meaningful.

 24. Consider a proposed measure of program adaptability:

 a. There are lots of possibilities here. It could be time required to
make a change, or better; yet, time required to make specific
types of changes. Some structural measures can be OK, but then
the empirical relations (below) are implied, and will not always
be satisfied. The empirical relations should be of the nature of “it
is more difficult to make some specific change to program A than
program B”.

 b. If the measure is time, then it is a ratio scale.

 c. It satisfies the representation condition if the measure is consis-
tent with all empirical relations in i.

 d. Advantages and disadvantages vary.

CHAPTER 3: A GOAL-BASED FRAMEWORK FOR
SOFTWARE MEASUREMENT

 5. GQM means Goal-Question-Metric, and it is based on the notion
that measurement activities should always be preceded by identify-
ing clear goals for them. To determine whether you have met a par-
ticular goal, you ask questions whose answers will tell you if the goal
has been met. Then, you generate from each question the attributes
you must measure in order to answer the questions.

 Goal-oriented measurement is common sense, but there are many
situations where some measurement activity can be beneficial even
though the goals are not clearly defined. This situation is especially
true where a small number of metrics address several different goals,
such as monitoring quality changes while predicting testing effort,

Appendix: Solutions to Selected Exercises ◾ 533

for example. Also, GQM introduces the problem of determining who
sets the goals. High-level managers may be bad at identifying goals,
or they may have goals for which no metrics can be practically com-
puted at the engineering level. Because of this mismatch between
goals and practicality, some people have proposed the need for bot-
tom-up measurement, where the engineers collect metrics data that
are useful and practical.

 A typical GQM tree may resemble this one:

Decide when software
is suitable to be shipped

Size of code (KLOC)

Hours of use

Hours of testing

#Defects discovered

#Test cases

#Person days available
for testing

#Days till deadline

#Failures discovered

What is the reliability requirement

What is the current reliability

What are the timescales

Goal Questions Metrics

 This tree depicts only direct measures. Questions such as
“What is the reliability requirement?” are answered in terms of
derived measures derived from the direct ones, and the tree can
be extended to include both types. For example, the reliability
requirement might be expressed as an average number of failures
per 100 hours of use, or a number of defects per KLOC. Similarly,
current reliability might be measured by number of defects per
test case. It might also be useful if failures and defects were parti-
tioned into two categories, “serious” (i.e.,, really affecting reliabil-
ity) and “not serious,” since many anomalies found during testing
may be benign.

534 ◾ Appendix: Solutions to Selected Exercises

 7. A typical GQM tree on improving maintainability of software may
resemble the following figure:

Improve maintainability

How much software
is being maintained?

What is the current
maintainability?

What is the complexity
of the software?

How good is the
documentation?

What are the maintenance
staff like?

MTTLocate faults
MTTRepair faults

(distinguish between
corrective and perfective

maintenance tasks)

#Faults
found

LOCFPs#Modules Paths count metrics
structuredness metrics

% Comments Years experience
qualifications

% Effort spent
on maintenance

CHAPTER 5: SOFTWARE METRICS DATA COLLECTION

 1. An error is a mistake made by a human designer. A fault is the
encoding of an error in the software. A failure is the manifestation of
a fault during software execution.

 4. Answers:

 a. Note first that only project-wide issues can be addressed because
of the data’s coarse granularity. Moreover, only goals and ques-
tions relating to project-wide comparisons are reasonable. Some
possibilities are:

 i. General project-wide trends or comparisons in productivity,
measured as the ratio of effort and lines of code. An example
goal might be: “Improve project productivity,” and a ques-
tion might be: “What is current best, average, and worst pro-
ductivity?” The well-known problems with this particular
productivity measure should be cited here (e.g., lines of code
do not really measure utility or even size of output; there are
problems with the definition of the lines of code measure
itself, etc.).

 ii. General project-wide trends or comparisons in quality, mea-
sured as the ratio of faults with lines of code. An example goal
might be: “Improve product quality,” and a question might
be: “What is current best, average, and worst quality?” Note
problems with the lines of code measure again, but the real

Appendix: Solutions to Selected Exercises ◾ 535

limitation is the use of faults. Total number of faults recorded
may be more an indication of differences in recording or test-
ing practice than of genuine quality. It does not reflect the
quality of the end product.

 iii. Provided you have data from a reasonable number of similar
projects, it is possible to use the measures to improve proj-
ect forecasting (i.e., effort estimation). You achieve this goal
by using regression analysis on effort and lines of code data
from the past projects.

 iv. Provided you have data from a reasonable number of similar
projects, you can use the measures for outlier analysis. For
example, your goal may be to identify those projects having
unusual productivity or quality values. However, all the limi-
tations noted above still apply. To address this goal, you can
use boxplots, two-dimensional scatter diagrams, etc.

 b. You must collect data at the module level, rather than only at the
project level. In particular, size, effort, and fault data should be
available for each module. For each module, you must also iden-
tify the specific quality-assurance techniques that were used.
(Ideally, you would know the extent of such use, measured by
effort.) It would be helpful if the effort data per module could
be partitioned into effort by activity, such as design, coding,
testing, etc.

 To get a more accurate perspective on whether a particular
method has been effective, we need an external quality measure
for each module. The number of faults discovered during testing
is weak (and totally dependent on the level of testing and honesty
of the tester). It would be better to obtain data on operational fail-
ures, where the failure can be traced back to individual modules.

 To overcome the problems of lines of code as a poor size mea-
sure, it may be useful to collect other size data for each module.
Static analysis tools or metrics packages offer inexpensive ways
to collect structural metrics, which at least will indicate differ-
ences in structural complexity between modules (a difference not
highlighted by lines of code). It may even be useful (although not
as inexpensive) to use function point analysis.

536 ◾ Appendix: Solutions to Selected Exercises

 5. Answers:

 a. There are several important aspects of dependability:

 i. Safety must be the main concern, since lives are endangered
if the system malfunctions.

 ii. Availability is important, since it contributes to safety. Long
or frequent “outages” will require personal supervision of
patients by nursing staff, and drugs will have to be adminis-
tered by hand.

 iii. Reliability is similarly important. Safety will be adversely
affected by frequent failure, and frequent false alarms will
cause unnecessary work for the medical staff, and may be to
complacency, which could mean that a genuine warning is
ignored. This and the following attributes may be considered
to be of equal importance.

 iv. Recoverability is important since it contributes to high
availability.

 v. Maintainability also contributes to high availability, and (in
the case of removal of design faults) to growth in safety and
reliability.

 vi. Usability is important from the point of view of the nursing
staff, mainly because it contributes to safety by reducing the
probability of human error, for example, in missing an indi-
cation that a patient requires attention.

 It is important to recognize that death or deterioration in a patient’s
condition is worse than those resulting only in inconvenience to staff
or financial loss to the hospital. A case may be made for maintain-
ability or recoverability being more important than availability or
reliability. Security is of relatively minor concern, since the system is
unlikely to be open to potential external interference. Features such
as “fault-tolerance” assist reliability and safety, but are not them-
selves dependability attributes.

 b. Any of the following are acceptable:

 i. Location: Identity of the installation and piece of equipment
on which the incident was observed.

 ii. Timing(1): When did the incident occur in real time?

Appendix: Solutions to Selected Exercises ◾ 537

 iii. Timing(2): When did the incident occur in relation to system
operational time, or software execution time?

 iv. Mode(1): Type of symptoms observed.

 v. Mode(2): Conditions of use of system.

 vi. Effect: Type of consequence. This attribute will partly deter-
mine whether the incident affects safety, availability, or
reliability.

 vii. Mechanism: How did the incident come about?

 viii. Cause(1): Types of trigger, such as physical hardware failure,
operating conditions, malicious action, user error, errone-
ous report, “unexplained.” This attribute will determine
whether the incident is classified as relevant to usability or
reliability.

 ix. Cause(2): Type of source, such as physical hardware fault,
unintentional design fault, intentional design fault, usability
problem, “no cause found.”

 x. Cause(3): Identity of source (mode of failure and component
in the case of physical failure, identity of fault in the case of
design failure).

 xi. Severity(1): Categorization of how serious the effect of the
incident was. This will determine whether the incident affects
safety.

 xii. Severity(2): Cost to user (nursing staff or hospital) in terms of
time lost, inconvenience, or extra effort incurred.

 xiii. Cost: How much effort and other resources were expended by
the vendor in order to diagnose and respond to the report of
the incident?

 xiv. Count: How many incidents occurred in given time interval?

 c. These are examples of types of data that might be needed:

 i. Records of design faults and design modifications. Operating
time of each part of the system, and (ideally) execution.

 ii. Time of each software module.

538 ◾ Appendix: Solutions to Selected Exercises

 iii. The operational profile of the various parts of the system
must also be recorded, since this will affect the levels of safety
and reliability.

 iv. To measure availability, recoverability, or maintainability, the
time to restore service and the effort to diagnose and repair
faults must be recorded.

 v. To measure operating time and mode of operation accurately,
it will be necessary to instrument the system, and write the
data automatically to a file.

 It is important to distinguish clearly between operating time
and real time (calendar, or wall-clock, time), and to note that the
operating time-base for the BED computer and for PAN comput-
ers (which execute many copies of the same code simultaneously)
are different.

 d. Five possible modes are the following:

 i. PAN sends signal to operate drug pump when not required.
Affects safety. Effect: Pump administers overdose. Severity:
Critical/major (depending on the drug).

 ii. BED software crashes. Affects availability, possibly safety.
Effect: Loss of patient status information to nurse. Severity:
Critical/major (depending on length of outage).

 iii. PAN software does not detect that a sensor has failed. Effect:
Relevant vital sign not monitored. Severity: Major.

 iv. BED software indicates emergency although PAN has not
reported deviation of vital signs. Affects reliability. Effect:
Nurse visits patient unnecessarily. Severity: Minor.

 v. “Wake up” signal not sent to junior doctor sufficiently often.
Affects reliability, possibly safety. Effect: Delay in response of
doctor to emergency. Severity: Major/minor.

 6. Answers:

 a. For each failure, it will be necessary to record:

 i. Time: Both calendar time of the failure and total execution
time of the software up to the failure (or alternatively, the

Appendix: Solutions to Selected Exercises ◾ 539

total execution time on all instances of the software during a
given calendar time period) are required.

 ii. Location: The particular instance of the software that failed,
identified by the installation on which it is running. In this
case, the control room will operate one (or more) instance(s)
of the CAM software, and each taxi will operate an instance
of the COT software.

 iii. Mode: What symptoms were observed? That is, what was the
system seen to do that was not part of its required functions?

 iv. Effect: What were the consequences of the failure for
the driver of the taxi and for the whole of the SCAMS
operation?

 v. Severity: How serious were these consequences? (This may be
expressed either as a classification into major/minor/negligi-
ble, or in terms of the cost of lost business, or of the time that
CAM or COT were out of action.)

 vi. Reporter: Person making the report (taxi driver, control room
operator, customer).

The following are five examples of software failure modes:

• CAM software crashes

• Time: Date and time. Hours and minutes CAM was run-
ning until failure.

• Location: Control room.

• Mode: Loss of all screen displays, keyboard unresponsive,
all COT systems lose contact with control room.

• Effect: Loss of central control and guidance for all vehicles
until CAM is to be rebooted and reestablishes contact with
COT systems.

• Severity: Major. Disruption of service for all drivers and pas-
sengers, with considerable inconvenience and loss of business.

• Reporter: Control room operator.

540 ◾ Appendix: Solutions to Selected Exercises

• COT software crashes

• Time: Date and time. Hours and minutes of all COT sys-
tems have been running until failure. (Alternatively, if that
is not possible, total running hours on all COT systems on
that date.)

• Location: Number of the taxi whose COT failed, and where it
was at the time. (The latter might be useful if the COT failure
was in response to certain geographical data being input.)

• Mode: Driver’s display blank, driver’s control console unre-
sponsive, loss of communication of CAM with that vehicle.

• Effect: Loss of central control and guidance for the affected
vehicle until the driver could restart the COT.

• Severity: Minor. Disruption of service for one driver and (pos-
sibly) passenger. Some loss of business (for instance, if driver
could not pick up a passenger at the agreed place and time).

• Reporter: Driver.

• CAM sends incorrect directions to COT

• Time: Date and time. Hours and minutes CAM was run-
ning until failure.

• Mode: Directions displayed on driver’s screen are inconsis-
tent with the actual position of the vehicle as observed by
the driver.

• Effect: Driver confused, and possibly gets lost.

• Severity: Minor, unless the same CAM failure affects many
vehicles.

• Reporter: Driver or control room operator (depending on
who first notices the incompatibility).

• COT reports incorrect location to CAM

• Time: Date and time. Operating time of all COT systems.

• Mode: Apparent discontinuity in vehicle movement as
tracked by CAM.

Appendix: Solutions to Selected Exercises ◾ 541

• Effect: CAM cannot send correct directions to COT. Driver
confused or lost.

• Severity: Minor. Affects one vehicle only.

• Reporter: Driver or control room operator.

• Journey time is calculated by CAM to be shorter than it
should be

• Time: Date and time. Hours and minutes CAM was run-
ning until failure.

• Mode: ETA displayed by CAM is found to be inaccurate
when compared to driver’s actual reported journey time.

• Effect: Driver arrives to pick up passenger later than arranged.

• Severity: Minor, unless the inaccuracy affects many journeys.

• Reporter: Driver.

 b. There are several important dependability attributes.

Safety: The only critical failure mode is the failure of the silent alarm.
Target: 1 failure per thousand demands (maximum).

Reliability: Targets will differ for different modes of failure:

 i. For crash of COT software: 1 per 1000 operating hours.

 ii. For crash of CAM software: 1 per 10,000 operating hours.

 iii. For wrong directions: 1 per 5000 CAM operating hours, etc.

Recoverability: Target is to have the software recover after crash or
error in an acceptable time. Different targets will apply to CAM and
COT:

 i. CAM: reload and resume service after crash within 1 min on
average.

 ii. COT: reload and resume service after crash within 10 s on
average.

 iii. Other targets may be set for recovery from lesser error condi-
tions; for example, detection of CAM that it has given wrong
directions, and alerting driver.

542 ◾ Appendix: Solutions to Selected Exercises

Availability: Target is to have the whole system up and running for
an acceptable proportion of real time. Subsidiary targets may be set
for individual subsystems; for example,

 i. CAM: 99.8% up time.

 ii. COT: 98% up time.

Maintainability: Target can be set for diagnosing and fixing a soft-
ware fault.

 c. Reliability, usability, safety, and security all relate to our expectation
that certain types of events will not occur in operation. They can be
measured by “the probability that the system will deliver a required
service, under given conditions of use, for a given time interval,
without relevant incident.”

 Reliability relates to departures of any kind from the required
service. Usability relates to difficulties experienced by a human user
attempting to operate the system, and roughly equates to “user-
friendliness.” Safety is concerned only with incidents that can result
in death, injury, or other catastrophic damage. Security relates to
incidents that result in unauthorized disclosure or alteration of sensi-
tive information, or in denial of service to legitimate users by unau-
thorized persons.

 It is therefore necessary to record all incidents, and measure
their location, time of occurrence, the execution time over which
they occur, mode, effect, and severity. Once again, it is necessary to
record the execution time for CAM and COT software separately.
The COT execution time needs to be totaled over all vehicles, and
this will probably mean that only “failure count” data are available
for COT, whereas “time to failure” data can be obtained fairly easily
for CAM.

 Once an incident has been shown to be a genuine failure and diag-
nosed as being due to a software fault, the identity of the fault respon-
sible should be recorded. The type of fault can be used to establish
to which attribute a given incident is relevant. The fault identity and
cross-reference from each record of a failure in which it manifested
itself can be used to extract “execution time up to first manifesta-
tion of each fault” (for CAM), or “count of faults manifest and total
execution time in a given period” (for COT).

Appendix: Solutions to Selected Exercises ◾ 543

 Measurement of maintainability requires the recording of the
effort to diagnose and repair each fault. Recoverability requires
records of time to restore service after each failure. A measure of
availability can be derived from reliability and recoverability.

CHAPTER 6: ANALYZING SOFTWARE MEASUREMENT DATA

 10. Answers:

 a. The standard quality measure in this context is defect density,
calculated as number of defects divided by thousands of lines
of code. The defect density for each system is given in the table
below:

Module Defect Density
A 0.88
B 0
C 190
D 0.7
E 0.46
F 0.57
G 0.92
H 0.4
I 1.125

 b. Box plots reveal that the defect metric has two outliers: one
high (system C, with 95 defects) and one low (system B, with no
defects). The lines of code metric has no outliers. The defect den-
sity metric has one outlier (over 15 times bigger than any other),
namely system C at 19 defects/KLOC.

 c. Clearly, subsystem C is the problem area. Despite the fact that it
is exceptionally small (just 4KLOC), it contains an abnormally
high number of defects. You would be well advised to investi-
gate this subsystem further to determine why. Is it exceptionally
complex? Is it the part of the system most used? Has it the worst
programmers or tools? There is also something unusual about
subsystem B. Although large, this subsystem had no defects. Are
there positive lessons to learn from it (for example, was it devel-
oped with the best programmers or tools?), or is it simply that
this subsystem was not used?

544 ◾ Appendix: Solutions to Selected Exercises

 d. A major weakness is that there is no notion of usage; subsystem
C may be used much more than others, and system B may be
never used. There are also no notions of severity of defects nor of
complexity of subsystems. (KLOC is just a crude measure of size.)
There is a blurring of the key distinction between fault and failure.
Why should a failure always be due to a single defect in a single
subsystem?

 e. It would be extremely useful to get some measure of usage for
each subsystem, since this would enable us to use the existing data
to produce genuine reliability assessments of the different sub-
systems. Since system users are already logging failures as they
occur, it should not be too difficult to get them to log the way they
use the system. We should at least be able to get some estimate of
the relative calendar time spent using the different subsystems. It
would not be too difficult to insert some monitoring code into the
system so that this can be done automatically. Another addition
to the data-collection should be the measurement of actual time
to locate and fix faults. This would reveal important maintain-
ability information. Given the size of the system and the number
of defects per year, maintainability is a major concern.

