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CHAPTER- 1 

TRANSFORMATIONS 

1.1 Revision on Mappings 

Definition: Let X and Y be nonempty sets. Then, a mapping f from X to Y is a 

rule which assigns to every element x in X exactly one (unique) value )(xf  in

Y , here, )(xf is called the image of x  under f . The set X  is said to be the 

domain of f and Y is the co-domain of f . The set of all images of f is called 

range of f . In this definition of mappings, the word unique (exactly one) 

refers to the idea of well definedness. A rule which assigns to every element in 

the domain (in X ) some value in the co domain (in Y ) is said to be a mapping 

if it is well defined.  

To show well-defined ness, it suffices to show that zyzxfyxf  )(,)( . 

Notation: The mapping f  from X to Y is denoted symbolically by YXf : . 

Examples 

1. Let 22: RRg   be given by ).3,2(),( yxyxg   Show that g  is a mapping. 

Solution: Clearly g is a rule which assigns to each value in 2R  a value in 2R . 

Now, let’s show that  g is well-defined. Suppose ),(),(),(),( dcyxgbayxg   

),(),(

3,23,2

),()3,2(),()3,2(),(),(),(),(

dcbadbca

dycxbyax

dcyxbayxdcyxgbayxg







  

This implies that the image of any point ),( yx in 2R  is unique and hence g is 

well defined and it is a mapping.  
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2*. Let Z  be set of integers. Consider the set }21:{  xZxS . Define  

SZh :  by 2)( xxh  . Is h  a mapping or not? 

}3,2,1,0,1{}31:{

}212:{}21:{ Here,:





xZx

xZxxZxSSolution
 

As we see, 1x is in S . But there is no integer in the domain such that  

1)( xh . This means 1x has no pre-image. Hence, h  is not a mapping. 

1.2 Types of Mappings 

Definitions: 

a) One-to-one (Injective) mapping: A mapping YXf :  is said to be a one-

to-one (injective) mapping if and only if f sends distinct elements of X in to 

distinct elements of Y. This means ).()( yfxfyx   In other words, f is 

one to one if and only if yxyfxf  )()( . 

b) Onto (Surjective) mapping: A mapping YXf :  is said to be onto 

mapping if and only if for every point y in Y , there exists an element x  in X  

such that  

)(xfy  . Or if the image of f is the whole of Y . That is every element of Y

has at least one  pre-image in X . 

c) Bijective mapping: A mapping is said to be bijective if and only if it is both 

one to one and onto mapping. 

Examples:  

1. Verify that the following mappings are one to one but not onto. 

     NNfa :)  given by xxf 2)(                             

     ZxZZgb :)  given by )0,()( nng   

     NNxNhc :)  given by nmnmh 3.2),(       

     2222:) xx MMfd  given by 1)(  AAf  

 



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  6 
 

Solution: 

a) i) One to one: Assume )()( yfxf   for any two numbers yx, in N . Then,  

yxyxyfxf  22)()( .  So, f is one-to-one. 

ii) Onto: Let x  be in the co-domain of f . Particularly, 3y  (you can select 

any other odd natural number as well). Then, if Nx  in the domain of f , such 

that yxf )( , then f is on to. But, 
2

3
323)(  xxxf . The number 

which maps to 3 under the given function is 
2

3
. But 

2

3
is not member of the 

domain (natural number). So, the map is not onto.                         

b) i) One to one: Assume )()( ngmg   for any two integers nm, in Z . Then,  

nmnmngmg  )0,()0,()()(  and thus )0,()0,( nmnm  .  

 So, f is one-to-one. 

ii) Onto: For each  0),,( nnm  in the co-domain of g , we can not find a 

preimage in Z , such that ),()( nmmg  because the second coordinates of all 

image members is zero, or of the form )0,(m .So, the map is not onto.  

c) i) One to one: Here, nbambanmbahnmh   323.23.2),(),( .  

Since the basis are different, we have  

 ),(),(,0,032 banmnbamnbamnbam   . 

 So, f is one-to-one. 

ii) Onto: For each  y  in the co-domain of h , we can not find a pre-image in 

NN  , such that ynmh ),( . For instance if we take any natural number which 

is not a common multiple of 2 and 3, like 1,5,7 and so on we cannot find a pre-

image. So, the map is not onto.  

d) i) One to one: Using property of inverse,  

BABABABfAf   111111 )()()()( . So, f is one-to-one. 

ii) Onto: For singular matrix, we cannot find a pre-image in the co-domain 

because only non-singular matrices have inverses. So, the map is not onto.  
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2*. Let Z  be set of integers. Consider the set }32:{  xZxT . Define  

ZTh :  by 2)( xxh  . Is h  a mapping?  If it is a mapping, is it one to one? 

}0,1,2,3,4{}15:{

}323:{}32:{ Here,:





xZx

xZxxZxTSolution
 

As we see, 0)0(,1)1(,4)2(,9)3(,16)4()( 2  hhhhhxxh .  

This means  for every element in T , we can get an image in Z .  

Besides, every element in T , maps into a unique element in Z . Therefore, h  is 

a one to one mapping.  

3. Verify that the following mappings are onto but not one to one. 

 RRfa :)  given by xxf )(       ZZxZfb :)  given by yxyxf ),(  

RMfc x 22:)  given by )det()( AAf         
 RRhd :)  given by 2

)( xexh   

Solution: 

a) Since )()( xfxf  , the map is not one to one.   

For instance, 2)2()2(  ff . But for every, positive real number x , 

xxxf )( , That means there exist at least itself such that  Rxxxf ,)( . 

Thus, the map is onto. 

b) Since ,)0,(,),2( xxfxxxf  and so on  the map is not one to one.  

For instance, 2)0,2()2,4(  ff  but )0,2()2,4(  . But for every, integer  

xxxfxx  0)0,(),0,(, .That means the map is onto. 

c) For 1detdet)()(,
57

34
,

52

21






















 BABfAfBA but BA  .  

So. The map is not one to one. But for every, real number   

xAAf
x

Ax 







 det)(,

10

0
, .That means the map is onto. 

d) For  9)3()3(,3,3 ehhyx   but 33  . So. The map is not one to one.  

Now for every positive  real number  y  if x  such that yxh )(  the map will 

be onto. However, yxyxyeyxh x lnln)( 22

 . 

So, yeexhyxRy yy


 ln)ln( 2

)(,ln, . That means the map is onto. 
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3. Verify that the following mappings are bijective. 

22:) RRfa   given by )1,2(),(  yxyxf            )3,1(),(,:) 3322  yxyxfRRfb  

22:) RRfc   given by ),(),( yxyxyxf          RRfd :)  given by xexf )(  

Solution:  

a) Assume ),(),( wzfyxf   for any two points ),( yx  and ),( wz in 2R . Then,  

)1,2()1,2(  wzyx . But from equality of order pairs, this equality is true if and 

only if  ),(),(,
11

22
wzyxwyzx

wy

zx








 .  So, f is one-to-one. 

ii) Let 2),( Rba   be in the co-domain of f .Then, if 2),( Ryx   in the domain of f ,  

such that ),(),( bayxf  , then f is on to.  

But, 1,
2

1,2),()1,2(),(  by
a

xbyaxbayxyxf .Thus, we can find 

2)1,
2

(),( Rb
a

yx    such that 2),(),,()1,
2

(),( Rbabab
a

fyxf  .  

 So f is on to. Therefore, the given map is bijective. 

b) Assume ),(),( wzfyxf   for any two points ),( yx  and ),( wz in 2R . Then,  

)1,1()1,1(),(),( 3333  wzyxwzfyxf . But from equality of order  

pairs, this equality is true if and only if   

),(),(,,11
11

11 33

33

33

wzyxwyzxwyzx
wy

zx










 . So, f is one-to-one. 

ii) Let 2),( Rba   be in the co-domain of f .Then, if 2),( Ryx   in the domain of f , 

such that ),(),( bayxf  , then f is on to.  

But, 333333 1,11,1),()1,1(),(  byaxbyaxbayxyxf . 

Since both the expressions 33 1,1  byax are always defined,  we can 

find 233 )1,1(),( Rbayx    such that 

233 ),(),,()1,1(),( Rbababafyxf  . So f is on to. Therefore, the 

given map is bijective. 
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c) Assume ),(),( wzfyxf   for any two points ),( yx  and ),( wz in 2R .  

Then, ),(),(),(),( wzwzyxyxwzfyxf  . But from equality of 

order pairs, this equality is true if and only if  zxzx
wzyx

wzyx









22 .  

Again using zx  in wzyx  , we get wy  .  

Hence, ).,(),(),(),( wzyxwzfyxf   

 So, f is one-to-one. 

ii) Let 2),( Rba   be in the co-domain of f .Then, if 2),( Ryx   in the domain of f , 

such that ),(),( bayxf  , then f is on to.  

But, 
2

,
2

,),(),(),(
ba

y
ba

xbyxayxbayxyxyxf





 . 

This means   we can find 2)
2

,
2

(),( R
baba

yx 


   such that 

2),(),,()
2

,
2

(),( Rbaba
baba

fyxf 


 . So f is on to.  

Therefore, the given map is bijective. 

d)  i) Assume )()( yfxf   for any twonumbers x  and y in R .  

Then, yxeeyfxf yx  )()( .  Hence, .)()( yxyfxf   

 So, f is one-to-one. 

ii) Now for every positive  real number  y  if x  such that yxh )(  the map 

will be onto. However, yxyeyxf x ln)(  . 

So, yexfyxRy y   ln)(,ln, . That means the map is onto. 

Therefore, the given map is bijective. 
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Transformation Mappings :  

Definition: Transformation is a one-to-one mapping from a set X onto itself. 

In other words, the map XXf : is said to be a transformation if and only if it 

is one to one and onto. This means that for every point P in the domain there is 

a unique point Q such that QPf )( and conversely, for every point R  in the 

range there is a unique point S in the domain such that RSf )( .  

Examples 

1. Let RRf :  be given by Raaaxxf  ,0,)( . Show that f is a  

transformation. 

Solution: To show that ( )f x ax is a transformation, we need to show that it is 

one to one and onto. 

i) Assume ( ) ( )f x f y . Then, ax ay x y   , since 0a  . So, f is one-to-one 

ii) Let y R be in the range of f . Then, if x R  in the domain of f , such that 

( )f x y , then f is on to. But for 0a  , we can find Rayx  /  such that 

yayfxf  )/()( . So f is on to. Hence, f is a transformation. 

2. Verify that the following mappings are  transformations. 

       
22:) RRga   given by )1,1(),(  yxyxyxg      

       22:) RRfb   given by ),(),( yxxyxf   

Solution:  

a) i) Assume ),(),( wzgyxg   for any two points ),( yx  and ),( wz in 2R . Then,  

)1,1()1,1(  wzwzyxyx .  

But from equality of order pairs, this equality is true if and only if   

wyzxzx
wzyx

wzyx









,22

11

11  .  This gives ),(),( wzyx   So, g is one-to-

one. 

ii) Let 2),( Rba   be in the co-domain of g .Then, if 2),( Ryx   in the domain of 

g , such that ),(),( bayxg  , then g is on to.  
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2

2
,

2
2

1

1

),()1,1(),(But,


















ba
y

ba
xbax

byx

ayx

bayxyxyxg

 

Thus, we can find 2)
2

2
,

2
(),( R

baba
yx 


  such that ),(),( bayxg  . So g is on to. 

Therefore, the given map g is a transformation. 

b) Assume ),(),( wzfyxf   for any two points ),( yx  and ),( wz in 2R .  

Then, ),(),(),(),( wzzyxxwzfyxf  .  

But from equality of order pairs, this equality is true if and only if   

             ),(),(, wzyxwyzx
wzyx

zx








 .  

 So, f is one-to-one. 

ii) Let 2),( Rba   be in the co-domain of f .Then, if 2),( Ryx   in the domain of f , 

such that ),(),( bayxf  , then f is on to. But,  

baybyxaxbayxxyxf  ,),(),(),( . 

This means   we can find 2),(),( Rbaayx   such that 

2),(),,(),(),( Rbababaafyxf  . So f is on to. 

Therefore, the given map is a transformation. 

Equality of  Transformations:  Two transformations f and g on the same set 

from X to X  are said to be equal if and only if they have the same value  for 

each x in X . That is, Xxxgxfgf  ),()( . 

Examples:  

1. Let  f and g  be transformations on 2R  given by )4,32(),( 5 yaxyxf   and  

)4,26(),( 5 ybxyxg  . If gf  , find the constants a andb  . 

Solution: By definition of equality, 

                 

2/3,323,62

2632

)4,26()4,32(

),(),,(),(

55

55

2









baba

bxax

ybxyax

Ryxyxgyxfgf
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2. Let  f and g  be transformations on the whole 2R  such that )10,3()3,1( f   

and )2,(),( byxayxg  . If gf  , find the constants a andb . 

Solution: By definition of equality, 2),(),,(),( Ryxyxgyxfgf  . 

              
4,21032,31

)10,3()32,1()3,1()3,1( rly,Partticula





baba

bafg
 

1.3 Composition of Transformations and Their Properties 

Let  and  be mappings. Then for each , . 

Thus, there exists such that .  Besides, as is a mapping from 

to  for each , there exists such that . Thus, 

 which makes sense to write as a mapping from X to

. This mapping is evaluated by applying first on the elements of 

followed by . This is defined as ))(()( xfgxfg  for each .  So, the 

mapping  is called the composition mapping.  In such 

cases, one has to remember that the range of the first mapping is a subset of the 

domain of the second mapping.    

In particular, composition of transformation is defined as ))(())(( xfgxfg 

where f  and g are transformations on the same set .X   

Proposition 1.1: Composition of mappings is associative 

If ZYgYXh  :,:  and WZf :  are mappings, then the compositions  

hgf  )(  and )( hgf   represent the same mapping from X in toW . That is  

)()( hgfhgf   . Particularly, )()( hgfhgf   holds if gf ,  and h  

are transformations on the same set X . 

Proof: Since the domain of h is X , by definition of composition of mappings 

we can see that the domain of hgf  )( is also X .  But, the domain of 

)( hgf   is the same as the domain of hg  and the domain of hg   is X .  

Hence, the domain of hgf  )( is the same as that of )( hgf  , that is, X .  

YXf : ZYg : Xx Yxf )(

Yy yxf )( g

Y Z Yy Zz zyg )(

zxfgyg  ))(()( ))(( xfg

Z f X

g Xx

)g"by  follwed (" fgof
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So,  hgf  )(  and )( hgf   are mappings with the same domain.   

 Furthermore, for any Xx , 

         Xxxhgfxhgfxhgf

Xxxhgfxhgfxhgf





))),((()))((()))((( Also,

))),((())()(())()((




 

Hence, by definition of equality of mappings )()( hgfhgf   . 

Note: Composition of two transformations need not be commutative. That is 

even though both gf   and fg  exists and have the same domain and co-

domain, gf  and fg  may not be equal. 

Examples: 

1. Let RRgRRf  :,:  be defined by 3)(  xxf and 52)(  xxg .  

Solution: Here, 22)52())(())((  xxfxgfxgf   and  

                         12)3())(())((  xxgxfgxfg  .  

Thus, fggfxx   1222 .  

Hence, composition of mappings is not commutative. 

2. Let RRgRRf  :,:  be defined by kxxgxxf  2)(,83)( . Find the  

value of the constant k such that gffg   . 

Solution: Here, by definition of equality of transformations, 

               

482

836166

),)(())((







kk

kxkx

Rxxgfxfggffg 

 

3.  Let  )53,8(),(  yaxyxf and )4,7(),( byxyxg  be the transformations. 

If )2312,814(),)(( byxyxfg  , then, find the constants a and b .
 

Solution: 

 

7,2

2353,147

23125312,81487

)2312,814()5312,87(

)2312,814()4,7(

)2312,814()),((

)2312,814(),)((  Here,















ba

bba

bybyxax

byxbyax

byxbyxf

byxyxgf

byxyxgf 
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Proposition 1.2: The composition of transformations on the same set are again  

transformations. 

Proof:  Let XXgXXf  :,: be any two transformations on set X . We 

need to show that gf  is also a transformation. That means we need to verify 

that gf  is one to one and onto. By definition of composition gf  is a 

mapping from X into X . To show gf  is one to one, let x and y be arbitrary 

elements of X such that ).()( ygfxgf    

Then, yxygxgygfxgfygfxgf  )()())(())(()()(   (because 

both f and g are one to one). Thus, gf  is one to one. 

To show gf  is onto, let t  be any element in X (considering X as co-domain 

of f ), since f is onto there exists an element y in ( in the domain) such that 

tyf )( .   

Again, g is onto corresponding to the element y in   there is an element x in

X suchthat yxg )( .  As a result, tyfxgfxgf  )())(())((  .  

Thus, gf  is onto. Hence, we have got that gf  is one to one and onto on the 

set . Therefore,  gf   is a transformation whenever f and g are 

transformations on X . 

 

 

 

 

 

 

 

 

 

X

X

X
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1.4 Identity and Inverse Transformations 

Definition: A transformation from a set into  denoted by  is said to be  

identity transformation if and only if Xxxxi  ,)( .  

Any  two transformations f  and g from X to X are said to be inverse of each 

other if both fg  and gf  are identity transformations.  

That is Xxxxixgfxfg  ,)())(())((  , then f is called the inverse of 

g and g is called the inverse of f . We denote the inverse of a transformation f

by 1f (Read as “the inverse of f ” or f inverse). 

Example: Verify that 205)(  xxf and 4
5

1
)(  xxg are inverse of each 

other. 

Solution: Using the definition, we have 

xxxxfxgfxgf 
















 2020204

5

1
54

5

1
))(())((   and  

xxxxgxfgxfg  444)205(
5

1
)205())(())((   

Thus, Xxxxixgfxfg  ,)())(())((  . Hence, gf 1 and .1 fg   

Remark: Any mappings which have inverse are called invertible mappings. 

Only these mappings which are bijective have inverses. That means a mapping 

is invertible if and only if it is both one to one and onto. Thus, any 

transformation  has an inverse because transformations are one to one and onto 

mappings on the same set. 

 

 

 

 

 

 

X X i
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Finding Inverse of a transformation: Now let’s see how can we find the 

inverse of transformations. Since every transformation f is bijective, its 

inverse denoted by 1f always exists. But there is no hard and fast rule on how 

to find 1f from the formula of f . Any way, one can use the following hints on 

how to find 1f whenever the formula of f  is given. Let SSf : be a 

transformation such that )(XfY  . Then,  to find :1f  

Step-1: Interchange X and Y in the formula of f  

Step-2: Solve for Y (for coordinates ofY ) in terms of X (coordinates of X ).  

Step-3: Equate YXf  )(1  from )(XfY  . That will be the formula of 1f . 

Examples:  

1. Find the inverses of the following transformations 

    



















x

x
xfRRfdyxyxgRRgc

e

e
xfRRfbxxfRRfa

x

x

1

1
ln)(,:))5,12(),(,:)

4

23
)(bygiven :)1)(bygiven :)

22

3

          

Solution:  
a) 1)( 3  xxfy  

Step-1: Interchange x and y .That is 13  yx  

Step-2: Solve for y in terms of x .That is 

133)1(11 23333  xxxxyxyxy

 

Step 3: Equate the value of y obtained in step 2 with )(1 xf  .  

That is 133)( 231  xxxxf . 

b) Step-1: Interchange x and y . 

That is 
4

23

4

23
)(











y

y

x

x

e

e
x

e

e
xfy  

Step-2: Solve for y in terms of x .That is 

























x

x
y

x

x
exxeexe

e

e
x yyyy

y

y

3

24
ln

3

24
24)3()4(23

4

23

Step-3: Equate the value of y  in step-2 with )(1 xf  .  

That is 













x

x
xf

3

24
ln)(1  
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c) For )5,12(),(  yxyxg ,let  ),(),,(where)( wzYyxXXgY  . 

Step-1: Interchange coordinates of X and Y:  

),()5,12(),(),()( yxwzyxwzgXYg   

Step-2: Solve for coordinates of Y in terms of coordinates of X .That is 

5,
2

1

2
5,12),()5,12(  yw

x
zywxzyxwz  

Step-3: Equate the coordinates of Y obtained in step 2 with ),(1 yxf  .  

Hence, )5,
2

1

2
(),(),(),()( 111   y
x

yxgwzyxgYXg  

Thus, )5,
2

1

2
(),()5,12(),( 1   y
x

yxgyxyxg
 

2. Let
1

)(
2

3




x

x
xf  . Find x such that 2)(1  xf . 

Solution: From the definition of inverse, we have that )()(1 xfyxyf   

Thus,  5/8)2(2)(1  xfxxf . 

Preposition 1.3: The inverse of a transformation is unique. Besides, 

.)( 11 ff   

Proof: Let f be a transformation whose inverses are g and h . That is gf 1

and hf 1 . We need to show hg  . Here, ifggfgf  1 and 

ifhhfhf  1 .  But, hihgfhgfhgig   )()(  

(Because composition is associative as well as g and h are inverses of f ).  

From this we can conclude that the inverse of a transformation is unique. 

Examples:  

1. Let 2
3

1
)(  xxf . Find the value of a  if 6

4
)(  x

a
xh is the inverse of f . 

Solution: Here, 63)(2
3

1
)( 1   xxfxxf . Then, from the uniqueness of 

inverse, we have 
 

123
4

636
4

 a
a

xx
a

. 
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2.  Let ).3,1(),(),,1(),( where),(),()( 1  yxyxhyxyxgyxhyxfg 
 

Then, find the formula for ),( yxf . 

Solution: Let’s apply the property .)( 11 ff   

]property  theUsing[),)((),(

]by sidesboth  Operate[),,(),)((

]])[(property  theUsing[),(),)((

),(),(])[(

),(),()(  Here,

111

1111

111

111

1

iggyxhgyxf

gyxhgyxfgg

fgfgyxhyxfg

yxhyxfg

yxhyxfg































),1(),(),1(),(

   and )3,1(),()3,1(),(But  

1

1

yxyxgyxyxg

yxyxhyxyxh









 

Therefore, yxyxgyxhgyxhgyxf   3,2()3,1()),((),)((),( 11111   

Preposition 1.4: The inverse of a transformation is again a transformation. 

Proof: Let XXf : be any transformation on set X . Then, 1f also exists as 

f is bijective. Now, we need to show 1f  is also a transformation. 

)(i One-to-ones: Let a and b be arbitrary elements in X . Since f is bijective, 

there exists unique byfaxfXyx  )(,)(,, .  

But, )(),()(,)( 11 bfyafxbyfaxf   .  

Now, assume that )()( 11 bfaf   . 

But, bayfxfyxbfaf   )()()()( 11  

Thus, babfaf   )()( 11 . Hence, 1f  is one to one. 

)(ii Onto ness: Let x  be arbitrary element in X . Since f is onto, Xxf )( , so, 

for every xxffXxfXx   ))((,)(, 1 . Hence, 1f  is onto. Therefore, from 

)(i and )(ii , whenever f is a transformation on set X  and so is 1f . 

Proposition 1.5: (Reverse Law of Inverse) 

For any two transformations f and g , 111)(   fggf  . 
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1.5 Fixed Points of Mappings and Involution  

Definition: Let TSf : be a mapping. Then, a point Sx 0 (in the domain of

f ) is said to be a fixed point of f if and only if .)( 00 xxf  Generally, the set of 

fixed points of a mapping f is the set given by })(:{ xxfxS  . 

Examples: Determine the fixed points of the following mappings. 

                 

)6,(),(,:)

)1,1(),(,:)

),(),(bygiven :)

)3,(),(,:)

),(),(bygiven :)

3)(by given :)

22

22

322

22

3322

3

xxyyxgRRgf

yxyxtRRte

yxyxhRRhd

yxxyxfRRfc

yxyxgRRgb

xxxfRRfa













 

Solution: 

  

}2,2,0{}2,2,0:{

}0)2)(2(:{}0)4(:{

}04:{}3:{})(:{)

2

33







xx

xxxxxxx

xxxxxxxxxfxSa

 

  

)1,1(),1,1(),0,1(),1,1(),1,1(),0,1(),1,0(),1,0)(0,0{(

}1,1,0,1,1,0:),{(

}0,0:),{(},:),{(

)},(),(:),{()},(),(:),{()

3333

33









yxyx

yyxxyxyyxxyx

yxyxyxyxyxgyxSb

          

       
 

}:),3{(},3:),{(

}3,:),{(

)},()3,(:),{(

)},(),(:),{()

RyyRyxyx

yyxxxyx

yxyxxyx

yxyxfyxSc









 

}0),1,(),1,(),0,{(

}1,1,0,0:),{(

}0,0:),{(

},:),{(

)},(),(:),{()},(),(:),{()

3

3

3











xxxx

yxyx

yyxyx

yyxxyx

yxyxyxyxyxhyxSd

       

Here, for any 0x and ,1,1,0 y ),( yx is the fixed point of ),(),( 3 yxyxh  . 
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01,011,1

),()1,1(),( Here, e)





yyxx

yxyxyxt
 

But this is impossible.  This means t has no fixed point. 

)}4,2{(}4,2:),{(}62:),{(

}6,2:),{(}6,:),{(

)},()6,(:),{(

)},(),(:),{()









yxyxxxyx

yxxyyxyxxxyyx

yxxxyyx

yxyxgyxSf

 

Note: From the above examples, we can conclude that a given mapping can 

have exactly one fixed point, finitely many fixed points or infinitely many 

fixed points. On the other hand, part (f), shows that there are mappings that 

have no fixed points. 

Involution: A non-identity transformation   is said to be an involution if and 

only if i  2 . That means xxixxx  )())(())(()(2     for all 

x in the domain of  . 

Examples: Verify whether the following transformations are involution or not. 

)5,3(),(,:)

3)(by  given :)

)2,7(),( ,:)

1)(by  given :)

22

22









yxyxgRRgd

xxRRc

yxyxhRRhb

xxRRa





 

 Solution:  

ixixxxxxa  22 )()1())(()()()   .   

  So,  is an involution. 

ihyxiyxyxhyxhhyxhb  22 ),(),()2,7()),((),() .  

 So, h is an involution. 

involutionan not  is)(6)3())(()() 22   ixixxxxxc .  

igyxiyxyxyxgyxggyxgd  22 ),(),()10,6()5,3()),((),() . 

Hence, g is not an involution. 
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1.6 Collineations and Dilatations 

Definition: A transformation f is said to be a collineation if and only if the 

image of any line l under f is again a line. In other words, for any point lP

the image )()( lfPf  . Further more; f is said to be a dilatation if and only if 

the image of any line l under f is a line parallel to l . That is llf //)( whenever 

f  is a collineation then f is said to be a dilatation. 

Examples:  

1. Let 22: RR   be given by )2,1(),(  yxyx . Show that  is a dilatation. 

Solution: First let’s show that  is a transformation. But, to show that  is a  

transformation, we need to show that it is one to one and onto. 

One- to- one: Assume ),(),( wzyx    for any two points ),( yx  and ),( wz in 2R . 

Then, )2,1()2,1(  wzyx .  But from equality of order pairs, this equality is 

true if and only if 11  zx  and 22  wy . This gives zx   and wy    which 

implies ),(),( wzyx  . So,  is one-to-one. 

On to ness: Let 2),( Rba   be in the co-domain of  . Then, if 2),( Ryx   in the 

domain of  , such that ),(),( bayx  , then  is on to. But,  

.2,12,1),()2,1(),(  byaxbyaxbayxyx  Thus, we can find 

2)2,1(),( Rbayx   such that ),(),( bayx  . So  is onto. Therefore, the given 

map  is a transformation. To show that   is a collineation we need to show 

the image of an arbitrary line 0:  cbyaxl is again a line. 