 11. The outliers for CFP are modules R and P. The outliers for faults are
P, Q, and R. So, the outliers for CFP and faults are more or less the
same, whereas LOC has none. This result suggests that a high CFP is
a more reliable indicator of a faulty module than high LOC. Thus, it
would be a wise testing strategy to compute CFP for each module in
a system and devote more time to testing, or redesigning, those that
are outliers. Contrary to what many will say, there may be no point
at all in redesigning modules R and P to lower their CFP, as the faults
have already occurred!

 12. The outliers of MOD and FD are the same, namely systems A, D, and
L. Systems A and D are outliers of MOD because they have excep-
tionally low average module size, while system L is an outlier because
it has exceptionally high average module size. Each of these three sys-
tems also had abnormally high fault density. This suggests that those
systems in which average module size is either very high or very
low are likely to be the most fault-prone. On the basis of this data,
the outliers of MOD are excellent predictors of the high outliers of

Appendix: Solutions to Selected Exercises ◾ 545

FD. A reasonable quality assurance procedure would therefore be to
restrict module sizes (on average) to be between 16 and 88 LOC. This
procedure should avoid systems whose fault-proneness is explained
by module size. A stricter quality procedure might focus on values
between the upper and lower quartiles. In other words, we should
restrict module sizes (on average) to be between 43 and 61 LOC.
From the data, we can also conclude that size of a system alone (mea-
sured by KLOC) gives no indication of its fault proneness, nor of its
likely average module size. For example, the only outlier for KLOC—
the exceptionally large system R—does not have either an unusual
average module size or an unusually high fault density.

CHAPTER 8: MEASURING INTERNAL PRODUCT
ATTRIBUTES: SIZE

 7. Function points are a measure of the functionality of a software sys-
tem. The unadjusted function count UFC is derived from counting
system inputs, outputs, enquiries, and files. A technical complexity
factor, F, is then computed for the system, and the function point
count is FP = UFC*F.

 The main applications of FPs are:

 a. Sizing for purposes of effort/cost estimation (provided that you
have data about previous projects that relates the number of FPs
in a system to the actual cost/effort).

 b. Sizing for purposes of normalization. Thus, FPs are used to com-
pute quality density (defects/FP), productivity (person-months/
FP), etc.

 Comparing FPs with LOC:

 a. Unlike LOC, FPs can be extracted early in software life-cycle
(from requirements definition or specification) and so can be used
in simple cost-estimation models where size is the key parameter.

 b. FPs, being a measure of functionality, are more closely related to
utility than LOC.

 c. FPs are language-independent.

546 ◾ Appendix: Solutions to Selected Exercises

 d. FPs can be used as a basis for contracts at the requirements
phase.

 However:

 a. FPs are difficult to compute, and different people may count FPs
differently.

 b. Unlike LOC, FPs cannot be automatically extracted.

 c. There is some empirical evidence to suggest that FPs are not very
good for predicting effort. Empirical evidence also suggests that
FPs are unnecessarily complex.

 8. Answers:

 a. Function points are supposed to measure the amount of func-
tionality in a software “product,” where product can mean
any document from which the functional specification can be
extracted: the code itself, the detailed design, or the specifica-
tion. Function points are defined in a language-independent
manner, so the number of function points should not depend on
the particular product representation. Function points are also
commonly interpreted as a measure of size.

 Drawbacks:

 i. The main drawback of function points is the difficulty in
computing them. You must have at least a very detailed speci-
fication. This task is not easily automated or even repeatable.
Different people will generally arrive at a different FP count
for the same specification, although the existence of stan-
dards helps minimize the variance.

 ii. The definition of function points was heavily influenced by
the assumption that the number should be a good predictor
of effort; in this sense, the function point measure is trying to
capture more than just functionality. Thus, FPs are not very
well-defined from the measurement theory perspective.

 iii. FPs have been shown to be unnecessarily complicated. In
particular, the TCF appears to add nothing in terms of mea-
suring functionality, nor does it help to improve the predic-
tive accuracy when FPs are used for effort prediction.

Appendix: Solutions to Selected Exercises ◾ 547

 b. Most common answers will be:

 i. FPs can be used as the main input variable in an effort predic-
tion system. Traditionally, LOC (or some similar code-based
metric) has been used. The advantage of FPs is that they can
be computed directly from the specification, so you need not
predict LOC early in development.

 ii. Function points can be used in any application where you
need to normalize by size. So, if you measure productiv-
ity traditionally by LOC/effort, it would be advantageous
to use FPs instead of LOC, since FPs are more obviously
related to the utility of output, and they are independent
of the language used. You could also use FPs in this same
equation to measure designer (or even specifier) produc-
tivity and not just coder productivity.

 iii. You could use FPs to measure defect density as defects/FP,
rather than defects/LOC.

 c. There is no single correct answer here. However, good answers
should contain similar information.

 We identify the following items and their associated “complex-
ity,” weighting them as follows (using the table for UFC weight-
ing factors):

External Inputs
Coursework marks Simple 3
Exam marks Simple 3
Menu-selection: course choice Simple 3
Menu-selection: operation choice Simple 3

External Inquiries
Average Simple 3
Letter grade Average 4

External Outputs
List of student marks, etc. Average 5

External Files
None.

Internal File
Course file database: This contains the course list,
student lists, and all known marks and grades.

Complex 10

548 ◾ Appendix: Solutions to Selected Exercises

 Then UFC = 35

 To compute the technical complexity factor (TCF), we consider
the 14 listed factors in the Albrecht model. We assume that all
but the following are irrelevant:

F6 Online data entry
F7 Operational ease
F9 Online update
F13 Multiple sites

 Each of these is rated essential and hence get a weighting of 5.
 Therefore, TCF = 0.65 + 0.01 * (4 * 5) = 0.85
 Thus, FP = UFC * TCF = 30.

CHAPTER 9: MEASURING INTERNAL PRODUCT
ATTRIBUTES: STRUCTURE

 15. We look at each of the properties:

 a. Property 1—Nonnegativity: Does not hold. Any module or sys-
tem with fan-out more than double the fan-in will have negative
Cnew or CnewSyst.

 b. Property 2—Null value: Holds, as a very simple one module sys-
tem can have no fan-in or fan-out.

 c. Property 3—Symmetry: Holds, as long as fan-in and fan-out
links can be recognized.

 d. Property 4—Module monotonicity: Does not hold. A system
with modules with very low Cnew values (very high fan-out)
could cause CnewSyst to be less than the sum of two selected
modules. This is a consequence of Property 1 being violated.

 e. Property 5—Disjoint module additivity: Does not hold. This is
because individual Cnew and CnewSyst factors are computed
differently. To compute CnewSyst, the total size of the system
multiplies all fan-in and fan-out factors. The CnewSyst can
vary dramatically from the sum of the Cnew values for indi-
vidual modules, especially when the sizes of the systems vary
greatly.

Appendix: Solutions to Selected Exercises ◾ 549

 17. Coupling is a property of pairs of modules, while cohesion is a prop-
erty of individual modules. Coupling between modules is the extent
of interdependence between modules, whereas cohesion of a module
is the extent to which the elements of the module have a common
purpose, that is, are part of the same function.

 It is generally believed that if a design is made up of a number of
related modules, then there should be (as far as possible) a low level of
coupling; this way, errors made in any one module should affect a min-
imum number of others. Also, low coupling should help keep inde-
pendent the implementation of the modules. On the other hand, high
cohesion of each module may be desirable for conceptual simplicity
and ease of testing. The lowest level of coupling can be achieved by hav-
ing a single module for the whole system, but such a module will have
very low cohesion. Analogously, we could ensure the highest level of
cohesion of each module at the expense of very high coupling, namely
where each individual statement corresponds to a module. Therefore,
we have to find an optimal balance of low coupling and high cohesion.

 18. The software entity is source code (or the flowgraph representation
of source code). The attribute is, strictly speaking, the number of lin-
early independent paths through the code, or the number of deci-
sions plus one. The attribute is internal.

 19. The statement coverage strategy is a form of white box testing. The
tester must select inputs so that, when the program is executed,
enough paths are executed for each statement of the program to lie
on at least one path.

 22. A procedure is D-structured, formally, if its decomposition tree
(shown below) contains only primes of the form Pn, D0, D1, D2, or D3,
which is true in this case:

P2

P1 D1

P3

P1 D3 P1

P2

P1

550 ◾ Appendix: Solutions to Selected Exercises

 23. The key thing to note about this algorithm is that its underlying
flowgraph is the double-exit loop shown below.

t

f

X

A Bf

t

 In the strict interpretation of structured programming, only certain
single-exit loops are allowed as building blocks. The two-exit loop is
a prime structure that cannot be structured in terms of other such
loops. Thus, in the strict sense, the algorithm is unstructured. But
this example highlights the limitations of the strict view. Any attempt
to rewrite the algorithm in “structured form” requires the introduc-
tion of new dummy variables which mar the simple and intuitive
structure of the original algorithm. More liberal views of structured
programming allow primes such as the two-exit loop, which is very
natural in any control environment.

CHAPTER 10: MEASURING EXTERNAL PRODUCT
ATTRIBUTES

 2. The measure is quite useful for developers but is almost useless for
users or potential purchasers. For developers who measure both
LOC and faults found (in the code) in a consistent manner, the mea-
sure will indicate:

 a. Broad differences in quality among different modules, systems,
teams

 b. Trends that can aid quality control efforts

 c. Potential troublespots in the system

 d. When the developers have reached the point of diminishing
returns on testing

 However, the measure is of limited usefulness to the user, as it

 a. Gives no real indication of reliability (since faults may not be
good predictor of failures, as shown in the Adams data)

Appendix: Solutions to Selected Exercises ◾ 551

 b. Gives no indication at all of usability

 c. Gives no indication of the severity of the faults

 d. Cannot be used to compare products from different producers;
the producers may count LOC differently, and they may have dif-
ferent definitions or classifications of faults

 e. May say more about the rigor of the testing process (or of the tes-
ter) than about the quality of the code; clearly, the testing strat-
egy influences how many faults are found

 f. Invites abuse by programmers who may artificially increase the
length of a program in order to be seen to be producing higher-
quality code

 g. Is irrelevant for assessing quality before coding has begun

 h. Cannot be used comparatively with earlier products whose sys-
tem size is not LOC

 i. Does not take account of reused code

 3. To compare projects with a given measure, it must be either nor-
malized using size or type of project or independent of size/type of
project. None of the measures here is normalized. Therefore, the only
ones of value for comparative purposes are:

• Mean time to failure, for all projects at beta-test phase (a good
measure of system reliability)

• Mean time to repair reported defects (a reasonable measure of
maintainability)

• Maximum cyclomatic number (a very crude measure of sys-
tem structuredness, and much less useful than the previous two
measures)

• Average number of function points produced per month of pro-
grammer effort (a crude measure of programmer productivity;
it would be dangerous to use this if the projects involved vastly
different applications).

 Each of the other measures, although useful for tracking and
quality control purposes within a project, cannot be used sensibly
for cross-project comparisons unless normalized.

552 ◾ Appendix: Solutions to Selected Exercises

• Total number of user-reported failures: For this to be used as a
comparative measure of quality, it should be normalized against
both system size and usage time. The former could be measured
by total number of function points in the system (presumably
already collected) or a simple measure like LOC. The latter would
be much more difficult to measure, since it can be done only by
the system users.

• Total number of defects found during system testing: At the very
least, this measure should be normalized against size (as above).
It may also need normalization against amount of testing.

• Total number of changes made during development: If this mea-
sure is normalized against size (preferably measured by func-
tion points), it may be a measure either of system volatility (if
the changes are being suggested by customers) or quality (if the
changes are being made as a result of discovering faults).

• Total project overspend/underspend: This measure should be
normalized against actual expenditures to yield a measure of the
accuracy of the cost predictions.

CHAPTER 11: SOFTWARE RELIABILITY: MEASUREMENT AND
PREDICTION

 8. Both prequential likelihood ratios actually converge at around i = 10
for this particular dataset. This result suggests that neither one is
better than the other. (In fact, neither is particularly good.)

 9. The totality of all possible inputs forms an input space. A fault can be
thought of as a collection of points in the input space, each of which,
when executed, results in output that is regarded as failed. (The
decision to label an output failed will depend upon a comparison of
what was required with what was produced.) Execution of the pro-
gram involves the successive execution of a sequence of inputs. This
sequence will be a random walk in the input space—random because
the selection of future inputs is unpredictable and determined by the
outside world. Such a trajectory through the input space will fall over
the fault regions and so cause failures randomly.

 There is a further source of randomness (or uncertainty) when
a fix is carried out. If the fix is successful, we are uncertain of the

Appendix: Solutions to Selected Exercises ◾ 553

magnitude of the effect of its removal on the unreliability. There will
be a tendency for high rate faults to be encountered, and removed,
earlier than low rate ones. In addition there is the possibility that a
fix is not perfect. In this case, the effect on the program may be to
increase the unreliability by an unknown amount.

 10. The u-plot essentially detects consistent bias in predictions of reli-
ability: the magnitude of the maximum departure from unit slope
can be used to test whether the bias is statistically significant. The
precise shape of the u-plot gives information about the nature of the
errors. For example, a plot that is consistently above the line of unit
slope tells us that the predictions are too optimistic.

 The prequential likelihood ratio allows us to compare the accu-
racies of prediction of model A with model B on the same data. If
prequential likelihood ratio is consistently increasing as data vector
increases in dimension, the model in numerator can be said to be
more accurate than the model in the denominator. The prequential
likelihood ratio is sensitive to all kinds of departure from the truth,
and not just bias, but it is only a comparative analysis.

 The smoothed u-plot of previous predictions can be used to mod-
ify the current prediction as follows:

 Fi * (t) = Gi−1{Fi(t)}

 where Fi(t) is a raw estimate from a particular model of P(Ti < t), Gi−1
is the smoothed u-plot based on predictions of … ti−2, ti−1, and Fi*(t)
is the modified—recalibrated—prediction of P(Ti < t).

 11. The results clump into two groups: Six model predictions in one
group, two in the other. There is reasonable agreement of the median
predictions within each group, but big differences between groups.
From the u-plot, all predictions are bad: 6 too optimistic, 2 too pes-
simistic. From the prequential likelihood ratio, the two pessimistic
ones are not as bad as the six optimistic ones. None of the predic-
tions can be trusted as they are; they should be recalibrated.

 12. Answers:

 a. Debugging data: Use a reliability growth model, but you can get
only quite modest reliability because of the law of diminishing

554 ◾ Appendix: Solutions to Selected Exercises

returns. You must also worry about the efficacy of fixes, since
models tend to assume fixes are correct and do not introduce
new faults; this is not a conservative assumption in the case of
safety-critical systems.

 b. Failure-free working: This is quite weak evidence of reliability.
Roughly, we can expect there to be a 50:50 chance of working
failure-free for a time t when we have seen a time t of failure-free
working.

 c. Diversity: There are experimental and theoretical reasons to
doubt that the versions will fail independently. There is some evi-
dence that this approach does deliver improvements over single
version, but the improvement is hard to quantify. Evaluating a
particular diverse system is equivalent to treating it as a black
box, and thus the previous two paragraphs apply.

 d. Verification: This technique addresses consistency with formal
specification, but does not always address the issue of whether
this is complete and accurate representation of the informal
engineering requirements. There are practical difficulties with
verification for any except small programs, because of resource
constraints.

 e. Process: There is very weak evidence to show a link between pro-
cess and product.

 14. Unless you know a lot about the faults you have removed, there is
very little you can say about the improvements to reliability. It might
be tempting to assume a proportional improvement in reliability, but
on the basis of the Adams data, you could actually remove 95% of
all faults and yet see no perceptible reliability improvements; this is
because a very small proportion of faults cause almost all the com-
mon failures.

555

Bibliography

Abdel-Ghaly A.A., Chan P.Y., and Littlewood B., Evaluation of competing software
reliability predictions, IEEE Transactions on Software Engineering, SE-12(9),
950–967, 1986.

Abran A., Software Metrics and Software Metrology, John Wiley & Sons, Hoboken,
New Jersey, 2010.

Abran A. and Robillard P.N., Function points: A study of their measurement pro-
cesses and scale transformations, Journal of Systems and Software, 25(2),
171–184, 1994.

Adams E., Optimizing preventive service of software products, IBM Journal of
Research and Development, 28(1), 2–14, 1984.

Albrecht A.J., Measuring application development, Proceedings of IBM Applications
Development Joint SHARE/GUIDE Symposium, Monterey, California, pp.
83–92, 1979.

Alhazmi O.H., Malaiya Y., and Ray I., Measuring, analyzing and predicting secu-
rity vulnerabilities in software systems. Computers and Security, 26(3), 219–
228, May 2007.

Ammann P. and Offutt J., Introduction to Software Testing, Cambridge University
Press, New York, 2008.

Anda B. Comparing effort estimates based on use case points with expert esti-
mates, Empirical Assessment in Software Engineering (EASE 2002), Keele,
UK, 2002.

Anda B., Dreiem H., Sjoberg D.I.K., and Jorgensen M., Estimating software devel-
opment effort based on use cases—Experiences from industry, Proceedings of
UML 2001—The Unified Modeling Language. Modeling Languages, Concepts,
and Tools, pp. 487–502, 2001.

Antoniol G., Fiutem R., and Lokan C., Object-oriented function points: An empir-
ical evaluation, Empirical Software Engineering, 8(3), 225–254, 2003.

Antoniol G., Lokan C., Caldiera G., and Fiutem R., A function-point like measure
for object oriented software, Empirical Software Engineering, 4(3), 263–287,
September 1999.

Arisholm E. and Sjoberg D.I.K., Evaluating the effect of a delegated versus central-
ized control style on the maintainability of object-oriented software, IEEE
Transactions on Software Engineering, 30(8), 521–534, August 2004.

Bache R. and Neil M., Introducing metrics into industry: A perspective on GQM,
in Software Quality Assurance and Metrics: A Worldwide Perspective (Eds:

556 ◾ Bibliography

Fenton N.E., Whitty R.W., and Iizuka Y.), International Thomson Press,
London, pp. 59–68, 1995.

Bachmann A. and Bernstein A., Software process data quality and characteristics—A
historical view on open and closed source projects, Proceedings of the Joint
ERCIM Workshop on Software Evolution and International Workshop on
Principles of Software Evolution (IWPSE-Evol’09), Amsterdam, Netherlands,
August 24–25, 2009, pp. 119–128, 2009.

Baker A.L., Bieman J.M., Fenton N.E., Gustafson D., and Melton A., A philosophy for
software measurement, Journal of Systems and Software, 12, 277–281, July 1990.

Banker R., Kauffman R., and Kumar R., An empirical test of object-based output
measurement metrics in a computer-aided software engineering (CASE) envi-
ronment, Journal of Management Information Systems, 8(3), 127–150, 1994a.

Banker R., Chang H., and Kemerer C.F., Evidence on economies of scale in software
development, Information and Software Technology, 36(5), 275–282, 1994b.

Barford N.C., Experimental Measurements: Precision, Error and Truth, 2nd Edition.
Addison-Wesley, Reading, Massachusetts, 1985.

Barnard J. and Price A., Managing code inspection information, IEEE Software,
11(2), 59–69, March 1994.

Basili V.R. and Rombach H.D., The TAME project: Towards improvement-
oriented software environments, IEEE Transactions on Software Engineering,
14(6), 758–773, 1988.

Basili V.R., Selby R.W., and D.H. Hutchens, Experimentation in software engineer-
ing, IEEE Transactions on Software Engineering, 12(7), 733–743, July 1986.

Basili V.R. and Weiss D., A methodology for collecting valid software engineering
data, IEEE Transactions on Software Engineering, SE-10(6), 728–738, 1984.

Basili V.R., Heidrich J., Lindvall M., Münch J., Seaman C, Regardie M., and
Trendowicz, A., Determining the impact of business strategies using principles
from goal-oriented measurement, Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement (ESEM),
Lake Buena Vista, Florida, pp. 390–400, 2009.

Baudry B. and Sunye G., Improving the testability of UML class diagrams,
Proceedings of the First International Workshop on Testability Assessment,
2004 (IWoTA), pp. 70–80, November 2004.

Baudry B., Le Traon Y., and Sunyé G., Testability analysis of a UML class diagram,
Software Metrics, 2002. Proceedings of the Eighth IEEE Symposium, Ottawa,
Canada, IEEE, pp. 54–63, 2002.

Baudry B., Traon Y., Sunye G., and Jezequel J.M., Towards a safe use of design pat-
terns to improve OO software testability, Proceedings of the 12th International
Symposium on Software Reliability Engineering (ISSRE 2001), Hong Kong,
China, pp. 324–329, 2001.

Baur E., Zhang X., and Kimber D.A., Practical System Reliability, Wiley IEEE Press,
Hoboken, New Jersey, 2009.

Belton V., A comparison of the analytic hierarchy process and a simple multi- attribute
utility function, European Journal of Operational Research, 26, 7–21, 1986.

Bennett P.A., Software development for the channel tunnel: A summary, High
Integrity Systems, 1(2), 213–220, 1994.

Bibliography ◾ 557

Berg van den K.G. and Broek van den P.M., Static analysis of functional programs,
Information and Software Technology, 37(4), 213–224, 1995.

Berger B., Data-centric quantitative computer security risk assessment, SANS
Institute InfoSec Reading Room, August 2003, http://www.sans.org/reading-
room, August 7, 2014.

Bertolino A. and Marre M., How many paths are needed for branch testing?,
Journal of Systems and Software, 35(2), 95–106, 1995.

Bertolino A. and Strigini L., On the use of testability measures for dependability
assessment, SHIP project, document T34/v0.3, 1995.

Bevan N., Measuring usability as quality of use, Software Quality Journal, 4(2),
115–130, 1995.

Bieman J. and Kang B.-L. Cohesion and reuse in an object-oriented system,
Proceedings of the ACM Symposium on Software Reusability (SSR’95), Seattle,
Washington, pp. 259–262, April 1995.

Bieman J. and Karunanithi S. Measurement of language supported reuse in object
oriented and object based software, The Journal of Systems and Software,
28(9), 271–293, 1995.

Bieman J. and Zhao J.X., Reuse through inheritance: A quantitative study of
C++ software, Proceedings of the ACM Symposium on Software Reusability
(SSR’95), Seattle, Washington, pp. 47–52, April 1995.

Bieman J.M. and Debnath N.C., An analysis of software structure using a general-
ized program graph, Proceedings of the IEEE-CS 9th International Computer
Software and Applications Conference (COMPSAC 85), Chicago, Illinois, pp.
254–259, 1985.

Bieman J. and Kang B.-K., Measuring design level cohesion, IEEE Transactions on
Software Engineering, 24(2), 111–124, February 1998.

Bieman J.M. and Ott L.M., Measuring functional cohesion, IEEE Transactions on
Software Engineering, 20(8), 644–657, 1994.

Bieman J.M. and Schultz J., Estimating the number of test cases required to satisfy
the all-du-paths testing criterion, Proceedings of ACM TAV3 Conference, Key
West, Florida, ACM SIGSOFT Notes, pp. 179–186, 1989.

Bieman J., Andrews A., and Yang H., Understanding change-proneness in OO software
through visualization, Proceedings of the International Workshop on Program
Comprehension (IWPC 2003), Portland, Oregon, pp. 44–53, 2003a.

Bieman J., Fenton N.E., Gustafson D., Melton A., and Whitty R., Moving from phi-
losophy to practice in software measurement, in Formal Aspects of Software
Measurement (Eds: Denvir T., Herman R., and Whitty R.), Chapman & Hall,
London, 1992.

Bieman J., Jain D., and Yang H., Design patterns, design structure, and pro-
gram changes: An industrial case study, Proceedings of the International
Conference on Software Maintenance (ICSM 2001), Florence, Italy, November
2001.

Bieman J.M., Baker A.L., Clites P.N., Gustafson D.A., and Melton A., A standard
representation of imperative language programs for data collection and soft-
ware measures specification, Journal of Systems and Software, 8(1), 13–37,
January 1988.

http://www.sans.org
http://www.sans.org

558 ◾ Bibliography

Bieman J.M. and Schultz J.L., An empirical evaluation (and specification) of the
all-du-paths testing criterion, Software Engineering Journal, 7(1), 43–51,
1992.

Bieman J., Straw G., Wang H., Munger P.W., and Alexander R., Design patterns and
change proneness: An examination of five evolving systems, Proceedings of
the Ninth International Software Metrics Symposium (Metrics 2003), Sydney,
Australia, pp. 40–49, 2003b.

Birolini A., Reliability Engineering: Theory and Practice, 5th Edition. Springer,
Berlin, 2007.

Blum M., Luby M., and Rubinfield R., Self-testing/correcting with applications to
numerical problems, Journal of Computer and Systems Sciences, 47, 549–595,
1993.

Boehm B.W., Software Engineering Economics, Prentice-Hall, Englewood Cliffs,
New Jersey, 1981.

Boehm B.W., Brown J.R., Kaspar J.R., Lipow M., and MacCleod G., Characteristics
of Software Quality, Elsevier Science Ltd., Amsterdam, North Holland, 1978.

Boehm B.W., Abts C., Brown A.W., Chulani S., Clark K.C., Horowitz E., Madachy
R, Reifer D.J., and Steece B., Software Cost Estimation with Cocomo II,
Prentice-Hall, Upper Saddle River, New Jersey, 2000.

Böhm B.W. and Jacopini G., Flow diagrams, Turing machines and languages with
only two formation rules, Communications of the ACM, 9(5), 366–371, 1966.

Brewer E.A., Lessons from giant-scale services, IEEE Internet Computing, July–
August, 46–55, 2001.

Briand L.C., Morasca S., and Basili V.R., Property-based software engineering mea-
surement, IEEE Transactions on Software Engineering, 22(1), 68–86, 1996.

Briand L.C., Daly J.W., and Wüst J.C., A unified framework for cohesion mea-
surement in object-oriented systems, Empirical Software Engineering, 3(1),
65–117, 1998.

Briand L.C., Wüst J., Ikonomovski V., and Lounis H., Investigating quality fac-
tors in object-oriented designs: An industrial case study, Proceedings of the
International Conference on Software Engineering (ICSE), ACM, Los Angeles,
California, pp. 345–354, 1999a.

Briand L.C., Daly J.W., and Wüst J.C., A unified framework for coupling measure-
ment in object-oriented systems, IEEE Transactions on Software Engineering,
25(1), 91–121, 1999b.

Brilliant S., Knight J.C., and Leveson N., Analysis of faults in an n-version software
experiment, IEEE Transactions on Software Engineering, 16(2), 1990.

Brocklehurst S., Chan P.Y., Littlewood B., and Snell J., Recalibrating software reli-
ability models, IEEE Transactions on Software Engineering, SE-16(4), 458–
470, 1990.

Brocklehurst S. and Littlewood B., New ways to get accurate software reliability
modeling, IEEE Software, 9(4), 34–42, July 1992.

Broek van den P.M. and Berg van den K.G., Generalised approach to software
structure metrics, Software Engineering Journal, 10(2), 61–68, 1995.

Brooks F.P., The Mythical Man-Month: Essays on Software Engineering, 2nd Edition.
Addison-Wesley, Reading, Massachusetts, 1995.

Bibliography ◾ 559

Brown W.H., Malveau R.C., McCormick III H.W., and Mowbray T.J., AntiPatterns:
Refactoring Software, Architectures and Projects in Crisis, John Wiley & Sons,
Hoboken, New Jersey, 1998.

Bush M. and Fenton N.E., Software measurement: A conceptual framework,
Journal of Systems and Software, 12, 223–231, July 1990.

Butler S.A., Security attribute evaluation method: A cost-benefit approach,
Proceedings of the International Conference on Software Engineering (ICSE),
Raleigh, North Carolina, pp. 232–240, 2002.

Butler R.W. and Finelli G.B., The infeasibility of quantifying the reliability of life-
critical real-time software, IEEE Transactions on Software Engineering, 19(3),
3–12, 1993.

Butler S.A. and Fischbeck P., Multi-attribute risk assessment, Proceedings of the
2nd Symposium on Requirements Engineering for Information Security,
Raleigh, North Carolina, 2002.

Campbell D.T. and Stanley J., Experimental and Quasi-Experimental Designs for
Research, Rand McNally, Chicago, 1966.

Campbell N.R., Physics: The Elements, Cambridge University Press, Cambridge,
Massachusetts, 1920. Reprinted as Foundations of Science: The Philosophy of
Theory and Experiment, Dover, New York, 1957.

Casscells W., Schoenberger A., and Graboys T.B., Interpretation by physicians of clin-
ical laboratory results, New England Journal of Medicine, 299, 999–1001, 1978.

Caulcutt R., Statistics in Research and Development, Chapman & Hall, London,
England, 1991.

Causevic A., Sundmark D., and Punnekkat S., Impact of test design technique
knowledge on test driven development: A controlled experiment, in Agile
Processes in Software Engineering and Extreme Programming, Springer,
Berlin, pp. 138–152, 2012.

Chatfield C., Statistics for Technology: A Course in Applied Statistics, 3rd Edition
(Revised). Chapman & Hall, London, 1998.

Chen K., Schach S., Yu L., Offutt J., and Heller G., Open-source change logs,
Empirical Software Engineering, 9, 197–210, 2004.

Cherniavsky J.C. and Smith C.H., On Weyuker’s axioms for software complexity
measures, IEEE Transactions on Software Engineering, 17(6), 636–638, 1991.

Cheung R.C., A user-oriented software reliability model, IEEE Transactions on
Software Engineering, SE-6(3), 118–125, 1980.

Chidamber S.R. and Kemerer C.F., A metrics suite for object oriented design, IEEE
Transactions on Software Engineering, 20(6), 476–498, 1994.

Chillarege R., Bhandari I.S., Chaar J.K., Halliday M.J. Moebus D.S., Ray B.K. and
Wong M.-Y., Orthogonal defect classification: A concept for in-process mea-
surements, IEEE Transactions on Software Engineering, 18(11), 943–956,
November 1992.

Churcher N.I. and Shepperd M.J., Comments on ‘A metrics suite for object oriented
design’, IEEE Transactions on Software Engineering, 21(3), 263–265, 1995.

CMMI Product Team, CMMI for Development, Version 1.3 (CMU/SEI-2010-TR-033).
Software Engineering Institute, Carnegie Mellon University, 2010. http:/ / www.
sei. cmu. edu/ library/ abstracts/ reports/ 10tr033. cfm, February 25, 2011.

http://
http://

560 ◾ Bibliography

Cochran W.G., Sampling Techniques, 2nd Edition. John Wiley & Sons, New York, 1963.
Conte S.D., Dunsmore H.D., and Shen V.Y., Software Engineering Metrics and

Models, Benjamin-Cummings, Menlo Park, California, 1986.
Cook T.D., Campbell D.T., and Day A., Quasi-Experimentation: Design and Analysis

Issues for Field Settings, Houghton-Mifflin, Boston, Massachusetts, 1979.
Coverity, 2011. Coverity Scan: 2011 Open Source Integrity Report. Published by

Coverity, Inc., San Fransisco, California, http://www.coverity.com/library/
pdf/coverity-scan-2011-open-source-integrity-report.pdf, August 8, 2014.

Courtney R.E. and Gustafson D.A., Shotgun correlations in software measures,
Software Engineering Journal, 8(1), 5–13, 1993.

Crespo N.C., Jino M., Pasquini P., and Maldonado J.C., A binomial software reli-
ability model based on coverage of structural testing criteria, Empirical
Software Engineering, 13(2), 185–209, 2008.

Curtis B., Measurement and experimentation in software engineering, Proceedings
of the IEEE, 68(9), 1144–1157, September 1980.

DaCosta D., Dahn C., Mancoridis S., and Prevelakis V., Characterizing the secu-
rity vulnerability likelihood of software functions, Proceedings of the 19th
International Conference on Software Maintenance, Amsterdam, Netherlands,
pp. 266–274, September 2003.

Davis A., Overmyer S., Jordan K., Caruso J., Dandashi F., Dinh A., Kincaid G.,
Ledeboer G., Reynolds P., Sitaram P., Ta A., and Theofanos M., Identifying
and measuring quality in a software requirements specification, Proceedings
of the First International Software Metrics Symposium, Baltimore, Maryland,
IEEE Computer Society Press, pp. 141–152, 1993.

Dawid A.P., Statistical theory: The prequential approach, Journal of the Royal
Statistical Society, Al47, 278–292, 1984.

Dawid A.P. and Vouk V.G., Prequential probability: Principles and properties,
Bernoulli, 5(1), 125–162, 1999.

De Young G.E. and Kampen G.R., Program factors as predictors of program read-
ability, Proceedings of the Computer Software and Applications Conference
(COMPSAC), IEEE Computer Society Press, Chicago, Illinois, pp. 668–673,
1979.

DeMillo R.A. and Lipton R.J., Software project forecasting, in Software Metrics,
(Eds: Perlis A.J., Sayward F.G. and Shaw M.), MIT Press, Cambridge,
Massachusetts, pp. 77–89, 1981.

DeMillo R.A., Lipton R.J, and Sayward F.G, Hints on test data selection: Help for
the practicing programmer, IEEE Computer, 11(4), 34–41, 1978.

Denvir T., Herman R., and Whitty R.W. (Eds), Formal Aspects of Software
Measurement, Springer Verlag, Heidelberger, Germany, 1992.

Dobson A.J., An Introduction to Generalized Linear Models, 3rd Edition. Chapman &
Hall, London, 2008.

Draper N. and Smith H., Applied Regression Analysis, 3rd Edition. John Wiley &
Sons, New York, 1998.

Drapkin T. and Forsyth R., The Punters Revenge, Chapman & Hall, London, 1987.
Duane J.T., Learning curve approach to reliability monitoring, IEEE TransAerospace,

2, 563–566, 1964.

http://www.coverity.com
http://www.coverity.com

Bibliography ◾ 561

Eckhardt D.E. and Lee L.D., A theoretical basis for the analysis of multi- version
software subject to coincident errors, IEEE Transactions on Software
Engineering, SE-11(12), 1511–1517, 1985.

Ellis B., Basic Concepts of Measurement, Cambridge University Press, Oxford,
England, 1966.

Falmagne J.-C. and Narens L., Scales and meaningfulness of quantitative laws,
Synthese, 55, 287–325, 1983.

Fenton, N.E., The structural complexity of flowgraphs. In Y. Alavi., G.
Chartrand, L. Lesniak, and Lick (Eds.), Graph Theory and its applications
to Algorithms and Computer Science, Kalamazoo, Wiley, New York, pp.
273–282, 1985.

Fenton N.E., Software measurement: Why a formal approach?, in Formal Aspects
of Software Measurement (Eds: Denvir T., Herman R., and Whitty R.W.),
Springer Verlag, Heidelberger, Germany, pp. 3–27, 1992a.

Fenton N.E., When a software measure is not a measure, Software Engineering
Journal, 7(5), 357–362, 1992b.

Fenton N.E., How effective are software engineering methods?, Journal of Systems
and Software, 20, 93–100, 1993a.

Fenton N.E., The effectiveness of software engineering methods, Proceedings
of AQuIS ’93 (Second International Conference on Achieving Quality in
Software), Venice, Italy, pp. 295–305, 1993b.

Fenton N.E., Software measurement: A necessary scientific basis, IEEE Transactions
on Software Engineering, 20(3), 199–206, 1994.

Fenton N.E. and Hill G., Systems Construction and Analysis: A Mathematical and
Logical Approach, McGraw-Hill, New York, 1992.