Let ),( yx be any point on l . Then, the image )2,1(),()','(  yxyxyx  .  

Solving this for x and y we get 2',1'  yyxx .  So,the image line will be  

02''0)2'()1'(:'  acbbyaxcybxal  and this is equation of a line.  

Hence we can say that  is a collineation. Besides,   'l  has the same slope to 

that of l which means 'l is parallel to l . In other words, ).(// ll   Therefore,  is 

a dilatation. 
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2. Let 22: RR   be given by )1,(),(  xyyx . Then, find  

a) The image of the line 63:  yxl under . 

b) The pre- image of the line 032:'  yxl under . 

Solution: Images and pre-images: Let   be a transformation. Then, for any 

two objects P  and Q , if QP )( , the object Q  is called the image of the 

object P  under  and the object P  is called the pre-image of Q  under . 

Besides, to find the image of any line l  under any coollination  : 

First:  Select any two points P  and Q  from the given line (the selection is 

arbitrary you can select in any way you want !) and find their images )(' PP   

and ).(' QQ   

Second: Form the equation of a line using the image points 'P  and 'Q . This is 

the required image line under . 

a) Using the above steps, select  )2,0(P  and )0,6(Q  on 63:  yxl (you 

can select any other points). Now find their images.  

That is )7,0()0,6()('),1,2()2,0()('   QQPP  

Hence, the image line is the line through )1,2(' P and )7,0('Q . 

That is the slope is 3
2

6







x

y
m . 

Then, using slope intercept form 733:'  xybxbmxyl . 

b) In this case, we are asked the pre-image, that means what is the line whose 

image is given.  To, do so, select two points   'P  and 'Q  on the image line  

032:'  yxl . Say )3,0(' P  and )1,2(' Q . Then, find two points ),( baP   

and ),( dcQ   such that ')( PP   and ')( QQ  . 

 Thus, )0,4(0,4)3,0()1,(),(')(  PbaabbaPP   and  

)2,0(0,2)1,2()1,(),(')(  QcdcddcQQ   

Hence, the pre-image of the line 032:'  yxl   is a line through )0,4(P

and )2,0(Q . That is the slope is 
2

1

4

2







x

y
m . Then, using slope intercept 

form 0422
2

1

2

1
:  yxxybxbmxyl . 
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Remarks:  

1. The main difference between collineation and dilatation is that any 

collineation maps a pair of parallel lines to a pair of parallel line but a dilatation 

maps every line to a line parallel to the given line.  This means a transformation 

 is a collineation if and only if for any two lines m and ,n  

)(//)(// nmnm  . A transformation  is a dilatation if and only if for any 

line m , ).(// mm   

2. If )','(),( yxyx  where kdycxyhbyaxx  ',' , then the necessary  

and sufficient conditions on the coefficients of x and y such that  to be a  

transformation is that 0bcad .(This is known as transformation test). 

Examples:  

1. Define 22: RR   by ),()),( xyyx  . Show that  is a collineation but not  

a dilatation. 

Solution: Clearly,  is a transformation. Besides, for any two arbitrary parallel 

lines 0:  cbyaxm and 0:  kbyaxn (Parallel lines differ by a constant),  

0)(',0:)('  kbxaynncbxaymm  . Still, 'm and 'n have the 

same slope which means they are parallel. ).(//)(//. nmnmei  Thus,  is a 

collineation. But, if we consider only the single line 0:  cbyaxm

separately, 0:)('  cbxaymm  . In this case, slope of line m is 
b
a while 

that of 'm  is 
a
b which gives the product of their slope is .1   This means 

'.)(. mmmei  In other words, m and  ')( mm  are not parallel lines. 

Particularly, take the line 0526:  yxm . Then, its image under  is 

0562:')(  yxmm . Consequently,  is a collineation but not a dilatation. 

2. Find the value of the constant t for which )268,74(),(  yxtyxyx  will 

not be a transformation.  

Solution: By the second part of the above ramark,  will  bot be a 

transformation if and only if 324808240).(8)6.(4  tttt . 
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Problem Set 1.1 

1*. Let NZ , and W be the set of integers, natural numbers and whole numbers. 

a) Define NZf :  by 2)( xxf  . Is f  a mapping?  If so, is it one to one? 

b) Define ZNg :  by 2)( xxg  .  Is g  a mapping?  If so, is it one to one?  

c) Consider the set }21:{  xZxT . Define ZTh :  by 3)( xxh  .  Is h  

a mapping?  If so, is it one to one? is it onto? 

d) Let 25} 16, 9, 4, 1, 0, {T},32:{  xZxS .  

Define TSr : by 2)( xxr  . Is this relation a mapping? If not, justify! If it is 

a mapping, is it bijective? 

one.  toonenot  but  onto  isit  mapping, a  isIt )

onto.not  but   one  toone isit  mapping, a  isIt )

onto.nor   one  tooneneither but  mapping a  isIt )

.0for  N numbers natural ofset  in the image no is mean there This                    

  .00)0(,0for  because mapping anot  isIt ): 2

d

c

b

x

NfZxa



Answer

 

2. Determine whether the following mappings are transformations or not on 2R  

tionsTransforma arek j,h,g,f, d,c,b,Only :

)1,1(),())832,3(),()

),1(),()),(),())2,2(),()

)2,1(),()),(),())12,23(),()

)2,3(),())3,2(),()),(),()

333

33

3

Answer









yxyxyxkyxyxyxj

xyyxhiyxyxhxxyyxg

yxyxfyxxyxexyyxd

xyyxhcyxyxgbyeyxfa x







 3. Find the fixed points (if any) of each of the following mappings 

),(),(,:))3,2(),(,:)

),(),(,:)),(),(,:)

),(),(,:))1,1(),(,:)

),(),(,:)),(),(bygiven ,:)

2222

2222

32222

225322

xyxyxkRRkhyyxyxfRRfg

yxyxyxfRRffyxyxkRRke

yxxyxRRdyxyxyxRRc

xyxyxfRRfbxyyxRRa













}:),0{()points fixed no hasIt ))}0,0{()

}0,:),{()}:),2(),,2(),,0{()

)}1,1{()}:),0{())}1,1(),1,1(),0,0{():

RyyShgSf

yxyxSeRyyyySd

ScRyySbSa





Answer
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4. Let ZZfn :   be a map given by Zxnxxfn  ,)( . For which values ofn , nf  

is one to one? Onto?        :Answer One to one 0n  and onto 1n                    

5. Let RRgRRf  :,:  be defined by 42)(,8)(  xxgkxxf . Find the  

value of the constant k such that gffg                   3: kAnswer  

6.  Consider the transformations )23,(),(  yaxyxf and )24,5(),( byxyxg  .  

If )4012,10(),)((  yxyxfg  , then, find a and b .         7,2:  baAnswer
 

7. If S is a finite set, show that SSf :  is one-to-one if and only if it is onto. 

8. Find the formula for the inverse of the following functions. 

)6,2(),(  b)        
1

1
)():

),(),()),(),()

)2,1(),()      )6,2(),()b       
1

1
ln)()

11

3

yxyxf
e

e
xfa

xyxyxeyxyxyxd

yxyxcyxyxh
x

x
xfa

x

x
























Answer





 

9. Let 22: RR  be given by 





















62

10

ty

x

y

x
 . What value of t  makes   

an involution?                                                          3: tAnswer  

10. *Consider the line 3:  xyL such that RLf : is given by  

Lyxxyxf  ),(,2),( . Show that f  is bijective. If 3)( Pf , find the 

coordinates of P .                                                     )2/9,2/3(: PAnswer                         

11. Let h be any transformation from R to R  defined by 63)(  xxh . If  

2
2

)(  x
a

xg  is the inverse of )(xh , then what must be a ?   3/2: aAnswer  

12. Let   and   be any two transformations with 2,)(2)( RPPPP   . If 

)9,9()3,7(  , then calculate )3,7( .                              )6,8(:Answer        

13. If )','(),( yxyx  where kdycxyhbyaxx  ',' , then find the 

necessary and sufficient conditions on the coefficients of x and y such that  to 

be a transformation.                                                              0: bcadAnswer  

14. Find the constant c for which )56,235(),(  ycxyxyx will not be a  

transformation.                                                               10: cAnswer                                                                                                          
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15. Let 22: RR  be given by )32,7(),(  xyxyx . Show that   is a  

transformation and find 1 .                   )
2

172
,

2

3
(),(: 1 

 xyy
yxAnswer       

16. Define 22: RRg   by ),()),( dbycaxyxg   where a and b are non-zero. 

Show that   ga) is a transformation        gb) is a dilatation if and only if ba   

17. Show that 22: RR  given by ),3(),( yxyyx  is a collineation and find 

the pre-image of the line 23:  xyl under .  0210:  yxAnswer                                       

18. Define
22: RR   by )1,5(),(  xyyx . Show that   is a 

collineation but not a dilatation. 

19. Show that 22: RR   given by )3,2(),(  yxyx is a dilatation. 

20. Given )16,123(),(  ymyxmxyx . What should be the value of m so 

that  is a dilatation?                                                               4: mAnswer  

21. Prove: If   is an involution, then for any transformation  , 1  is 

also an involution. 

22. If f an involution such that )1,2()5,1( f , find )5,1(1f and )1,2(1f .       

23*. Show that any collineation sends a pair of parallel lines to a pair of 

parallel lines. 

24. Find the condition on a and b such that ),(),(
b

x
ayyx  is an involution.  

                                                                                          ba :Answer  

25. For what value (s) of k  is 







 xykyx

22

3
,)13(),( 2  an involution?  

                                                                                           3/5: kAnswer  

26*. Let RS : be a mapping given by 
112

21
)(






t

t
t where the set S is 

given by  10:  ttS .  

Show that  is a bijective mapping but not a transformation. 
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27.  Consider the napping xxf sin)(  . Define an equivalence relation  

yxxRy sinsin  . Find the equivalence class determined by 
2


y  

                                                             };2/{: 2/ ZnnR  Answer                                                                                

 28. Let 
2222: xx MM   be a mapping given by 

22

1 ,)( xMAAA    where 
22xM is 

the set of all invertible 22x  matrices. Show that   is an involution and 

calculate all the fixed points of  . 

28. Show that the map CC :  given by yixyix  )(  is a 

transformation with infinite number of fixed points.     

29. For each order pair ),( ba of integers define ZZba :, by bannba )(, . 

For which pair ),( ba is ba, injective (one to one)? For which pair ),( ba is ba,

surjective (onto)?     

1foronly  surjective is,,0for injective is: ,,  aZba baba Answer  

30. Let ),( baM  and 22: RR  be a mapping with the property that for any 

point P in 2R  the mid point of P and )(P is M . Prove that  is a 

transformation with fixed point M itself. 

31*. Let L be the set of all lines in the plane and let be a collineation in 2R . 

Then,   is a transformation from L to L . 
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1.7  Definitions and examples of Transformation Groups 

Definition: Let G be the set of all transformations on a non empty set S . Then 

the system ),( G is said to be a transformation group if and only if the following  

conditions are satisfied: 

i) For all  gf ,  in G , fg   is in G . 

ii)  For all  f  inG , ifggfGg    and denoted by .1 gf   

iii) For all f in G , ffiifGi   . 

Examples 

1. Let RRfab : be defined by .0,)(  abaxxfab   
Let }.0,,/{  aRbafG ab  Show that ),( G forms a transformation group.  

Solution: To check whether the elements of G  are transformation or not, for 

any abf in .G  yxbaybaxyfxf abab  )()( and for each Rr , there 

exists 0, 


 a
a

br
x in R  such that  

rbbrb
a

br
a

a

br
fxf abab 





 )()()( . Thus, any element abf in G is a 

transformation. 

i) Taking ,0,1  ba we get Rxxxf  ,)(10 . So, 10fi  which is the identity 

transformation contained in G . 

ii) For any abf and cdf in G , 

)()())(()( , xfbadacxdcxfxffxff badacabcdabcdab   

Since abf and cdf in G , 00,0  acca . Thus, Gfff badaccdab  , . This  

shows closure property holds true. 

iii) To have inverse for any abf in G , we have to find cdf in G such that 

10fiffff abcdcdab   .  

But xbadacxxxfxfxff badaccdab   )()()( 10, .  

So, ba
a

b
da

a
cbadacxbadacx 11,

1
0,1   .  

Since 0a , c and d are defined and hence 
baaab ff 11 ,

1)(  

   because   

)()()()( 10

1111
11 xfxbbxbbaxaabaxafxff abbaaab  

  .  

Hence, 
baaab ff 11 ,

1)(  

  is the required inverse of abf  in G . Therefore, by 

definition ),( G forms a transformation group. 
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2. Consider the transformations
x

xk
x

xhxxgxxf
1

)(,
1

)(,)(,)(  defined 

on the domain }0/{R .  Show that ),( G  forms abelian group of transformation 

where },,,{ khgfG  . 

Solution: To show whether a finite set together with a binary operation forms a 

group or not is simple by making a table called Cayley table. Each cell is filled 

using the calculation as follow: 

 on. so and)(
1

)
1

())(()(

)()())(()(

,)())(()(

xk
xx

gxhgxhg

ggfxgxxfxgfxgf

fffxxfxffxff













                       

 
From this table, we can infer the following results. 

i) Existence of Identity: In the table, gfggf   and so on for all elements 

of G . Thus f is the identity transformation in G . 

ii) Existence of inverse: As we see from the table,  

fkkfhhfggfff   ,,, where f is identity. So every element is 

its own inverse. 

iii) Closure property: If all the cells in the body of Cayley table is filled with  

elements from the set, then closurity holds which is true in our case. Hence, 

),( G  forms transformation group.  

3. Let k be a mapping for 0k given by )','(),( yxyxk  where








kyy

xx

'

'
.  

Show that the set }0:{  kG k forms abelian group of transformations with  

composition. Particularly, give the identity element and the inverse of  

)3,(),(3 yxyx  in this group. 

Proof: Apply the definition. 

4. Show that the set of all transformations on the plane forms a transformation 

group. 

Proof: Apply the definition. 
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1.8 Criteria for Transformation Groups 

So far we discussed about transformation groups and we saw how to show a 

given set of transformations forms a transformation group using definitions and 

or using Cayley table. But, some times definitions alone are not easy or 

efficient to use in any cases. That is why mathematicians are looking for a short 

cut method to use. 

In transformation geometry, they developed the following theorem as a test for 

a transformation groups. 

Theorem 1.1 ( Test for a transformation groups): 

Let G be a nonempty set of transformations on a set S .  Then, G  with 

composition is a transformation group if and only if the following conditions 

are satisfied: 

            GgfGgfGgfb

GfGfGfa



 

,,,)

,) 1


 

Proof: Suppose ),( G is a transformation group. We need to show conditions 

)(a and )(b hold true. Since ),( G is a transformation group, from the definition

Ggf  , , Gf 1  and Ggf   whish implies that conditions )(a and )(b are 

true.  Conversely, suppose conditions )(a and )(b hold true. We need to show

),( G  is a transformation group. 

i) Existence of Inverse: Since G , Gf   but GfGf  1,  from 

condition )(a .  So, G contains inverse transformation. 

ii) Closure property: From condition )(b , .,,, GgfGgfGgf    

iii) Existence of Identity: Gf  , Gf 1  from condition )(a  and from 

condition )(b , Gff  1  and Gff 1 .  

But, Giff  1  and Giff 1 .  

Thus, G contains identity transformation. Therefore, by definition, ),( G forms 

a transformation group. 

Examples:  

1. Let RRga : be defined by .0,)(  aaxxga  Let }0,/{  aRagG a . 

Show that ),( G forms a transformation group. 

Solution: So far, we have seen that ag is a transformation. Using the above test 

for transformation group, we will verify the problem as follow: 
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i) For any ,Gga   .
1

)()( 111 Ggxax
a

xgaxxg aaa    

ii) For any ,, Ggg ba  abbaabbaba gggxgabxxggxgg   )())(()(  

Since Ggab  ,and abba ggg  , we get Ggg ba  . Hence, by test of  

transformation group, ),( G forms a transformation group. 

2. Let RayxayxfRRf aa  ),,2(),(;: 22  such that }:{ RafG a  . 

Using criteria of transformation group, determine whether ),( G is  

transformation group or not. 

Solution: For any ,Gfa  ),2(),( yxayxfa  . First of all, we need to show 

that every element of G   is transformation.   

Now suppose, ),(),( wzfyxf aa  .  

 

),(),(,

,22

),2(),2(),(),(

wzyxwyzx

wyzaxa

wzayxawzfyxf aa







 

This shows that each af is one to one.  

Besides, to each 2),( Rwz  (in the co-domain), 2),2(),( Rwzayx   such 

that ).,(),2(),( wzwzafyxf aa 
 

So, each af is also onto.  

Therefore, from these explanations every element of G is a transformation.   

For any ,Gfa   

Gfffyxayxfyxayxf aaaaa   111 ),2(),(),2(),( .  

But for any two elements ,, Gff ba   

 .),,(),22(),2(),( GffRryxfybaxyxbfyxff baraba     

This means the second condition of the above theorem (test for a  

transformation group) fails.  

As a result, ),( G does not form transformation group. 
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Theorem 1.2 (Cancellation Laws on Transformation Groups): 

Let G  be a transformation group. Then, for  ,,  in G  

a)     (This is called Left Cancellation Law) 

b)    (This is called Right Cancellation Law) 

Proof: Let G  be a transformation group. Then, for  ,,  in G  

a)    )()( 11   

b)    11 )()(   

Theorem 1.3: In any transformation group G , for any  ,  in G , the equation 

   has a unique solution for   in G which is given by  1 . 

Proof: For  ,  in G , G    111 )(  

Hence, the equation has a solution in G . For the uniqueness of this solution, 

assume there are two different solutions say  , , then  

   , (by Left cancellation) 

Example: Let ),( G  be a transformation group such that  ,,  in G . If   

)35,23(),(,)5,3(),( yxyxyxyx   . Find   such that     

Solution: By the above theorem,    has a unique solution for   in G

which is given by  1 .  

But after some ups and downs we get )5,3(),(1 yxyx  . 

)3,2()35,23(

)),((),(),( Therefore,

1

11

yxyx

yxyxyx











 
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Problem Set 1.2  

1. Consider the following transformations on )0,1/{R .        

1
)(,

1
)(,

1

1
)(,1)(,

1
)(,)(










x

x
xn

x

x
xm

x
xkxxh

x
xgxxf .  

If },,,,,,{ nmkhgfG  show that ),( G  forms a transformation group. 

2. Consider the set },,,{ khgfG  where khgf ,,, are transformations from 

2R  to 2R given by:  

                     
)2,2()(),2,(),(

),2(),(),,(),(

yxxkxyyxh

xyyxgyxyxf




 

Show that ),( G  forms an abelian transformation group. 

3. Prove that if a is a fixed element of a group G , and GG :  is defined by 

Gxaxx  ,)( , then  is a transformation. 

4. Let RRf : be defined by .0,)(  abaxxfab  Let 

}0,,/{  aRbafG ab , }:{ 1 RbfH b  . Show that 

a) ),( H is a subgroup of the transformation group ),( G  

b) },,)()(:),{( GgfdxxgdxxfbaR

b

a

b

a

  is an equivalence relation 

5. Let k be a mapping for 0k given by )','(),( yxyxk  where








yy

kxx

'

'
.  

Show that }0:{  kG k forms abelian group of transformations with 

composition. Give the identity element and the inverse of ),5(),(5 yxyx  in 

this group. List the involution elements (if any). 

                  11

5

151

,: elements involution all ofset  The

),,
5

1
(),(  is  of Inverse, element,Identity :







 yxyxiAnswer
 

 



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  34 
 

6. *Let ba  , be maps for 0, ba given by ),(),(),,(),( byxyxyaxyx ba   . 

Consider the set }0,:{  baG ba   . Show that  ,G forms abelian group of 

transformations. Give the identity element and the inverse of 2

3

1   in this 

group. List  all the   involution elements .     

 11111111

2

132

3

111

,,,: elements involution all ofset  The

),
2

1
,3(),(  is  of Inverse, element,Identity :











 yxyxiAnswer

 
7. Let G be a nonempty set of transformations on a set S .  Then, ),( G forms a 

transformation group if and only if .,,, 1 GgfGgfGgf     

8. Let G  be any group. Define GGf :  by Gaaaf   ,)( 1 . Show that f is 

a transformation. 

9. Suppose  ,, are transformation such that )()( XX   where 

),(),( xyyx  and )10,1(),(  yxyx . Find equation of .  

                                                                           )1,10(),(:  xyyxAnswer  

10. In a transformation group G , if Gfff   ,1 ,  then prove that G is 

abelian. 

11. Let G be a finite transformation group. Show that in a Cayley table of G , 

each element appears exactly once in each raw and in each column.   

12. Let G be a transformation group. If ggf  , then show that if  .  

13. If G is the set of transformations given by  },,{ hgfG  , then complete the  

following Cayley table of G .Which element of G is the identity? Give the 

inverse of each element. Which element (s) of G are  involutions? 

 



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  35 
 

14. In a transformation group G , if 222)(    for each  , inG , prove 

that G is abelian group of transformation. 

15. Let ),( G be a transformation group with the property that 

.2 ifffGf    Prove that; every element of G is its own inverse. 

16. In a transformation group G , if all the non-identity elements are involution, 

then show that G is abelian. 

17. Let  ,, be elements of a transformation group G such that  

2),(),,(),( Ryxyxyx    where )12,3(),(  xyyx and

)14,9(),(  xyyx . Find the equation of .        

18. Let ),( G be arbitrary group. Prove that there is a group T of transformation 

onG  and a one to one mapping TGg : which assigns to each Ga ,  a 

transformation Tfa  such that Gbafff abab  ,, . 
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CHAPTER-2 

AFFINE GEOMETRY 

2.1 Introduction to Affine Spaces 

Affine geometry is a type of geometry that can be used to make analysis in a 

plane and space whose major entries or elements are vectors. The properties 

and conditions of affine geometry work in any dimensional space (finite or 

infinite). As a result, affine geometry is treated as dimension free. The space 

that we will work using this geometry is called affine space (which is formally 

defined below). In this space, there is no specified origin.  

As vectors are the main elements in this geometry, most of the theorems and 

problems that we know in Linear Algebra courses are treated in this unit only 

by using vectors and vector analysis rather than using coordinates and 

Synthetic analysis.  Now, we will prove and solve different theorems and 

problems using vector method in order to understand the notion of affine 

geometry and affine spaces. Finally, you may appreciate to what extent vectors 

are useful in analysis of theorems and problems that we already know in 

different branches of Mathematics. 

Definition: A non-empty set W is said to be an affine space associated with the 

vector space V  if and only if the following three conditions are satisfied: 

i. To every two points BA, in W , there exists a unique vector ABABu  in 

V , and u  is the zero vector if and only if BA  . 

ii. To any point A  in W  and any vector u  in V  there exists a unique point B

such that ABu  .    

iii. For any three points CBA ,,  inW , we have AB BC AC 
  

. 
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In any affine space W , its elements are called vectors. Most of the concepts 

like norm, projection, cross product and other concepts of vectors in Euclidean 

Geometry are similarly defined in affine geometry. 

Examples:  

1. Let 3RV  be the vector space with the usual operations. Determine whether 

each of the following sets are affine spaces associated with V  or not 

              
}72:),,{()

}:)0,0,{()

}0:),,{()

}:),,{()









zyxzyxWd

RxxWc

zyxzyxWb

zyxzyxWa

 

Solution: Follows directly from the definition. 

2. Let 
22 MV be the vector space of 22  matrices with the usual operations.  

Verify that }:{ 22

tAAMAW    forms an affine spaces associated with V . 

Perpendicular and Parallel vectors: 

Definition: Two non-zero vectors a andb  are said to be orthogonal or 

perpendicular if their dot product is zero.  

Denoted by ba  . Thus, 0.  baba . 

Note that if a is perpendicular to b and k  is any scalar, then a  is also  

perpendicular to bk  because bkakbakbka  00.).( . 

Example: Show that the vectors )5,1,3( a and )2,3,1(b are orthogonal. 

Solution: Here, baba  010133. . 

Definition: Any two non-zero vectors are said to be parallel if and only if one 

is the scalar multiple of the other.  

Let a and b be any two non-zero vectors. Then, btaRtba  ,0//  and 

note that if btaba ,// we always have  abab
t
1,//  .  

The scalar t  is said to be norm (length) ratio and given by 
b

a

t  .  
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Examples  

1. Verify that  the vectors )3,1,2( a and )9,3,6( b  are parallel. 

Solution: Here, abtab 3,33)3,1,2(3)9,3,6(  . 

Therefore, the two vectors are parallel. That is ba // . 

2. Let )4,3,(  ma and )8,,2( nb  . Find the values of m and n so that the 

vectors a and b are parallel.  

Solution: Here,                    

                      
6,1248,3,.2

)4,3,()8,,2(,0//





nmtttntm

mtnatbRtba
 

Proposition 2.1: 

i) Parallelism relation denoted by // on vectors is an equivalence relation. 

ii) If a and b  are not parallel, then Rtr  , , the equation btar   has a unique  

solution 0 tr  

Proof:  

i) For any vector aaaa //.1   and thus // is reflexive.  Suppose .// ba Then, 

 ,Rt ababbta
t

//1  .Thus, // is symmetric.  If ba //  and  

cb // , then bra   and ctb  .  Therefore catcra //  so // is transitive.  

From the three conditions, //  is an equivalent relation on vectors. 

ii) Suppose 0r  such that btar  , then baba
r
t //  which contradicts with 

the assumption that a and b  are not parallel. Therefore 0r and similarly by 

assuming 0t it can be shown 0t .   
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2.2 Geometry in Affine Space 

Since the elements of affine space are vectors, the geometric theorems that we 

know are analyzed using vector analysis. Now, let’s analyze some theorems 

and problems using vectors in order to understand affine geometry and affine 

space. 

Proposition 2.2: 

1. The line segment joining the mid-points of two sides of a triangle is parallel 

to the third side and its length is half of that side. 

Proof: Consider ABC below (figure 2.1a) where M and N are the mid-points 

of AC and BC . 

 

From the third condition in the definition of affine space, we have 

        

ABMNABMN

ABNCMC

ABNCMC

NCABMCBCABAC

2
12

)(2)(2

22

22









 

Besides, since ABMN
2
1 , MN is a scalar multiple of AB with scalar

2
1t . 

Hence, ABMN // . 

2. The diagonals of a rhombus are perpendicular. 

Proof: Let ABCD  be a rhombus with diagonals AC and BD as shown in figure 

2.1b above. To show that the diagonals AC and BD are perpendicular, it 

suffices to show that their dot product is zero. Let bBCaAB  , such that

baDBbaAC  ,  .  
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Besides, since the four sides of a rhombus are congruent baAB  . 

Thus, 0)()(.
22

 babbabbaaababaDBAC .  

Hence the diagonals are perpendicular to each other. 

3. The cosine laws: In ABC , suppose the lengths of the sides of the triangle 

opposite to the angles CBA  ,,  respectively are cba ,, . Then,   

                                       

Cabbac

Baccab

Abccba







cos2

cos2

cos2

222

222

222

 

Proof:  Consider figure 2.2b. In this diagram,  the arrow indicates in which 

direction we considered the vectors along the sides so that to determine what 

angle between the vectors to be taken. Because angle between two vectors is 

the angle formed by the vectors when they share (made to share) the same 

initial  points or tails. For instance, the angle between the vectors AC and CB is 

  given by C  

 

Here, we have   

CCCabbac

cCabab

cCBACab

ABCBACCBAC

ABABCBACCBACABCBAC











cos)cos(,cos2

)cos(2

cos2

.2

.)).((

222

222

222

222





   

Similarly, the other identities can also be derived. 
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4. Sum and Difference Formula of Trigonometric: Let  and  be any two 

angles. Then, 

                









sincoscossin)cos()

sincoscossin)sin()

sinsincoscos)cos()

sincoscossin)sin()









iv

iii

ii

i

 

Proof: Let OAand OB  be two unit vectors along the lines OL and OM making 

angles of  and   with the x-axis respectively as shown in the diagram below. 