Fenton N.E. and Kaposi A.A., Metrics and software structure, Journal of
Information and Software Technology, 29, 301–320, July 1987.

Fenton N.E. and Kitchenham B.A., Validating software measures, Journal of
Software Testing, Verification and Reliability, 1(2), 27–42, 1991.

Fenton N.E. and Littlewood B. (Eds), Software Reliability and Metrics, Elsevier,
1991 (Edited Proceedings of the Centre for Software Reliability Conference,
Garmisch-Partenkirchen, Germany, September 12–14, 1990).

Fenton N.E. and Melton A., Deriving structurally based software measures, Journal
of Systems and Software, 12, 177–187, 1990.

Fenton N.E. and Neil M., A critique of software defect prediction models, IEEE
Transactions on Software Engineering, 25(5), 675–689, 1999.

Fenton N.E. and Neil, M., Risk Assessment and Decision Analysis with Bayesian
Networks, CRC Press, Boca Raton, Florida, ISBN: 9781439809105, ISBN 10:
1439809100, 2012.

Fenton N.E. and Ohlsson N. Quantitative analysis of faults and failures in a com-
plex software system, IEEE Transactions on Software Engineering, 26(8),
797–814, 2000.

Fenton N.E. and Whitty R.W., Axiomatic approach to software metrication
through program decomposition, Computer Journal, 29(4), 329–339, 1986.

Fenton N.E. and Whitty R.W., Program structures: Some new characterizations,
Journal of Computer and System Sciences, 43(3), 467–483, 1991.

562 ◾ Bibliography

Fenton N., Pfleeger S.L., and Glass R.L., Science and substance: A challenge to
software engineers, IEEE Software, 11(4), 86–95, July 1994.

Fenton N.E., Littlewood B., and Page S., Evaluating software engineering standards
and methods, in Software Engineering: A European Perspective (Eds: Thayer R.
and McGettrick A.D.), IEEE Computer Society Press, Los Alamitos, California,
pp. 463–470, 1993.

Fenton N.E., Marsh W., Cates P., Forey S., and Tailor M., Making resource deci-
sions for software projects, Proceedings of the 26th International Conference
on Software Engineering (ICSE2004), Edinburgh, United Kingdom, IEEE
Computer Society, pp. 397–406, 2004.

Fenton N.E., Neil M., and Gallan J., Using ranked nodes to model qualitative
judgments in Bayesian networks, IEEE Transactions on Knowledge and Data
Engineering, 19(10), 1420–1432, 2007a.

Fenton N. E., Neil M., and Marquez D., Using Bayesian networks to predict soft-
ware defects and reliability, Proceedings of the Institution of Mechanical
Engineers, Part O, Journal of Risk and Reliability, 222(O4), 701–712, 2008a.

Fenton N.E., Neil M., Marsh W., Hearty P., Marquez D., Krause P., and Mishra, R.,
Predicting software defects in varying development lifecycles using Bayesian
nets, Information & Software Technology, 49, 32–43, 2007b.

Fenton N.E., Neil M., Marsh W., Hearty P., Radlinski L., and Krause P., On the
effectiveness of early life cycle defect prediction with Bayesian Nets, Empirical
Software Engineering, 13, 499–537, 2008b.

Fenton N.E., Neil M., and Krause P., Software measurement: Uncertainty and
causal modelling, IEEE Software, 10(4), 116–122, 2002.

Fenton N.E., Whitty R.W., and Kaposi A.A., A generalized mathematical theory
of structured programming, Theoretical Computer Science, 36, 145–171,
1985.

Figueira, J., Salvatore G., Matthias E., Multiple Criteria Decision Analysis: State of
the Art Surveys, Springer Science + Business Media, Inc., New York, ISBN
0-387-23081-5, 2005.

Finkelstein L., Representation by symbol systems as an extension of the concept of
measurement, Kybernetes, 4, 215–223, 1975.

Finkelstein L., What is not measurable, make measurable, Measurement and
Control, 15, 25–32, 1982.

Finkelstein L., A review of the fundamental concepts of measurement,
Measurement, 2(1), 25–34, 1984.

Fisher R.A., Statistical Methods for Research Workers, Genesis Publishing, London,
1925.

Fowler M. Refactoring: Improving the Design of Existing Code, Addison-Wesley,
Reading, MA, 1999.

Frank M.V., Choosing among safety improvement strategies: A discussion with
examples of risk assessment and multi-criteria decision approaches for NASA,
Reliability Engineering and System Safety, 49, 311–324, 1995.

Fredreiksen H.D. and Mathiassen L., Information-centric assessment of software
metrics practices, IEEE Transactions on Engineering Management, 52(3),
350–362, August 2005.

Bibliography ◾ 563

Fuggetta A., Lavazza L., Morasca S., Cinti S., Oldano G., and Orazi E., Applying
GQM in an industrial software factory, ACM Transactions on Software
Engineering and Methodology, 7(4), 411–448, October 1998.

Gamma E., Helm R., Johnson R., and Vlissides J., Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston, 1994.

Garey M.R. and Johnson D.S., Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman, San Francisco, 1979.

Gilb T., Software Metrics, Chartwell-Bratt, Cambridge, Massachusetts, 1976.
Gilb T., Principles of Software Engineering Management, 2nd Edition. Addison-

Wesley, Reading Massachusetts, 1988.
Gill G.K. and Kemerer C.F., Cyclomatic complexity density and software main-

tenance productivity, IEEE Transactions on Software Engineering, 17(12),
1284–1288, 1991.

GNU 2013, GNU Coding Standards, Free Software Foundation, http://www. gnu.
org/ prep/ standards, August 20, 2014.

Godfrey M.W. and Tu Q., Evolution in open source software: A case study,
Proceedings of the International Conference on Software Maintenance (ICSM),
San Jose, California, pp. 131–142, 2000.

Goel A.L., Software reliability models: Assumptions, limitations and applicability,
IEEE Transactions on Software Engineering, 11(12), 1411–1423, 1985.

Goel A.L. and Okumoto K., Time-dependent error-detection rate model for
software reliability and other performance measures, IEEE Transactions on
Reliability, R-28, 206–211, 1979.

González-Barahona J.M., Pérez M.A.O., de las Heras Quirós P., González J.C. and
Olivera V.M., Counting potatoes: The size of Debian 2.2, Upgrade, II(6),
60–66, December 2001.

Grady R.B., Successfully applying software metrics, IEEE Computer, 27, 18–25,
September 1994.

Grady R.B. and Caswell D., Software Metrics: Establishing a Company-Wide
Program, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

Gras J.-J., End-to-end defect modeling, IEEE Software, 21(5), 98–100, 2004.
Green J. and d’Oliveira M., Units 16 & 21 Methodology Handbook (Part 2), Open

University, Milton Keynes, England, 1990.
Gueheneuc Y.-G. and Antoniol G., DeMIMA: A multilayered approach for design

pattern identification, IEEE Transactions on Software Engineering, 34(5),
667–684, 2008.

Gunning R., The Technique of Clear Writing, McGraw-Hill, New York, 1968.
Haigh M., Software quality, non-functional software requirements and IT-business

alignment, Software Quality Journal, 18(3), 361–385, 2010.
Halstead M., Elements of Software Science, Elsevier, North Holland, New York, 1977.
Hamer P. and Frewin G., Halstead’s software science: A critical examination,

Proceedings of the 6th International Conference on Software Engineering,
Tokyo, Japan, pp. 197–206, 1982.

Hamlet D. and Voas J., Faults on its sleeve: Amplifying software reliability testing,
Proceedings of the ISSTA ’93, Boston, Massachusetts, pp. 89–98, 1993.

Harel D., Algorithmics, 3rd Edition. Addison-Wesley, Reading, Massachusetts, 2004.

http://www.gnu.org
http://www.gnu.org

564 ◾ Bibliography

Harrison W., A flexible method for maintaining software metrics data: A universal
metrics repository, The Journal of Systems and Software, 72(2), 225–234, 2004.

Hatton L. and Safer C., Developing Software for High-Integrity and Safety-Critical
Systems, McGraw-Hill, New York, 1995.

Hausen H.-L., Yet another model of software quality and productivity, in
Measurement for Software Control and Assurance (Ed: B.A. Kichenham and
B. Littlewood), Elsevier, London and New York, 1989.

Hays M. and Hayes J., The effect of testability on fault proneness: A case study
of the Apache HTTP server, Proceedings of the International Symposium on
Software Reliability Engineering Workshops (ISSREW), Dallas, Texas, pp.
153–158, 2012.

Hecht M.S., Flow Analysis of Computer Programs, Elsevier, New York, 1977.
Henry S. and Kafura D., Software structure metrics based on information flow,

IEEE Transactions on Software Engineering, SE-7(5), 510–518, 1981.
Heston K.M and Phifer W., The multiple quality models paradox: How much ‘best

practice’ is just enough? Journal of Software Maintenance and Evolution:
Research and Practice, 23(8), 517–531, 2011.

Hetzel W.C., Making Software Measurement Work: Building an Effective Software
Measurement Program, QED Publishing Group, Wellesley, Massachusetts, 1993.

Hoaglin D.C., Mosteller F., and Tukey J.W., Understanding Exploratory Data
Analysis, John Wiley & Sons, New York, 2000.

Holzinger A., Usability engineering methods for software developers,
Communications of the ACM, 48(1), 71–74, January 2005.

Hornbaek K., Current practice in measuring usability: Challenges to usability
studies and research, International Journal of Human-Computer Studies,
64(2), 79–102, 2006.

Hubbard D.W., How to Measure Anything: Finding the Value of Intangibles in
Business, 2nd Edition. John Wiley & Sons, Hoboken, New Jersey, 2010.

Huber J.T., A comparison of IBM’s orthogonal defect classification to Hewlett
Packard’s defect origins, types and modes, Proceedings of the International
Conference on Applications of Software Measurement, San Jose, California,
1–17, 2000.

Humphrey W.S., Managing the Software Process, Addison-Wesley, Reading,
Massachusetts, 1989.

Humphrey W.S., A Discipline for Software Engineering, Addison-Wesley, Reading,
Massachusetts, 1995.

Humphrey W.S., PSP(sm): A Self Improvement Process for Software Engineers,
Addison-Wesley Professional, Upper Saddle River, New Jersey, 2005.

IEEE Standard 610.12-1990, Glossary of Software Engineering Terminology, IEEE
Computer Society Press, New York, 1990.

IEEE Draft Standard 1044-1993, Draft Standard Classification for Software
Anomalies, IEEE Computer Society Press, New York, 1993.

IEEE Standard 1044-2009, Standard Classification for Software Anomalies, IEEE
Computer Society Press, New York, 2009.

IEEE Standard 1061, Software Quality Metrics Methodology, IEEE Computer
Society Press, New York, 2009.

Bibliography ◾ 565

Ince D.C. and Hekmatpour S., An approach to automated software design based
on product metrics, Software Engineering Journal, 3, 53–56, March 1988.

Inglis J., Standard software quality metrics, AT&T Technical Journal, 65(2), 113–
118, 1985.

International Standards Organisation, Software engineering—Product quality—
Part 1: Quality model, SS-ISO/IEC 9126-1, 2003.

International Standards Organisation, Software engineering—Product quality—
Part 2: External metrics, SS-ISO/IEC 9126-2, 2003.

International Standards Organisation, Software engineering—Product quality—
Part 3: Internal metrics, SS-ISO/IEC 9126-3, 2003.

International Standards Organisation, Software engineering—Product quality—
Part 4: Quality in use metrics, SS-ISO/IEC 9126-4, 2004.

International Standards Organization, Systems and software engineering— systems
and software quality requirements and evaluation (SQUARE)— systems and
software quality models, ISO/IEC 25010:2011(E), 2011.

International Standards Organization, Systems and software engineering— systems
and software quality requirements and evaluation (SQUARE)— systems and
software quality models, ISO/IEC 25040:2011(E), 2011.

ISQAA, Metrics Handbook, Information Systems Quality Assurance Association,
London, 1989.

Izurieta C. and Bieman J., The evolution of FreeBSD and Linux, Proceedings of
the ACM/IEEE International Symposium on Empirical Software Engineering
(ISESE 2006), Rio de Janeiro, Brazil, 204–211, 2006.

Izurieta C. and Bieman J., Testing consequences of grime buildup in object ori-
ented design patterns, Proceedings of the International Conference Software
Testing, Verification, and Reliability (ICST), Lillehammer, Norway, 171–179,
2008.

Izurieta C. and Bieman J., A multiple case study of design pattern decay, grime,
and rot in evolving software systems, Software Quality Journal, 21(2), 289–
323, June 2013.

Jackson D., Alloy: A lightweight object modeling notation, ACM Transactions on
Software Engineering and Methodology, 11(2), 256–290, April, 2002.

Jeffery D.R., Low G.C., and Barnes M., A comparison of function point count-
ing techniques, IEEE Transactions on Software Engineering, 19(5), 529–532,
1993.

Jelinski Z. and Moranda P.B., Software reliability research, in Statistical Computer
Performance Evaluation (Ed: Freiberger), Academic Press, New York, pp.
465–484, 1972.

Jensen F.V. and Nielsen T., Bayesian Networks and Decision Graphs, Springer-
Verlag, New York Inc., 2007.

Jones C., Applied Software Measurement: Global Analysis of Productivity and
Quality, 3rd Edition. McGraw-Hill, New York, 2008.

Kafura D. and Henry S., Software quality metrics based on interconnectivity,
Journal of Systems and Software, 2, 121–131, 1981.

Kaposi A.A., Measurement theory, in Software Engineer’s Reference Book (Ed:
McDermid J.), Butterworth Heinemann, Oxford, Boston, 1991.

566 ◾ Bibliography

Kaposi A.A. and Kitchenham B.A., The architecture of systems quality, Software
Engineering Journal, 2(1), 2–8, 1987.

Kaposi A.A. and Myers M., Systems, Models and Measures, Springer-Verlag,
London, 1993.

Kapur P.K., Pham H., Anand S., and Yadav K., A unified approach for develop-
ing software reliability growth models in the presence of imperfect debugging
and error generation, IEEE Transactions on Reliability, 60(1), 331–340, 2011.

Kauffman R. and Kumar R., Modeling estimation expertise in object based CASE
environments, Stern School of Business Report, New York University,
January 1993.

Kemerer C.F, Reliability of function points measurement: A field experiment,
Communications of the ACM, 36, 85–97, February 1993.

Kemerer C.F. and Porter B., Improving the reliability of function points mea-
surement: An empirical study, IEEE Transactions on Software Engineering,
18(10), 1011–1024, 1992.

Khoshgoftaar T.M. and Allen E.B., Applications of information theory to
 software engineering measurement, Software Quality Journal, 3(2), 105–
112, 1994.

Khoshgoftaar T.M., Allen E.B., Jones W.B., and Hudepole J.P., Classification-tree
models of software quality over multiple releases, IEEE Transactions on
Reliability, 49(1), 4–11, March 2000.

Kitchenham B.A., Empirical studies of assumptions that underlie software cost-
estimation models, Information and Software Technology, 34(4), 211–218,
1992.

Kitchenham B.A., Using function points for software cost estimation, in Software
Quality Assurance and Measurement (Eds: Fenton N.E., Whitty R.W., and
Iizuka Y.), International Thomson Computer Press, London, pp. 266–280,
1995.

Kitchenham B.A, Series on experimentation in software engineering, ACM
Software Engineering Notes, 1996.

Kitchenham B.A. and Känsälä K., Inter-item correlations among function points,
Proceedings of the IEEE Software Metrics Symposium, IEEE Computer Society
Press, Baltimore, Maryland, pp. 11–15, 1993.

Kitchenham B.A. and Walker J.G., A quantitative approach to monitoring software
development, Software Engineering Journal, 4(1), 2–13, 1989.

Kitchenham B.A., Kok P.A.M., and Kirakowski J., The MERMAID approach to
software cost estimation, ESPRIT ’90, Kluwer Academic Press, Brussels, pp.
296–314, 1990a.

Kitchenham B.A., Pfleeger S.L., and Fenton N.E., Towards a framework for soft-
ware measurement validation, IEEE Transactions on Software Engineering,
21(12), 929–944, 1995.

Kitchenham B.A., Pickard L.M., and Linkman S.J., An evaluation of some design
metrics, Software Engineering Journal, 5(1), 50–58, 1990b.

Knight J.C. and Leveson N.G. An empirical study of failure probabilities in multi-
version software. In Fault Tolerant Computing Symposium, Vienna, Austria,
vol. 16, pp. 165–170, 1986.

Bibliography ◾ 567

Knuth D.E., The Art of Computer Programming, Volume 3, Addison-Wesley,
Reading, Massachusetts, 1973.

Knuth D.E., The errors of tex, Software Practice and Experience, 19(7), 607–685,
1989.

Koller D. and Pfeffer A. Object-oriented Bayesian networks, Proceedings of the
13th Annual Conference on Uncertainty in AI (UAI), Providence, Rhode
Island, pp. 302–313, 1997.

Koru G., Liu H., Zang, D., and El Emam K., Testing the theory of relative defect
proneness for closed-source software. Empirical Software Engineering, 15,
577–598, 2010.

Kosaraju R.S., Analysis of structured programs, Journal of the CSS, 9, 232–255,
1974.

Koziolek H., Schlich B., and Bilich C., A large-scale industrial case study on
 architecture-based software reliability analysis, In Proceedings of the IEEE
21st International Symposium on Software Reliability Engineering (ISSRE),
San Jose, California, pp. 279–288, 2010.

Kpodjedo S., Ricca F., Galinier P., Gueheneuc Y.-G., and Antoniol G., Design evo-
lution metrics for defect prediction in object oriented systems, Empirical
Software Engineering, 16(1), 141–175, 2011.

Krantz D.H., Luce R.D., Suppes P., and Tversky A., Foundations of Measurement,
Volume 1, Academic Press, New York, 1971.

Kraska-Miller M., Nonparametric Statistics for Social and Behavioral Science, CRC
Press, Boca Raton, Florida, 2014.

Kusumoto S, Matukawa F., Inoue K., Hanabasa S., and Maegawa Y., Effort estima-
tion tool based on use case points: Method, tool, and case study, Proceedings
of the 10th International Symposium on Software Metrics, IEEE, Chicago,
Illinois, pp. 292–299, 2004.

Kyburg H.E., Theory and Measurement, Cambridge University Press, Cambridge,
England, 1984.

Lackshmanan K.B., Jayaprakesh S., and Sinha P.K., Properties of control-flow
complexity measures, IEEE Transactions on Software Engineering, 17(12),
1289–1295, 1991.

Larman C., Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, 3rd Edition. Prentice-Hall,
Upper Saddle River, New Jersey, 2004.

Lee W., Experimental Design and Analysis, W.H. Freeman and Company, San
Francisco, California, 1975.

Lethbridge T.C., Sim S.E., and Singer J., Empirical Software Engineering, 10(3),
311–341, 2005.

Le Traon Y., Baudry B., and Jézéquel J.-M., Design by contract to improve software
vigilance, IEEE Transactions on Software Engineering, 32(8), 571–586, 2006.

Le Traon Y., Oubdesselam F., and Robach C., Analyzing testability on data flow
designs, Proceedings of the 11th International Symposium on Software
Reliability Engineering (ISSRE), IEEE, Denver, Colorado, pp. 162–173, 2003.

Leveson N., Safeware: System Safety and Computers, Addison-Wesley, Reading,
Massachusetts, 1995.

568 ◾ Bibliography

Leveson N.G. and Turner C.S., An investigation of the Therac-25 accidents, IEEE
Computer, 26, 18–41, July 1993.

Lincke, R., Lundberg, J., and Löwe, W., Comparing software metrics tools,
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA), ACM, Seattle, Washington, pp. 131–142, 2008.

Li W. and Henry S., Object oriented metrics that predict maintainability, Journal of
Systems and Software, 23, 111–122, 1993.

Lim W.C., Effects of reuse on quality, productivity and economics, IEEE Software,
11(5), 23–30, September 1994.

Linger R., Cleanroom process model, IEEE Software, 11(2), 50–58, March 1994.
Littlewood B., A software reliability model for modular program structure, IEEE

Transactions on Reliability, R-28(3), 241–246, 1979.
Littlewood B., Stochastic reliability growth: A model for fault removal in computer

programs and hardware designs, IEEE Transactions on Reliability, R-30, 3l3–
320, 1981.

Littlewood B. (Ed.), Software Reliability: Achievement and Assessment, Blackwell
Scientific Publications, Oxford, 1987.

Littlewood B., Forecasting software reliability, in Software Reliability, Modelling
and Identification (Ed: Bittanti S.), Lecture Notes in Computer Science 341,
Springer-Verlag, Berlin Heidelberg, pp. 141–209, 1988.

Littlewood B., Predicting software reliability, Philosophical Transactions of the
Royal Society of London, A 327, 513–527, 1989.

Littlewood B., Limits to evaluation of software dependability, in Software Reliability
and Metrics (Eds: Littlewood B. and Fenton N.) Elsevier, London, New York,
1991.

Littlewood B. and Miller D., Software Reliability and Safety, Elsevier, London, New
York, 1991.

Littlewood B. and Miller D.R., Conceptual modeling of coincident failures in
multiversion software, IEEE Transactions on Software Engineering, 15(12),
1596–1614, 1989.

Littlewood B. and Strigini L., Validation of ultra-high dependability for software-
based systems, Communications of the ACM, 36(11), 1993.

Littlewood B. and Verrall J.L., A Bayesian reliability growth model for computer
software, Journal of the Royal Statistical Society, C22, 332–34, 1973.

Littlewood B., Brocklehurst S., Fenton N.E., Mellor P., Page S., Wright D., and
Dobson J., Towards operational measures of security, Journal of Computer
Security, 2, 211–229, 1993.

Lokan C.J., Function points, Advances in Computers, 65, 297–347, 2005.
MacDonnell S.G., Rigor in software complexity measurement experimentation,

Journal of Systems and Software, 16, 141–149, 1991.
Madsen A.L., Bayesian Networks and Influence Diagrams, Springer Verlag, New

York, 2007.
Malevanny S., Case Study: Software Project Cost Estimates Using COCOMO II

Model, 2005, www. codeproject. com, The Code Project, Full URL http:/ /
www. codeproject. com/ Articles/ 9266/ Software- Project- Cost- Estimates-
Using- COCOMO- II- Mo, August 7, 2014.

http://www.codeproject.com,
http://
http://
http://

Bibliography ◾ 569

Manadhata P.K. and Wing. J.M., An attack surface metric, IEEE Transactions on
Software Engineering, 37(3), 371–386, May/June 2011.

Martin R.C., Agile Software Development: Principles, Patterns, and Practices,
Prentice-Hall, Upper Saddle River, New Jersey, 2003.

Mascena, J.C.C.P., de Almeida, E.S., and de Lemos Meira, S.R., A comparative
study on software reuse metrics and economic models from a traceability
perspective, Proceedings of the IEEE International Conference Information
Reuse and Integration (IRI), Las Vegas, Nevada, pp. 72–77, 2005.

Mayer A. and Sykes S.A., Probability model for analysing complexity metrics data,
Software Engineering Journal, 4(5), 254–258, 1989.

McCabe T, A software complexity measure, IEEE Transactions on Software
Engineering, SE-2(4), 308–320, 1976.

McCall J.A., Richards P.K., and Walters, G.F., Factors in software quality, RADC
TR-77-369, 1977. Vols I, II, III, US Rome Air Development center Reports
NTIS AD/A-049 014, 015, 055, 1977.

McGrayne S.B., The Theory That Would Not Die, Yale University Press, New Haven,
Connecticut, 2011.

Mell P., Scarfone K., and Romanosky S., CVSS A complete guide to the common
vulnerability scoring system version 2.0, Forum of Incidence Response and
Security Teams (FIRST), June 2007, http://www.first.org/cvss/cvss-guide.
html, August 7, 2014.

Mellor P., Failures, faults and changes in dependability measurement, Information
and Software Technology, 34(10), 640–654, 1992.

Mellor P., CAD—Computer aided disaster, High Integrity Systems Journal, 1(2),
101–156, 1994.

Melton A. (Ed.), Software Measurement, International Thomson Computer Press,
London, Boston, 1995.

Melton A.C., Bieman J.M., Baker A., and Gustafson D.A., Mathematical perspec-
tive of software measures research, Software Engineering Journal, 5(5), 246–
254, 1990.

Mendonça M.G and Basili V.R., Validation of an approach for improving exist-
ing measurement frameworks, IEEE Transactions on Software Engineering,
26(6), 484–499, 2000.

Menzies T., Greenwald J., and Frank A. Data mining static code attributes to learn
defect predictors. IEEE Transactions on Software Engineering, 33(1), 2–13,
2007.

Miller D.R., Exponential order statistic models of software reliability growth, IEEE
Transactions on Software Engineering, SE-12(1), 12–24, 1986.

Mockus A. and Weiss D., Interval quality: Relating customer-perceived quality
to process quality, Proceedings of the International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, pp. 723–732, 2008.

Modarres M., Kaminskiy M., and Krivtsov V., Reliability Engineering and Risk
Analysis: A Practical Guide, 2nd Edition. CRC Press, Boca Raton, Florida, 2010.

Mohagheghi P. and Conradi R., Quality, productivity and economic benefits of
software reuse: A review of industrial studies, Empirical Software Engineering,
12(5), 471–516, 2007.

http://www.first.org
http://www.first.org

570 ◾ Bibliography

Mohagheghi P. and Conradi R., An empirical investigation of software reuse ben-
efits in a large telecom product, ACM Transactions on Software Engineering
and Methodology (TOSEM), 17(3), 1–31, June 2008.

Moller K.-H. and Paulish D., An empirical investigation of software fault dis-
tribution, in Software Quality Assurance and Measurement (Eds: Fenton
N.E., Whitty R.W., and Iizuka Y.), International Thomson Computer Press,
London, Boston, pp. 242–253, 1995.

Morres T.T., Developing a software size model for rule-based systems: A case
study, Expert Systems with Applications, 21, 229–237, 2001.

Moroney M.J., Facts from Figures, Third and revised edition, Pelican Books, London,
1962.

Mosteller F. and Tukey J.W., Data Analysis and Regression, Addison-Wesley,
Reading, Massachusetts, 1977.

Munger W., Bieman J., and Alexander R., Coding concerns: Do they matter?,
Proceedings of the Workshop on Empirical Studies of Software Maintenance
(WESS 2002), Montreal, Canada, 2002.

Musa J., A theory of software reliability and its application, IEEE Transactions on
Software Engineering, SE-1, 312–327, 1975.

Musa J., Software reliability data, Technical Report available from Data Analysis
Center for Software, Rome Air Development Center, New York, USA,
1979.

Musa J., Software Reliability Engineering: More Reliable Software Faster and
Cheaper, 2nd Edition. Tata McGraw-Hill Education, New York, 2004.

Myers G.J., Composite Structured Design, Van Nostrand Reinhold, New York, 1978.
Neil M.D., Multivariate assessment of software products, Journal of Software

Testing, Verification and Reliability, 1(4), 17–37, 1992.
Neil M.D., Measurement as an alternative to bureaucracy for the achievement of

software quality, Software Quality Journal, 3(2), 65–78, 1994.
Neil M., M. Tailor M., and D. Marquez D., Inference in hybrid Bayesian networks

using dynamic discretization, Statistics and Computing, 17(3), 219–233, 2007.
Neil M., Marquez D., and Fenton N.E. Improved reliability modeling using

Bayesian networks and dynamic discretization, Reliability Engineering &
System Safety, 95(4), 412–425, 2010.

Neapolitan R.E., Learning Bayesian Networks, Upper Saddle River Pearson
Prentice-Hall, Upper Saddle River, New Jersey, 2004.

NetFocus: Software Program Managers Network, number 207, Department of the
Navy (US), January 1995.

Neumann P.G. (moderator), The Risks Digest: Forum on Risks to the Public in
Computers and Related Systems, ACM Committee on Computers and Public
Policy. http://catless.ncl.ac.uk/Risks/, August 8, 2014.

Nishiyama S. and Furayama T., The validity and applicability of function point
analysis, pre-print, 1994.

NIST/SEMATECH e-Handbook of Statistical Methods, http:/ / www. itl. nist. gov/
div898/ handbook/ pmc/ section5/ pmc51. htm. Image of Normal distribution,
visited October 17, 2011.

http://catless.ncl.ac.uk
http://
http://

Bibliography ◾ 571

Oivo M. and Basili V.R., Representing software engineering models: The TAME
goal oriented approach, IEEE Transactions on Software Engineering, 18(10),
886–898, 1992.

Onvlee J., Use of function points for estimation and contracts. In: Fenton, N. E.,
Iizuka, Y., and Whitty, R. W., (Eds.), Software Quality Assurance and Metrics:
A Worldwide Perspective. International Thomson Computer Press, London,
pp. 88–93, 1995.

Ostle B. and Malone L.C., Statistics in Research, 4th Edition. Iowa State University
Press, Ames, Iowa, 1988.

Ott R.L. and Longnecker M.T., An Introduction to Statistical Methods and Data
Analysis, 6th Edition. Ducxbury Press, Pacific Grove, California, United
Kingdom, 2010.

Pai G.J. and Dugan J.B., Empirical analysis of software fault content and fault prone-
ness using Bayesian methods, IEEE Transactions on Software Engineering,
33(10), 675–685, October 2007.

Park R., Software size measurement: A framework for counting source statements,
CMU/SEI-92-TR-20, Software Engineering Institute Technical Report,
Pittsburgh, Pennsylvania, 1992.

Parnas D.L., On the criteria to be used in decomposing systems into modules,
Communications of the ACM, 15(12), 1052–1058, 1972.

Parnas D.L., Madey J., and Iglewski M., Precise documentation of well-structured
programs, IEEE Transactions on Software Engineering, 20(12), 948–976, 1994.

Pearl J., Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, Palo
Alto, CA, 1988.

Pearl J., Causality: Models Reasoning and Inference, Cambridge University Press, 2000.
Perlis A.J., Sayward F.G., and Shaw M. (Eds.), Software Metrics: An Analysis and

Evaluation, MIT Press, Cambridge, Massachusetts, 1981.
Petersen K. and Wohlin C., The effect of moving from a plan-driven to an incre-

mental software development approach with agile processes, Empirical
Software Engineering, 15(6), 654–693, 2010.

Pfleeger, S.L., Lessons learned in building a corporate metrics program, IEEE
Software, 10(3), 67–74, May 1993.

Pfleeger S.L. and Atlee J.M., Software Engineering Theory and Practice, 3rd Edition.
Pearson Education, Inc., Upper Saddle River, New Jersey, 2006.

Pfleeger S.L. and McGowan C.L., Software metrics in a process maturity frame-
work, Journal of Systems and Software, 12, 255–261, 1990.

Pfleeger S.L., Fenton N.E., and Page S., Evaluating software engineering standards,
IEEE Computer, 27, 71–79, September 1994.

Ponisio L. and Nierstrasz O., Using contextual information to assess package cohe-
sion, Technical Report IAM-06-002, University of Bern, 2006.

Poolsappasit N., Dewri R., and Ray I., Dynamic security risk management using
Bayesian attack graphs, IEEE Transactions on Dependable and Secure
Computing, 9(1), 61–74, January-February 2012.

Prather R.E., An axiomatic theory of software complexity measure, Computer
Journal, 27, 273–347, 1984.

572 ◾ Bibliography

Prather R.E., On hierarchical software metrics, Software Engineering Journal, 2(2),
42–45, 1987.

Prather R.E., Hierarchical metrics and the prime generation problem, Software
Engineering Journal, 8(5), 246–252, 1993.

(Interesting theoretical paper that describes a method for generating prime
flowgraphs.)

Prather R.E. and Giulieri S.G., Decomposition of flowchart schemata, Computer
Journal, 24(3), 258–262, 1981.

Pressman R.S., Software Engineering: A Practitioner’s Approach, 7th Edition.
McGraw-Hill, New York, 2010.

Pulford K., Kuntzmann-Combelles A., and Shirlaw S., A Quantitative Approach to
Software Management, Addison-Wesley, Reading, Massachusetts, 1995.

Riaz M., Mendes E., and Tempero E., A systematic review of software main-
tainability prediction and metrics, Proceedings of the Third International
Symposium on Empirical Software Engineering and Measurement, Lake
Buena Vista, Florida, pp. 367–377, 2009.

Rapps S. and Weyuker E.J., Selecting software test data using data flow informa-
tion, IEEE Transactions on Software Engineering, 11(4), 367–375, 1985.

Rasool G. and Mader P., Flexible design pattern detection based on feature
types, Proceedings of the Automated Software Engineering (ASE), Lawrence,
Kansas, pp. 243–252, 2011.

Ratcliffe B. and Rollo A.L., Adapting function point analysis to Jackson System
Development, Software Engineering Journal, 5(1), 79–84, 1990.

Rausand M. and A. Hoyland A., System Reliability Theory: Models, Statistical
Methods, and Applications. 2nd Edition. John Wiley & Sons, Inc., Hoboken,
New Jersey, 2004.

Riaz M., Mendes E., and Tempero E., A systematic review of software maintainabil-
ity prediction and metrics, Proceedings of the Third International Symposium
on Empirical Software Engineering and Measurement, Lake Buena Vista,
Florida, pp. 367–377, 2009.

Rifkin S. and Cox C., Measurement in practice, SEI Technical Report SEI—CMU—
91—TR—16, Software Engineering Institute, Pittsburgh, Pennsylvania, 1991.

Riley P., Towards safe and reliable software for Eurostar, GEC Journal of Research,
12(1), 3–12, 1995.

Roberts F.S., Measurement Theory with Applications to Decision Making, Utility,
and the Social Sciences, Addison-Wesley, Reading, Massachusetts, 1979.

Roberts F.S., Applications of the theory of meaningfulness to psychology, Journal
of Mathematical Psychology, 29, 311–332, 1985.

Robertson J. Microsoft Zune’s New Year Crash, The Street, 2009, http://www.thestreet.
com/story/10455712/1/microsoft-zunes-new-year-crash.html, August 7, 2014.

Ron D., Algorithmic and analysis techniques in property testing, Foundations and
Trends® in Theoretical Computer Science, 5(2), 73–205, February 2010.

Rooijmans J., Aerts H., and van Genutchen M., Software quality in consumer elec-
tronics products, IEEE Software, 13(1), 55–64, January 1996.

Rook P. (Ed.), Software Reliability Handbook, Elsevier, North Holland, 1990.

http://www.thestreet.com
http://www.thestreet.com

Bibliography ◾ 573

Rouquet J.C. and Traverse P.J., Safe and reliable computing on board the Airbus
and ATR aircraft, Proceedings of the 5th IFAC Workshop on Safety of Computer
Control Systems (Ed: Quirk W.J.) Pergamon Press, Oxford, pp. 93–97, 1986.

Roy B., Decision aid and decision making, European Journal of Operational
Research, 45, 324–331, 1990.

Rozum J.A. and Florac W.A., A DoD software measurement pilot: Applying the
SEI core measures, Software Engineering Institute Technical Report CMU/
SEI-94-TR-016, Pittsburgh, Pennsylvania, May 1995.

Saaty T. and Vargas L., Models, Methods, Concepts & Applications of the Analytic
Hierarchy Process, 2nd Edition. Springer, New York, 2012.

Schneidewind N.F., Validating metrics for ensuring space shuttle flight software
quality, IEEE Computer, 27, 50–58, August 1994.

Schneidewind N.F., Controlling and predicting the quality of space shuttle soft-
ware using metrics, Software Quality Journal, 4(1), 49–68, 1995.