 









COLMOCMOLb

OBOAa

)

.sin.cos,.sin.cos)

 Here;

jiji  

Now, to prove (i), let’s proceed as follow. 

).......(..............................].........[,]cossinsin[cos

)](cossinsin[cos

][),(cossin)(sincos

]0[),(cossin)(sincos

)(sinsin)(cossin)(sincos)(coscos

).sin.(cos).sin.(cos

i

OBOA

kijk

ij

ijjiijij

jjiiijji

jjijjiii

jiji

























On the other hand, using   MOLOBOA ,1 , we have  

)......(..................................................)sin(.sin. iiMOLOBOAOBOA kk  

Thus, from (i) and (ii), we have  





sincoscossincossinsincos)sin(

]cossinsin[cos)sin(.sin.



 kkkMOLOBOAOBOA
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To prove part (ii), let’s appy dot product.  

That is  sinsincoscos).sin.).(cos.sin.(cos.  jijiOBOA  

On the other hand, )cos(cos..   MOLOBOAOBOA  

Combining the two equations, gives us  sinsincoscos)cos(   

5. The sine Law: Suppose the sides of ABC  are represented by the vectors 

ba,  and c  where ccbbaa  ,, . Then,  
C

c

B

b

A

a







 sinsinsin
. 

Proof: Consider ABC with   CBA ,, as shown in the diagram.  

Now, observe that:  

i)  The angle between the vectors a  and b is   . (Do you see why?) 

ii) The angle between the vectors a  and c is   . (Do you see why  ?) 

iii) The angle between the vectors  b  and c  is   . (Do you see why?) 

iv) For any angle  ,  sin)sin(   (Difference formula of angles) 

Besides, by parallelogram law 0 cba (zero vector). 

But cbacba  0 . Here, if we cross by a both sides, we get 

],0 because[,

)(

accaaaacba

cabaaacabaa




 

 

 

Similarly, if we cross by b both sides, we get 

bacbbacbbbabcbbabcb  )()(  
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From the two results, we get that baaccb  . 

But if two vectors are equal, then their norms are equal and if the angle 

between any two non-zero vectors a  and b is  , then  

  0,sinbaba .  

Hence,  

C

c

B

b

A

a

c

C

b

B

a

A

CbaBacAcb
cba

CbaBacAcb

baaccb

baaccbbaaccb



























sinsinsin

sinsinsin

)sin..sin.sin..(
..

1

sin..sin.sin..

)sin(.)sin(.)sin(. 

 

In any ABC , the result 
C

c

B

b

A

a







 sinsinsin
is known as The Sine Law. 

6. Using vectors,  prove Pythagoras Theorem. 

Proof: Consider ABC with right angle at vertex A . We need to show 

222 bac  .                                                

From figure 2.2a,  and  

.  Thus, 

                             

 

0.,,,  ABACcBCbACaAB

ABACBCACBCAB 

22

22

22

2
2

0.,

.2

)).((

.

ba

ABACABAC

ABACABAC

ABACABAC

BCBCBCc










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2.3 Lines and Planes in Affine space 

From Euclidean geometry, we know that any two distinct points determine a 

unique line whose equation can be determined using the concepts in coordinate 

geometry. But, in affine space lines and planes are defined using the concept of 

vectors. So our next discussion focuses on analysis of lines and planes in affine 

space using vectors. 

2.3.1 Lines in Affine Geometry 

Definition: Let W  be an affine space. Then, a line in W  through two different 

points A  and B  is defined as the set },:{, RtABtAXWXBA   

or RtABtAXl  ,: . Here, the vector AB is called direction vector of the line  

and the scalar t  is called parameter.  Now, let l be any line through the points A  

and B  in affine space. Then,  },:{,: RtABtAXWXBAl  .  

Letting ),,(),,,(),,,( 000 cbaABdzyxAzyxX  , we get that  

),,(),,(),,(: 000 cbatzyxzyxl  (This is called vector equation of the line). 
 

Parametric and Symmetric Equations of a line:  

Equating corresponding components from this equation, we have














ctzz

btyy

atxx

0

0

0

  

        (This is called Parametric Equation).   

Again, from the parametric equation (whenever cba ,, are all non zero), solving 

for the parameter  gives us,  

Equating these values of implies (This is known as the  

Symmetric Equation).   

t
























c

zz
ttczz

b

yy
ttbyy

a

xx
ttaxx

0

0

0

0

0

0

t
c

zz

b

yy

a

xx 000 






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Remarks: The case when one of cba ,, is zero gives the following equations.  

                 
b

yy

a

xx
zz

c

zz

a

xx
y

c

zz

b

yy
xx

00

0

00

0

00

0

, 0,c  Ifiii)

,y 0,b  Ifii)

, 0,a Ifi)



















 

Examples: Give the vector, parametric and symmetric equations of the line 

that passes: 

a) Through the points  and  

b) Through the point  and parallel to the vector  

c) Through the point )5,3,2( A  and parallel to the vector kju 84   

Solution:  

8

5

4

3
;2:SE

85

,43

2

:PE),8,4,0()5,3,2(::VE)

75

3

2

1
  :(SE)equation  Symmetricand

7

53

21

:(PE) Equations Parametric

)7,5,2()0,3,1(::(VE)equation Vector )

3

1

4

1

1

2

31

:Equation Symmetric  and,41

2

: Equations Parametric

),3,4,1()1,1,2(::VE)











































































zy
x

tz

ty

x

tXlc

zyx

tz

ty

tx

tXlb

zyx

tz

ty

tx

tABtAXla

Note that the vector and or the parametric equations of a line are not unique. 

That means we can find many parametric equations for the same line. 

Proposition 2.3:  

a) There is a unique line through any two points in affine space. 

b) Any two different direction vectors of a line are parallel. 

Proof: (Follows from the definition) 

 

 

 



)1,1,2( A )2,3,1( B

)0,3,1(A kjiu 752 
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Parallel and Perpendicular Lines in Affine Space: 

Definition: Any two lines  BA, and  DC,  are said to be parallel if their  

direction vectors AB  and CD   are parallel and they are said to be 

perpendicular if their direction vectors AB  and CD   are perpendicular. 

Besides, the angle between these lines is the same as the angle between their 

direction vectors. 

Examples:  

1. Determine whether the following pairs of lines are parallel, perpendicular or 

neither and for these which are neither find the angle between them. 

a) and  

b) The lines through and  

c) The lines through and  

Solution:  

a) Here, .  

Hence, from the definition, the lines are also parallel. 

b) In this case, .  

    Hence, the lines are also perpendicular. 

c) . But those vectors are neither parallel 

nor perpendicular and so are the lines through these points. Let  be the angle 

between the lines.  Then,

 
4

3
)

2

1
(cos

2

1.
cos 1 

 





 

vu

vu
. 

Or it could be  
44

3 
  .

 2. For what value of k are the line tztytxl 72,31,2:  and the line  

)3,,3()5,3,2(:  krXm perpendicular in Affine space? 

Solution: The direction vectors of the lines are kkjivkjiu 33,732  . 

Then, the two lines will be perpendicular if their direction vectors are 

perpendicular. So, 9021360.  kkvuvu . 

)1,2,1()3,2,1(:  tXl )3,6,3()1,0,1(:  tXm

)5,7,4(),5,3,1(  BA )7,1,1(),2,2,5(  DC

)5,2,2(),4,1,2(  BA )3,5,3(),3,4,3(  DC

vuuvvu //3)3,6,3(),1,2,1( 

vuuvCDvABu  0.)5,3,4(),0,4,3(

)0,1,0(),1,1,0(  CDvABu


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3. Find the value of a if the cosine value of the angle between the lines 

and  is .      

Solution: The angle between the two lines is the same as the angle between 

their direction vectors
 

 

3/25965)3(

53
3

1

53

3

3

1.

3

1
cos So,

2222

2

2









aaaaaa

aa
a

a

vu

vu


4. Let  BAl ,: and  DCm ,:  be two non-perpendicular intersecting lines in 

affine space. Then, verify that 
CDAB

CDxAB


tan where  is the angle between 

the lines. 

Proof:  From the above definition, the angle between two lines in Affine Space 

is the same as the angle between their direction vectors. Thus, as    is the angle 

between the lines, it is also  is the angle between their direction vectors AB  

and CD . Besides, from vector analysis we know that sinCDABCDAB   

and cosCDABCDAB  . Thus dividing the first relation by the second 

yields, 







tan

cos

sin

cos

sin






CDAB

CDAB

CDAB

CDAB
. 

Proposition 2.4: Two Lines ruAXl :  and tvAXm :  passing through 

the same point P  are equal (identical) if and only if u and v are parallel. 

Proof: Suppose ml  and let ABmlB  , . Then, 

                          

vu

rABvutvru

tvAruAtvABruAB

r
t

//

]0[,

,







 

Conversely, let u and v be parallel. Then, there exists a scalar 0k such that 

kvu  . Let X be arbitrary point on line l . 

mlmXrkttvAX

kvrAXruAXlX





,

)(Thus,
 

zyxl : tzatytxm 24,5,1: 
3

1

kajivkjiu 2, 
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Proposition 2.5: Given a line l and a point Q not on l . Then, there is exactly 

one line m  through Q  parallel to l . 

Proof: Let ,: tuPXl  then tuQXm :  for any point Q is parallel to l

(because by definition any two lines with the same direction vectors are 

parallel). This proves the existence of parallel line to l . 

Now suppose there is another line n through Q parallel to l . In this case, it is 

given by vunmrvQXn ////,:  .  

Therefore, from tuQXm :  and rvQXn : with u  parallel to v  we get

nm   by the previous proposition. 

Theorem 2.1(Length Ratio Theorem): Let l be a line passing through two 

different points A and B  given by RrABrAPl  ,: . Then,  

1ifandbetween is)

10ifandbetween  is)

,
1

))










rPABd

rBAPc

BPif
PB

AP

r

r
b

AB

AP
ra

                        

Proof:   a) From vector equation of the line RrABrAPl  ,: , we have  

AB

AP

AB

AP
rABrABrAPABrAPRrABrAP  ,  

b) For any point P on a line determined by two distinct points A and B ,  

PBAPAB  . Besides, from equation of the given line we have ABrAP 

which gives us APAB
r
1 . From these relations, we get  

                          

r

r

PB

AP
PBrAPr

PBrAPr

PBrAPrPBAPAP
r








1
1

)1(

)1(
1

 

c) Here, we use the fact that for any vector a and a positive constatnt k , a and 

ak  have the same direction and akak  .  

For 10  r , ABrABAPABABrAPABrAP  .  

This shows P is between A and B . The rest parts of the theorem can be derived 

from what we did here. 

 



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  49 
 

 

Examples:  

1. If )7,0,5(A and )6,3,2( B , then find a point P on the line  BA,  which  

satisfies .3
PB

AP
 

Solution: From part (b) of  Length Ratio Theorem, on the line ABrAPl :  

if BP  , we have 
PB

AP

r

r


1
.  

But we need to find a point P which satisfies .3
PB

AP
  

Thus, 
2

3

4

3
3

1
3

1






rorr

r

r

PB

AP

r

r
. Besides, any point P on the 

line determined by A and B  is given by .,: RrABrAPl    

Using 
4

3
r , we get ).

4

25
,

4

9
,

4

11
()1,3,3(

4

3
)7,0,5(

4

3 
 ABAP

  

Using 
2

3
r , we get

 
)

2

11
,

2

9
,

2

1
()1,3,3(

2

3
)7,0,5(

2

3 
 ABAP .  

2. Application of Line Equation in Affine Space:  Suppose an Engineer 

wants to paint a rectangular portion  of a building using white and 

yellow colors where two of the vertices are )1,3,2( A and )4,7,3(B . If he 

divides the region into two sub-rectangles by a line through (on the segment 

) and (on the segment ) so that to paint white color the region

and yellow color  the region where the ratio of the length painted white 

to the length painted yellow is known to be 
2

3


PB

AP
. Find the coordinates of P  

where he should draw the dividing line to Q . 

Solution:  From Length Ratio Theorem, we have 
PB

AP

r

r


1
 . But we need to 

find a point P which satisfies .
2

3


PB

AP
  

ABCD

P

AB Q CD APQD

PBCQ



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  50 
 

35/3332332

)1(32
2

3

12

3

1
 Thus,









rorrrrorrr

rr
r

r

PB

AP

r

r

 

 Since we need a point P
 
 between A and B , only 5/3r is valid by part (c) 

of  

Length Ratio Theorem. Besides, any point P on the line determined by A and 

B  is given by .,: RrABrAPl    

Hence, using 
5

3
r , we get ).2,

5

27
,

5

13
()5,4,1(

5

3
)1,3,2(

5

3
 ABAP

  

Here, if we use 3r , we get ).14,15,5()5,4,1(3)1,3,2(3  ABAP But we 

didn’t do so. (Verify why this value of  is not used!). 

Theorem 2.2 (Distance in affine space)  

Let l be a line through A and B . If C is any point not on the given line l , then 

there is exactly one point P on the line l  such that CP is perpendicular to AB

given by
AB

ABAC
tABtAP

.
where,  .    

Moreover, if Q is any other point on the line,  then CPCQ  and hence P is the 

point on l  closest to C .  Besides, the shortest distance from the line to the point 

C is given by 
AB

ACAB

AB

ABACABAC
CPd







222 ).(
 

Proof: Let ABtAP  and assume CP is perpendicular to AB  as shown in 

figure 2.3 below.  

P
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)(,
.

0).(.

0).(.

0).(

0).(

0).(0.Then,

22

2
ABAB

AB

ABAC
t

ABABtABAC

ABABtABCA

ABABtCA

ABCABtA

ABCPABCP













 

The uniqueness of point P follows from the unique value of the parameter t .  

Now for any other point Q , the inequality CPCQ   follows from Pythagoras 

theorem.  Because if Q is any other point on the line (on the either side of P ), 

then .22222 CPCQCPCQPQCPCQ   Equality holds when QP  . 

Finally, from the diagram as the vector CP is perpendicular to PA , using 

Pythagoras theorem we get, 
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 

2

2

2

2

22

2

222

2

222

2

222

2

222

2

2

2

2

2
2222

sin

sincos1,
sin

]cos1[

)cos(

).(.

.

,

AB

ABAC

AB

ABAC

AB

ABAC

AB

ABAC

AB

ABACABAC

AB

ABACABAC

AB
AB

ABAC
AC

ABtAPABtAPABtACAPACCP











































 

Taking square root both sides gives the required result. 

 

Examples:  

1. Let l be a line through the points )3,1,2(A and )4,2,1(B . Find a point P

on this line which is closest to the origin and calculate the shortest distance 

from the line to the origin. 

Solution: From the above theorem, the closest point on the line to a given point 

C (not on the line) is given by ABtAP  , where 
2

.

AB

ABAC
t  .  

In our case, )3,1,2(A , )4,2,1(B and  )0,0,0(C . Thus, 

)
11

35
,

11

13
,

11

16
(1,1,3

11

2
)3,1,2(

11

2

11

1,1,3.3,1,2
11,1,1,3,3,1,2








P

tABABAC

 

11

150

11

4154).( 222







 d
AB

ABACABAC
CPd  
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2.  Find a point on the line  )4,3,2()3,2,1(: rXl   closest to )3,9,5(Q . 

Solution: From the above theorem, the closest point on the line to a given point 

Q  is given by ABtAP  , where 
2

.

AB

ABAQ
t   and AB is any direction vector of 

the line. In our case, )3,2,1(A  and )4,3,2(AB .  

Thus,

 

.1
29

29

29

4,3,2.0,7,4



t  

Therefore, ).7,5,3()4,3,2()3,2,1(  PABtAP  

2.3.2 Planes in Affine Space 

Definition: Let W be an affine space.  

Then,  a plane   passing through three non-collinear points CBA ,, is the set 

given by },,:{,, RtrACtABrAXXCBA      

From this equation, if we let ),,(),,,(),,,( 000 fedACcbaABzyxA  , then 

any arbitrary point ),,( zyxX  on this plane is given by  

).,,(),,(),,(),,( 000 fedtcbarzyxzyxX 
 

This is known as vector equation of the plane. Now by equating components 

from the vector equation, we get  














tfrczz

terbyy

tdraxx

0

0

0

.  This is called parametric 

equation of the plane where tr, are parameters. 

Example: Find vector and parametric equations of a plane passing through the 

points )1,0,1(),2,1,4(),3,2,1(  CBA . 

Solution: First let’s determine the vectors using the given points. 

)4,2,0(),5,3,3(  ACAB . Thus, the vector equation becomes,  

)}4,2,0()5,3,3()3,2,1(),,(:{,,:  trzyxXXCBA   

The parameter equation with parameters tr,  becomes  














trz

try

rx

453

232

31
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Problem Set 2.1  

1.  Let )8,16,8(),1,5,7(),9,10,3(  DBA . Show that AB and AD  are  

perpendicular. Find a fourth point D such that ABCD forms a rectangle. 

2. Show that R  is an affine space over R .  

3. Using vector method, prove that: 

a) An angle inscribed in a semicircle is right angle. 

b) The altitudes of a triangle are concurrent. 

c) The sum of the squares of the diagonals   of a parallelogram is 

equal to twice the sum of the squares of its sides. 

4. Using vector method, show that: 

a)  sinsincoscos)cos(   

b)  sincoscossin)sin(   

5. If )2,8(),4,0(  BA , find a point P on the line AB such that .
3

1


PB

AP

 
 

                                                                     )2/5,2(: PAnswer  

6. Show that a point on the line  is uniquely determined by the 

ratio . If , then find the coordinates of 

point on such that   

7. Let CBA ,, be points in affine space. Show that the set CBA ,, is either 

a plane, a line or a single  point.  

Particularly, if CBA  , what is the geometric figure represented by 

the set CBA ,, ?                

8. If is any point inside , prove that where  

. 

 

P  BA,

PB

AP
r  )4,7,3(),1,3,2(  BA

P AB .
5

2


PB

AP

P ABC tCsBrAP 

1 tsr
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9. If P is any point inside ABC such that CBrAP
2
1

4
32  , then  what 

must be the value of r ? 

10. Give the centroid of DEF whose vertices are )9,7,2(),6,5,3(  ED

and )7,1,2(F .                 

11. Let l be a line through )8,5,1(),9,1,7(  BA . Show that the length of the 

projection of the segment CD is 
3

17
L where )6,2,5(),3,2,1(  DC . 

12. Find a point on the line  )4,3,2()3,2,1(: rXl   which is closest to

)3,9,5(Q .                                                            )7,5,3(:Answer  

13. Let  BAl ,: and  DCm ,:  be any two intersecting lines in affine 

space. Then, verify that 
CDxAB

CDAB 
cot where  is the angle between 

the lines. 
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2.3.3 Collinearity in Affine Space 

Definition: (Co-linearity in affine space): Any three points CBA ,,  in affine 

space are said to be collinear if and only if bCaBA   where 1 ba . 

Proposition 2.6: Suppose DCBA ,,, are distinct points such that any three of 

them are not collinear. Then, CDAB  if and only if CDAB // and BDAC // . 

Proof: If CDAB  , then BDACBDACCDAB  . But any 

two equal vectors are parallel and thus CDAB // and BDAC // . 

Conversely, suppose that CDAB // and BDAC // .Then, for some scalars r and t , 

CDrAB  and BDtAC  . This in turn implies, )( CDrAB  and 

)( BDtAC  . Here, if we can show that either 1r or 1t we are done.  

Now, subtracting the second relation from the first gives  

DtrCrBtBDtCDrCB )()1()1()()(   

If we assume 1t , we have D
t

tr
C

t

r
BDtrCrBt











11

1
)()1()1(  

This shows that bDaCB  with 1 ba where 
t

tr
b

t

r
a











1
,

1

1
.  

But this mean that B is on the line CD  which implies that DCB ,, are collinear 

but this is a contradiction with the hypothesis that any three of the points are 

not collinear. Hence, 1t .  Similarly one can get 1r .  

Therefore,  CDABCDABBDACBDtAC  . 
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Theorem 2.3 (The intercept Theorem):  

Let DCBA ,,, be non-collinear points such that CDABCDAB ,// . Then, the 

lines  CA,  and  DB, intersect in a points O for which  
CD

AB

OD

OB

OC

OA


and .
OB

BD

OA

AC


 
Conversely, if the lines  CA,  and  DB, intersect in a point

O  such that 
OB

OD

OA

OC
 , then  CDABCDAB ,// . 

Proof: Consider figure 2.4. 

 

Since CDABCDAB ,// the lines  CA,  and  DB, intersect in a point.  

Otherwise, if they don’t intersect, ABDC becomes a parallelogram such that  

CDAB  which is a contradiction. Now suppose they intersect at some point O  

(refer the figure above)and then consider OAB and OCD .In these triangles, 

ODCOBAOCDOAB  , (corresponding angles) as .// CDAB  

Thus, OCDOAB  ~ by Angle-Angle similarity theorem.  

As a result, 
CD

AB

OD

OB

OC

OA
 .  

Besides, from this result,  
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OB

BD

OA

AC

OB

OBOD

OA

OAOC

OB

OD

OA

OC

OB

OD

OA

OC

OD

OB

OC

OA













11

 

Conversely, suppose the lines  CA,  and  DB, intersect at some point O

such that  
OB

OD

OA

OC
 . Let k

OB

OD

OA

OC
 . Then, OBkODOAkOC  , .   

Thus, )( OAOBkOAkOBkOCODCDODCDOC  .  

On the other hand, .OAOBABOBABOA    

So, from these two results, )( OAOBkCD  and OAOBAB  , we get  

ABkCD  .  Therefore, CDAB // besides CDAB  .   

Otherwise, if we assume that , then by Proposition 2.6, we get 

 which in turn implies that  the lines  CA,  and  DB,  are 

parallel. But this  contradicts with the hypothesis.  

Then, if and only if and . 

 

 

 

 

 

 

CDAB 

BDAC //

CDAB  CDAB // BDAC //
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2.4 The Classical Theorems 

Definition: Three points CBA ,, are said to be collinear if and only if BCAB // . 

That means if all the lines lie on the same line it means. Two or more lines are 

said to be concurrent if and only if they pass through the same point. The 

common point at which the lines meet is called concurrency point or point of 

concurrency.  

Now let’s see the most useful theorems usually called Classical Theorems.  

Menelao’s Theorem 2.4: Let ED,  and F  be points on the lines 

 CACB ,,, and  BA, of triangle ABC  respectively.  Then, the points

ED,  and F are collinear if and only if 1.. 
FB

AF

EA

CE

DC

BD
 

Proof: Suppose ED,  and F  are points on the lines  CACB ,,, and 

 BA,  respectively such that ED,  and F are collinear.  

We need to show that 1.. 
FB

AF

EA

CE

DC

BD
 

Draw a line through B parallel to AE  that intersects DF at a point P as shown 

in the figure 2.5 below. 

 

Since FBPFAEDECDPBAEBP  ~,~,// by Angle- Angle similarity 

theorem.  
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Using this result together with the intercept Theorem,  

we get 
EC

PB

DC

DB
 and 

PB

EA

FB

FA
 .  

Multiplying these two equations, we get                   

DBBD
EA

CE

FB

AF

DC

BD

CEECAFFA
EA

CE

FB

AF

DC

DB

EA

EC

FB

FA

DC

DB

PB

EA

EC

PB

FB

FA

DC

DB







,1..

,,1..

1....

 

Hence, co linearity of ED,  and F  implies that 1.. 
FB

AF

EA

CE

DC

BD
. 

Suppose  

We need to prove that the points ED,  and F are collinear. Consider line 

 ED, and suppose that F is not on this line.  

Assume that 'F is another point on  ED, such that ED,  and 'F are collinear. 

Then, by the forward part  

      

So, from )(i and )(ii we get, 

                               

FFFBFB
FB

AB

FB

AB

FB

AF

FB

AF

FB

AF

BF

AF

EA

CE

FB

AF

DC

BD

BF

AF

EA

CE

DC

BD



























''
'

11
'

'

'

'

..
'

'
..

 

Therefore, if ,1.. 
FB

AF

EA

CE

DC

BD
then the points ED,  and F are collinear.  

).....(................................................................................1.. i
FB

AF

EA

CE

DC

BD


)....(............................................................1
'

'
.. ii

BF

AF

EA

CE

DC

BD

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Ceva’s Theorem 2.5: Let ED,  and F  be points on the lines  CACB ,,,

and  BA, of triangle ABC respectively.   Then, the lines  EBDA ,,,  

and  FC, are concurrent if and only if 1.. 
FB

AF

EA

CE

DC

BD
. 

Proof: Suppose the lines  EBDA ,,,  and  FC, are concurrent at a 

point P . Draw lines through B and C which are parallel to the line  DA, . 

Extend the line  EB, to a pointQ and  

 FC, to a point R (Refer  figure 2.6 below). 

 

Since RBAPQCAP //,// and CQBR // , we have 
PA

CQ

EA

CE
 , 

BR

PA

FB

AF
 and  

CQ

BR

PC

RP

DC

BD
 .  

Now, multiplying the three equations yields, .1.... 
BR

PA

PA

CQ

CQ

BR

FB

AF

EA

CE

DC

BD
 

Conversely, suppose ).(........................................1.. i
FB

AF

EA

CE

DC

BD
  

Let the point P be the intersection of the lines  DA, and  EB, . Assume 

the line  FC, does not pass through this point P . Then, we have another 

point 'F on line  BA,  such that the line  ', FC passes through the point P . 

Then, by the forward part )......(..........1
'

'
.. ii

BF

AF

EA

CE

DC

BD
 .  



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  62 
 

So, from )(i and )(ii we get, 

        

FFFBFBFBBF

ABBFAF
FB

AB

BF

AB

FB

FBAF

BF

BFAF

FB

AF

BF

AF

FB

AF

BF

AF

EA

CE

FB

AF

DC

BD

BF

AF

EA

CE

DC

BD













'''

'',
''

''

11
'

'

'

'
..

'

'
..

 

Therefore, the lines  EBDA ,,,  and  FC,  are concurrent whenever  

1.. 
FB

AF

EA

CE

DC

BD
. 

Corollary 2.1: The three medians of any triangle are concurrent.  

Proof: Consider ABC  below (figure 2.7a) where CFBEAD ,, are the medians.      

 

From the definition of medians, we know that EACEDCBDFBAF  ,,  

Thus, 11.1.1..))()(())()(( 
FB

AF

EA

CE

DC

BD
EADCFBCEBDAF  

Therefore, by Ceva’s theorem the medians are concurrent. 

Corollary 2.2: In any triangle, the three altitudes are concurrent  

Proof: The proof is given for the case when triangle ABC is acute angled 

triangle. The case for obtuse follows the same reasoning and is left as exercise. 

Consider AFC and  (refer figure 2.7 b above). In these triangles 

BAEBAE  (it is common angle) and CFABEA  (Both are right 

angles). Hence, AEBAFC  ~ by AA similarity theorem.  

But 
AB

AC

EA

AF
AEBAFC  ~

 

 

AEB
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Similarly in BDA and BFC , ABDABD  (it is common angle) and  

BFCBDA  (Both are right angles). Hence, BFCBDA  ~ by AA similarity 

theorem. But .~
BC

AB

FB

BD

BC

AB

BF

BD
BFCBDA 

 
Finally, by considering  

CEB and CDA , we get CDACEB  ~ . 
AC

BC

DC

CE
CDACEB  ~  

Multiply theses three ratios above will lead to 1.. 
FB

AF

EA

CE

DC

BD
. 

Therefore, by Ceva’s theorem the three altitudes are concurrent.  

Corollary 2.3: The angle bisectors of a triangle intersect at a common point.  

Proof: Use the same reasoning as above. 

Desargue’s Theorem 2.6: Let ABC and DEF be given where their 

respective (corresponding) sides are parallel. Then, the lines  EBDA ,,,  

and  FC,   are concurrent and 
EF

BC

DF

AC

DE

AB
 . 

  Proof: Given ABC and DEF with DFACDEAB //,//  and EFBC // (refer 

figure 2.8 below). Since DFACDEAB //,//  and EFBC // , then there exist 

scalars trk ,, such that .,, t
EF

BC
r

DF

AC
k

DE

AB
  Now we need to show that 

these scalars are equal in order to prove that the sides are proportional.  

Using vector addition,  

 
EFtrDErk

EFDErDFrEFtDEkACBCAB

)()(

)(




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Since DE is not parallel to EF , then by proposition  2.1, the equation  

EFtrDErk )()(  has a unique solution given by .0 trktrrk   

Therefore, k
EF

BC

DF

AC

DE

AB
 where k is a constant.  Here, there are two cases 

to be considered depending on the values of the constant k .  

 Suppose 1k . In this case, assume the lines  DA, and  EB, intersect at 

point O . Thus, DOEAOB  ~ by AA similarity theorem (because DEAB //

implies OBAOEDOABODE  , ). So,
DE

AB

OD

OA
 . Similarly, suppose 

the lines  DA, and  FC, intersect at point P . This also gives 

PDFPAC  ~ by AA similarity theorem which in turn implies 
DF

AC

PD

PA
 .  

But from the first result, we have 
EF

BC

DF

AC

DE

AB
 .   

Hence, .
PD

PA

OD

OA

PD

PA

EF

BC

DE

AB

OD

OA
  

Besides,                  

 

 

                

OPODPD

ODPD
PD

AD

OD

AD

PD

PDPA

OD

ODOA

PD

PA

OD

OA

PD

PA

OD

OA











 11

 

Hence, the lines   EBDA ,,,  and  FC, intersect at the same point and 

then they are concurrent.   

Finally, if the ratio 1k , then from k
EF

BC

DF

AC

DE

AB
 , we  

get DFACDEAB  , .  Besides from the hypothesis, DFACDEAB //,// .  



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  65 
 

Hence, ABED and ACFD  become parallelograms (A quadrilateral having a pair 

of parallel and congruent sides is said to be a parallelogram). 

Thus, the lines  EBDA ,,,  and  FC,  are all parallel.   

Therefore, the lines  EBDA ,,,  and  FC, are concurrent. 

Papu’s Theorem 2.7: Let ECA ,,  be points on a line k and FDB ,, on a line l . If 

EFBCDEAB //,// , then .// FACD  

Proof: Consider the diagram below. Suppose the lines k and l intersects at 

some point O (Refer figure 2.9b).  

 

Then, using the hypothesis EFBCDEAB //,// , and by The intercept Theorem,
 

OB

OD

OA

OE
 and 

OF

OB

OE

OC
 .  

Multiplying these equations, gives 
OF

OD

OA

OC
 .  

Therefore, by The intercept Theorem, .// FACD   Again, suppose lk // (Refer 

figure 2.9a). In this case,  BDAE // and EDAB // .  

Thus, AEDB is a parallelogram. So, BDAE  and .CEBF      

On the other hand,     

     
FDACFDAC

FDBDFBBFBDCEAEACECAEAC

//


 

Thus, AC and FD are congruent and parallel.   

Hence, AFDC is a parallelogram.  

Since opposite sides of a parallelogram are parallel .// FACD  
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Problem Set 2.2  

1. In Affine Space,  suppose the lines )8,3,2()1,0,1(:),3,1,1(: rXmtXl  and  

)2,1,0(),1,(: kbaXn   are concurrent. Find a and b . 5,3:  baAnswer  

2. Find the value of a  for which the lines 7:,23:  axymxyl  and 

32:  xyn are concurrent.     

3. The sign Law: Given ABC  with bACaBCcAB  ,, as shown below. 

Then, using vector method, prove that  .
sinsinsin C

c

B

b

A

a








                                                                

 
4. Find the vector, parametric and symmetric equations of a line through the 

intersection of xym :  and xyn  2: which is parallel 


















6

2

4

2
: tXl .  

5. Let ED,  and F  be points on the sides  CACB ,,, and  BA, of 

ABC respectively where 6,8,15,3,12  BDFBBCEAAB . If the lines 

 EBDA ,,,  and  FC, are concurrent, then calculate the length CE .                                                                             

                                                                                 9: CEAnswer  

6. Let be points on the sides and of triangle  

such that and . Then, find  

a) If the points are collinear. 

b) If and  are concurrent.  

7. Suppose ED,  and F  are collinear points on the lines  CACB ,,, and  

 BA,  of ABC . If for any point G , 1.. 
EA

CE

DC

BD

GB

AG
, prove that GF  .    

FED ,, CACB ,,, BA, ABC

4

3


DC

DB

5

12


EA

CE

FB

AF

FED ,,

EBDA ,,, FC,
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8. Let  and let   be on  and   be on  such that the lines 

, and <E,F> are concurrent.   

Then, prove that  . 

9. Prove that the angle bisectors of a triangle are concurrent at a point. 

10. Consider the vertices )1,2,7(),1,8,1(),5,2,1(  CBA  of an equilateral 

triangle . Suppose the points )2,5,1(),2,2,4(),1,5,4(  FED are on the 

sides  CACB ,,, and  BA, of ABC respectively. Prove that the lines 

 EBDA ,,,  and  FC, are concurrent.       

11. Suppose the medians CRBQAP ,, of ABC  intersect at point T . Then, 

show that 1
CR

TR

BQ

TB

AP

TP
 

12. Let and be triangles with the condition .  

Show that  

13 .Let FED ,, be points on sides ABCABC ,, of BCA respectively such that 

the Cevians CFBEAD ,, are concurrent. Show that if PNM ,, are points on  

DEFDEF ,, respectively, then the lines CPBNAM ,, are concurrent if and only 

if the lines FPENDM ,,  are concurrent. 

14. If a circle is inscribed in ABC such that NM , and P are points of tangency 

on the sides CABC, and AC , prove that  BNAM , and CP  are concurrent. 

15. The bisector of any interior angle of a non-isosceles and the bisectors of the 

two exterior angles at the other vertices are concurrent.  

16. In ABC , let ABP and ACQ such that BCPQ // . Then, prove that PC

and QB  concur (intersect ) at a point on the median AM . 

17. Let RQP ,, be points on BCA distinct from CBA ,, respectively. Then  

CRBQAP ,, are concurrent if and only if 1
sinsinsin

sinsinsin






RCAQBCAPB

BCRABQCAP
. 

18. Prove that the angle bisectors of a triangle are concurrent at a point.  

lk // ECA ,, k FDB ,, l

 BA,  DC,  FE,

/ /AC CE BD DF
   

ABC

ABC DEF / /AB DE AC DF
   

|| .BC EF
 
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CHAPTER-3 

Orthogonal (Isometric)Transformations 

3.1 Introductions  

In order to introduce the concept of isometrics, first let’s consider the notion of 

distance. Distance is a real valued non-negative function denoted by ),( QPd  

which assigns to any pair of points in the plane or space a non-negative real 

number satisfying the following conditions: 

  
QPQPdQPdii

PQdQPdi





0),(0),()

),(),()
 

  ),(),(),() RQdQPdRPdiii   

Here, the third  property is known as  triangle inequality and equality occurs if 

and only if the points RQP ,, are collinear points. 

Note: The notation ),( QPd stands to mean the distance from P toQ  and 

equivalently denoted by PQPQQPd ),( . It is the length of the line segment 

between P andQ which shows that line segment is the shortest path between 

two points.   

In Euclidean geometry, distance between two points P andQ in a plane is given 

by 2 2

1 2 1 2( , ) ( ) ( )d P O PQ x x y y     , where 1 1 2 2( , ) and ( , )P x y Q x y   

It can be easily verified that this distance formula satisfies the above three 

conditions. Throughout this text, the writer uses ( ) ( )f P f Q  to mean the 

distance between ( )f P and ( )f Q , PQ  to mean the distance between P andQ . 

In a plane, it is common to see the case where the norm of a vector or the 

distance (length) between two points to have the same measure after the vector 

or the points have been mapped to other vectors or points by some mappings. 
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In such cases, whenever vvf )(   (That is the norm of the image vector is 

equal to the norm of the vector before mapping) for any vector v  and 

( ) ( )f P f Q PQ  (That is the distance between the images of two points is equal 

to the distance between the points) for any two points P and Q , we say that f is 

norm, length or distance preserving. That is really what we mean isometric or 

orthogonal transformations. Now let’s have the formal definition. 

3.2 Definition and Examples of Isometries  

Definition: An isometric transformation of a plane is a transformation from a 

plane on to itself which preserves distances.  

That is, is an isometric transformation if for any two points and in the 

plane, .  

Isometrics in Euclidean space are sometimes named as orthogonal  

transformations or rigid motions.  

Examples:  

1. Verify whether the following transformations are isometries or mot. 

a) given by         

b)  given by )7,1(  xy  

c)   given by )3,3(),( yxyxf        

d)  given by )92,92(),(  xyyxf  

Solution:  

a) Since the distance between any two points and in is given by  

 and .  

 Hence, is an isometry. 

b) Here, if we take any two points ),(),,( wzQyxP  , we have  

22 )()(),( wyxzQPd  .  

f P Q

( ( ), ( )) ( , )d f P f Q d P Q

:f R R ( ) 5f x x 

2 2:f R R

2 2:f R R

2 2:f R R

x y R

( , )d x y x y  ( ( ), ( )) 5 ( 5) ( , )d f x f y x y x y d x y      

f
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Besides, )7,1()('),7,1()('  wzQfQxyPfP and thus  

22

22

)()(

)]7()7[()]1()1[(

))(),(()','(

xwyz

xwyz

QfPfdQPd







 

This shows  that ),())(),(()','( QPdQfPfdQPd  .  

Hence, it is an isometry. 

c) Here, for any two points ),(),,( wzQyxP  , we have  

22 )()(),( wyxzQPd  . 

 Besides,  

)3,3()('),3,3()(' wzQfQyxPfP  and thus  

          
22

22

22

)()(3

)(9)(9

)33()33(

))(),(()','(

xwyz

xwyz

ywzz

QfPfdQPd









 

This shows that ),()','(),(3))(),(()','( QPdQPdQPdQfPfdQPd  .  

 Hence, it is not  an isometry. 

d) Using similar procedures as in part (c), it is not isometric transformation. 

2. If f is an isomteric transformation and )6,(av  is a vector such that  

)4,3()3,( af , find a . 

Solution: Since f is an isomtery, for any vector v  we have vvf )( .  

416259

1699

)3,()3,()4,3()3,( Thus,

22

2







aaa

a

aafaf
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3. Prove that any isometry preserves dot product and conclude that an isometry  

preserves angle. 

Proof: Let v and w be any two vectors and f be an isometry. Since an isometry  

preserves length (norm), we have wwfvvf  )(,)( and  

wvwfvf  )()( .                

wvwfvf

wvwfvf

wwvvwwfvfv

wwvvwfwfvfvf

wwvwwvvvwfwfvfwfwfvfvfvf

wvwvwfvfwfvf

wvwfvf

wvwfvf

.)().(

.2)().(2

.2)().(2

.2)()().(2)(

....)().()().()().()().(

)).(())()()).(()((

)()(

)()(But

2222

2222

22

















 

Hence, wvwfvf .)().(   shows that f preserves dot product. Besides, if  is the  

angle between the non-zero vectors v , w  and  is the angle between the image  

vectors )(),( wfvf , then we have  

            ?)(.cos
.

)()(

)().(
cos Why

wv

wv

wfvf

wfvf
   
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3.3 Properties of Isometric (Orthogonal) Transformations 

Propositions 3.1: The inverse of an isometry is an isometry. 

Proof: Let be an isometry. Now let and be any two points. We need to 

show . Since is an isometry,   

QPQfPf

QPQiPiQffPff

QffPffQfPf













)()(

)()()))(()))((

))(())(()()(

11

11

1111

  

Hence, for any isometry , is also an isometry. 

Proposition 3.2: The composition of any two isometries is again an isometry. 

Proof: Let and be any two isometries. We need to show their composition  

gf  is also an isometry. Let and be any two points.  

Since is an isometry, .  

But is also an isometry, so . 

Combining these two results together, we get  that  

.  

Hence,  the composition is an isometry. 

Proposition 3.3: An isometry maps distinct points into distinct points. 

Proof: Let be an isometry. We need to show  

But, . Besides, since is an isometry 

.  

So,  

Proposition 3.4: Any isometry preserves between ness. That means if the 

points are the image of the distinct points under a given 

isometry such that is between and , then is also between and . 

Proof: Let be an isometry such that Then,  

.  

f P Q

QPQfPf   )()( 11 f

f
1f

f g

P Q

f QPQfPf  )()(

g )()())(())(( QfPfQfgPfg 

QPQfPfQfgPfgQfgPfg  )()())(())(()()( 

gf 

f ).()( BfAfBA 

0),(0  BAdBABA f

))(),((),( BfAfdBAd 

).()(0)()(0))(),((0),( BfAfBfAfBfAfdBAd 

',',' CBA CBA ,,

B A C 'B 'A 'C

f ).('),('),(' CfCBfBAfA 

ACCABCCBABBA  '','',''
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Besides, as is between and ,  (from definition of betweeness).  

Now suppose is not between and (It may be either to the left of or 

to the right of refer figure 3.1). 

 

Thus, if we assume is to the right of , then  

(Because ).  

But this contradicts with the hypothesis .  Similar argument holds if 

 is assumed to be on the left of .  

Hence, any isometry preserves betweeness. 

Proposition 3.5: If three points are collinear, then their images 

are also collinear. This means any isometry preserves co linearity. 

Proof: Apply Triangle inequality and proposition 3.4  to arrive at a  

contradiction. 

Proposition 3.6: An isometry maps lines into lines and parallel lines into 

parallel lines. 

Proof: Let be any line and be an isometry. Take any two distinct points 

on such that and   

But  Hence, 'A  and are distinct points and 

determine a unique line  Besides, since preserves co-linearity for any point 

 on , is on  Moreover; if , then   

Otherwise, if and are not parallel, they intersect at a point Q .   

So, there exist two different points and such that QAf )(  and 

QBf )( which implies . But this contradicts with proposition 3.3,  

.  Thus,  

 

B A C ACAB 

'B 'A 'C 'A

'C

'B 'C ABACBACA  ''''

ACCAABBA  '',''

ACAB 

'B 'A

CBA ,, ',',' CBA

l f

BA, l ')( AAf  '.)( BBf 

'.')()( BABfAfBA  'B

'.l f

P l ')( PPf  '.l ml // ).(//)( mflf

)(lf )(mf

lA mB

)()( BfAf 

)()( BfAfBA  ).(//)(// mflfml 
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Theorem 3.1 (The Three-Point Theorem): 

Two isometrics with same image at three non-collinear points are equal. 

Proof: Suppose and are two isometries such that  

where and are non-collinear 

points. We need to show that for any point in the 

plane. Now, suppose . Then, there exists at least one point such that

. Let as shown in figure 3.2. 

 

Since and are isometrics,   

From these two equations, we get which shows that is on the  

perpendicular bisector of (If a point is at equal distance from the end 

points of a line segment, then it lies on the perpendicular bisector of that line 

segment).  

Similarly, if we consider points and  separately in the plane of we get 

that and are also in the perpendicular bisector of   

That means they all lie on the same line which  yields that and are 

collinear. But, this in turn implies that are collinear because any 

isometrics preserves co-linearity.  

However, this contradicts the hypothesis that are non-collinear. 

Consequently,  

 

 

 

 

f g

),()(),()(),()( CgCfBgBfAgAf  BA, C

)()(., PgPfeigf  P

gf  P

)()( PgPf  ")(,')( PPgPPf 

f g ."','' APPAAPPA 

,"''' PAPA  'A

"' PP

B C A

'B 'C ."'PP

',' BA 'C

CBA ,,

CBA ,,

.gf 



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  75 
 

Problem Set 3.1 

1. Show that the transformation given by 







 yxyxyxf

5

4

5

3
,

5

3

5

4
),(  is an 

isometry. 

2. If 







 yxyaxyxf

5

3

5

4
,

5

4
),(  is an isometry, find the value of .a   

                                                                       
5/3: aAnswer  

3. Let P and Q be two points and  be an isometry with QQPP  )(,)(  . 

Show that MM )( where M is the mid point of P and Q . 

4. Suppose  is a mapping with the property that PQQP )()(  for all points 

P and Q . Show that  is an isometry.  (Hint: Simply show that  is a 

transformation) 

5. Prove that any isometry preserves the Cauchy- Schwarz Inequality. 

6. Using triangle inequality, prove that an isometry maps lines in to lines. 

7. Let C be a circle with center O and radius r . Prove that if f is an isometry, 

then )(Cf is a circle with center )(Of  and radius .r  

9. Prove that every isometry preserves norm of a vector. 

10. Prove that every isometry f preserves dot product and conclude that it also  

preserves angle measures. 

 

 

 

 

 

 

 

 

 

f
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3.4 Fundamental Types of Isometric Transformations 

3.4.1 Translation 

Definition: A mapping  is called translation if there exists a vector 

 such that  for every point P in .  

In other word, for  where  

The vector  is called translator vector. The translation with translator vector 

 is sometimes denoted by . In translation problem, whenever any two of  

or  (the pre image, the image or the translator vector) are 

given, the third can be uniquely determined from the translation equation.  

Examples:  

1. Let T be a translation that takes the point (3,4) to (5,3). Find the equation  for 

the translation T. 

Solution: Let ),( bav  be the translator vector. Then for any point ),( yxP , we 

have  where








byy

axx

'

'
.  

Particularly, for )4,3( , we have  

1,234,53)3,5()4,3()4,3(  bababaT .  

Therefore, )1,2(),(  yxyxT . 

2. For any two translations vT and wT , if )7,4(2)2,1(  wv TT and  

),3,1(3)2,9( vw TT  find the equations of these translations. 

Solution:  Let ),( bav   and ),( dcw  . Then, for any object ),,( yx  

),(),( byaxyxTv  ,  ).,(),( dycxyxTw   But,  

         

22: RRT 

v vPPT )( 2R

)','(),()(),,(),,( yxyxTPTbavyxP 








byy

axx

'

'

v

v vT

),','(),,( yxyx ),( ba

)','(),( yxyxT 

).(............................................................
113

63

)39,33()2,9()3,1(3)2,9(

).....(..................................................
122

72

)214,28()2,1()7,4(2)2,1(

ii
bd

ac

badcTT

i
db

ca

dcbaTT

vw

wv






















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Collecting like terms together from and , we get the following systems; 

 

This implies that  

Therefore, and  

For instance,  

Proposition 3.7 (Properties of Translations):  

a) The translator vector of a translation is unique. 

b) The composition of translation  and is again a translation by . 

c) The inverse of a translation is a gain a translation with opposite vector. 

d) The image of a line under a translation is a line parallel to the given line. 

e) The image of a vector under a translation is an equal vector. 

Proof: (Follows from the definition) 

Examples: 

1. If )7,3()5,1)((),1,3()2,1(  wvv TTT  , then find the equations of vT and  wT . 

Solution: Here,  

   )3,2(),(

)3,2()1,3()2,1()1,3()2,1(





yxyxT

vvT

v

v
 

A gain , from part (b) of the above properties,  

  )5,0()7,3()5,1()3,2(

)7,3()5,1()5,1)((





ww

wvTT wv 
 

Therefore, )5,(),(  yxyxTw . 

2. If )1,7()3,1(2 T , then find the equation of T . 

Solution: Here, PvPTTPT  2)()(2  . In general, PnvPT n )( . 

)1,3(),()1,3(

)1,7()3,1(2)1,7()3,1()1,7()3,1(  Hence, 2





yxyxTv

vTTT 
 

)(i )(ii

)5,3(),(),2,1(),(

5,2
113

122
,3,1

63

72







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
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
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bd
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)5,3(),(),2,1(),(  dcwbav

)2,1(),(  yxyxTv ).5,3(),(  yxyxTw

).7,4(2)2,1(2)2,1()2,1()7,4(),4,2()2,1(  wvwv TTTT

vT wT wv 



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  78 
 

Remark: The important concept that students should bear in mind about 

translation is that translation   can be applied to arbitrary shapes of object 

point –by-point. Each point of a given shape S is translated by  and the 

collection of these translated points gives the translated image  of S. This is 

denoted by So, to determine the image  when S is a polygon it is 

sufficient to translate its vertices.  For instance, if is an arbitrary four 

side polygon, where  are its vertices, to find the image polygon 

under a translation , it suffices to determine only the images of the vertices.  

i.e.  . So that the image  

quadrilateral is . This means that other points of the quadrilateral 

between the vertices are assumed to be translated (moved) equal distance in the 

same direction. 

Examples:  Let T be a translation by the vector . Find the image of  

    a) ABC  whose vertices are   and             

     b) the line    . 

Solution:  Let   by any object in the plane containing . Then,  

 by definition of translation. Thus, 

 a) )6,1()('),2,4()('),2,1()('  CTCBTBATA . Hence, the image of 

 under will be with vertices  and .  

b)  This problem can be done using two methods.  

Method I:  Take two points  and  on  .  

Say .Then, find the images of these points under . 

 . 

Now form the equation of a line  passing through and . This line will be 

the image of  under . This is because from the previous explanation all 

other points between and or on the line  will be translated the same 

distance in the same direction. Hence, , where 

. Taking either  or  on   we  can determine .  

Using . Thus,    . 

vT

v

'S

).(' STS v 'S

PQRT

TRQP ,,,

vT

')(,')(,')(,')( TTTRRTQQTPPT Vvvv 

'''' TRQP

)2,1(

)0,3(),0,0( BA )4,0(C

:l 62  yx

),( yxP  ABC

)2,1(),()(  yxyxTPT

ABC T ''' CBA )2,4('),,2,1('  BA )6,1('C

A B :l 62  yx

)0,6(),3,0(  BA T

)2,7(')(),1,1(')(  BBTAAT

'l 'A 'B

l T

A B l

bmxyl :'
2

1
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3
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




m

bxyl 
2

1
:' 'A 'B 'l b

2

3
1.

2

1
1,'  bbA 32

2

3

2

1
:'  yxxyl
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Method II:  Take any arbitrary point   on . Then, find . Finally,  

substitute in the equation of . )2,1(),()','('  yxyxTyxP . From the 

general equation of translation, .  

Subsisting these values in equation of  , we have 

 

Note that it is advisable to use Method II. Because most of the time Method I 

is subjected to arithmetic errors and is a bit longer than Method II. In this 

example one can observe which shows that  is parallel to .This 

will enable us to state the following proposition in general. 

Proposition 3.8: Any translation is a dilatation. 

Proof: In chapter 1, we have seen that to show a given transformation is a 

dilatation, first we have to show it is a collineation and then it maps any line to 

parallel line. Let be arbitrary translation with translator vector and 

let be any line.  Now, for any point on this line, 

. Solving for and in terms of and  

yields .  

Then, substitute these values in the equation of ( Just using Method II) 

 

But this is equation of a line which means that  is a collineation.  Thus, for 

any line  its image under a translation is a line given by   

.  

Besides, comparing the equations of and , we observe that they do have the 

same slope. This shows they are parallel which in turn implies that maps any 

line into a parallel line. Consequently, any translation is a dilatation.  

),( yxP  l 'P

l

2',1'2',1'  yyxxyyxx

l

3'2':'620'(2)1'(:'62:  yxlyxlyxl

2

1
'  mm 'l l

vT ),( khv 

0:  cbyaxl ),( yx










kyy

hxx
whereyxyxTv

'

'
)','(),( x y 'x 'y

kyyhxx  ','

l

0)(''0)'()'(0:  bkahcbyaxckybhxacbyaxl

vT

0:  cbyaxl vT

0)('':')(  bkahcbyaxllTv

l 'l

vT
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Proposition 3.9: For two given points, P  andQ  there is a unique translations 

that take P to Q  this is usually denoted by  QPT ,  . Besides, the translator vector 

is given by PQPQv  . 

Proof: Let ),(),(),,(),( 21 nymxyxTbyaxyxT   be any two translations  

such that  QPT )(1  and QPT )(2 . We need to show and  2T  are identical. 

But to show this it suffices to show that their translator vectors are equal. Let  

),(),,( feQdcP  . Then, ),(),()(1 febdacPT   and  

),(),()(2 fendmcPT  . Thus, ),(),( ndmcbdac  which implies, 

),(),( nmba  . So, )()( 21 PTPT    for any point P . Hence, 21 TT  .  

Therefore, QPT , is unique. Besides, PQPQvQPvPTv )( . 

Corollary 3.1:  

For any four points and , if , then  

Proof: Let be a translator vector of the translation . Then,  

          

RSPQ

v

v

TTRSPQRSPQ

SRPQRT

PQPQvQPvPT







)(

)(

 

 

 

 

 

 

 

 

 

 

 

 

1T

RQP ,, S SRT QP )(, .,, SRQP TT 
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Problem Set 3.2   

1. Let be a non-identity translation in . Prove that . 

2. For any four non-collinear points , is a  

parallelogram. 

3. Let f be a translation with translator vector ),( bav  . If )5,6()7,2(4 f , 

find the translator vector v  and )3,4( f  

4. Find the image of the circle yyxC 4: 22  under a translation T which maps

)2,1(  to )7,0( . 

5. Let vT  be a translation with translator vector v . Then, show that 

nvXXT
n

v )(  and nvXXT
n

v 


)(  for any object X . 

6. For any two translations, vT and wT  , their composition is commutative. i.e      

.. vwwv TTTT  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

vT 2R vlllTv //)( 

DCBA ,,, ABCDTT
DCAB


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3.4.2 Reflection 

When we look at our selves through a mirror, it is common to see our face. At 

this time, our true face is displayed through the mirror and the displayed face is 

called our image under the mirror. But in the theory of Optics one can find that 

this image is found to be at equal distance from the mirror as our real face. This 

means that the distance between the image and the mirror is the same as the 

distance between our face and the mirror and this is what we mean by the 

concept of reflection. 

Definition: Given a line  and a point . Then is said to be the reflection 

image of on the line  if and only  if is perpendicular to  and 

, where is the point of intersection of  and the line . In 

other words, and are located on different sides of but at equal distances 

from the line . In this case, is said to be the mirror image of and the line

is said to be line of reflection or axis of symmetry. 

Notation: Reflection on is usually denoted by . 

So,  

Examples:  Common reflection equations.The following simple equations of 

reflections can be easily derived using the definition.As they are most 

coomonly, used in this chapter, please bear them in mind. Let be any 

point. 

a) Reflection on the x-axis:  

b) Reflection on the y-axis:  

c) Reflection on a vertical line ax   : ),2(),( yxayxSa    

d) Reflection on a horizontal line by   : )2,(),( ybxyxSb   

e) Reflection on the line :  

l P 'P

P l 'PP l

'PM P M M 'PP l

P 'P l

l 'P P

l

l lS

, if 
( )

', if   and  is the perpendicular bisector of '
l

P P l
S P

P P l l PP


 



( , )x y

( , ) ( , )xS x y x y 

( , ) ( , )yS x y x y 

y x ( , ) ( , )lS x y y x
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Example: If the image of the point )5,3(  on a vertical line is )5,7( , find the 

equation of the line. 