Schneidewind N.F. and Keller T.W., Applying reliability models to the space shut-
tle, IEEE Software, 9(4), 28–33, July 1992.

Schulmeyer G.G. and McManus J.I., Handbook of Software Quality Assurance, Van
Nostrand Reinhold, New York, Boston: Artech House, 2008.

Seffah A., Donyaee M., Kline R.B., and Padda H.K., Usability measurement and met-
rics: A consolidated model, Software Quality Journal, 14(2), 159–178, 2006.

Selby R.W., Extensible integration frameworks for measurement, IEEE Software,
7(6), 83–84, November 1990.

Selby R.W., Enabling reuse-based software development of large-scale systems,
IEEE Transactions on Software Engineering, 31(6), 495–510, 2005.

Shen V.Y., Conte S.D. and Dunsmore H.E., Software science revisited: A criti-
cal analysis of the theory and its empirical support, IEEE Transactions on
Software Engineering, 9(2), 155–165, March 1983.

Shepperd M., Software Engineering Metrics, Volume 1: Measures and Validations,
McGraw-Hill, New York, 1993.

Shepperd M.J., A critique of cyclomatic complexity as a software metric, Software
Engineering Journal, 3(2), 30–36, 1988.

Shepperd M. and Turner R., Real time function points: An industrial validation,
Proceedings of European Software Cost Modelling Conference (ESCOM),
Bristol, England, 1993.

Shepperd M.J. and Ince D., Derivation and Validation of Software Metrics,
Clarendon Press, Oxford, 1993.

Shooman M.L., Software Engineering: Design, Reliability and Management,
McGraw-Hill, New York, 1983.

Siegel S. and Castellan N.J. Jr., Nonparametrics Statistics for the Behavioral Sciences,
2nd Edition. McGraw-Hill, New York, 1988.

Sillitti A., Russo B., Zuliani P., and Succi G., Deploying, updating, and manag-
ing tools for collecting software metrics, Proceedings of the 2004 Workshop
on Quantitative Techniques for Software Agile Process, Newport Beach,
California, ACM, pp. 1–4, 2004.

Simpson E., Bayes at Bletchley Park, Significance 7(2), 76–80, 2010.

574 ◾ Bibliography

Software Productivity Consortium, Software measurement guidebook, Software
Measurement Guidebook, (Main contributors: Bassman M.J., McGarry F.,
and Pajesrki R.), John Gaffney, (Ed.) et al. International Thomson Computer
Press, London, Boston, 1995.

Spivey J.M., The Z Notation: A Reference Manual, Prentice-Hall, Englewood Cliffs,
New Jersey, 1993.

Sprent P., Applied Nonparametric Statistical Methods, 4th Edition. Chapman &
Hall, London, 1989.

Stavely A.M., Toward Zero-Defect Programming, Addison-Wesley Longman
Publishing Co., Reading, Massachusetts, Inc., 1999.

Stevens S.S., On the theory of scale types and measurement, Science, 103, 677–680,
1946.

Stevens W., Myers G., and Constantine L., Structured design, IBM Systems Journal,
13(2), 115–139, 1974.

Sydenham P.H. (Ed.), Handbook of Measurement Science, Volume 1, John Wiley,
New York, 1982.

Symons C.R., Function point analysis: Difficulties and improvements, IEEE
Transactions on Software Engineering, 14(1) 2–11, 1988.

Tajima D. and Matsubara T., The computer software industry in Japan, IEEE
Computer, 14(5), 89–96, 1981.

Thuring M. and Mahlke S., Usability, aesthetics and emotions in human- technology
interaction, International Journal of Psychology, 42(4), 253–264, 2007.

Tian J. and Zelkowitz M.V., Complexity measure evaluation and selection, IEEE
Transactions on Software Engineering, 21(8), 641–650, 1995.

Vaisanen A., Auer A., and Korhonen J., Assessment of the safety of PLCs:
Janiksenlinna water plant study, SHIP/T/033, VTT, Finland, 1994.

van Solingen R. and Berghout E., The Goal/Question/Metric Method: A Practical
Guide for Quality Improvement of Software Development, McGraw-Hill,
London, 1999.

van Vliet J.C., Software Engineering: Principles and Practice, 3rd Edition. John
Wiley & Sons, New York, 2008.

Velleman P.F. and Wilkinson L., Nominal, ordinal, interval and ratio typologies are
misleading, The American Statistician, 47(1), 65–72, February 1993.

Verner J.M. and Tate G., Estimating size and effort in fourth generation language
development, IEEE Software, 5(4), 173–177, July 1988.

Verner, J. and G. Tate, A software size model, IEEE Transactions on Software
Engineering, 18(4), 265–278, 1992.

Vincke P., Multicriteria Decision Aids, John Wiley, New York, 1992.
Voas J.M. and Miller K.W., Software testability: The new verification, IEEE

Software, 12(3), 17–28, May 1995.
Walker, M., The Nature of Scientific Thought, Prentice-Hall, Inc. Englewood Cliffs,

New Jersey, 1963.
Wang H., Peng F., Zhang C., and Pietschker A., Software project level estimation

model framework based on Bayesian belief networks, in Sixth International
Conference on Quality Software (QSIC’06), Beijing, China, pp. 209–218,
2006.

Bibliography ◾ 575

Weimer W., Forrest S., Le Goues C., and Nguyen T.V., Automatic program repair
with evolutionary computation, Communications of the ACM, 53(5), 109–
116, May 2010.

Weyuker E., Can we measure software testing effectiveness? Proceedings of the
First International Software Metrics Symposium, Baltimore, Maryland, IEEE
Computer Society Press, pp. 100–107, 1993.

Weyuker E.J., Evaluating software complexity measures, IEEE Transactions on
Software Engineering, SE-14(9), 1357–1365, 1988.

Weyuker E.J., More experience with data-flow testing, IEEE Transactions on
Software Engineering, 19(3), 912–919, 1993.

Wheeler D., More than a gigabuck: Estimating GNU/Linux’s size, Version
1.07, 2002, http:/ / www. dwheeler. com/ sloc/ redhat71- v1/ redhat71sloc. html,
August 8, 2014.

Whitmire S., Object-Oriented Design Measurement, John Wiley & Sons, New York,
1997.

Whitty R.W. and Fenton N.E., An axiomatic approach to systems complexity, in
L. Evans (Ed.), Pergamon Infotech State-of-the-Art Reports: Designing for
Systems Maturity, Pergamon Infotech Ltd., Oxford, New York, pp. 113–137,
1985.

Whitty R.W., Fenton N.E., and Kaposi A.A., A rigorous approach to structural
analysis and metrication of software, IEE Software and Microsystems, 4(1),
2–16, 1985.

Wilson R.I., Introduction to Graph Theory, 5th Edition. Pearson, Harlow, New
York, 2010.

(Solid, standard text on graph theory. More than adequate background for
Chapter 9.)

Wirth N., Program development by stepwise refinement, ACM Computing Surveys,
6, 247–259, 1974.

Wohlin C. and Ahlgren M., Soft factors and their impact on time to market,
Software Quality Journal, 4(3), 189–206, 1995.

Wohlin C., Runeson P., Höst M., Ohlsson M.C., Regnell B., and Wesslén A.,
Experimentation in Software Engineering: An Introduction, Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

Wong W.E. and Mathur A.P., Fault detection effectiveness of mutation and data
flow testing, Software Quality Journal, 4(1), 69–93, 1995.

Woodward M.R., Hedley D., and Hennell M.A., Experience with path analysis
and testing of programs, IEEE Transactions on Software Engineering, 6(5),
278–286, 1980.

Yand Y. and Weber R., An ontological model of an information system, IEEE
Transactions on Software Engineering, 16, 1282–1292, 1990.

(Was the model used by Chidamber and Kemerer for their metrics of object-
oriented designs.)

Yates D.F. and Malevris N., The effort required by LCSAJ testing: An assessment via
a new path generation strategy, Software Quality Journal, 4(3), 227–242, 1995.

Yau S.S. and Collofello J.S., Some stability measures for software maintenance,
IEEE Transactions on Software Engineering, 6(6), 545–552, 1980.

http://

576 ◾ Bibliography

Yau S.S. and Collofello J.S., Design stability measures for software maintenance,
IEEE Transactions on Software Engineering, 11(9), 849–856, 1985.

Yin B.H. and Winchester J.W., The establishment and use of measures to evalu-
ate the quality of system designs, Proceedings of the Software Quality and
Assurance Workshop, San Diego, California, pp. 45–52, 1978.

Yourdon E. and Constantine L.L., Structured Design, Prentice-Hall, Englewood
Cliffs, New Jersey, 1979.

Zhu D., Mosleh A., and Smidts C., A framework to integrate software behav-
ior into dynamic probabilistic risk assessment, Reliability Engineering and
System Safety, 92(12), 1733–1755, 2007.

Zhou Y. and Leung H., Empirical analysis of object-oriented design metrics
for predicting high and low severity faults, IEEE Transactions on Software
Engineering, 32(10), 771–789, October 2006.

Zhou T., Xu B., Shi L., Zhou Y., and Chen L., Measuring package cohesion based on
context, Proceedings of the IEEE International Workshop Semantic Computing
and Systems, Huangshan, China, pp. 127–132, 2008.

Ziliak S.T. and McCloskey D.N, The Cult of Statistical Significance: How the
Standard Error Costs Us Jobs, Justice, and Lives, University of Michigan Press,
Ann Arbor, Michigan, 2008.

Zuneboards, 2008. Cause of Zune 30 Leapyear Problem Isolated. http://www.
zuneboards.com/forums/showthread.php?t = 38143, August 26, 2011.

Zuse H., Software Complexity: Measures and Methods. De Gruyter, Berlin, 1991.
Zuse H., Properties of software measures, Software Quality Journal, 194, 225–260,

1992.
Zweben S.H., Edwards S.H., Weide B.W., and Hollingsworth J.E., The effects of

layering and encapsulation on software development cost and quality, IEEE
Transactions on Software Engineering, 21(3), 200–208, March 1995.

http://www.zuneboards.com
http://www.zuneboards.com

577

Index

A

A320, see Airbus (A320)
Absolute noise, 503
Absolute scale, 59–61
Acceptance range, 118
Access complexity (AC), 467
Access vector (AV), 467
Activity diagram, 415
Actual pairs, 72
Adams’ data, 453
Admissible transformation, 53, 56, 59
Afferent coupling, 418
AgenaRisk, 229

BN tool, 293, 318
AHP, see Analytic hierarchy

process (AHP)
Airbus (A320), 520, 521
Albrecht’s function points, 111; see also

Function points (FP)
Albrecht’s model, 111
Algebraic specifications, 351
All-du-paths, 413, 414
Alternate hypothesis, 146, 239, 240
Analysing data, 225
Analysis of variance (ANOVA), 157,

167, 241
Analytic hierarchy process (AHP), 275
Anomalies, 188, 204
ANOVA, see Analysis of variance

(ANOVA)
Antisymmetric, 269
Assurance, 47, 96

internal attributes and, 96, 97
AT&T Bell Laboratories, 456
Atomic entities, 350
Attribute, 5, 42–44

AV, see Access vector (AV)
Availability, 99, 161, 483
Average, 65, 66, 184, 368
Average module length, 404
Axiomatic approaches, 427

B

Bache, R, 132, 529
Balancing, 156
Bar chart, 243, 247, 248
Baselines, 172–173
Basic S-graphs, 384, 385
Basili V., 100, 103, 109, 338
Bayes theorem, 301

applications of, 304
causal view of evidence, 301
single hypothesis and piece of

evidence, 303
Bayesian evaluation, 278–279
Bayesian network (BN), 292, 301

benefits, 306
classic trade-offs, 322–323
defect prediction models, 314–319
for diagnosing disease, 303
distributions, 325
function points, 328
inference, 302
low number of defects found, 308
with marginal distributions, 312
metrics-driven software risk

methods, 320
network models, 452
NPT for defects found node, 307
probability distributions, 311
project duration, 326, 327
“project level software risk”

model, 320

578 ◾ Index

Bayesian network (Continued)
reasoning, 292, 305
scenarios in risk table view, 323
software defects and reliability

prediction, 310–314
for software project risk assessment

and prediction, 293
staff quality, 326
subnets, 320–322
for understanding defect

prediction, 307–309
very high operational usage, 314
zero defects, 313

Benchmarking, 455
Between-subject design, 155, 170, 283
Biased predictions, 498, 499–502
Bieman J., 425
Binomial test, 280
Black box testing, 300, 522; see also

Testing
Blocking, 156, 158, 164
BN, see Bayesian network (BN)
Boehm B, 18, 118, 358; see also

COCOMO II model
Box plots, 243, 244

for attributes, 246
lines of code, 245
utility of, 247

Branch coverage, 396
Brooks F., 95, 96
Bugs, 188
Bugzilla screenshot, 212

C

C (programming language), 347, 349,
380, 403

C++ (programming language), 347, 349
Calculation, 9
Calibration package, 111
Calibration process, 111
Call graphs, 403
Capability maturity assessment, 20–21
Capability Maturity Model Integration

(CMMI), 20, 105
key process activities, 105
level, 21
metrics at different levels, 105

reliability of, 20
Case study, 137
Causal

factors, 292
relationships, 300

Causal models, 293
using Bayesian networks, 300
from correlation and

regression to, 293
cyclomatic complexity

scatterplots, 297
for defects, 307
factors, 304
fatal automobile crashes, 293, 296
module fault density

scatterplots, 298
operational usage, 299
relationships, 300
risk homeostasis, 295
scatterplot of LOC, 297
scatterplot of temperature, 294
statistical regression models, 296

Causation, 294
CBO, see Coupling between object

classes (CBO)
Change density, 360
Change-point test, 281
Checklist, 342–343
Chi-squared test, 280–281
Class cohesion, 418
Class diagram, 415
Classical data analysis techniques, 232;

see also Software measurement
data analyzing

classical hypothesis testing, 239–241
confirming theory, 241–242
data distribution, 233–235
decision tree, 243
population, 233–235
relationship exploration, 242–243
sampling, 233–235
software measurements

distribution, 236–239
statistical inference, 239–241

Classical hypothesis testing, 239–241
Classification of software measures,

87–88
Classification tree analysis, 259–260

Index ◾ 579

Cluster analysis 171, 267
CMMI, see Capability Maturity Model

Integration (CMMI)
COCOMO 2.0 (COCOMO II), 358–359
COCOMO model, 111
Code inspections, see inspections
Code measures, 347
Code reviews, see reviews
Coding concern, 360–361
Cohesion, 375

object-oriented system, 418–421
ratio measure, 346

Common vulnerability scoring system
(CVSS), 467, 468

Communications complexity, 354
Compiler, 73, 83, 361
Complete balanced block design, 156
Complete order, 271
Complete path coverage, 397
Complete preorder, 271
Complexity, 429

C2 object point complexity levels, 359
components of technical complexity

factor, 354
function point complexity weights, 353
McCabe’s cyclomatic complexity

measure, 391–392
McCabe’s essential complexity

measure, 393
measures/metrics, 20, 114–115
structural complexity properties, 373
weights for object points, 359

Complexity level, 359
Complexity quality metric, see Metrics
Components, 90, 354, 458
Composite measures validation, 96–98
Computational complexity, 364–365
Concatenation, 381
Conclusion validity, 143
Concordance threshold, 277
Conditional probability, 301

distributions, 311
Conditioning on data, 295
Configuration control, 206, 210
Configuration management, 88, 106

graph
control chart, 243, 248–250
control flow, 20, 372

Confirming theories, 174
Construction problem, 274
Construct validity, 143
Control chart, 243, 248–250
Control flow structure, 372; see also

Internal product attributes
code structure, 394–402
flowgraph model, 377–388
hierarchical measurement, 388–394
program units, 376
structured programs notion, 377–388
test coverage measurement, 394–402

Control object, 148
Control of variables, 135–139
Controlled experiment, 137
Conventional wisdom, 174, 175
Correctness, see Program correctness
Correlation

analysis, 243
coefficient, 252

COSMIC, 368
Cost, 18, 201

estimation, 110–112
replication, 138
and schedule attributes, 47
and timing, 71

Counterintuitive results, 295
Coupling

object-oriented system, 416–418
properties, 374–375

Coupling between object classes
(CBO), 417

Crashes, 189
causal model for fatal, 296
fatal automobile, 293

Creeping elegance, 357
Criterion, 264, 269

all du-paths, 413
branch coverage, 400
true, 271

Crossed designs, 165
design methods and tool usage, 166
method types and usage, 168
staff experience, 168

Crossed factors, 167, 168
Crossing (in experiments), 159
Cumulative density function (cdf),

see Distribution—function

580 ◾ Index

Custom attributes, 375–376
CVSS, see Common vulnerability scoring

system (CVSS)
Cyclomatic complexity metric/number,

see Metrics

D

Data collection, 18, 112–113, 185
air traffic control support

system, 209
Bugzilla screenshot, 212
case study forms, 206
changes, 203–204
failure, 191–197
faults, 197–203
forms, 208–211
Installation Document, 210
level of granularity role, 206, 215
orthogonality, 190
problem with problems, 186–191
reliability of, 212–214
software error, 187
software quality terminology, 186
software reliability evaluation, 209
tools, 211–213

Data dependency graph (DDG), 404
Data flow

complexity measure diagrams, 393
information, 412, 414
structure, 371, 372

Data-driven statistical models, 328
Dataset, 225, 236

bar chart of effort, 248
box plot of lines of code, 245
correlation coefficients, 254, 255
module size against faults, 257
software measurement, 243
structure graphed against faults, 261

Data slice, 438
Data storage, 197
Data structure, 371, 411
DDG, see Data dependency graph (DDG)
Decision support metrics, 291

Bayes theorem, 301–306
BN, 292, 301–306
causal models, 293–301

Decision tree, 243, 244

Decision-making, 150–151
Decomposition, see Flowgraphs
Decomposition tree, 386, 387, 400
Defect density measures, 450

faults, failures, 454
IBM operating system data, 453
internal quality assurance, 451–453
in open source system, 451
spoilage, 455–456