Solution: Let the line be axl : .Then, reflection on this line will have 

equation ),2(),( yxayxSa  . 

Particularly, 2732)5,7()5,32()5,7()5,2(  aaaSa .  

 Hence, the line is 2: xl . 

Problematic situations: In solving reflection problems, there are three 

possible situation: 

I) Given the point  and line , we need to find the image  point  under . 

II) Given the image point  and the line , we need to find the object point . 

III) Given and the objetc point  and its  image point , we need to find the  

equation of . 

But, in each case, the basic definition of reflection can be used to determine 

any of the required values. 

Examples:  

1. Find the image of the point )6,4( by a reflection on the line xyl 2:  . 

Solution: Let the image point be )','(' yxP . Then, by definition, the midpoint of 

the P and P’ is on the line of reflection.  

That is )........(..........2'2'4'
2

6'
)

2

6'
,

2

4'
( ixyx

y
l

yx






 

A gain the line through P and P’ is perpendicular to the given line. Hence, its 

slope must be 
2

1
m . Thus,usin P and P’,  we have 

       
)...(..................................................8

2

'
'

2

1

4'

6'
ii

x
y

x

y





 

From the two equations, we get 
5

34
',

5

12
'8

2

'
2'2  yx

x
x . 

Therefore, the image point is )
5

34
,

5

12
()','( yx . 

P l 'P lS

'P l P

P 'P

l
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2. Let the image of the point by a reflection be the point . Find 

the equation of the line of reflection . 

Solution: Let ,  and  Since is 

perpendicular to ,  the product of the slopes of  and the line through  and 

must be . But the slope of the line through  and is .  So, slope 

of  is . Thus,   

Again, since is the perpendicular bisector of ,  passes through the mid 

point of and . That is, . Thus,  

satisfies the equation of . So, . 

Therefore, equation of is  

Proposition 3.10: Properties of Reflection 

a) For any two reflections,  

b) For any reflection , , the inverse of any reflection is itself. 

c) Reflection is an involution. 

Proof: (Follows from the definition) 

Part (a) of the above proposition shows that composition of reflections in 

general is not commutative.  

However, there is a special case in which . In  

general, “Under what condition, product (composition) of reflections will be  

commutative?” is basic question to be answered. Since it needs some basic 

theorems, it is not easy to answer this question for the moment. We will get the 

full answer to this question later on in section 3.5 of this chapter. 

Proposition 3.11: Let and be any two lines. Then, the following conditions 

are equivalent. 

    klklkllkkl SSSSciSSbSSSSa   12 )())())  

Proof:  We need to show .  

( 2,5) lS ( 5,2)

l

( 2,5)P   ' ( 5,2)P   : .l y mx b  'PP

l l P

'P 1 P 'P 1 m

l 1 : .l y mx b y x b     

l 'PP l

P 'P
' ( 2,5) ( 5,2) 7 7

( , )
2 2 2 2

P P
l

    
  

7 7
( , )

2 2



l
7 7

( ) 0
2 2

b b


    

l .y x 

 and , l m l m m lS S S S S S  

lS 1

l lS S 

mllm SSSS  

l k

ba 
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iSSSiSSSSS

SSSSSSSSSS

lllllkkl
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We need to show  

                 

klkl

klklklkl

klklkl
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















1

11

2

)(

)()()()(

)()()(

 

We need to show  

, because  

 

The generalized Analytic Equation of Reflection 

Theorem 3.2: (The Generalized Reflection Theorem): Let 

be any line and  be a reflection on line .  

Then, for any point ,   where  

Proof: From the definition of reflection, the line through and is 

perpendicular to the given line and the midpoint of and is on the 

line  Refer the figure 3.3. 

 

As the slope of the given line is the slope of the line through

and  is  

cb 

ac 

lkklklkl SSSSSSSS  1)(

kklllkkl SSSSSSSS   11111 ,,)( 

0:  cbyaxl
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Thus, the equation of the line through and is given by  

         
).(............................................................).........'()'(

'

'
ixxbyya

a

b

xx

yy





 

Now, the midpoint of and is on means is on .  

).....(..........2''0
22

 So, iibyaxcbyaxc
yy

b
xx

a 






 







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Combining these two equations gives us    

       

).........(..................................................
2

iii
byaxcybxa

aybxyaxb









 

Now, solve these equations for  and . In this equation, by multiplying the 

first equation by , the second by and adding them we obtain, 
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Similarly, multiplying the first equation by , the second by and adding 

the result gives, 
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Examples 

1. Find the image of the point by a reflection on the line  

Solution: Given and from .  

Then,                   

          

















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2

)(2
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22
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ba
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ba
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Therefore, ).
13

59
,

13

4
()3,2( lS  

2. Given where . Find the value of the point  

Solution: Using the generalized reflection equation derived in the above 

theorem, 

 

3. Given the lines  and . Find the image of the point 

by a product of reflection on line followed by line . 

Solution: We need to find  

First calculate using reflection equation as  

     

Now,  

Therefore, . 

)3,2( 0523:  yxl
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4 Given the line .  

  a) Show that  where  












2cos2sin'

2sin2cos'

yxy

yxx

 

  b) Calculate the image of the point by a reflection on a line  

Solution:  

a) Here, .  So, can be  

calculated using direct formula 

                                      

Similarly, can be calculated as follow:                            

                                

b) Here, Then, using trigonometric relation, we can find  

and as follow. 

                                      

xyl )(tan: 

)','(),( yxyxSl 

)5,5( .3: xyl 

0)(tan)(tan:  yxxyl  )','(),( yxyxSl 


















2sin2cos

)cossin2()sin(cos

cossin2cossin

sec1tan,
sec

tan2tan

1tan

)(tantan2

0,1,tan,
)(2

'

22

22

22

2

2

2

22

yx

yx

xx

yxx

yx
x

cba
ba

cbyaxa
xx
























'y


















2cos2sin

)cossin2()sin(cos
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sec1tan,
sec

tan2tan
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cbyaxb
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

















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


.3tan3  xy

sin cos
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Thus,  

Here, one can check the correctness of the answer using direct formula of 

reflection. 

 which agrees with 

our previous result. 

Reflecting Geometric Figures: So far we saw how to find the image of a point 

by reflecting on a line. But it is also possible to find the images of different 

figures (like lines, circles, ellipse, rectangles) under a reflection. So, here under 

let’s see some examples. 

Reflecting a circle or an ellipse on a line: 

To find the image of a circle under a reflection on a line l , we follow the 

following procedures. 

First: Identify the center O and radius r of the given circle C . 

Second: Find the image 'O  of the center O of the circle by a reflection on l . 

Third: Write the equation of the image circle using the center 'O and the same 

radius r . (Why we use the same radius?  We use the same radius because 

reflection is an isometry that preserves length) 

We also use the same procedure to reflect an ellipse. That is first identify the 

center of the ellipse and its minor and major axes, then reflect the center of the 

ellipse, finally write the equation of the ellipse using the image center and the 

same axes as the given ellipse. Please bear in mind that these procedure works 

for all types of isometries. 

5

3
cossin22sin,

5

4
sincos2cos

10

1
cos,

10

3
sin103tan

22 





 r

)7,1()','(
7)(5)(52cos2sin'

1)(5)(52sin2cos'

5
4

5
3

5
3

5
4


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









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
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7
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)515(2
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)','()5,5( 









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









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Examples: Find the images of the circle 0662: 22  yxyxC  and the 

ellipse 3694: 22  yxE  under a reflection on the line 1:  xyl  . 

Solution: For clarity, let’s follow the above procedure directly. 

First: Identify the center and radius of the circle 0662: 22  yxyxC . 

By completing square, we get 4)3()1(0662 2222  yxyxyx .  

Hence, the center  is )3,1(O and its radius is 2r . 

Second : Find the image of the center )3,1(O by a reflection on 1:  xyl  

Using, reflection formula we get the image of the center to be  

)0,2()3,1('  lSO  

Third: Write the equation of the image circle using the image center and the 

radius of the given circle.  

That is the image circle is xyxyxC 44)0()2(:' 2222   

In standard form, the ellipse is written as .1
49

3694:
22

22 
yx

yxE  

Thus, the major axis is 9a , the minor axis is 2b  and the center is )0,0(C . 

Besides, the image of the center is )1,1(' C . Therefore, the image of the ellipse 

becomes .36)1(9)1(41
4

)1(

9

)1(
:' 22

22







yx
yx

E  

Reflecting a line on a line: 

To find the image of a line m under a reflection on another  line l , we follow 

the following procedures. 

First: Select any two points P  and Q  from line m . 

Second: Find the image 'P  and 'Q of P  and Q by a reflection on l . 

Third: Write the equation of the line through 'P  and 'Q  which is image of m .  

These procedures work for any pairs of line m and l , even when they are 

intersecting. Besides, these procedure works for all types of isometries. 
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Example: Find the images of the lines 32:  xym  and 2:  xyn  under a  

reflection on the line 1:  xyl  . 

Solution: For clarity, let’s follow the above procedure directly. 

First: Select two points P  and Q  from line m . Say, )1,1(),3,0(  QP . 

Second: Find the image 'P  and 'Q of P  and Q by a reflection on l . 

Using, the generalized reflection formula we get the images t be  

)0,0('),1,2('  OP  

Third: Write the equation of the line through 'P  and 'Q  which is image of m . 

That is the image line is xym
2

1
:'  . Use similar argument to find image of n   

Application (Shortest Path Problem): Suppose Kumlachew wants to fetch 

water from a river on his way while he is going from his farm land (found at 

location ) to his home (found at location ) as shown in figure 3.4 below. 

Suggest the shortest path that takes kumlachew from his farm land to the river 

and then to his home and prove that the path you suggested is really the 

shortest path. 

Solution: In this problem, any one can guess that Kumlachew should go 

straight to some point on the river bank, fetch water and then go to his house.  

But the problem is to what point of the river should he go so as to minimize the 

length of the road. First of all assume that the river bank to which Kumlachew 

wants to go forms straight line say  

 

A B

.L
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Claim: Let be the reflection of in (straight side of the river bank) and 

let  Then, is the shortest path. 

Proof:  It suffices to show that if is any other point on then  

 Since is  the reflection of in and reflection is 

an isometry, Thus, By the same argument,  

implies   

Besides, as  are collinear (do you see why?), we have  

 But, by Triangle Inequality,  

Therefore,   

This proves our claim. 

Example (Application): Suppose an ant moves in straight lines from position  

)5,1(A to position )4,2(B  by touching the line xyL :  at some point P . 

Find the coordinate of P  that minimizes the total path of the ant. 

Solution: This is a particular case of the shortest path problem. As in the 

procedures of the above proof; 

First: Find the reflection image of )4,2(B on the given line xyL : . Say, 'B  

Second: Form the equation of the line through )5,1(A and 'B . Say, 

baxym :  

Third: Find the intersection of the line  xyL : and baxym : .This is the  

required point P . 

If we reflect the point )4,2(B on xyL : , we get )2,4('B . Next find the 

equation of the line through )5,1(A and )2,4('B .It is found to be 6:  xym

. Finally, determine the intersection of this line with the given line. That is 

3,36266:,:  yxxxxxymxyL . 

Therefore, the required point is )3,3(P  . (If you use Calculus, you will get the 

same result) 

'B B L

.' LBAP  BPA 

PQ  ,L

.QBAQPBAP  'B B L

.'QBQB  .' QBAQQBAQ 

'PBPB  .'PBAPPBAP 

',, BPA

.'' ABPBAP  .'' QBAQAB 

.'' QBQAPBAPQBAQPBAP 
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Problem Set 3.3 

1. Find the image of a circle 562: 22  yxyxC by a reflection on the line 

   2:  xyl .                                                                                                                                                                                                     

2. Let axl :   and bym : be two  lines.  If , find the 

values of a  and b .                                             
                                                                                                

 

3. Find the image of  

a) the circle by a reflection on the line . 

b) the ellipse  by a reflection on the line  

4. The equation of a reflection is given by . 

Find the equation of the line of reflection.                                       

5. Suppose an ant moves from the position to the position  by 

touching the x-axis at some point . Find the coordinate of  that minimizes 

the total path of the ant.                                     

6. If the image of  ABC by a reflection on the line 1:  xyl  is DEF where 

the vertices of the image are )2,1(),1,5(),1,1(  FED .  

Find the vertices of ABC .                                      

                                                                                                                     

7. If a line is reflected along the line , show that its image 

is . 

8. Suppose l  is a line through the origin which makes an angle of   from the 

positive x-axis  with 3tan  . Find the image of the point )1,7( by a reflection 

on this line.                                                 

9. Let be a reflection on a line  in . Prove that  for all  

vectors   in where is a unit vector along . 

 

 

15)1()1(: 22  yxAnswer

)7,4()3,2( lm SS 

5,3:  baAnswer

1: 22  yxC 7 xy

3649: 22  yxE 3:  xyl









 yxyxyxSl

5

4

5

3
,

5

3

5

4
),(

xyl 3:: Answer

)2,0(A )1,6(B

P P

)0,4/1(:Answer

)0,3(),4,0(),0,0(:  CBAAnswer

bmxy  cmxy 

bcmxy  2

)5,5(:Answer

lS l 2R vuvuvSl  ).(2)(

v 2R u l
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10. Let l be a line along the vector u  and let )(XP
u

be the projection of X on l . 

If 

















6

8

3

7

u
P ,  find the reflection image 









3

7
lS  on l .   


















9

9

3

7
: lSAnswer     

11. What is the minimum length of a flat-against the wall, full- length mirror 

for the Smiths who ranges in height from cm170  to cm182 , if you assume eyes 

are cm10 below the top of the head.                                     cm72:Answer  

12. Prove that every reflection is its own inverse. 

13. Suppose and are two distinct lines. Then, show that  

                     . 

14. Can the product of two reflections ever be a reflection? Explain your 

answer!  
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3.4.3 Rotation 

Definition: A rotation is a transformation in which a figure is turned about a 

fixed point through an angle of  in a specific direction. In other words, 

rotation about a point through directed angle  is a transformation that fixes 

the point  and sends every other point  to such that  and have the 

same distance from the fixed point . Here, the fixed point is called the 

center of rotation and the angle  measured from  to  is called 

direction of the rotation. The rotation may happen either clockwise or counter 

clockwise direction, usually clockwise rotation will have negative measure of 

angle, whereas counter clockwise rotation will have positive measure of angle.  

Rotation with center  through an angle of is usually denoted by .  

So, the image of any point  under is given as:  

                                              

 

Theorem 3.3: A rotation through an angle of , about the origin which takes 

each point in to is given by , where  

                                    

Proof: Let be a rotation through an angle of , about the origin and let 

be any point such that . As shown in figure 3.5, 

suppose is the angle from the positive x-axis to the segment .  



C 

C P 'P P 'P

C C

 CP


'CP


C 
,C 

P ,C 

,

, if
( )

', if , s. t. '
C

C P C
P

P P C CP CP



 

 



( , )P x y '( ', ')P x y )',(),( '

, yxyxO 

' cos sin

' sin cos

x x y

y x y

 

 

 


 

,o   O

( , )P x y )',(),( '

, yxyxO 

 OP
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Then the angle from the positive x-axis to the segment will be . Let 

. From the definition of rotation , so we have .   

Consequently, using polar coordinates for and , we get  

           ,        

Examples:  

1. Find the image of the point by a a counter 

clockwise rotation through  about the origin. 

Solution: From the above theorem, for any point ,     

where and . So, using , 

, we get .  

To find the image of the line , take arbitrary point  on . 

So  such that  

Now, solving these equations for  and substituting in the equation of , 

we get .  

2. Find the image of the point )1,3( by a counterclockwise rotation about the 

origin with 105 . 

Solution: Here, we use angle sum formula to determine )105sin(),105cos(  . 

That is  

      

4

2

4

6

2

2
.

2

1

2

2
.

2

3

45sin60cos45cos60sin)4560sin()105sin(

4

6

4

2

2

2
.

2

3

2

2
.

2

1

45sin60sin45cos60cos)4560cos()105cos(













  

'OP  

r OP 'OP OP 'r OP

'x 'y

' cos( )

cos cos sin sin

cos sin

x r

r r

x y

 

   

 

 

 

 

' sin( )

sin cos cos sin

sin cos

y r

r r

x y

 

   

 

 

 

 

(1,1) and the line :3 5 7l x y 

90

( , )P x y )',(),( '

, yxyxO 

' cos sinx x y   ' sin cosy x y   (1,1)P

90 , and (0,0)C   )1,1()',(),( '

,  yxyxO 

l ( , )x y l

)',(),( '

, yxyxO 
' cos90 sin 90

' sin 90 cos90

x x y y

y x y x

    


  

 

 

and x y l
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















2
4

24
)

4

6

4

2
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4

2

4

6
(.3)105cos()105sin(3'

2
4

24
)

4

2

4

6
()

4

6

4

2
.(3)105sin()105cos(3'

 Thus,





y

x

 

Therefore, )2,2()','( yx  

3. Suppose  is a counterclockwise rotation about the origin with 
3

2
tan  . 

Find the image of )132,135(  under  . 

Solution: Here, using right angle triangle, 
13

3
cos,

13

2
sin

3

2
tan   .  

)16,11()','(

16610
13

3
.132

13

2
.135'cossin'

11415
13

2
.132

13

3
.135'sincos'



















yx

yyxy

xyxx





 

Rotating a line and a circle : To find the image of a line or a circle under a 

given rotation we use the same procedure as we did in reflection section. For 

instance to find the image of a circle under a given rotation, first identify the 

center and radius of the given circle, second find the image of the center under 

the given rotation, finally write the circle using the image center and the same 

radius as the given circle. (Please refer the procedures we use for reflecting a 

line and a circle) 

Theorem 3.4 (Generalized Rotation Theorem): 

The image of any point under a rotation about arbitrary center   

through an angle of  is given by  where  

                           







kkyhxy

hkyhxx





cos)(sin)('

sin)(cos)('
 

Outline of the proof:  The proof of this theorem is not difficult. It is simply 

accomplished by performing the following coordinate transformations step by 

step. 

( , )P x y  ,C h k

 )',(),( '

, yxyxO 
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Step-1: Translate the center  to the origin by a vector  so 

that any point is translated to the point . 

Step-2: Rotate the result obtained in step one about the origin by an angle . 

Step-3: Translate the result obtained in step two by a vector to take 

every point back to the original position. This will complete the proof. 

The equations of the generalized theorem are too complicated to memorize.  

Subsequently, the readers of this material are advised to remember the methods 

in the outline of the proof how the formulas are obtained (Translate- Rotate-

Translate) rather than memorizing the formulas. 

Example: The image of the point  by a counter clockwise rotation about 

the center is Find the angle of rotation. 

Solution: By the generalized rotation theorem,  

               








kkyhxy

hkyhxx





cos)(sin)('

sin)(cos)('
  

So, for ,  and , we get   

2

2
cossin

2cossin

sincos

2cossin'

0sincos'

233cossin'

22sincos'









































y

x

y

x

          

Here, both and are positive.  

But this is true if and only if is in the first quadrant.  

Thus, an angle in the first quadrant with is  

 

 

 

 

 

Theorem 3.5 (Formula for center of a rotation):  

 ,C h k ( , )v h k  

( , )P x y ( , )x h y k 



( , )v h k 

)2,1(

)3,2(C ).23,2( 

)2,1(),( yx )3,2(),(  khC )23,2()','( yx

sin cos



2

2
cossin   .

4


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Suppose the general equation of a rotation about any center  with 

angle of rotation  is given by  where  

                with ,, tr being real numbers.  

Then, the center  of this rotation is given  

                            

Proof: From the general equation, 








kkyhxy

hkyhxx





cos)(sin)('

sin)(cos)('
 

     we have   

Solve these equations for and whenever are given real numbers.  

This can be solved using Cramer’s rules with and as variables. 

    

Example: Suppose ,CR is a counterclockwise rotation with center ),( khC 

whose equations are given by 

















324
2

1

2

3
'

342
2

3

2

1
'

yxy

yxx

. Find the angle and 

center of this rotation.  

),( khC 

 )','(),(, yxyxC 









tyxy

ryxx





cossin'

sincos'

),( khC 

















2

2

tan22

tan22





rt
k

tr
h









tkh

rkh

)cos1(sin

sin)cos1(





h k ,, tr

h k

22

2

22

22

2

22

2

222

tan22sin4

cossin2

2)cos1(2

sin

2)cos1(2

sin)cos1(

tan22sin4

cossin2

2)cos1(2

sin

2)cos1(2

sin)cos1(

sin)cos1(
sin

cos1

sin)cos1(
cos1

sin

sin4)cos1(2sincoscos21
cos1sin

sincos1










































rt
r

t
r

trt
k

tr
t

r
t

rtr
h

rt
t

r

tr
t

r

k

h

k

h
















































Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  100 
 

Solution: Let’s use the formula for center of rotation given in the above 

theorem. 

Here, 324,342  tr . Besides, 60
2

3
sin,

2

1
cos   . 































8)321(332
30tan2

342

2

324

2
tan2

2

4)32(3321
30tan2

324

2

342

2
tan2

2

 Hence,









rt
k

tr
h

 

Therefore, the center of the rotation is )8,4(),(  khC . 

Theorem 3.6: Let R be a counter clock wise rotation by a given angle about 

the origin. Then, 

a) , for any two angles 

b) , the inverse of a rotation by is a rotation by -  

c)  (Where is identity rotation) 

Proof: a) Let be any point. Then,  

                   

 

On the other hand, using as angle of rotation, we get  

 

Comparing equations , one can conclude that  

The proof of  part (b) and (c) is left as an exercise.  



  RRR 

 



 RR
1

 

ZnniR  ,2  i

( , )P x y

( , ) ( ( , ))

( cos sin , sin cos ) ( ', '), where

' ( cos sin )cos ( sin cos )sin

' ( cos sin )sin ( sin cos )sin

Rearranging these equations and using angle sum theorem, 

R R x y R R x y

R x y x y x y

x x y x y

y x y x y

   

    

     

     



   

   


   

we get

' cos( ) sin( )
...................................................( )

' sin( ) cos( )

x x y
i

y x y

   

   

   


   

   

( , ) ( cos( ) sin( ), sin( ) cos( )) ( ', ')...................( )R x y x y x y x y ii                 

( ) and ( )i ii .R R R   
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The above theorem reveals that the composition of two rotations and

about the point is the same as a single rotation by an angle of about the 

same point . Besides, the order of the rotation is immaterial and we write this 

relation as .  On the other hand part of the 

theorem tells us that the inverse of a rotation about center  by an angle of is 

the same as a rotation about the same center but by an angle of  and this is 

written as . This means that the inverse of a counter clock wise 

rotation is the same as a rotation in clock wise direction by the same angle 

through the same center. Besides, part (c)  

shows that a rotation is identity rotation if and only if the angle of rotation is a  

multiple of , that is . 

Examples:  

1. Find the image of the point by a product of rotations through an angle 

of  and in counterclockwise direction about the same center 

  

Solution: From the above theorem, where 

 , ,  and   

Thus,  

2. Suppose R is a counterclockwise rotation about the origin whose equations 

are given by 

















yxy

yxx

2

3

2

1
'

2

1

2

3
'

. Find the equations for the  inverse, 
1R ,  of this 

rotation.  

Solution: Here, 30
2

1
sin,

2

3
cos   .  

These, by part (b) of the above theorem, we have  

R R

C  

C

, , , , ,c c c c cR R R R R        ( )b

C 



1

, ,c cR R 





2 Znn  ,2 

)5,2(

15 75

).2,7(C

),(),( ,,, yxyx CCC   

)5,2(),( yx 15 75 ).2,7(C












3290cos)25(90sin)72('

4790sin)25(90cos)72('
)5,2()5,2(

90,75,15, 



 
y

x
CCC


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

















yxyxy

yxyxx

yxyxR

2

3

2

1
)30cos()30sin('

2

1

2

3
)30sin()30cos('

where)','(),(1





   

3. If   RR , then what should be the possible values of  ? Particularly for  

 20  . 

Solution: Using part (c) of the above theorem, we have  

                          

ZnnZnn

iRPPiPRPR

PRRPRRPRPRRR





 

,,22

)()()(

)()()()(

202





 

 

 Particularly for  20  ,   , when 1n . 

4. Suppose R and R are counterclockwise rotations about the origin such that  

),(),( xyyxRR   and 35 . Find angle  .  

Solution: Here, using part (a) of the above theorem, we have 













559035
1)35sin(

0)35cos(

)35()35sin('

)35sin()35cos('
),(),(


































xyxy

yyxx
xyyxRR

 

 

 

 

Half-turns 

Definition: A half turn is a rotation by . A half turn about a point is 

denoted by . If is rotated by  about point , then . In 

other words  is the mid point of and .  

Thus using the midpoint formula, .  

180 P

PH A 180 ),( baP APPA '

P A 'A

byyaxx

b
yy

a
xx

P
AA

2',2'

2

'

2

'

2

'



















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This will lead us to the formal definition of a half turn. Let . Then, 

half turn PH about a point is a transformation whose equation is given by  

                  , where  

Examples:  

1. Find the image of a point )7,2(  by a half-turn about the point )3,5( P . 

Solution: By definition,  

      ).1,8()7,2( Therefore,.
6'

10'
where)','(),( 








 PP H

yy

xx
yxyxH  

2.If the image of )3,2( by a half-turn is )11,10( , find the center of the half-turn. 

Solution: Let the center be ),( baP  . Then, using the definition, we have 

   
)7,4(7,4

1132,1022

)11,10()32,22()11,10()3,2(







Pba

ba

baH P

 

3. Let PH be a half turn about ).2,3(P  Find, 

 a) The image of the line 75:  xyl          

 b) The pre-image of the line 172:  xym  

Solution:  

a) Let ),( yx be any point on the given line. Then,  

)4,6(),()','(  yxyxHyx P .  Solving for x and y from this equation 

gives us 4',6'  yyxx . So, substitute these values in the equation of the 

line so that the equation will be in terms  of ',' yx and that will be the image 

line. 27'5':'7)6'(54':'75:  xylxylxyl  

Therefore, 275:')(  xyllHP .  Here, the line 275:'  xyl is called the image 

of l under PH and the line 75:  xyl is called the pre-image of 'l . 

),( baP 

P

)','(),( yxyxHP 








byy

axx

2'

2'
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b) In this case the image of some line m is given we are required to find the pre 

image m of this line. To do this problem we can use different methods. For 

instance first calculate the inverse 1

PH of PH and then find the image of the 

given line under 1

PH . That will be the pre-image of the given line. Since half 

turn is an involution, every half turn is its own inverse.  

So, )','()4,6(),(1 yxyxyxHP  .     

Using this equation we get the pre-image of the given line to be 12:  xym . 

Proposition 3.12(Characterization Theorem of a half turn): 

a) A Half turn  fixes a line  if and only if . 

b) A Half turn  fixes a point if and only if . 

c) RQH P )( if and only if P is the mid point of Q and R  .  

 That is 
2

)(
RQ

PRQH P


 . 

d) Half turn is an involution. That is iHHH PPP  2 . 

Proof:  

a) Let be any line and let . Let be arbitrary point 

on line . Then, . Thus, solving for  and 

  and substituting in the equation of , we get,  

  

But, the last equation defines equation of a line. Thus, the image of the line 

under  is also a line .  

Hence,  fixes a line  if and only if . But from equation of  and , 

they will be the same line if and only if  

          

Thus,  fixes a line  if and only if . 

b) Let and  such that . We need to show .  

 

But,                

     

Proposition 3.13: The composition of two half turns and is a translation 

by a vector in the direction from to .That is  

Proof: Let be any object point. Then, 

PH l lP

PH A PA 

0:  cbyaxl ),( khP  ),( yx

l )2,2()','(),( kyhxyxyxHP  x

y l

.0)(2''0  cbkahcbyaxcbyax

l

PH )(' lHl P

PH l 'll  l 'l

.),(00)(2 lPlkhcbkahcbkah 

PH l lP

),( yxA  ),( khP  AAH P )( PA 

PAkhyxkyhxyxkyhxAAHP  ),(),(,),()2,2()(

PH QH

PQ2 P Q
PQPQ THH

2


),( yxA 
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PQQP
PQ

QPQPQ

TTAT

PQAPQA

QPAQPA

PAHAHHAHH

2,
2

2
)(

2))(2(

)22()2)2((

)2())(())((









 

The composition of two half turns and is a translation by a vector in 

the direction from to .That is  

Proposition 3.14: Let , and be any three points. Then,  is the 

midpoint of the and  if and only if . 

Proof: Suppose  is the midpoint of and .   In the above theorem, we 

have proved that the composition of any two half turns is a translation. Thus, 

both and are translations. Besides, by proposition 3.12, since 

 is the midpoint of and ,   and  

. Here, both  and takes to .  

But, from the previous discussion of translation (in proposition 3.9), there is a 

unique translation  that takes to . Therefore, . 

Conversely, suppose . We need to show )(
2
1 RPQ  . 

But, for any point , 

              

)(

224

2222

2)2(2)2(

)2()2(

)())((

2
1 RPQ

RPQ

QPXRQX

QPXRQX

PXHQXH

XHHXHH

QR

PQQR











 

 

Here one can observe that not only the composition of two half turns is a 

translation but also any translation is the composition of two half turns and this 

is left for the reader to justify. 

Corollary 3.2: Let   be the midpoint of the points and . If   is the 

midpoint of the points and , then  

Proposition 3.15: If then the following conditions are equivalent. 

a) is the midpoint of and  

PH QH PQ2

P Q
PQPQ THH

2


P Q R Q

P R PQRPQR HHTHH   ,

)( Q P R

QR HH  PQ HH 

Q P R RRHPHH RQR  )()(

RPHPHH QPQ  )()( QR HH  PQ HH  P R

RPT , P R PQRPQR HHTHH   ,

PQRPQR HHTHH   ,

X

Q P R S

P Q PQPSQR HHTHH   4

,CA 

B A C
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b)  

c)  

Proof: Suppose is the mid point of and .Then, 

( From proposition 3.14) 

Suppose . Then,  

 

Suppose . Then,  

 

Therefore, is the midpoint of and . From this, we can infer that for any 

three collinear points , is the midpoint of and  if and only if  

if and only if . 

Example: If AH and BH are half-turns such that BCAB HHHH   where  

)5,1(),3,1(  BA , find the coordinates of C . 

Solution: By proposition 3.15, we have that 

    
)7,3()3,1()10,2(2)(

2
1  ABCCABHHHH BCAB   

Proposition 3.16: The composition of three half turns is a half turn.  

 

Proof: Let , and be three half turns about the points 

and respectively. Then, for any object ,  

. But this is an equation 

of a half turn with center at the point .  

BCAB HHHH  

CBAB HHHH 

).()( ba  B A C

BCABBCAB
HHHHTTBCACAB  

22
22

).()( cb  ABBC HHHH  

CBAB

BBCBAB

BBCBABBCAB

HHHH

iHHiHHHH

HHHHHHHHHH













,

).()( ac  CBAB HHHH 

BCABBCABAC

BCAB

BCAB

TT

HHHHHHHH

BCAB

BCABCBAB

22

22

22









 

B A C

CBA ,, B A C

BCAB HHHH  
BCAB

TT
22



PH QH RH

),(,),( dcQbaP  ),( feR  ),( yxX 

])[2],[2(),( dfbyceaxyxHHH PQR 

),( dfbcea 
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Proposition 3.17: If points and  are non-collinear points, then  

 whenever is a parallelogram. 

One of the applications of this corollary is that in any parallelogram , 

from the knowledge of the three vertices of the parallelogram , any one 

of the fourth vertex can be determined from the relation .  

Example: Let be a parallelogram with vertices . 

Find the vertex . 

Solution: From the above corollary, is a parallelogram if and only if  

. Let and be any point.  

Then,   

                         

Thus, the unknown vertex is . 

 

 

 

 

 

 

 

Problem Set 3.4 

1. If a rotation  takes the vector to , then find the value(s) of .   

                                                                                                  
                                                                                                                  

   

RQP ,, T

TPQR HHHH  PQRT

PQRT

PQRT

TPQR HHHH 

PQRT )4,1(),2,6(),2,1( TQP

R

PQRT

TPQR HHHH  ),( baR  ),( yxX 

)4,6(),()8,12()2,2(

)8,2()2,102()8,2()2,210(

)8,2(),10(

)8,2()4,2(

)()(













baba

bayxbyax

yxyxH

yxyxHH

XHXHHH

HHHH

R

QR

TPQR

TPQR







)4,6(),(  baR










5

10









11

a a

2: aAnswer
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2. *Suppose an ''YX -coordinate axis is obtained by rotating an XY

coordinate axis CCW through an angle of 45 about the origin. Find the 

equation of   

a) the curve 6''3 22 yx  in the XY coordinate axis        

b)  the curve  3222 22  xyyx in the ''YX coordinate axis.                                                         

     3'3')3): 2222  yxbyxyxaAnswer  

3. Suppose  is a counterclockwise rotation about the origin with 
3

2
tan  . 

Find the image of )13,13(  under  .                          

4. Find the image of the line 75:  xyl under a half turn PH  with center 

)2,3(P .                                                                    272:  xyAnswer                                  

5. If a half turn )12,4(),( yxyxHP  fixes the line mxyl : , find the slope m  

and give the equation of  the line l .                         xyl 3:: Answer                                                                        

6. If ),6,3(),2,1(  BA find C such that ).2,4()( CHH AB   

                                                                                                   

7. If ),3,2(E then find D such that ).5,3()2,1( DE HH   

8. For any point ),( yx , if )6,2(),(  yxyxHH BA  , find the vector AB . 

                                                                                 )3,1(: Answer  

9. Let . Find a point so that the product of the 

half turns  is equal to a single half turn about . 

                                                                                          

10. Let P  and Q   be any two points. Then,  show that 

QPHHHHbQPHHTa PQQPPQPQ
  )) . 

11. Show that rotation preserves parallelism of lines. 

12. Show that a translation can be written as a product of two rotations.  

13. Prove that if )(, PTQ BA , then QBAPBA HTHT 1

,,  . 

14. Show that for any two points ,  

)5,1(:Answer

)10,12(: CAnswer

)2,0(),5,1(),3,2(  RQP T

RQP HHH  T

)4,3(: TAnswer

QP, .QPHHT PQPQ
 
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15. Suppose PH  and QH  are half turns about the points P  and Q respectively. 

 If  )3,2(PQ , find )4,2(QP HH  .                    )2,6(: Answer          

16. Suppose RQP ,, and T  are non-collinear points. 

a)  Prove that TPQR HHHH   whenever PQRT is a parallelogram. 

b) If )4,1(),2,6(),2,1( TQP , find the vertex R such that PQRT forms a  

parallelogram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4 Glide Reflection 

Definition: A glide reflection is the composition of a reflection  over a 

line followed by a translation  with non-zero vector  where the line is 

parallel to the direction of the translation or parallel to the translator vector . 

The vector  in this case is called glide vector and the line is called axis of the 

g lS

l vT v l

v

v l
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glide reflection. Here, the vector is required to be non-zero otherwise 

translation by a zero vector will be identity map and the composition also will 

be the usual reflection but not glide reflection. We can easily justify that the 

same result is obtained by first reflecting and then translating or vice versa. As 

a result, the order of the two transformations  

(Translation and reflection) is immaterial. So, . 

Example : Let be a reflection on the line and be a translation by  

.  Here, and for any point 

. So, and  

which verifies that . 

General Equations of Glide-Reflections:  

Let g be a glide reflection with  axis 0:  cbyaxl and glide vector ),( edv
 

with the condition 0..  ed ba  .Then, the general equation of g is given by
 

)','(),(),(),( yxvyxSyxSTyxg llv   where 






















e

d

22

22

)(2
'

)(2
'

ba

cbyaxb
yy

ba

cbyaxa
xx

 

Conversely, if is a glide reflection given by )','(),( yxyxg  where  

          








daybxy

cbyaxx

'

'
 

Then, the axis of g is given by cxdbcadyabxl  2or    0)1(22: . 

 

Examples: 

1. Let g be a glide reflection with  axis 0243:  yxl and glide vector 

)3,4( v . Find  the equation of g  and calculate the image of the point )0,0(  
 

Solution: Here, )','(),(),(),( yxvyxSyxSTyxg llv   where 

v

vllv TSSTg  

lS 1 xy vT

)1,1(v )1,1(),(  xyyxSl )1,1(),(  yxyxTv

),( yx )2,(),(),(  xyyxSTyxg lv  )2,(),(),(  xyyxTSyxg vl 

vllv TSSTg  

g
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






























25

91

25

32

25

24
3

169

)243(8)(2
'

25

88

25

24

25

7
4

169

)243(6)(2
'

22

22

yxyx
y

ba

cbyaxb
yy

yxyx
x

ba

cbyaxa
xx

e

d

 

Therefore the image of the point )0,0( is given by  

).
25

91
,

25

88
()0,0( Hence,

25

91

25

91

25

)0(32

25

)0(24
',

25

88

25

88

25

)0(24

25

)0(7
'where)','()0,0(





g

yxyxg

 

2. Suppose g is a glide reflection with axis 075:  kyxl and glide vector 

)10,6(v . Then, find  the value of the constant k . 

Solution: The condition for g  to be a glide reflection with  axis 

0:  cbyaxl and glide vector ),( edv
 
is that 0..  ed ba . In our case, g  to 

be  a glide reflection with  axis 075:  kyxl and glide vector )10,6(v , we 

have 3010300)10()6.(5  kkk  

3. Let g be a glide reflection with  axis 0972:  yxl and glide vector 

)4,(dv  . Then, find  the value of the constant d . 

Solution: Similarly, as in example (2), .142820282  ddd  

4. Let g be a glide reflection with  axis 052:  yxl  and glide vector 

),( edv  . If )2,6()0,0( g , then find the  glide vector v . 
 

Solution: Here, the general equations of g are given by          

  




























eyxe
yx

ye
ba

cbyaxb
yy

dyxd
yx

xd
ba

cbyaxa
xx

2
5

3

5

4

5

)52(2)(2
'

4
5

4

5

3

5

)52(4)(2
'

22

22

 

That is  for any point ),( yx , 







 eyxdyxyxg 2

5

3

5

4
,4

5

4

5

3
),(  

)4,2(4,2

22,64)2,6()2,4()2,6()0,0( ly,Particular





ved

ededg
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5. Let g be a glide reflection with  axis 01:  yxl  and glide vector )3,3(v . 

If )8,5(),( qpg , then find the point ),( qp .        
 

Solution: Using the general equations of glide- reflection, we have 

         )4,3(),(

4843
2

)1(2
'

3523
2

)1(2
'






















qp

pp
qp

qy

qq
qp

px

 

Proposition 3.19: The square of a glide reflection (composition of a glide 

reflection with itself) is a translation. That is )())(()(2 PTPggPg   for some 

translation T . Any glide reflection fixes exactly one line, its axis. The midpoint 

of any point and its image always lies on the axis of the glide reflection.  

Proof: We will prove here the first part of the theorem the others follow from 

the above discussions. Let be a glide reflection. Then, by definition of glide 

reflection, where is a reflection and is a translation 

with vector  parallel to the line of reflection . 

Thus,  

                                 

Hence, composition of a glide reflection with itself is a translation by twice its  

original glide vector. We know that in any reflection , the mid point of any 

point P and its image lies on the line of reflection or axis of reflection. 

P

g

lvvl STTSg   lS vT

v l

v

v

v

v

vv

llvv

vllv

vllv

vlvl

Tg

XXTXggXg

XT

XT

XTT

iSSXTiT

XTSST

XTSST

XTSTS

XggXg

2

2

2

2

2

2

2

),()()(

)(

)(

)(

),(

)()(

))(()(

))(()(

)()(



































lS

)(PSl
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Thus, for any glide reflection , and its image  always lies on the  axis 

of the glide reflection, too.  

Examples:  

1. Suppose is a glide reflection such that )1,7()5,3(2 g .Then, find the glide  

vector of g . 

Solution: Let the glide vector be v . Then, by the above proposition, vTg 2

2  .  

So, for any point P , we have 

)3,2()5,3()1,7(2

)1,7()5,3(2

)1,7()5,3(2)()( 2

2

2







vv

v

gPvPTPg v

  

2. Suppose is a glide reflection such that and 

Then, find the axis of . 

Solution: For any glide reflection , the mid point of any point and its 

image always lies on the axis of . In particular, the mid point of and

, the midpoint of and lie on the axis of the glide reflection . 

Hence, the axis of passes through the points and . Let the axis of 

be the line given by . Then, the slope is .  

So, bxyl 
3

2
: .  

Taking one of the above points say ,  
3

11
3

3

2

3

2
 bbbxy .  

Hence, the axis of the glide reflection is 01132
3

11

3

2
:  yxxyl . 

 

Proposition 3.20: The product (composition) of two glide reflections about the 

same axis is a translation with translation vector of the sum of the two glide 

vectors. That is if  g  and h  are glide reflections with the same axis l  and glide 

vectors v  and w  respectively, then
wv

Thg


 . 

g P )(Pg

g

g )4,3()2,1( g ).7,5()3,1( g

g

g P

g )2,1(

)4,3( )3,1( )7,5( g

g )3,1( )5,2(

g bmxyl :
3

2

12

35





m

)3,1(
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Proof: Suppose g  and h  are glide reflections with the same axis l  and glide 

vectors v  and w  respectively. That is
wlvl TShTSg   , . We need to show 

hg   is a translation. Here, using associativiy of composition and the fact that  

lwwllvvl STTShSTTSg   , , for any point P , we have  

uuwvwv

wv

wllv

wllv

wlvl

ThgwvuPTPTPwvPTT

PTiT

PTSST

PTSST

PTSTSPhgPhg






















),()())((

)(

)()(

)(()(

))(()())(())((

Example: Suppose g  and h  are glide reflections with the same axis such that  

)2,6(),(2  yxyxh  and )6,9()7,3)(( hg  .Then, determine the glide  

vectors of g  and h . 

Solution: Let the glide vector of g be v  and that of h be w .Then, using 

proposition 3.19, we have  

        

)1,3()2,6(2

)2,6(),(2

),(),()()(
2

2

2

2







ww

yxyxw

yxTyxhPTPh
ww

 

A gain, using proposition 3.20, we have  

              

)12,9()6,0()6,9(

)6,9()7,3()1,3(

)6,9()7,3(

)7,3(for ly  particular),6,9()7,3)((

point any for ,)())((












v

v

wv

Phg

PPwvPTPhgThg
wvwv





  

 

 

Problem Set 3.5 

1. Let g be a glide reflection with  axis 03:  yxl and glide vector )4,4(v
 

Then, find  the general equation of g  and calculate the image of the point )0,0(   
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                                                       )7,1()0,0(),7,1(),(:  gxyyxgAnswer  

2. Suppose is a glide reflection with fixed (invariant) line . If it 

maps the point to , find its equation.          

3. Let g be a glide reflection with  axis 07:  yxl . If )4,3()14,13(2 g , 

then find its equation.                                                                                       
 

4. Let be a glide reflection where is a reflection on line passing  

through the point . If , find the equation of the line .                      

                                                                                      

5. For what value of the constant k will an isometry g be a glide reflection with  

axis 0173:  kyxl and glide vector )2,6(v  ?
        

9: kAnswer
 

6. Let g be a glide reflection with  axis 0972:  yxl and glide vector 

),14( ev  . Then, what must be the value of the constant e ?   4: eAnswer  

7. Let g be a glide reflection with  axis 0152:  yxl  and glide vector v . If  

)0,20()4,3( g , then find the  glide vector v .        )6,3(: vAnswer
 

8. Let g be a glide reflection with  axis 1:  xyl and glide vector )1,1(v
 

Then, find the image of the point )2,3( .                      )5,2(:Answer                                                

9. Let g be a glide reflection with  axis 06:  yxl and glide vector )2,2(v
 

Then, find  the general equation of g  and calculate the image of the point )0,0(  
 

                                       )8,4(),(:  xyyxgAnswer
 

 

 

 

10. Find the equation of a translation  of units at into the first 

quadrant and a glide reflection of units at  with axis .  

Find the image of with  under each  

isometgry.  

g 1 xy

)1,0( )4,3( )4,2(),(:  xyyxgAnswer

)12,2(),(: xyyxg Answer

vl TSg  lS l

)7,2( )12,4()0,0(2 g l

13:  xyAnswer

T 22 45

g 22 45 4:  yxl

BCA )2,0(),0,1(),0,0(  CBA
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11. Consider the line  0232:  yxl  and the points 




















1

0
,

1

3
QP . 

Then, give the equations of a glied reflection QPl TSg , . 

                                    )
13

38

13

5

13

12
,

13

31

13

12

13

5
(),(:  yxyxyxgAnswer                                                  

12. Let g be a glide reflection with axis 0:  cbyaxl and glide vector 

),( edv  .Then, show that  
e

d

a

b
  . 

 

 

 

 

 

 

 

 

 

 

 

3. 5 Orientation and Orthogonal Transformations 

3.5.1 Orientation of  Vectors   

Consider a pair of vectors and regarded as order pair .   

Denote the angle measured from to in the counter clockwise direction by 

 where as shown in the diagram below. 

)2,6(),(),2,2(),(:  xyyxgyxyxTAnswer











y

x
X 










w

z
Y ),( YX

X Y

  ,0
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Then, with the help of these diagrams we will give the following definitions. 

Definition: 

a) The pair of vectors is said to be positively oriented if and only if 

. In this case, we say that the vectors and have positive 

orientation. The first diagram above shows how positively oriented vectors are 

placed. 

b) The pair of vectors is said to be negatively oriented if and only if 

. In this case, we say that the vectors and have negative 

orientation. The second diagram shows how negatively oriented vectors are 

placed. 

Now, if we are given any two vectors and , how can we 

determine whether they are positively oriented or negatively oriented simply by 

using their coordinates ? 

The method how can we determine whether a pair of vectors is positively 

oriented or negatively oriented from their coordinates is given below. 

Theorem 3.7 (Orientation Test) : 

Let and be any two non-zero and non- parallel vectors. Then, 

a) and are  positively oriented if and only if  

),( YX

0sin  X Y

),( YX

0sin  X Y











y

x
X 










w

z
Y

wzyx ,,,











y

x
X 










w

z
Y

X Y 0),det( 
wy

zx
YX
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b) and are negatively oriented if and only if  

This theorem is known as Orientation Test Theorem. 

Proof: Consider the following diagram (figure 3.6)                   

 
From these values,  

            

 

Now, from the above definition the pair is positively oriented if and only 

if . But,  

         

On the other hand, the pair is negatively oriented if and only if .  

But, 

X Y 0),det( 
wy

zx
YX

2222

22222222

sincoscossin

)sin(sin

wzyx

yzxw

yx

y

wz

z

yx

x

wz

w




















),( YX

0sin 

0

0.;0

00sin

2222

2222











wy

zx

wzyxyzxw

wzyx

yzxw





),( YX 0sin 
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Hence, the proof is complete. 

In general, the vectors and are   

   a) Positively oriented if and only if . 

   b) Negatively oriented if and only if .  

Examples: Determine whether the following pair of vectors are positively or  

negatively oriented. 

      a) and

            

b) and  

Solution:  

a) For and , . So, the pair is  

positively oriented. That means and have positive orientation. 

b) For and , . So, the pair is  

negatively oriented. That means and have negative orientation. 

 

 

Remarks: 

 Orientation is not defined for parallel vectors. Because for parallel vectors, if  

and , then for some scalar (definition of parallel 

vectors). Thus, . But zero is neither positive nor negative. 

In this case, we say that and have zero orientation. 

0

0.;0

00sin

2222

2222











wy

zx

wzyxyzxw

wzyx

yzxw















y

x
X 










w

z
Y

0),det(0sin 
wy

zx
YX

0),det(0sin 
wy

zx
YX











0

1
X 










3

0
Y 










3

2
X 












1

5
Y











0

1
X 










3

0
Y 03

30

01
),det( YX ),( YX

X Y











3

2
X 












1

5
Y 017

13

52
),det( 


YX ),( YX

X Y

.i











y

x
X 










w

z
Y 










ty

tx
tXY t

0),det( 
tyy

txx
YX

X Y
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 Orientation is not defined for three collinear points. For any three collinear  

points , their orientation is determined from the orientation of the 

vectors . But if the points are collinear, then the vectors 

will be parallel and hence from the first remark their orientation is not 

defined. 

.iii  A pair of vectors is assumed to have the same orientation with a pair 

of vectors if and only if and have the same sign.  

If these determinants and have opposite sign, then we say 

that the pairs and have opposite orientation. 

Examples:  

1. Let  Determine whether and

 have the same or opposite orientation. 

Solution:  Here, .  

So, and  have the same orientation. But if we take and 

,   

Thus, and have the opposite orientation.  

 

 

2. Let , be any two vectors and be a scalar. Then,  

a) and  have the same orientation. 

b) and  have opposite orientation. 

Solution:  Let ,  and . Then, .  

Since , the sign of depends on the sign of .  

.ii

CBA ,,

ACAB, CBA ,,

ACAB,

),( YX

),( WZ ),det( YX ),det( WZ

),det( YX ),det( WZ

),( YX ),( WZ

.
5

3
,

2

0
,

3

2
,

2

1







































 WZYX ),( WY

),( XZ

02
22

10
),det(,01

53

32
),det( 




 XZWY

),( WY ),( XZ ),( YX

),( WZ .06
52

30
),det(,01

32

21
),det( 




 WZYX

),( YX ),( WZ

X Y 0t

),( YX ),( YtX

),( YX ),( XY











y

x
X 










w

z
Y 0t

wy

zx
t

wty

ztx
YtX ),det(

0t ),det( YtX
wy

zx
YX ),det(
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Hence, and  have the same orientation. 

and . But, from properties of determinants,  

 

Thus, and  have opposite orientation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.2 Orientation of Plane Figures 

Here, we will see how to determine the orientation of a triangle and then the  

orientation of other plane figures can be defined in the same way. 

Definition (Orientation of Triangles): For any triangle , there are two  

possibilities for its orientation. If we move from  to  to  again to in  

),( YX ),( YtX

wy

zx
YX ),det(

yw

xz
XY ),det(

).,det()1(),det( YXXY
wy

zx

ww

zz


),( YX ),( XY

ABC

A B C A
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counterclockwise direction (figure 3.7a), then is assumed to have 

positive orientation. If  follow  the clockwise direction (figure 3.7b), 

then is assumed to have negative orientation.  

 

Let be vertices of . Then, the orientation of is determined 

from the orientation of the vectors .  Thus, for  

 

So, from Orientation Test Theorem, the orientation of the pair of vectors  

depends on the sign of . 

 a) If then  will have positive orientation and so is

ABC  b) If then will have negative orientation and so 

is ABC  

Example: Determine the orientation of  with vertices 

ABC

CBA ,,

ABC

CBA ,, ABC ABC

ACAB,























































yv

xu
AC

yw

xz
AB

v

u
C

w

z
B

y

x
A ,,,,

),( ACAB
yvyw

xuxz
ACAB




),det(

,0),det( ACAB ),( ACAB

,0),det( ACAB ),( ACAB

ABC
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                                . 

Solution: Here, .  

This means the pair of vectors has positive orientation which is the  

orientation of . 

3.5.3 Orientation Preserving  and Orientation Reversing Isometries 

Definitions: Let  be any orthogonal transformation. Then, we say that

preserves orientation if and only if for any positively oriented vectors and

, their images are again positively oriented vectors. In this 

case, is said to be orientation preserving orthogonal transformation.  In 

general, if the pair and the pair have the same orientation, 

then preserves orientation.  But, if they have opposite orientation, then 

reverses (changes) orientation. In this case, is said to be orientation reversing 

(changing) orthogonal  transformation. 

Examples:  

1. Determine whether the following isometries preserve or reverse orientation. 



























































2

3
)))

y

x

y

x
gc

y

x

y

x
gb

x

y

y

x
ga  

Solution:  Let 









y

x
X and 










w

z
Y be positively oriented vectors. Then,  

0),det( 
wy

zx
YX  

a) From the given formula, 

              

0)','det(

)(',)('











































wy

zx
yzxw

zx

wy
YX

z

w

w

z
gYgY

x

y

y

x
gXgX

 





























6

4
,

2

3
,

3

1
CBA

09
31

32
),det(

3

3
,

1

2























 ACABACAB

),( ACAB

ABC

g g

X Y

)('),(' YgYXgX 

g

),( YX ))(),(( YgXg

g g

g
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Thus, the pair )','( YX is positively oriented, has the same orientation to the pair 

),( YX , which shows that g preserves orientation. 

0)','det(

)(',)('(a),part in   asSimilarly  b)





























wy

zx
xwyzyzxw

wy

zx
YX

w

z
YgY

y

x
XgX

 

Thus, the pair )','( YX is negatively oriented, has opposite orientation to the pair 

),( YX , which implies that g  reverses or changes orientation. 

c) Similarly, we get that g preserves orientation. 

Theorem 3.8 (General Orientation Test for Transformations):  

i) Let 22: RRg  be any transformation given by 





















dycx

byax

y

x
g . Then, g  

preserves orientation if and only if 0
dc

ba
.  

ii) In general, if g is given by 





















kdycx

hbyax

y

x
g .  

Then, g preserves orientation if and only if 0
dc

ba
. 

Proof: Suppose preserves orientation and let and be 

positively oriented vectors. Then,   

 

 

Since preserves orientation, for any positively oriented vectors  and 

,   implies and are also positively oriented.  

Hence, because .  

g 









y

x
X 










w

z
Y

wy

zx

dc
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dwczdycx

bwazbyax
YX

dwcz

bwaz
Y

dycx

byax

y

x
gX 







































 )','det(','

g 









y

x
X











w

z
Y 0),det( 

wy

zx
YX 'X 'Y

00)','det( 
dc

ba

wy

zx

dc

ba
YX 0

wy

zx
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Conversely, suppose . Then, for any positively oriented vectors 

 and , we need to show and are also positively oriented. 

But, is positively oriented implies that .  

On the other hand, from and , we have that  

.  

Therefore, preserves orientation. 

In general, whether a given transformation g preserves or reverses orientation 

is determined from its effect on the orientation of a triangle. This means if g

preserves the orientation of any triangle ABC , then it is orientation preserving 

and if g reverses the orientation of ABC , then it is orientation reversing  

transformation. 

Now, having this fact as basis, let’s  see the prove of the second part. Let 

ABC be arbitrary triangle. Then its orientation is determined from the 

orientation of the vectors AB and AC . Suppose ABC has positive orientation. 

That means 0),det( ACAB .  On the other hand, let ''' CBA be the image of 

ABC under g . Then, the orientation of ''' CBA is determined from the 

orientation of the pair )'',''( CABA .   

Now suppose g is orientation preserving.  