Defect prediction models, 314
AgenaRisk, 318
commercial scale versions, 314
defects phase subnet, 316
distributions for nodes, 315
overall testing effectiveness, 318
software testing phases sequence, 319
subnet for testing quality, 316

Defects; see also Errors; Failures; Faults
definition, 45
density, 450–455
found in operation, 292, 310
found in testing, 292, 307
introduced during development,

292, 310
number of present, 307
rate, 452
removal efficiency, 115
residual, 310
zero, 292, 313

Define-your-own model, 445, 447
Delivered source instructions

(DSI), 342
Dependent variable, 142
Depth of inheritance tree (DIT),

421–422
Depth of nesting metric, 388
Derived measurement, see Measurement
Design diversity, 521
Design reliability, 484
Design-level attributes, 402; see also

Internal product attributes
design charts, 403
global modularity, 404–405
information flow, 402–404, 410–414
internal reuse, 409–410
models of modularity, 402–404
morphology, 405–406
tree impurity, 406–409

Index ◾ 581

Direct measurement, 44
product assessment, 46
representational theory, 47
in software engineering, 45

Directed graph, 44, 377
Discordance set, 277
Discretization, 229
Discriminant analysis, 267
Disjoint module additivity, 373, 375
Dissemination, 150–151
Distributed communications and

management, 320–322
Distribution

bimodal, 158
of data, 226, 232
exponential, 50, 491
function, 479, 480
non-normal, 158
normal, 157
skewed, 235
uniform, 229, 311

DIT, see Depth of inheritance tree (DIT)
Documentation quality, 318
DSI, see Delivered source

instructions (DSI)
Du-path, 412, 413–414
Duane model (DU), 497
Dynamic discretization, 310

E

Edge-pair coverage, 398
Edge-to-node ratio, 405
Effective lines of code, see Noncommented

lines of code (NCLOC)
Efferent coupling, 418
Efficiency, 40, 458
Effort

estimation, 18, 110–112
measurement, 77
prediction, 18, 111

Empirical investigation, 133; see also
Empirical studies principles

Empirical relations, 27
attribute, 27
mappings from, 28
simple user surveys, 29

Empirical research, 43, 223, 232

Empirical studies principles, 134
control of variables, 135–139
control over variables maintenance,

141–143
empirical theory, 135
human subjects, 144–145
hypotheses, 139–141
study goals, 139–141
study type, 135–139
threats to validity, 143–144

Empirical theory, 135
Entity, 5
Errors; see also Defects; Failures; Faults

type I, 240
type II, 240

Evidence, 126, 241, 298, 309
Executable statements (ES), 341
Experimental design

choosing number of factors, 162–164
control, 148
crossing, 159
design, 157, 161
error, 152
factorial design, 159, 161
factors vs. blocks, 164–165
fixed-effects model, 169–170
interaction between factors, 163
matched-or same-subject designs, 170
nested and crossed designs, 165–169
nesting, 159–161
no interaction between factors, 163
object, 148
random-effects model, 169–170
related-within-subjects, 155
repeated measurements, 170–171
subject, 148
unit, 151
unrelated-within-subjects, 155, 170

Expert judgement, 111
Explanatory factor, 299
Explanatory power, 294
Exponential-order statistic model, 495
Extended number systems, 70, 75; see also

Meaningfulness
actual pairs, 72
compilers comparison, 73
measurement in, 70
quality relationships, 71

582 ◾ Index

Extended number systems (Continued)
strict weak order, 71
three program flowgraphs, 74
transportation attributes, 70

External
code, 347–348
files, 352
inputs, 352
inquiries, 352
outputs, 352
validity, 144

External attributes, 88; see also
Internal attributes

maintainability measurement, 462–463
security measurement, 467–469
usability measurement, 457–459

External product attributes, 93, 442
maintainability measurement,

460–466
quality measurement, 449–456
security measurement, 466–470
software quality model, 442–449
usability measurement, 456–460

Extreme Programming method
(XP method), 139

F

F statistic, 232, 242, 283
Factor

blocks vs., 164–165
levels of, 158

Factor-criteri-metric model (FCM model),
see McCall Quality model

Factorial design, 159
Failure, 186, 191; see also Errors;

Defects; Faults
attributes, 196
catastrophic, 194
categories, 192–193
cause, 193
cost, 192
count, 194
critical, 194
end result, 192
known software fault, 197
location, 192
mechanism, 193

minor, 194
report, 192
severity, 194
significant, 194
symptom, 195
timing, 192

Fan-in, 237, 411
Fan-out, 237, 411
Faults, 186, 197; see also Errors;

Defects; Failures
categorization, 197
cause, 201
classification of, 199–201
cost, 201
count, 201
data, 197
density, 206
end result, 201
post-release, 299
pre-release, 299
rates, 452
record, 211
report, 198
severity, 201
symptom, 198
tolerance, 188

FIRST, see Forum of Incident Response
and Security Teams (FIRST)

Fixed model approach, 445
Fixed-effects model, 169–170
Flowgraphs, 376, 377

common control constructs, 380
decomposition, 377
definition, 376
directed graph, 378
measures, 377
nesting operation, 381–383
prime decomposition, 386–388
program structure model, 379
repeat–until statement, 379
sequence operation, 381–383
structuredness notion, 384–386

Fog index, 465
Formal methods, 117, 119
Formal specification, 112
FORTRAN, 143, 363
Forum of Incident Response and Security

Teams (FIRST), 467

Index ◾ 583

FPA, see Function Point Analysis (FPA)
FPs, see Function points (FPs)
Function Point Analysis (FPA), 369
Function points (FPs), 351

complexity weights, 353
components from specification, 353
FPA, 369
IFPUG, 369
limitations, 356–358
for object-oriented software, 355–356
spelling checker, 352, 353
TCF, 354
UFC, 352

Functional size measures, 351
approaches, 351
complexity weights, 353
components from specification, 353
FPs, 351
FPs limitations, 356–358
for object-oriented software, 355–356
spelling checker, 352, 353
TCF, 354
UFC, 352

Functionality, 111, 351
delivered, 321–323, 325, 327, 328
measures, 15, 365

G

Galileo Galilei, 7
Gamma distribution, 495
Gamma variable, 496
Gaussian distribution, 234, see Normal

distribution
Geometric mean, 69
Gilb T., 113, 447, 449
Global modularity, 404–405
Goal Question Metric (GQM), 184

AT&T, 102
combined with process maturity, 107
derivation, 101
framework, 100
with process maturity, 108–110
productivity, 101
results of, 104
templates, 103
used to evaluate effectiveness of

inspections, 92

Goal-based framework, 87; see also
Software measurement

Goel–Okumoto model (GO model),
496–497

Graph, 44, 46, 163, 433
Graph theory, 437
Group estimate, 513
Gunning R., 465, 472; see also Fog Index

H

Halstead, Maurice, 344
measures, 114, 126
suite of software science

measures, 125
Halstead’s approach, 344

LOCs counting, 344
measurement theory, 346
program length measure, 345
tokens classification, 345

Halstead’s software science metrics,
see Metrics

Hardware reliability, 476, 482, 484, 497
Harel, D., 369
Hazard rate, 481–482
Hennel, M., 102
Henry & Kafura’s metric, 411, 412;

see also Metrics
Hewlett Packard

software reuse at, 362, 363
use of cyclomatic complexity

measure, 362
HHS, see US Dept. of Health and Human

Services (HHS)
Hierarchical measures, 388, 390

cyclomatic complexity
measurement, 391–393

essential complexity
measurement, 393–394

flowgraph-based measures, 391
set of S-graphs, 389
unstructured prime, 394

Hitachi, 455
Homomorphism, 37
Human error, 186
Human subjects, 144–145
Humphrey, W., 112
Hybrid complexity measure, 412

584 ◾ Index

Hypothesis, 139
Hypothesis testing, 226, 231–232

I

IBM, 113, 132, 453
Ideal point, 273
IEEE, see Institute of Electrical

and Electronic Engineers
(IEEE); Standards

if-then-else statement, 399
if-then statement, 379, 399
IFPUG, see International Function Point

Users Group (IFPUG)
In-degree (graph), 378
Ince, D., 407, 430
Incident count metrics

largest prime, 390
multivariate approach, 264
number of occurrences of

named prime, 390
size measures, 336, 360
structural measures, 277, 371, 464
test coverage measures, 394–395,

412–412, 436
time and effort metrics, 14
Yin and Winchester system

design, 410
Incident Report form, 210
Incident Response report, 210–211
Incidents, 91, 211
Independent groups design, 283
Independent variables, 142, 149, 158
in experiments, see Crossing

(in experiments)
Infeasible path, 397
Inference procedure, 488
Information flow, 410

complexity, 411, 412
measures, 411
models, 402–404
test coverage measures, 412–414

Informed consent, 145
Inspections, 16

sister projects and, 172
statistics from AT&T, 116

Institute of Electrical and Electronic
Engineers (IEEE), 186

Institutional review board (IRB), 145
Inter-modular measures, 402
Internal attributes, 88

and assurance, 96
composite measures

validation, 96–98
importance of, 95, 96
maintainability measurement,

463–466
objective measures of, 92
and quality control, 96
security measurement, 470
usability measurement, 459–460

Internal files, 352
Internal product attributes, 335

COCOMO II approach, 358–359
computational complexity, 364–365
design size, 348–350
estimators, 351–358
functional size measures, 351–358
problem size, 364–365
program code size, 339–348
requirements analysis, 350–351
size measures applications,

360–364
software size properties, 336–339
solution size, 364–365
specification size, 350–351

Internal product attributes, 93–94,
372

Internal reuse, 409–410
Internal validity, 143–144
Internally valid, 122
International Function Point Users

Group (IFPUG), 369
International Software Benchmarking

Standards Group (ISBSG), 211
International Standards Organisation

(ISO), see Standards
Interval scale, 56–58
Intra-modular measures, 402
Investigation, 21–22, 137; see also

Empirical studies principles
measurement-based, 183
for statistical technique, 68
types of, 137

IRB, see Institutional review
board (IRB)

Index ◾ 585

ISBSG, see International Software
Benchmarking Standards
Group (ISBSG)

ISO/IE C 25010 standard quality
model, 447–449

ISO/IE C 9126–1 standard quality
model, 447–449

J

Japanese companies, 455
Java, 347, 349
Java Modeling Language (JML), 138
Jeffery D. R., 357
Jelinski–Moranda model (JM model),

492, 512
data analyzing, 493
hazard rate, 492
inference procedure, 493
Musa model, 494–495
reliability behavior, 493–494
Shooman’s model, 494
successive failure times, 494
u-plots for, 502

Jones C., 339, 344
Jones reports, 339, 455

K

Kafura D., 411
Kafura-Henry measure, 411, 412
KDSI, see Lines of code
Keiller-Littlewood model

(KL model), 493
Kelvin scale, 30
Kendall’s robust correlation

coefficient, 253
Kitchenham B., 356, 358, 447
KL model, see Keiller-Littlewood model

(KL model)
KLOC, see Thousands of delivered lines

of code (KLOC)
Known defects, 450
Known software fault, 197
Kolmogorov distance, 501–502
Kolmogorov–Smirnov one-sample

test, 281
Kruskal-Wallis test, 242

L

Lack of cohesion metric (LCOM), 419
Latent defects, 450
Latin Square, 156
Lazy evaluation, 300
LCC, see Loose class cohesion (LCC)
LCOM, see Lack of cohesion metric

(LCOM)
LCSAJ, see Linear Code Sequence and

Jump (LCSAJ)
Least squares technique, 256, 259, 263
Length, 44

average module, 404, 421
code, 125
measures, 53, 123

Levels of factor, 158
Life-cycle process, 126–127
Likelihood of evidence, 302
Likert scale, 31
Linear Code Sequence and Jump

(LCSAJ), 401
linear combination, 358, 434, 435
Linear independent path, 43, 391,

401–402, 434
Linear regression, 255–257
Lines of code (LOC), 33, 34, 339

checklist, 342–343
comment density, 341
comment lines of program text, 341
delivered lines of code, 140
DSI, 342
executable code, 341
Halstead approach, 344–346
KLOC, 40, 46, 92, 292, 360
NCLOC, 340
SEI, 20, 33, 342
simple program, 343
wc–l code, 344

Lint, 402
Littlewood, B., 49, 508, 521
Littlewood Model (LM), 495
Littlewood–Verrall model (LV model),

495–496, 502
LM, see Littlewood Model (LM)
LOC, see Lines of code (LOC)
Local control, 155–157
Loose class cohesion (LCC), 419–420

586 ◾ Index

Lower quartile, 244, 245
LV model, see Littlewood–Verrall model

(LV model)

M

Maintainability, 460
decomposition of, 445
degree of effectiveness, 461
external view, 462–463
internal attributes, 463–466

Maintainable, 460, 461
Maintenance

activities, 4, 107
adaptive, 204, 461
corrective, 204, 461
perfective, 461
preventive, 204, 461

Marginal
distributions, 312, 318
probabilities, 306

Maturity; see also Capability Maturity
Model Integration (CMMI)

MAUT, see Multi-attribute utility
theory (MAUT)

Maximum Likelihood Estimates, 497
Maximum likelihood estimation, 493
McCabe’s Essential complexity

measure, 393–394
McCabe T., 43

cyclomatic number, 43, 126
Essential complexity measure, 393
testing strategy, 433–436
yclomatic complexity measure, 391–392

McCall model, 89, 445–447; see also
Quality models

software quality model, 444
MCDA, see Multi-criteria decision aids

(MCDA)
McNemar change test, 282
Mean, 66, 67
Mean time between failures

(MTBF), 483
Mean time to failure (MTTF), 481, 487
Mean time to repair (MTTR), 462, 483
Meaningfulness, 61, 62

in derived measurement, 75–78
derived measurement and, 75–78

indirect measurement, 75
objective measures, 68–70
statistical operations on

measures, 65–68
subjective measures, 68–70
transformations, 63, 64

Measure, 45; see also Software measure
mapping, 30, 53
validation of, 122

Measurement, 4, 25; see also
Representational theory
of measurement; Software
measurement

characteristic of, 30
direct, 44–45, 47
Douglas Hubbard’s perspective, 8
in everyday life, 4–11
indirect, 111, 341, 423
mapping, 33, 38
for prediction, 47–51
program, 100, 208
scales and statistics, 69
in software engineering, 4, 11–17
in sport, 9
tools, 25–26, 213
understanding, control, and

improvement, 16, 17
Measurement scale, 51, 61

absolute scale, 59–61
admissible transformation, 53
interval scale, 56–58
nominal scale, 53
ordinal scale, 54–56
ratio scale, 58–59
types, 52

Measurement theory, 26
principles of, 407, 427
problems with, 52, 358

Measures, 19
of association, 252–253
of dispersion, 66

Measures validation, 119–120, 178
statistical operations on, 65–68
of understandability, 67

Median, 66, 67, 244–245
Median time to failure, 481, 511
Median time to next failure, 487, 490, 497
Mellor, P., 195

Index ◾ 587

Melton, A., 437
Message passing coupling (MPC), 417
Method cohesion, 418
Metric validation, 120–121
Metrics, 102; see also Software measures;

Software metrics
Bayes theorem, 301–306
BN, 292, 301–306
branch coverage, 363–364
causal models, 293–301
complexity, 20, 114
cyclomatic complexity number

data, 391–393
D-structured, 390
for Decision support, 291–293
depth of nesting, 388
essential complexity, 393
Halstead’s software science

metrics, 344
Henry & Kafura’s Information

flow, 411–412
Ince and Hekmatpour tree

impurity, 407
management by, 21, 115–116

problems with, 125
security, 20
structural, 20, 114

METRICS measurement tool, 21
Metrics-driven software risk

methods, 320
Middle-exit loop, 380
Mode, 66, 82
Model, 40

attributes, 42–44
derived measurement, 44–47
direct measurement, 44–47
directed graphs, 44
measurement for prediction, 47–51
process measures, 41

Modularity
global, 404–405
measures, 123
models, 402–404

Module, 402
Module call-graph, 403
Module monotonicity, 373
Monotonic mapping, 56
Morphology, 405–406

Motorola, 314
MPC, see Message passing

coupling (MPC)
MTBF, see Mean time between

failures (MTBF)
MTTF, see Mean time to failure (MTTF)
MTTR, see Mean time to repair (MTTR)
Multi-attribute utility theory

(MAUT), 274
AHP, 275
problems, 274
verification and validation

techniques, 275, 276
Multi-criteria decision aids (MCDA),

267, 268, 290; see also Software
measurement data analyzing

Bayesian evaluation, 278–279
MAUT, 274–276
outranking methods, 276
payoff matrix, 273
preference relation, 271
ratings for software package, 272
set of actions, 269, 270

Multivariate data analysis, 264
cluster analysis, 267
discriminant analysis, 267
principal component analysis, 264–266

Multivariate linear regression, 259
Multivariate regression, 259
Musa model, 494–495
MUSiC project, 458, 459

N

N-version programming, 120, 121
Nadir, 273
Narrow sense, 75, 77
NASA

Goddard Software Engineering
Laboratory, 362

Goddard Space Flight Center, 143
NCLOC, see Noncommented lines of

code (NCLOC)
Negatively transitive relation, 71
Neil, M., 126, 293, 306, 493
Nested designs, 165

methods and tool usage, 167
Nested factor, 159

588 ◾ Index

Nesting, 159, 160
categories, 160
flowgraph, 381–383
language and productivity, 161

NHPP, see Nonhomogeneous Poisson
process (NHPP)

NOC, see Number of children (NOC)
Node probability table (NPT), 304

for defects found node, 307
for node “probability of finding

defect”, 317
Noise (in experiments), 152
Noisy predictions, 498, 502–503
Nominal scale, 53
Noncommented lines of code