But from 





















kdycx

hbyax

y

x
g , using 




























v

u
C

w

z
B

y

x
A ,,                        




































































)()(

)()(
'',

)()(

)()(
''

)(',)(',)('

yvdxuc

yvbxua
CA

ywdxzc

ywbxza
BA

kdvcu

hbvau
CgC

kdwcz

hbwaz
BgB

kdycx

hbyax
AgA

 

0
dc

ba











y

x
X 










w

z
Y 'X 'Y

),( YX 0),det( 
wy

zx
YX

0
dc

ba
0),det( 

wy

zx
YX

0)','det(0)','det( 
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 YX
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dc
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dwczdycx

bwazbyax
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Thus,    

),det(

),det((det),,det(detdet

) A.detBdet (AB)det  property,  the(Usingdetdet

 property)tion multiplicamatrix  (Usingdet

)()()()(

)()()()(
det)'',''det(

ACAB
dc

ba

ACAB
yvyw

xuxz
ACAB

dc

ba

yvyw

xuxz

dc

ba

yvyw

xuxz

dc

ba

yvdxucywdxzc

yvbxuaywbxza
CABA



























































































 

Hence, g preserves orientation if and only if 

00),det(0)'',''det( 
dc

ba
ACAB

dc

ba
CABA because 0),det( ACAB  

from our assumption.  

Similarly, g reverses orientation if and only if  

00),det(0)'',''det( 
dc

ba
ACAB

dc

ba
CABA . 

Examples: Determine whether the following transformations are orientation  

preserving or orientation reversing. 

a) 22: RRg  given by 





















115

723

yx

yx

y

x
g  

b) 22: RR   given by 





















11

1

y

x

y

x
  

Solution: 

017
51

23
5,1,2,3

115

723
 Here, a) 

























dc

ba
dcba

yx

yx

y

x
g  

Hence, by the above theorem g preserves orientation. 

01
10

01
1,0,0,1

2

1
 Here, b) 

























dc

ba
dcba

y

x

y

x
  
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Hence, by the above theorem  reverses orientation. 

3.5.4 Orientation and the Fundamental Types of Isometries 

In our discussion of isometries, we have seen as there are four basic types of  

isometries: Translation, Rotation, Reflection and Glide- reflections. Now, using 

the above general orientation tests,  let’s see which of those orthogonal 

transformations are orientation preserving and orientation reversing (changing) 

isometries. 

I. Rotations:  

Let ,CR be a counter clockwise rotation with center through an angle of . 

Then, for any vectors and 









w

z
Y , the isometer ,CR is given by 




















cossin

sincos
)(' ,

yx

yx
XRX C and 



















cossin

sincos
)('

wz

wz
YRY  

Here, using the orientation test for vectors, we have 

0)','det(0

)cos(sincos(sin

cossinsincos

)]sincos)(cossin[()cossin)(sincos(

cossincossin

sincossincos
)','det(

2222

2222
















YX
wy

zx

yzxw

yzxw

yzxwyzxw

wzyxwzyx

wzyx

wzyx
YX











 

Thus, the pair )','( YX  is positively oriented for any positively oriented vectors

),( YX . This means ,CR  preserves orientation.   

Alternatively, using the above theorem, 

01sincos

cossin

sincos

cos,sin,sin,cos

cossin

sincos
)('

22 

































dc

ba

dcba

kyx

hyx
XRX

 

C 











y

x
X
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Thus, ,CR  is orientation preserving isometry. 

II. Translations: Let be a translation with translation vector 

. Then, 





















ky

hx

y

x
T . Is  orientation preserving or orientation 

reversing? 

01
10

01
1,0,0,1 Here, 






















dc

ba
dcba

ky

hx

y

x
T  

Hence, is orientation preserving isometry. 

III. Reflections:  

Let 0:  cbyaxl be any line and lS  be a reflection on line l .  

For any vector 









y

x
X in a plane, 


















'

'

y

x

y

x
S l  where 




















22

22

)(2
'

)(2
'

ba

cbyaxb
yy

ba

cbyaxa
xx

 

After some rearrangement, we get 

            




































2222

22

22

222222

22

2)(2
'

22)(
'

ba

bc
y

ba

ba
x

ba

ab
y

ba

ac
y

ba

ab
x

ba

ab
x

 

From, these equations we obtain the determinant of the coefficients as  

 11
)(

)(

)(

)2[

)(

)2[

)(

4)2(

)(

4)(

)(

4))((

2

2

222

222

222

4224

222

4224

222

224224

222

22222

222

222222

22

22

22

2222

22














































ba

ab

ba

abab

ba

abab

ba

baabab

ba

baab

ba

babaab

ba

ba

ba

ab
ba

ab

ba

ab

 

Thus, a reflection, lS  on any line l  is orientation preserving isometry. 

IV. Glide-Reflections 

Any glide reflection is a composition of a reflection over a line  and a 

translation  with non-zero vector  where the line is parallel to the 

direction of the translator vector . But from and cases above, we saw 

that translations and reflections are orientation preserving and orientation 

22: RRT 











b

a
v T

T

lS l

vT v l

v )(I )(III
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reversing isometries respectively. Therefore, their composition will be 

orientation reversing isometry (we will prove this later on as a theorem in 

Chapter 5) and thus glide reflection is orientation reversing. 

To sum up our discussion, let’s summarize our results above as conclusion. 

Conclusion: Translations and rotations (including identity) are the only types 

of isometries preserving orientation. Reflections and glide-reflections are the 

only types of isometries reversing (changing) orientation. 

Example: Suppose  is an isometry which maps into where the  

vertices of the triangles are  

 
































































3

10
',

1

1
',

3

2
',

4

12
,

2

1
,

2

4
RQPRQP .  

Determine whether  is a translation, rotation, glide reflection or reflection 

and find its equation.  

Solution:  To apply the above test, first determine the orientation of PQR and 

''' RQP .The orientation of PQR is determined from  PRPQ,det where  

  050
64

83
,det 




PRPQ .Hence, PQR has positive orientation.   

Similarly, the orientation of ''' RQP  is determined from  '',''det RPQP  where 

  050
64

83
'',''det 




RPQP  which shows that ''' RQP also has positive 

orientation. So, we have got that PQR and ''' RQP have the same orientation.  

As a result,   is orientation preserving isometry. Therefore,  is either a 

translation or a rotation. 

Now, to determine whether   is a translation or a rotation, find the vectors 

',',' RRQQPP . 

Here, 



























1

2
',

1

2
',

1

2
' RRQQPP . Thus, .''' RRQQPP    

 PQR ''' RQP


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So,   is a translation given by  





















1

2

y

x

y

x
 . 

(What happens if ''' RRQQPP  ? We will see the genral case in section 3.9) 

3.6 Fixed Points of Isometries  

Classification of isometries based on their fixed points:   

So far we have seen about fixed points of transformations. Now, among the  

fundamental types of isometries, we are going to see which isometrics are with 

fixed points and without fixed points.  

i) Exacltly one fixed point: Isometries that have exactly one fixed point are 

only  Rotations: Any rotation has exactly one fixed point and the fixed point is 

exactly the center of the rotation. 

Example: Show that that the only fixed point of a rotation  about the origin 

is the origin itself. 

Solution: Let be arbitrary fixed point of . Then we need to find 

the coordinates of . From the definition of fixed point, we have that  

. Now, we have to solve this  

system for and . 

From , solving for  we get . Substitute this  

value of in the second equation .  

          

So the only solution for is and substituting this value of in 

R

),( yxP  R

P















cossin

sincos
),(),()(

yxy

yxx
yxPyxRPR

x y

 sincos yxx  y




sin

cos xx
y




y  cossin yxy 

 

00)
sin

1cot
(

sin
cot

cot
sinsin

cot

sin

coscossin

sin

cos

cos
sin

cos
sin

sin

cos

22




















xx
x

x

x
xx

x

xxxxx

xx
x

xx































  0x x
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, we get . 

Therefore, the only fixed point  of a rotation  about the origin is 

which is the origin itself. 

ii) Two or more fixed points:  

Any isometry that has two fixed points but not identity is a reflection over a 

line and the whole points on the line of reflection are also fixed points.  

As a result the line of reflection is a fixed line. 

iii) Three non-collinear fixed points:  

An isometry that has three non-collinear fixed points is an identity. 

iv) No fixed poin:  

Isometries that have no fixed point at all- This category includes translation 

and glide reflection. 

Examples: 

1. An isometry  has exactly one fixed point )1,5( and maps the point )2,7( into 

)0,3( . Then, find the equation of  . 

Solution: An isometry with exactly one fixed point is a rotation where the 

fixed point is the center itself.So,

 

 is a rotation with center )1,5( . 

Hence, its equation at any point ),( yx becomes )','(),(, yxyxC  where  

             








1cos)1(sin)5('

5sin)1(cos)5('





yxy

yxx
 

In particular, 


















1cossin2

2sincos2

01cossin2'

35sincos2'
)0,3()2,7(,








 

y

x
C  

Here, adding twice the second on the second gives 1cos5cos5   .  

Similarly,  subtracting twice the second  from the first  gives  

0sin0sin5   . Thus,   0sin,1cos .  

Therefore, the equation of  is given by )2,10(),(),1,5( yxyx  . 

2. A non identity isometry   fixes the points )5,3(  and )4,1( . Then, find the  

equation of . 





sin

cos xx
y


 0y

R )0,0(P
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Solution: A non identity two given fixed points is a reflection  on aline through 

the fixed points. So,   is a reflection on a line through the points )5,3(  and 

)4,1( . Thus, the line of reflection has slope  
4

9
m . Hence, bxyl 

4

9
: but 

l )5,3( .  

That is 0749
4

7

4

9

4

7

4

27
5

4

9
 yxxybbbxy . 

Hence, you can find the equations of   using general equations of  a 

reflection. 

 

 

 

 

 

 

 

 

 

 

 

 

3.7 Linear and Non-linear Isometries 

Any given isometry is said to be linear or non-linear based on whether the 

origin is its fixed point or not. In what follows, we are going to see linear 

isometry and decomposition of an isometry using linear isometry. 

Definition: Any isometry is said to be linear isometry if and only if it fixes 

the origin. That means is linear if and only if . 

Examples: 



 0)0( 
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a) given by is a linear isometry because 0)0(  . 

b)  given by  is a linear isometry because  

)0,0()0,0(  . 

c)  given by  is a linear isometry 

because )0,0()0,0(  . 

d)  given by  is not linear isometry. Because it 

is an isometry but it does not fix the origin,  

Proposition 3.20: The composition of any two linear isometries is linear 

isometry. 

Proof: Let and be any two linear isometries on the same plane. Since the  

composition of any two isometries is an isometry,  is also an isometry. 

Besides, as and  are linear, .  

Therefore, .  

Hence the composition preserves the origin and it is a linear isometry. 

Proposition 3.21: Any given isometry can be expressed as a composition of a  

translation and a linear isometry. 

Proof: Let be any isometry. Define a vector by and consider  

 

 

Claim:  is a linear isometry. Since and are isometries and so is their  

composition (as the composition of any two isometries is again an isometry) . 

Hence,  is an isometry. Beside,  

. This means fixes the origin.  

Therefore, is a linear isometry. Thus, .  

Hence, for any isometry ,  where is a translation and  is a 

linear isometry. But as  is an arbitrary isometry, any isometry can be 

expressed as a composition of a translation and a linear isometry. 

RR : xx )(

22: RR  ),(),( yxyx 

22: RR  ),(),(
2
1

2

3

2

3

2
1 yxyxyx 

22: RR  )2,1(),(  yxyx

).0,0()2,1()0,0( 

 

 

  0)0(,0)0(  

0)0())0(()0(   

 

 v )0(v

. vT

 vT 

 vT

0)())0(()0()0(   vvvTTT vvv   

   vv TT  

  vT vT 
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Example: Let be an isometry given by .  

Express  as a composition of a translation and a linear isometry. 

Solution: Following the proof of the above proposition, take the vector  

 

Then, for any object , take  

Here, clearly  is an isometry. Besides, which means is a 

linear isometry and is a translation with translator vector .  

Therefore, where  

Proposition 3.22: Every isometry in  has a unique decomposition of the 

form  where and . 

Proof: Let be an isometry in such that and let be a translation 

by  in  such that  . 

Claim:  is a linear isometry. Since and are isometries and so is their  

composition (as the composition of any two isometries is again an isometry). 

Hence,  is an isometry.  

A gain,  . This means  fixes 

the origin and thus is a linear isometry. Besides, in , . 

Hence,   

If at least for some , we get and  which  

implies .  

But this is a contradiction because is an isometry.  

Therefore,   

Hence, from , composing both sides on the left by  gives 

 which means  

where and . Complete the uniqueness. 

22: RR  )14,2(),(  yxyx



).14,2()0,0( v

),( yx ),(),(),( yxyxTyx v    

 )0,0()0,0(  

vT )14,2(v

 vT ).,(),(),14,2(),( yxyxyxyxTv  

f R

cTf  )0(fc  xx )(

f R )0(fc  cT

c R fT c 

 cT f

fT c 

0)())0(()0()0(   cccTfTfT ccc  

 R yxyxd ),(

.,0,1
)(

)(0)0()()( Rxx
x

x
xxxxxx 




1
)(


x

x
21, xx 11)( xx  22 )( xx 

1212 )()( xxxx  



.,)( Rxxx 

fT c  cT

  cccc TffTTT   )( cxxTxf c  )()( 

)0(fc  xx )(
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Example: Let RRf : be an isometry given by 6)3( f . Find a translation T

and a linear isometry   with 2)2(  . 

Solution: Any  isometry in R is of the form Rxcxxf  ,)(  for a fixed  

constant c .  

But 9)(or3)(9cor 3636)3(  xxfxxfccf .  Then, 

following the proof of the above proposition,  

xxxxxfTxfTxxxf

xxxxfTxfTxxxf

c

c









)(99))(())(()(9)(

)(33))(())(()(3)(

9

3







 or
 

Here, we have two options for  , that is xx )(  or xx )( . 

But xx  )(2)2(  . 

Hence, we have got a linear isometry   and  a translation 9T  such that 

9Tf   where xxxxT  )(,9)(9  .  

 

 

 

 

 

 

 

 

Problem Set 3.6 

1. Determine the orientation of ABC whose vertices are 

































3

1
,

1

1
,

1

4
CBA  

2. Let RRf : be an isometry with 10)2( f . Find a translation T and a linear 

isometry   with 2)2(  .  

                                           xxxxTTf  )(,12)( where: 1212 Answer  

3. Let  be a half turn about )0,1(C . Find a vector and a linear isometry 

such that  vT .                                                                             

v 

),(),(),0,2(: yxyxv  Answer
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4. Let f be a CCW rotation about )2,4(C by an angle of 
3


  . Find a 

translation  and a linear isometry such that
 vTf  .            

    )
2

1

2

3
,

2

3

2

1
(),(),321,32(),(: yxyxyxyxyxTv  Answer                                                                      

5. Let be given by . Show that

 is an isometry but not linear isometry. Find a translation  and a linear 

isometry such that .  

                                                   

6. If lS   fixes the points )4,1( and )0,5( ,then find the equation of line l . 

                                                                             01032::  yxlAnswer  

7. Suppose f is a non-identity isometry such that )4,5()4,5( f and 

)1,0()1,0( f . Find the value of )0,1(f  and explain how you know )0,1(f

must have that value. Determine the general equation of this isometry.   

                                            15: line aon  reflection aIt :  xylAnswer  

8. If an isometry  is involution, prove that for any point P , the mid point of P

and )(P is a fixed point of .  

 

9. Suppose is a non-identity isometry which fixes and . Find the  

equation of and calculate  

10. Prove that the inverse of any linear isometry is also linear isometry. 

 

 

 

3.8  Representations of Orthogonal (Isometric)  

Transformation as a  Product  of Reflections  

So far, we have discussed that the product of two isometrics is a gain an 

isometry. Besides, we have encountered four types of isometries: reflections, 

translations, rotations and glide reflections.  From now onwards, our concern is 

vT 

22: RR  )1,1(),(
2
1

2

3

2

3

2
1  yxyxyx

 vT

  vT

)
2

1

2

3
,

2

3

2

1
(),(),1,1(),(: yxyxyxyxTv  Answer

f )1,1( )2,2(

f ).0,1(f
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to investigate: ”Are these the only isometries or do any other exist?” In other 

words, from the fact that the product of two isometries is again an isometry, it 

is natural to ask ourselves whether the product of any of two isometries we 

have seen so far results among one of those or a new one that we did not 

discussed. By investigating, all of the possible combination products of 

reflection, rotation and translation, we will find out that the result is any one of 

these but not a new form of isometry. Finally, we will generalize that there are 

no other isometries or our bag of isometries is complete.  Besides, we will 

conclude that reflections are the building blocks for plane isometries from the 

result that every isometry is the product of three or fewer reflections. Further 

more; if it is a rotation, then through what angle and with what center? If it is a 

translation, what is the translation vector? If it is a reflection, what is the line of 

reflection? and so on will be answered. 

3.8.1 Product of Reflections on Two Lines  

When we say product of reflections on two lines , we mean , reflection 

on line followed by a reflection on line . Here, and may be 

intersecting or parallel.  From our next discussion, we will point out that the 

composition of two reflections is a rotation, a translation or a reflection 

itself. So, later on after the discussion, you should be able to describe in detail 

in what situation it will be a rotation, translation or reflection. 

Case I: When the two Lines are Intersecting 

Theorem 3.7: The composition of two reflections on two intersecting lines

and is a rotation about the point of intersection through twice the directed 

angle between the lines.  

Restatement: Let and be any two lines intersecting at and the 

angle measured from to  being . Then  

mn SS 

m n m n

mn SS 

l

m

l m ),( bac 

l m   2,clm SS 
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Proof: Consider the figure 3.9a: To prove this theorem, it suffices to show that

  and . In order to show these two conditions, let’s 

consider two different cases: 

 

Case-1: Suppose . Then, by definition of reflection and 

by reflexive property.  Again, is perpendicular to  as is the 

line of reflection of to . Hence,  by SAS which implies that

.  

Similarly, by SAS and hence .  But, 

 (Do you see how?).   

Besides, as are isosceles, and , then 

by transitivity . 

Case-2: Suppose either or . For , and . 

Yet, with similar argument as in the first case, by SAS,   

so,  and thus  

and .  

The same reasoning holds when . Therefore, the theorem follows.  

 

Examples: 

1. Let and  Then find the image of the point  

by the composite reflection using single rotation. 

Solution: Since the two lines have different slopes, they must be intersecting 

lines. So, to apply theorem 3.7, first let’s find the point of intersection and the 

angle between them. The point of intersection is obtained as  

RQTPQP  2" ''QP QP

P m 'PR P R

QR QR QR 'PP m

P 'P QRPPQR '

QRPPQR '

QTPQTP "'  QTPQTP ''' 

.2)(2)"'()')"(  RQTmQPPmPQPmPQPm

'  and ' ''PQP P QP  'PQ P Q ' ''P Q P Q

''PQ P Q

P m 'P n P m ( )mS P P ( ) 'nS P P

QRPPQR '

QRPPQR '

2)(2)'())'(  PQRmQRPmPQRmPQPm 'QP QP

'P n

032:  yxl .073:  yxm

)7,5(  lm SS 
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)1,2(1,2
073

032









cyx

yx

yx
. Let  be the angle between and .  

Then, from coordinate geometry, 
21

21

1
tan

mm

mm




  where  and are slopes  

of the non-vertical lines and .  Thus, 

 
 13545)1(tan1tan

1
5

5

)3(21

23

1
tan

1

21

21

or

mm

mm






















 

To calculate )7,5( lm SS   determine which angle will be used. (Be careful here! 

On how to determine the angle). Hence, )4,10()7,5()7,5(
90),1,2(

  RSS lm . 

 2. If 1:  xym and )1,1()1,1(
90),2,3(

  lm SS  , find the equation of  

Solution: By Theorem 3.7, the equation )1,1()1,1(
90),2,3(

  lm SS gives us the 

two lines are intersecting at )2,3( and the angle between them is 45 . Then, 

if m is the slope of l , we have that 011
1

1
45tan 




 mmm

m

m .This 

means that the line l is a horizontal line passing through the point )2,3( . 

Therefore, its equation is 2: yl . 

Corollary 3.2: Let and be two lines intersecting at  Then,  

where  is the angle measured from to . 

Proof: Consider figure 3.9b. Since the directed angle from to is , the 

directed angle from to (in the same direction) is .  

 

So, by theorem 3.7, , where 

. Then, by using the generalized rotation theorem,  

 l m

1m 2m

l m

.l

l m ).,( bac 

 2, cml SS   l m

l m 

m l  

),(),( 2, yxyxSS cml 

)(2  
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Hence, whenever . This result shows that if we  

interchange the order of the composition the sign of the angle will also be 

changed.  So, if and only if . 

Corollary 3.3: Let and be any two lines intersecting at and the 

angle measured from to  being .  

Then,  where  

Proof: (Expand the result of theorem 3.7 using theorem 3.4)                                              

Theorem 3.8 (Converse of theorem 3.7): Given a rotation . Let and 

be any two lines intersecting at so that the angle between them is Then,  

.  

Proof: Given point , lines and with  Consider figure 3.10. 

Let and be points on and so that  Clearly, 

and are non-collinear points. Now, let and .  

 
Since center of rotation is fixed under any rotation and bedsides is on both 

lines and , and  which implies  

),(

)2cos()()2sin()(

)2sin()()2cos()(

)22cos()()22sin()(

)22sin()()22cos()(

),(),(

2,

2,

yx

bbyax

abyax

bbyax

abyax

yxyxSS

c

cml

















































 2, cml SS   2,clm SS 

 2,clm SS   2, cml SS 

l m ),( bac 

l m 

)','(),( yxyxSS lm 








bbyaxy

abyaxx





2cos)(2sin)('

2sin)(2cos)('

 ,C
m n

C .
2



mnC SS  ,

C m n .
2

),(


 nm

M N m n ).,(),( NCdMCd  MC,

N ')( NNSm  ')( MMSn 

C

m n CCSm )( CCSn )( .)( CCSS mn 
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Thus, is fixed both under and . Again, as is an isometry, 

 Besides, as isometry preserves angles,  

 

So, from and , we get   

On the other hand,  we have   which results in  

 Similarly, from and  

, we have  and then  

  

But, as and are non-collinear, and are also non-collinear 

besides , and . 

This shows that and agrees on three non-collinear points. But, by 

the three point theorem (Theorem 3.1), any two isometries are equal if they 

agree on three non-collinear points.  Therefore,  

Theorem 3.9: The product of two reflections on perpendicular lines and 

at a point is a half turn with center . That means . Conversely, 

a half turn about a point is the product of two reflections on two perpendicular 

lines intersecting at the center of the half turn. 

Proof: Let m and n be perpendicular lines intersecting at P . By theorem 3.7, 

the product of two reflections on two intersecting lines is a rotation with center 

at the point of intersection by twice the angle between them. 

In this case, since the two lines are perpendicular, 
2


  . 

Hence, PPPmn HSS    ,2, .From this theorem, we can generalize that 

the product of two reflections on intersecting lines is a half turn about their 

point of intersection if and only if the two lines are perpendicular. 

 

 

C  ,C mn SS  nS

).',(),( MCdMCd 

.
22

)',(),()',( 

 CMCNmCNCMmCMCMm

)',(),( MCdMCd   )',( CMCMm '.)(, MMC 

')()( MMSMSS nmn 

'.)()(, MMSSM mnC   )',(),( NCdNCd 

 )',( CNCNm NNC )'(,

.)()'()'(, NNSNSSN nmnC  

', NC M NC, M

)()(, CSSC mnC  )()(, MSSM mnC  )'()'(, NSSN mnC 

 ,C mn SS 

., mnC SS 

m n

P P Pmn HSS 
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Examples:  

1. Find the equations of two lines and such that is on and  

where is a half turn with center  

Solution: From theorem 3.9, the product of two reflections is equal to a half 

turn with center if and only if the two lines are perpendicular at . So, we 

have to assume that the lines and  are perpendicular at so as 

to be a half turn about . Let the equation of be .  

From the given, the points  and )4,2(  are on which implies that slope 

of is .  

So, and   

 Therefore, . 

Now, . Besides, . 

Therefore,  

2. Let 12:  xym . Find the equation of line n such that mn SS  is a half turn 

about )3,1(P . 

Solution: By Theorem 3.9, Pmn HSS  if and only if the two lines are 

perpendicular at P . Now since the slope of m  is 2 , the slope of n  must be 
2

1
 . 

Thus, bxyn 
2

1
: .  

Besides as )3,1(P is on n . 
2

7
3

2

1

2

1
 bbbxy .  

Hence its equation n  is 
2

7

2

1
 xy . 

 

 

 

m n )4,2(  m

Pmn HSS  PH ).0,3(P

P P

m n )0,3(P

mn SS  P m baxy 

)0,3( m

m 4
32

04





a

bxybaxym  4: .12120)0,3(  bbm

124:  xym

cxynnm 
4

1
:

4

3

4

3
0)0,3(  ccn

.
4

3

4

1
:  xyn
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Remark (Condition for product of reflections to be Commutative): 

Let and be two lines intersecting at point . We need to investigate the 

condition at which .  

First recall from theorem 3.6,  , and  

. Now, from theorem 3.7 and 3.8, we have  

where is the directed angle from to .  

On the other hand, from corollary 3.2 , .   

Consequently,  

ZkkiR

iRRRRRR

RRSSSS

C

CCCCCC

CCmllm











,24

,

4,

2,2,2,2,2,2,

2,2,











 

If , which is impossible since the lines are intersecting and the angle  

between any two intersecting lines is non zero. 

If  which means the lines are perpendicular. 

If  which means  again the lines are perpendicular. 

Since the smaller of the two angles between two intersecting lines is less than 

or equal to , there is no need to consider any other values of . Otherwise if 

we consider 2k , we get which is a contradiction with the fact that if  

is the angle between any two distinct intersecting lines, then . 

From this analysis, we can conclude that the product of reflections on two 

distinct intersecting lines is commutative if and only if the two lines are 

perpendicular. Hence, . 

Example: Let and be intersecting lines such that where  

. If find the equation of line . 

Solution: Our previous discussion tells us that . 

Besides, where is the point of intersection say and  is 

the angle between the lines which is in this case.  

Thus, for any point (The aim is 

to determine the intersection point of the lines). But,  

.  

Hence, the point of intersection is determined to be   

l m C

mllm SSSS  

  
  




1

Znni  ,2 

 2,Clm SS   l m

 2, Cml SS 

0,0  k

2
,1  k

2
,1  k

2
 k

  

 0

mlSSSS mllm  

l m mllm SSSS  

0175:  yxm ),5,5()1,1( lm SS  l

mlSSSS mllm  

 2,Plm SS  P ),( ba 

2


)2,2(),(),( , byaxyxyxSS Plm   ),( yx

)3,2(3,2)5,5()21,21()5,5()1,1(  PbabaSS lm 

).3,2(
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On the other hand, lm  nm  implies slope of line is .Thus,  

and .  

So, the equation of is found to be  

Case II: When the two Lines are Parallel 

Theorem 3.10: The composition of two reflections on two parallel lines and 

is a translation by a vector   where  is a vector perpendicular to both

and . Conversely, if is a translation, then there are parallel lines and 

such that , where and are parallel lines perpendicular to the 

translator vector  and the distance between them is half the length of .  

Note that for any given vector v  and any line l , there is a unique line m parallel 

to l such that 
v l mT S S  . This can be justified as follow: If v  is perpendicular 

to both l and m , the relation holds true. Now, if l is perpendicular to v , then 

take line m  to be  lpvpMMvlyxm  ,:),(:
2
1

2
1 .  