(NCLOC), 340
Nonhomogeneous Poisson process

(NHPP), 496–497
Nonnormal distributions, 158, 235
Nonparametric methods, 157
Nonparametric statistical

techniques, 238
Nontextual code, 347–348
Normal distribution, 157, 229, 234;

see also Distribution
NPT, see Node probability table (NPT)
Null hypothesis, 140
Number of characters (CHAR), 346
Number of children (NOC), 423
Number of factors, 158, 159, 162–164
Numerical relation, 33, 51, 72

O

Object, 5
diagram, 415
measures, 68–70
oriented metrics, 417, 421–422

Object Constraint Language (OCL), 138
Object management group (OMG),

414–415
Object points, 111, 355, 358

COCOMO II, 365
complexity weights for, 359
new, 359

Object-oriented design, 348
Object-oriented development, 422
Object-oriented software, FPs for, 355–356

Object-oriented system, 414; see also
Internal product attributes

cohesion measurement, 418–421
coupling measurement, 416–418
design pattern use, 423–425
languages, 415
length measures, 421–422
reuse measurement, 422–423
UML diagram types, 415

OCL, see Object Constraint Language
(OCL)

OMG, see Object management group
(OMG)

One-group tests, 279; see also Two-group
tests

binomial test, 280
change-point test, 281
chi-squared test, 280–281
Kolmogorov–Smirnov one-sample

test, 281
one-sample runs test, 281

One-sample runs test, 281
Operands, 89, 345
Operational

environment, 517–518
profile, 517–518
time, 483
usage, 299, 310, 311, 313, 314

Operations on measures, 65–67
Operators, 65, 345, 346
Optimizing process, 21, 105; see also

Capability Maturity Model
Integration (CMMI)

Order relations, 55; see also Preference
relations

Ordinal scale, 54–56
Orthogonality, 190
Ott, L., 233
Out-degree (graph), 378, 436
Outliers, 245
Outranking methods, 276, 378
Outranking relation, 276

P

p-uses, 412
Parametric reliability growth model, 490

comments on models, 497

Index ◾ 589

failure behavior, 491
JM model, 492–495
LM, 495
LV model, 495–496
NHPP model, 496–497
output space, 491
program execution, 490

Parametric statistics, 239
Parametric tests, 157
Pareto distribution, 495
Partitioned project, 173
Path (in graph), 378
Path coverage, 397

complete, 397
prime, 398, 414

Payoff matrix, 273
pdf, see Probability density function (pdf)
Pearson correlation coefficient, 252
Pearson product-moment correlation, 69
Percentile, 502
Perfect prediction, 501
Perfective maintenance, 461; see also

Maintenance
Personal Software Process (PSP), 112
Philips, 314
Planning case studies, 171

baselines, 172–173
partitioned project, 173
retrospective, 173
sister projects, 172

Planning experiments
design, 151–157
process model, 145–151
types of experimental designs, 157–161

PLR, see Prequential likelihood
ratio (PLR)

Point events, 496
Population parameters, 234
Portability, 89, 93, 449
Prather R., 572
Predicate nodes, 378
Prediction, 47

assessment and, 48
deterministic, 118
examples, 49
with incomplete data, 306
mathematical model, 48
measurement for, 47

models, 177–178, 488
procedure, 488, 489
quality, 503
reliability model, 50
software, 50, 51
stochastic, 118
system, 117–119, 488

Predictive accuracy, 497; see also
Software reliability

crude prediction system, 499, 500
dealing with bias, 499–502
dealing with noise, 502–503
prequential likelihood function,

503–507
reliability predictions, 498

Preference ratio, 275
Preference relation, 271
Prequential likelihood function,

503, 506
LNHPP and JM predictions, 507
Musa SS3 data, 509–510
no parametric prediction system, 508
pdf functions, 506
prediction system, 504, 505

Prequential likelihood ratio (PLR), 507
Prime decomposition, 386–388
Prime flowgraphs and decomposition,

383; see also Flowgraphs
Prime path, 397–398
Prime path coverage, 414
Primitives, 53
Principal component analysis, 264–266
Private reuse, 430
Probability

conditional, 301, 311
of failure on demand, 484
of finding a defect, 317, 319
prior marginal, 305
posterior, 301

Probability density function (pdf), 477
Probability distributions, 226, 227

area under curve, 230
continuous, 229
experiments, 228
nodes of BN model, 311
uniform distribution, 229

Problem size, 364–365
Procedure nodes, 378

590 ◾ Index

Processes, 91, 92; see also Capability
Maturity Model Integration
(CMMI)

assessment, 322
improvement, 105–107
maturity, 21, 107, 108

Process improvement
CMMI product team, 105
goals, 106, 107
measurement for, 105

Process model, 145
analysis, 150
conception, 146
decision-making, 150–151
design, 146–150
dissemination, 150–151
execution, 150
for performing experiments, 145
preparation, 150

Productivity, 98, 101, 336
goal of improving, 108
measures and models, 112
programmer, 83

Products, 88, 92
design measurements, 95
external product attributes, 93
internal product attributes, 93–94

Program code size, 339
alternative code size measures,

346–347
external code, 347–348
Halstead approach, 344–346
LOCs counting, 339–344
nontextual code, 347–348
software integral component, 339

Program correctness, 83, 121
Program design size, 348–350
Program self-testing, 522–523
“Project level software risk” model, 320,

321
PSP, see Personal Software Process (PSP)

Q

Quality, 322, 327; see also Software
quality models

assurance, 96, 393, 405
attribute, 442

criteria, 443
delivered, 322
design process, 310, 313
factor, 443
improvements at Hitachi, 455
measures, 19, 113, 425, 455–456
metric models, 19, 113
people, 324
process, 321
relationships, 71
subfactors, 443

Quality control (QC), 96, 97

R

Random selection, 172, 173
Random variable, 114, 482
Random-effects model, 169–170
Randomization, 154–155
Randomized block design, 156
Ranked nodes, 311
Ranking problem, 270
Rate of occurrence of failure

(ROCOF), 483
Ratio of cohesive interactions (RCI), 420
Ratio scale, 58–59
Ratio transformation, 59, 81
RCI, see Ratio of cohesive

interactions (RCI)
Readability, 465–466
Recalibration, 508

involving u-plot, 512, 513, 514
JM model, 512
medians of, 515
predictive accuracy, 517
prequential likelihood analysis, 516

Recursive rules, 384
Reflexive, 269
Regression

linear, 255–257
multivariate, 259
robust, 257–259

Regression models, 292, 294, 296
Related within subjects design, 155, 170
Relational system, rich, 37, 52
Relationships exploration, 175–177
Reliability; see also Software

reliability models

Index ◾ 591

data collection procedures,
213–214

demand on device, 484
distribution function, 479
exponential function, 478
function, 479, 480
growth, 483
hazard rate, 481–482
measurement, 480
models, 19, 20, 113–114, 491
MTTF, 481
pdf, 477, 479
probability of failure, 478
problem, 482, 484–490
system availability, 483
target, 47, 486
theory, 476

Repeatable process, 518
Repeat–until statement, 379
Repeated measurements, 170–171
Replication, 153–154
Representational theory of

measurement, 26
empirical relations, 27–32
representation condition, 33–40
rules of mapping, 32, 33
sampling users, 29
subjective rating schemes, 31

Representation condition, 33, 35
formal measurement key

stages, 37
measurement mapping, 36
measurement mapping, 38
specific measures examples, 40
statement, 35

Representation problem, 52, 274
Requirements

analysis, 350–351
assessment, 70
definition, 109
stability, 45

Rescaling, 75
Residual, 256
Residual defects, 310, 311, 518
Residual faults, 451
Resources, 88, 98–99
Response for class (RFC), 417
Response variables, 148–149

Reused verbatim, 362
Reverse engineering tools, 429
Reviews, see Inspections
RFC, see Response for class (RFC)
Risk

assessment, 292, 294, 469
of fatal automobile crashes, 293
homeostasis, 295
management and assessment, 294
table, 323

Robust correlation, 253–255
Robust regression, 257–259
Robust statistical methods, 238
ROCOF, see Rate of occurrence of

failure (ROCOF)
Rombach, D., 100, 103, 104
Round-trip path, 398
Rules of mapping, 32, 33
Run, 281

S

S-graphs, 384, 385
SAEM, see Security attribute analysis

method (SAEM)
Safety-critical systems, 138, 519

failures in, 194
Sample statistics, 234
Scatter plots, 243, 250–252
Scientific method, 12, 134
SCOPE, see Software Certification

Programme in Europe
(SCOPE)

Security attribute analysis method
(SAEM), 468–469

Security measurement, 466
competent programmer hypothesis,

466
external view, 467–469
internal attributes, 470

Security metrics, 20
SEI, see Software Engineering Institute

(SEI)
Sequence diagram, 415
Sequencing, flowgraph, 381–383
Severity, 194
Siemens, 314
Sign test, 73, 157, 282

592 ◾ Index

Simple analysis techniques, 243; see also
Software measurement data
analyzing

bar chart, 247, 248
box plots, 243–247
control chart, 248–250
linear regression, 255–257
measures of association, 252–253
multivariate regression, 259
robust correlation, 253–255
robust regression, 257–259
scatter plots, 250–252

Simple path, 378, 397
testing, 398

Simple-round-trip coverage, 398
Sister projects, 172
Size, 18, 405

code, 339–348
design, 348–350
functional, 351–359, 365
measures, 335, 336, 346–347
prediction, 339, 358
problem, 336, 364

Size measure applications, 360
normalizing other measurements,

360–361
size-based reuse measurement, 361–363
size-based software testing

measurement, 363–364
Size-based reuse measurement, 361

counting reused code, 361
levels of code, 362
NASA systems, 362
reuse of code, 363
TRs, 361

Size-based software testing
measurement, 363–364

Software Certification Programme in
Europe (SCOPE), 265

Software complexity measure, 425;
see also Metrics

code-based metric, 427, 428
single-valued measures, 426
Weyuker properties, 426

Software engineering, 11, 145
evaluation of, 87
measurement in, 11, 45
methods, 95

neglect of measurement in, 12–14
specific measures, 40
surveys, 136

Software Engineering Institute (SEI), 20,
33, 105, 342; see also Capability
Maturity Model Integration
(CMMI)

Software error, 187
Software measurement, 3, 87–88; see also

Measurement; Metrics;
Software metrics

complexity metrics, 114–115
components, 90
cost estimation, 110–112
data collection, 112–113
distribution, 236–239
effort estimation, 110–112
internal and external attributes, 88–89
management by metrics, 115
methods and tools evaluation, 116, 117
objectives for, 14–16
productivity measures and

models, 112
quality models and measures, 113
reliability models, 113–114
resource estimation, 17
structural metrics, 114–115

Software measurement data
analyzing, 225

classification tree analysis, 259–260
hypothesis testing, 226–232
multivariate data analysis, 264–267
statistical distributions, 226–232
statistical tests, 279–284
transformations, 261–263

Software measurement validation,
117, 125–126

classes, 126–127
and imprecise definition, 124–125
measures, 119–120
metric validation, 120–121
prediction systems, 117–119
stringent requirement, 122–124

Software metrics, 17; see also Metrics
capability maturity assessment, 20–21
complexity metrics, 20
cost and effort estimation, 18
data collection, 18, 183, 184

Index ◾ 593

management, 21
measures, 19
methods and tools evaluation, 21–22
quality models, 19
reliability models, 19, 20
security metrics, 20
structural metrics, 20

Software quality measurement,
449–456

defect density measures, 450–456
defects-based, 450

Software quality models, 442
attribute expansion approach, 447
Boehm’s model, 443
decomposition of maintainability, 445
define-your-own model, 447
ISO/IE C 25010 standard quality

model, 447–449
ISO/IE C 9126–1 standard quality

model, 447–449
McCall’s model, 444, 446
model-builders, 443

Software reliability, 475
demand on device, 484
design reliability, 484
distribution function, 479
exponential function, 478
growth problem, 475–476
hazard rate, 481–482
MTTF, 481, 487
operational environment, 517–518
parametric reliability growth model,

490–497
pdf, 477, 479
plot of failure times, 486
prediction system, 488, 489, 490
probability of failure, 478
problem, 484
recalibration technique, 508–517
reliability growth, 483
reliability measurement, 480
reliability problem, 482
reliability theory, 476
successive failures, 485
system availability, 483
wider aspects, 518–523

Software science, 344; see also Halstead’s
approach; Metrics

Software size, 336
defect density, 336
design and code attributes, 339
human size, 337
productivity, 336
properties, 338
UML diagrams, 338

Space shuttle, 276
Spanning subgraph, 407
Spanning subtree, 407
Spearman’s rank correlation

coefficient, 253
Specification measures, 351
Specification size, 350–351
SQuaRE, see Systems and Software

Quality Requirements and
Evaluation (SQuaRE)

Standard deviation, 234, 248
Standards

IEEE 1044–1993, 199
IEEE 1044–2009, 186, 188, 189, 198,

199, 220
IEEE 1061–2009, 19
IEEE 610.12, 186, 188
ISO/IEC 25010:2011, 448, 449,

457, 461
ISO/IEC 25040:2011, 449
ISO/IEC 9126 Parts 1–4, 448, 449

Start node, 378
State machine diagram, 415
State variable, 141–142
Statement coverage, 396
Static analysis, 377
Statistical distributions, 226

probability distributions, 226–230
Statistical inference, 239–241
Statistical regression models, 296
Statistical significance, 240
Statistical testing, 518, 519
Statistical tests, 157, 279, 280

one-group tests, 279–281
two-group tests, 281–284

Stop node, 378, 403
Stress testing, 519
Strict weak order, 71
Strongly complete relation, 269
Strongly connected graph,

433–435

594 ◾ Index

Structural complexity, 377; see also Metrics
properties, 373

Structural measurement, 372
cohesion properties, 375
complexity properties, 373
coupling properties, 374–375
custom attributes, 375–376
length properties, 373–374

Structural metrics, 20, 114–115
Structured programming,

generalized notion, 384
Student’s t-test, 241
Sub-attributes, 70, 73, 74
Subjective measures, 68–70
Subjective rating schemes, 31
Subnets, 320–322
Substitution rates of criteria, 273
Survey, 136
Survival function, see Reliability function
Symons, C., 356, 357
System complexity, 373
System design measure, 410
System spoilage measure, 45
Systems and Software Quality

Requirements and Evaluation
(SQuaRE), 448

T

t-test, 279
for matched groups, 282
Student’s, 241

Tails, 245
Task effectiveness, 458
TCC, see Tight class cohesion (TCC)
TCF, see Technical complexity factor (TCF)
Tchebychev distance, 273
Team structure measures, 99
Technical complexity factor (TCF), 354;

see also Function points (FP)
Technology factor, 356, 357
Temperature measurement, 30
TER, see Test effectiveness ratio (TER)
Testability, 522
Test cases, 399–401
Test coverage measures, 394

examples, 398
program flowgraph, 396

statement coverage, 396
structural testing strategy, 397
TER, 401–402
test cases, 399–401
test requirements, 395

Test data, 90, 203
Test effectiveness ratio

(TER), 401–402
Test requirement, 363–364
Testing

amount of, 311
black box, 300, 522
efficiency, 76
effort, 311
phases, 217, 315, 319
process, 16, 88
quality, 307, 308
subnet for, 316

Theil’s robust regression, 258–259
Therac-25, 222
Thermometer, 30, 51
Thousands of delivered lines of code

(KLOC), 40, 46, 92, 292, 360
Threats to validity, 143–144
Tight class cohesion (TCC), 419–420
Tightly coupled, 104
Time, 7, 99, 323
Time efficiency, 93
Time prediction, 118
Tools, see Software measurement
Traditional model, 271
Transformations, 261

module structure, 263
Tukey’s ladder, 262

Transportation attributes, 70
Treatment (in experiments), 147
Tree, 406
Tree impurity, 406

dependency graphs, 406
properties, 408–409
spanning subtree, 407

Trial, 148
Trouble Reports (TRs), 361
TRs, see Trouble Reports (TRs)
True criterion, 271
True reliability, 503
Tukey’s ladder, 262
Two-exit loop, 380

Index ◾ 595

Two-group tests, 281, 284
ANOVA, 283
independent groups comparison, 283
matched groups comparison,

281–282
Type I, II errors, 240

U

u-plot, 499–502, 511
smoothed, 513

UFC, see Unadjusted function point
count (UFC)

Ultra-high reliability, 520
UML, see Unified modeling language

(UML)
Unadjusted function point count

(UFC), 352; see also Function
points (FP)

Uncertainty of predicted
outcome, 300

Uncommented size, 340–341
Understandability measures, 67
Unified modeling language (UML),

20, 414–415
Uniform distribution, see Distributions
Uniqueness problem (in measurement

theory), 52
Units, 58
UNIX, 346, 402
Unrelated between-subjects design,

155, 170
Unwarranted noise, 498, 503
Upper quartile, 244, 245, 247
Usability

external view, 457–459
internal view, 459–460
measures, 456
user-friendliness, 457

US Air Force, 447
US Department of Defense, 115
US Dept. of Health and Human

Services (HHS), 144
Use case, 350

diagram, 350, 415
points, 355–356

User-friendliness, 457
US National Highway Traffic Safety

Administration, 293

V

Validation
in narrow sense, 122, 143
of prediction systems, 118
in wide sense, 122, 123

Variable, confounded, 153
Variance, 66, 229
Verbal frequency scale, 31
Vulnerability, 466

W

Walk (in graph), 378
Walston and Felix model, 77
“wc–l code”, 344
Weighted methods per class (WMC), 349
Weyuker E., 426
While-do loop, 380
Whitty, R., 386, 387
Wide sense rescaling, 75
Wilcoxon signed ranks test, 282–283
Windowing environment, 347
WMC, see Weighted methods per class

(WMC)
Woodward, M. R., 575

X

XP method, see Extreme Programming
method (XP method)

Y

y-plot, 513
Yau and Collofello measure, 575, 576
Yin and Winchester measure, 410

Z

Z (specification language), 351
Zero cohesion, 375
Zuse H., 426