This is the translation of line l  by 
1

2
v . 

 So, from the previous theorem, we can easily show that 1
2( )

2

l m v
v

S S T T   

Proof: (Left as an exercise) 

Remarks: This theorem ensures that the product of reflections on two parallel 

lines is a translation and any translation is also a product of reflections on two 

parallel lines.  If , then where and are parallel 

lines and  is a vector perpendicular to both and .  If is on   and is 

on  where the line through and is perpendicular to both  and  , then  

and . 

The composition reflections and are inverse of each others.  

 

 

l 5 bxyl  5:

7103)3,2(  bbl

l .75:  xyl

l

m v2 v l

m vT l m

v l mT S S  l m

v v

vlm TSS 2 vml TSS 2 l m

v l m L l M

m L M l m

LMLM
LMlm HHTTSS   2

2 MLML
MLLMml HHTTTSS  



2

22

lm SS  ml SS 
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Examples:  

1. Given the lines  and . Find the image of the point 

by a product of reflection on line followed by line using direct 

formula, translation, half turn and compare the answers. 

Solution: We need to find . This problem can be done using three  

methods: 

Method I: Using reflection (Direct) Formula: First calculate using  

reflection equation as  

                                             

Now,  

Therefore, . 

Method II: Using Translation:  

Since the given lines are parallel, the product of reflections on these lines is the 

same as a translation by the double of the perpendicular vector pointing from 

to  That means, where and such that 

. Here emphasis should be given on how to find such points.  

This is accomplished by taking any line that is perpendicular to the given lines 

and it is simple to find the intersections of this line with the lines and  
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Take . The intersection of this line with the lines  and is found 

as follow: 

Intersection of and : 

                                   

Intersection of and :  

                                     

Thus, the vector is found to be  

Therefore,  

Method III: Using Half turns: This problem can also be done using product 

of half turns as where the centers of the half turns 

and are as explained above. 

So, 

. 

The use of different methods in solving the above example will help us to grasp 

the relations among reflections, translations and half turns. 

 2. Suppose the line 12:  xyl   is parallel to the line  If the point  is 

on  line , then find and  using a single translation. 

Solution: Since,   and are parallel, to do the problems, we need only two 

point L  on   and  on  where the line through and is perpendicular 

to both  and . But, (Given).  

Here,  on 12  abl .  
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 Again,  implies slope of a line a long LM  is   which gives 

. Combining these two equations, we get  

 

So, where is a unique translation that takes to .  

Let this translator vector be . But,  

. Hence, the  

translator vector of is so that for any point 

. So, .  

Besides, using the relation  in the remark, we 

get, .  Once the points and 

are determined, this problem can also be done using half turns about and 

  using proposition 3.13  and Theorem 3.10 as follow.  

and  

. 

This means that from proposition 3.13  and Theorem 3.10 we can relate 

reflections, translations and half turns as where 

and the points L and are on the lines and respectively such that the 

vector is perpendicular to the lines. 

3. Let and be  two parallel lines. If )7,8()1,2( lm SS  , calculate 

)4,3(lm SS   and )4,3(ml SS  . 

Solution: Since the lines and are parallel, by Theorem, 3.10, we have 

above theorem, we have vml TSS 2 where v  is a perpendicular vector directed 

from m  to l . So, for any point P ,  

'2)()(' 2 PPvPTPSSP vml    .  

lLM 
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
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Particularly, for )1,2(P , 

)3,5()6,10(2)7,8()1,2(2)1,2()1,2( 2  vvvTSS vml  . 

Hence, )10,7()4,3()3,5(2)4,3()4,3( 2  vlm TSS  . On the other hand,
  

vlmvml TSSTSS 22   .Thereofe,  

)2,13()4,3()3,5(2)4,3()4,3( 2   vml TSS  . 

4. Given 12:  xyl and a vector )6,12( v . Find a line m  parallel to l such 

that  vlm TSS  . 

Solution: By the converse of the above theorem, the line m is obtained by 

translating the given line by v
2
1 . For any point ),( yx on l ,  

3',6')','()3,6(),(
2

1  yyxxyxyxyxT
v

. 

So, 16'2':1)6'(23':  xylxyl . 

5. Let xyl :  and  4:  xym . Then, show that lm SS   is a translation and find 

its equation. 

Solution: Since the two lines are parallel, by the above thorem lm SS   is a  

translation. Besides,
 

)4,4(),(),,(),(  xyyxSxyyxS ml .  

Hence, )4,4(),(),(  yxxySyxSS mlm  .   

Therefore,     vlm TSS   where )4,4(v .
 

6. Let and  . Then, find a translation with 

translator vector such that and calculate )0,0(lm SS  .   

Solution: By using similar procedures, as in example 5, we get  

)6,18()0,0(),6,18(),(  lmv SSyxyxT  .      

Note: If the lines  and are parallel and the points and are as 

indicated in figure below, we always have the relation 

.  

203:  xyl 103:  xym T

v vlm TSS 

m n M N

MNMNmn HHTSS  
2
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Here, we must give attention how to write the order of the subscripts in the 

translation and half turns with the order of the reflections. For instance, if we 

interchange the order of the product of the reflections, the order of the half 

turns and the direction of the vector in the translation will also be changed. It 

becomes and the resulting image is also different. 

Example: Given the line and a vector )3,6(v . Find a line 

such that . 

Solution: Apply the above result. 

Remark (Characterizing products of rotations): Prior to this, we have seen 

that the product of rotations about the same center is a gain a rotation about that 

center. Besides, the product of rotations is commutative as far as the individual 

rotations are rotations about the same center. Here, one may ask that what will 

happen if the rotations are performed about different centers with different 

angles of rotations as indicated in figure 3.11. In figure 3.11a, we can see that 

. 

 

 

NMNMnm HHTSS  
2

32:  xyl m

v l mT S S 

'')(,, PPRR AB  
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Now we want to find a single isometry that will have the same effect as the 

product .  To investigate this, consider the two rotations and

where and B are different centers. Once we have two different points and 

, we can determine a unique line . So, by the previous theorem there are 

lines  and through and respectively (Refer figure 3.11b) such that the 

rotations and are expressed as   and .  

Thus, from the product is also expressed as  

. This means if , then the product 

will be a translation and so is . If the lines  and  

intersect at some point, then will be a rotation about their intersection 

point and so is .  

Therefore, this observation is summarized by the following theorem. 

Proposition 3.18 (Characterization of products of rotations):  

Let and be two rotations about different centers and . Then, the 

product is a rotation if and only if is not a multiple of and it 

is a translation whenever is a multiple of . Since the proof of this 

theorem needs some sketch pad construction, it is omitted.  

Any way, the important result that the theorem tells us the product of two 

rotations is either a rotation or a translation and in general the product is not 

commutative.  

Proof: (Follows from the general formula of rotation) 
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Problem Set 3.7 

1. Let ,  and . Find the image of by 

the composite reflections  and . State the procedure you followed 

in each case.      

2. Let l  be a line through the points )1,4(),9,1(   and m  be a line through the 

points )5,5(),2,6( . Find the center and angle of  a rotation  ,C  such that 

 ,Clm SS  .     

3. Let be and  be vector )2,2( v . Find line such that . 

4. Let ).2,(),(  yxyxT Find two lines ml, such that ml SST  .  

5. Let  and . Show that where )3,0( v . 

6. Let and be any two parallel lines. If , calculate  

.                                                           

7. Let l  be the line 5y . Find line m  such that 
2

),5,3(
lm SS  .      

                                            2::  xymAnswer                                                      

 8. Given the lines 3:  yxl and 1:  xym . Express ml SS  using a single  

rotation  ,C .                               

9. If nm  such that )6,5()2,1( nm SS  , then find )4,3( nm SS   . 

                                             )12,3()4,3(: nm SS Answer  

10. Let and be any two perpendicular lines intersecting at the point ,  

calculate  and . Are the results equal? Why?  

                                              )1,6(: Answer                                                                                            

11. If find equations of lines and such that )3,0(   is on  and  

                                                                         
 

12. Let be the line and be the point  Show that is a 

glide reflection by finding the axis of the glide reflection and the glide vector.  

13. Given a line 3:  xym . Find the equation of line l such that  

lPllSdvTSSc

PHSSbCSSa

mvlm

PlmlmC





)7,2(with)())3,3(where)

)5,2(where)2/),10,7(where) ,



  

09:)06:)07:)10:):  yxldyxlcyxlbylaAnswer

 

12:  xyl 32:  xym xyn
2

1
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lm SS  ln SS 

)
5

3
,

5

9
()1,1(),

5

3
,

5

21
()1,1(:  lnlm SSSS Answer

2
),

5

19
,

5

27
(:


 CAnswer

l y x v m v l mT S S 

: 2l y  : 5m y  2l m vS S T

l m )8,7()2,1( lm SS 

)4,3(ml SS  )14,3(: Answer

   (1,2),C   where: ,Cml SS Answer

l m )3,2(

)7,2(ml SS  )7,2(lm SS 

),4,2( A m n m

.mnA SSH  032:,082::  yxmyxnAnswer

l 3x 2RP ).4,5( Pl HS 
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3.8.2 Product of Reflections on Three Lines 

Case-I: When the three lines are concurrent 

So far, we discussed that the product of reflections on two intersecting lines is a 

rotation. But what will be the result if the product of reflection is on three 

concurrent lines ( on three lines intersecting at a single point). This is what we 

are going to address in the next theorem. 

Theorem 3.11: Let be lines intersecting at a point Then, there is a 

line through  so that .  

Proof: Since and are intersecting lines at a point , is a rotation 

where the angle between and is .  

Now, suppose is a line through such that the angle between and is 

(this is supposition or assumption of line is possible by angle construction 

postulate). Then, .  

So, and imply that  

                                                 

From this theorem, we can conclude that the composition of reflections on 

three concurrent lines is again a reflection on a line through the same point. 

Case-II: When the three lines are parallel 

So far, we discussed that the product of reflections on two parallel lines is a  

translation. But what will be the result if the product of reflection is on three 

parallel lines.  

pnm ,, .C
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m n C mn SS 

 ,C
m n
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q C p q
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 ,Cpq SS 

mnC SS  , pqC SS  ,

qpmn

qpmn

ppqpmn

pqmn
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
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Theorem 3.12: Let be three parallel lines in a plane. Then there is a  

unique line parallel to the given lines such that .  

Equivalently  

Proof:  Since and are parallel lines, from Theorem 3.10, , where

 is perpendicular to both and . Similarly, as is parallel to and ,  

is also  perpendicular to .  

Again, by the converse of theorem 3.10, there exists line  parallel to the 

given line such that . Thus combining the two results, we get  

   

From this theorem by considering one additional line like that of , we can 

state a useful corollary.  

Corollary 3.4: Let be three parallel lines in a plane. Then there exist  

unique lines  and parallel to the given lines such that 

 

Proof: Consider the diagram below and look for the lines and  from the 

equation (This equation actually has unique solutions 

for and ). 

 

, ,  and l m n

p , ,  and l m n m l n pS S S S 
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( ) ( ), for any point 

               ( ) ( ) ( ) ( )
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 
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Let and be unique points on line such that the products of the half turns 

with centers  are equal as follow:  

But, we know that a unique line can be drawn 

through a point on a given line perpendicular to the line. So, let’s drop line

through and line through both perpendicular to line .   

Now, ,  

 and .  

Combining these and our previous relations , we 

get . From the first equality, we have

and from the second equality  

, we get . 

 Remarks: The uniqueness of  and is shown from the fact that reflections 

on two lines are equal if and only if the two lines are equal.  

That means   

So, if we assume there is another line  for which . Then, 

 

Examples: Given the lines . Find the  

lines  and parallel to the given lines such that . 

Solution: To do this problem, we use the analysis followed in the proof of the 

above corollary. Since the given lines are parallel, take any line 

perpendicular to the given lines but the line should be simple for analysis.  

Let be the line .  

(Note the problem can also be done using any other line without affecting the 

solution for  and ). Now find the points on the lines  

respectively which are the intersections of line with these lines. 

P Q k
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Intersection of and :   

          

Intersection of and :  

          

Intersection of and :  

          

Now determine two points and on line  which are the intersection of the 

lines p  and  with   respectively  (as labeled in figure 3.12) such that 

 

Let and But, for any point ,  

              

Thus,  

  

On the other hand, using the second equality  

 

Since the lines  and are parallel to the given lines, then they are also 

perpendicular to line   
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Thus, we are required to determine lines  and  through points and 

which are perpendicular to the line at these points of intersections. 

. But passes through , then  

. Hence, line is found to be  

Similarly, is a line through and perpendicular to line  and parallel to the 

lines. Thus, it has the form .  

Hence, line is found to be . In this solution the choice of line 

is arbitrary, one can choose any other line perpendicular to the given lines 

and gets the same result but the choice of line should be in such a way that 

one can calculate the points of intersection easily. 

Case-III: When the three lines are neither parallel nor concurrent 

Theorem 3.13: Let be neither concurrent nor parallel lines (two may be  

parallel). Then, is a glide reflection. 

Proof: To prove that is a glide reflection, it suffices to find a line 

and a vector with such that . Since all the three 

lines are not parallel assume that and intersect at  (Refer figure 3.13a). 

 

 

Besides, are not all concurrent,  does not pass through . So, let be a 

line perpendicular to  through . Here, becomes concurrent at . 
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Thus, by theorem 3.11, there is a line through such that 

which in turn implies . Again let be the intersection of and

. As , we have (because composition of reflections on two 

perpendicular lines is a half turn about their intersection). Now, construct line

perpendicular to through  and line  through Q parallel to .  Since , 

there is a vector  perpendicular to lines and such  

that . Hence, combining these results above 

, and , we get, 

                              

But, from our construction, and  implies which shows that  

is a glide reflection. Therefore, implies that 

is a glide reflection. In this theorem, the lines are neither 

concurrent nor parallel (of course two may be parallel).  

If and is perpendicular to and , then is a translation and is 

a reflection, so the product is called glide reflection and line is 

known as the axis of the glide reflection.  

Corollary 3.5: Let be any line and be a point not on . Then, 

is a glide reflection. 

Proof: Since , consider line through perpendicular to and line  

perpendicular to line at . See figure 3.13 
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Now, and gives (Because product of two reflections 

on perpendicular lines is a half turn about their intersection). So,  

. But are neither concurrent nor all parallel from 

theorem 3.11 is a glide reflection and so is  as they are 

equal. From figure 3.13, one can also easily verify that  

using the fact that product of 

two reflections on perpendicular lines commute and is a half turn through their  

intersection.  In general, for , is a glide reflection if 

and only if and .  This shows that glide reflection is the product of 

three reflections on three neither parallel nor concurrent lines,  

Or the product of a half turn and a reflection in either order where the center of 

the half turn is not on the line like as or above,  Or the product of a 

translation and a reflection in any order where the translation vector is parallel 

to the line of reflection. 

Examples: 

1. Let and be parallel lines through and where and is the 

line . If is a glide reflection, find the 

equation of , the axis of and line  

Solution: From corollary 3.5, is a glide reflection 

whenever , and the axis of passes through and 

perpendicular to the lines and . Now, implies the slope of  is   so 

then .  But,  

On the other hand, the axis of is perpendicular to  implies the slope of the 

axis of is  and then . But, the axis also passes through 

which implies that   
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Similarly, this axis which is perpendicular to  at is also  

perpendicular to at . That means N is the intersection point of 

and .  

So,   

Hence, . 

2. Let be the line and be the point  Show that is a  

glide reflection by finding the axis of the glide reflection and the glide vector. 

Solution: Let be any point so that  

Then, ……………………………  

Here, take the line and the vector  

Thus, ………………….  

Combining and  , we get .  Besides,  and then 

is a glide reflection by definition.   

Therefore, implies itself is a glide reflection with axis 

and a glide vector  

Theorem 3.14:  If is an isometry with exactly one fixed point , then

where and are lines intersecting at the point .  

Proof: Suppose is an isometry that fixes only the point Let be a point  

different from , such that and let the perpendicular bisector of 

the segment .                                                        

                                                                                                                             

Since is an isometry .  
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This means is at equal distance from the two end point of the segment . 

So, is on line (because if a point is at equal distance from the end points of  

a line segment, then it is on the perpendicular bisector of the segment.). Thus,  

and  Then, and  

.  

This shows that fixes two different points and .  

So, or where is the line  

through the points and . But, because if , then will 

have more than one fixed point which contradicts from the hypothesis that 

has exactly one fixed point.  Thus, where and 

are lines intersecting at the point . This theorem guarantees that whenever an 

isometry has exactly one fixed point, it is a composition of two reflections by 

lines intersecting at the fixed point of the isometry. In what follows we are 

going to consider one of the fundamental theorems which is useful in the 

classification of isometrics. 
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3.8.3 The Fundamental Theorems of Isometries 

Theorem 3.14 (The First Fundamental Theorem of Isometries):  

Every isometry can be expressed as a composition of three or fewer reflections. 

Proof: The identity map is one of the isometrics which is the composition of 

two reflections, any reflection with itself. That is  . Now, let be any 

isometry different from the identity. Then, there is some point which is not 

fixed by . Let . Let be the perpendicular bisector of .  

Then, by definition of a reflection ,  

Then,  . So,  is the fixed point of   

If has other fixed points besides , then it must be either a reflection 

which in turn implies  

which is a product of two reflections or the identity in which case

which is a reflection.  

On the other hand, if has only as a fixed point, then by theorem 

3.12,  there are lines and  intersecting at  such that  

which is the  

composition of three reflections. Besides,  will be reflection or 

glide reflection based on the relation of the lines. Thus, in any of the above 

cases, any isometry can be written as a composition of one, two, or three 

reflections. As we see from Theorem 3.14, reflection is the building blocks of 

all isometries. That means every isometry can be expressed as a product of one, 

two or three reflections.  

Theorem 3.15: Any isometry of the plane is a reflection, rotation, translation 

or a glide reflection. 

Proof: Apply the above Theorems  
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Theorem 3.16 (The second Fundamental Theorem of Isometries): 

If are three non-collinear points, and ',',' CBA  are also non-collinear 

such that , then there exists a unique isometry 

that maps  to 'A , to and to . Besides, this isometry can be 

expressed as a product of at most three reflections. 

Proof : This theorem has two parts to be proved: Existence and Uniqueness. 

Existence: Construct line as the perpendicular bisector of and . Then 

and . If , consider a line which is the 

perpendicular bisector of and . Then,   

 

 

Claim I:  Here, and which implies that 

. Besides from the hypothesis, Combining these two 

relations we get  This implies that and are equidistant from 

which means 'A  is on the perpendicular bisector of and . But this line is 

and hence  is on . Thus, and  

Now consider, and  If , the proof is  

complete. However, suppose Consider line through and  

Claim II: From the hypothesis, and from , 

, we get . Similarly, and gives  
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By combining these three equalities, we obtain .  

This implies that is equidistant from the end points of the segment 

determined by and . So is on the perpendicular bisector of the segment

. Similarly, from  and  

, we have  .  

Again from the  hypothesis . Thus,  which implies that 

is equidistant from the end points of the segment determined by and . 

This in turn results that is on the perpendicular bisector of the segment . 

Hence, both and are on a line which is the perpendicular bisector of the 

segment  and this line is so then .  

As a result,  

 

 

 

 Therefore, there exists which maps the three non- collinear 

points into three non-collinear points .  

The second part of the proof is to show that this isometry is unique. Since, 

are three non-collinear points, the uniqueness follows from Theorem 

3.1. Thus, the proof is complete.  Here, give attention on how to find such lines 

 which satisfies the given conditions. 

a) Line is the perpendicular bisector of and  

b) Line is the perpendicular bisector of and  

c) Line is the perpendicular bisector of and  

Example: Given where the vertices are  

 and  . 

Find equations of lines such that product of reflections on these lines takes 

to . 

Solution: Follow the procedure in the proof of the above theorem. 
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Problem Set 3.8 

1. Given the three lines . Find a line  parallel to these  

lines such that .                                                                                                 

2. Let be the x-axis, the y-axis and the line . Find the line such 

that  .                                        xyq ::Answer  

3. Let and  . Then, find a translation with 

translator vector such that .                                

                                                                                                                                             

4. Given the lines 0,2:,0:  xxynyM . Find line q such that 

       a) mnpq SSSS                   

      b) nmpq SSSS   
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3.9 Equations of Orthogonal Transformations in Coordinates 

In the previous sections, we have studied about types of isometries and their  

properties.  

Now let’s summarize and generalize their equations using coordinate geometry. 

Equation of Rotations: Equation of rotation about any center  with 

angle of rotation  is given by  where  

              

Expanding these equations gives  

Now, by letting , these equations can be reduced 

to the form   

Here, if , then  

and the equations become  

      which are the general equations of a translation.  

Otherwise, for , 

the equations are equations of a rotation. 

Consequently; the equations are the general  

equations of a translations and or rotations. 
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3.10 Equations of Even and Odd Isometries 

Definition: Even isometry is an isometry that can be expressed as a product of 

even number of reflections. On the other hand, an isometry that can be 

expressed as a product of odd number of reflections is said to be odd isometry. 

Translation and rotations are even isometries while reflection and glide 

reflection are odd isometries. 

3.10.1 Equations of Even Isometries 

We discussed above that only translations and rotations are isometries that can 

be expressed as a product of even number of reflections. Thus, for any even 

isometry, its equations are of the form .  

3.10.2 Equations of Odd Isometries 

Any odd isometry is a product of odd numbers of reflections. In other words, 

any odd isometry is a product of even isometry followed by a reflection on any 

line .  Now, let  be any odd isometry. Then, for any line ,  becomes 

even isometry where as is an odd isometry. For any point , 

taking the line to be the axis (in particular, since it works for all), we get 

. Hence, equation of the odd isometry becomes,  

 

Thus, the general equations of any odd isometry  becomes  

where   

Since no isometry is both even and odd, the above two equations (equations of 

even and odd isometries) constitute the equations for any types of isometries.  

 

 

 

1,
'

'
22 








ba

daybxy

cbyaxx

l  l lS

 ll SS ),( yx

l x

),()','(),( yxyxyxSl  

])[,(

),(

),)((),()','(

daybxcbyax

daybxcbyaxS

yxSSyxyx

l

ll





  

 )','(),( yxyx 

1,
]['

'
22 








ba

daybxy

cbyaxx



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  167 
 

Theorem 3.17 (The generalized equation Theorem for Isometries): 

Let be any point. Then, the general equations for any isometry is given 

by where  

The plus sign is used when we assume that is an even isometry and the minus 

sign is applied when we assume that  is an odd isometry. Conversely, any 

equations of this form are equations of isometries. 

Examples: 

1. Let be an isometry whose equations are given by where     

                        

 

Determine whether  is an even or odd isometry. 

Solution:  

From equations of isometries, we know that  

Equate the general equations and the given values of and . This gives,  

 

So,  

Using these values, we obtain from the equations of as follow. 

            
 

To solve these equations we have two options either to use the plus sign or the 

minus sign. If we use the plus sign the equation becomes  

             
(by equating  

coefficients) which is absurd (impossible!). If we use the minus sign the 

equation becomes 
 

(by equating 

coefficients)  

which is the only logical option.  
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Now, using the values ,  

we get     

But from our previous discussions, these are equations of odd isometry and 

hence  is odd. 

2.  Let be an isometry whose equations are given by where     

                     

 

Show that  is an even isometry and conclude that  is a rotation and find the 

center of the rotation. 

Solution:  

An isometry is even if and only if its equations are given by  

               

In our case,  and 
    

               
 

Hence, the equations of  become   

But, these are the forms of an even isometry and thus is even. Since the only 

even isometries are rotation and translation,   must be arotation because as 

we see from its general equation,  cannot be a translation. Now, if is a 

rotation withcenter , it must satisfy the equations  

 

From which we can get the equations to determine the intersection point

which is given as  

Thus, and can be solved as follow. 

           

2,4,,
5
4

5
3  dcba









][2'

4'

5
3

5
4

5
4

5
3

daybxyxy

cbyaxyxx



 )','(),( yxyx 









5
2

5
3

5
4

5
4

5
4

5
3

'

'

yxy

yxx

 



1,
'

'
22 








ba

daybxy

cbyaxx

5
4

5
4

5
3

5
4

5
4

5
3 ,,'  cbayxcbyaxx

.'
5
2

5
2

5
3

5
4  dyxdaybxy










daybxyxy

cbyaxyxx

5
2

5
3

5
4

5
4

5
4

5
3

'

'





 

),( khC 









dyxdaybxy

cyxcbyaxx





cossin'

sincos'

),( khC 








dkh

ckh

)cos1(sin

sin)cos1(





h k

)0,(),(

021,

1)21(42

142)1()(

2112)()1(

2
1

2
1

5
2

5
3

5
4

5
4

5
4

5
3











khC

khkh

hh

khkh

hkkhkh



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  169 
 

Alternatively, one  can also solve the values of and from the equation that 

we derived earlier using in the 

equations we will get the same results. 

              

Hence, we conclude that   is a rotation which is the product of two  

reflections on lines intersecting at the point  

3. Let  be an isometry with )1,5()3,2(),0,1()1,1(),1,2()0,0(   .Then 

find the equations of . 

Solution: Let ).1,5('),0,1('),1,2('),3,2(),1,1(),0,0(  CBACBA  
Clearly, CBA ,, are non-collinear and so are ',',' CBA . But we know that there 

is a unique isometry that takes three non-collinear points into three non 

collinear points. Now, let this isometry be given by )','(),( yxyx   where 








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'

'
 such that the constants dcba ,,, are to be determined from the 

given points and their images. 

So, 1,210.0.,20.0.)1,2()0,0()(  dcdabcbaA  . 
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. 

If we use the minus sign, in the general equation we get the same result. 

4. Let where .   

Verify that is not an isometry. 

Solution: If the equations of represent equations of an isometry, it must 

satisfy the following equations: 
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But, .  

Hence, the equations of does not represent equations of an isometry and thus 

is not an isometry.   

Theorem 3.18: The product of any two even or any two odd isometries is even 

and the product of an even and odd isometries is odd isometry. 

Proof:  

Let and  be any two even isometries given by the following equations. 

where     

where  

We need to show that the product is also a direct similarity.  

For any point , where  

                     

Now, these equations to be equations of isometries, we are left to show  

that . But, 
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Hence, where  

But these are equations of an isometry obtained by applying the plus sign in the 

general equation of isometries (Theorem 3.17).  

Hence, is an even isometry whenever and are even isometries. The 

other part follows similarly. 
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3.11 Test for Type of Isometries 

From the observation on the type of isometries and their effects on orientation, 

let’s develop a simple test for the type of isometry   from the image of three 

non-collinear points. Given three non-collinear points RQP ,, and their images 

)('),('),(' RRQQPP   . We need to determine whether   is a 

translation, rotation, glide reflection or reflection. Since an isometry maps any 

three non-collinear points in to non-collinear points, ',',' RQP are non-collinear 

points. Now, take PQR and ''' RQP and determine their orientation.  We know 

that the orientation of PQR is determined from  PRPQ,det and that of 

''' RQP  from  '',''det RPQP . 

Test-I: If and have the same orientation, then  is orientation  

preserving isometry. Thus, is either a translation or a rotation (Because 

translation and rotation are the only types of orientation preserving isometries). 

Furthermore, to determine whether  is a translation or a rotation, find the 

vectors . If , then  is a translation, but if they 

are different,  is a rotation. 

Test-II: If and have different orientation, then  is orientation  

reversing (changing) isometry. Thus, is either a glide-reflection or a 

reflection (Because glide-reflection and  reflection are the only types of 

orientation reversing (changing)  isometries). Furthermore, to determine 

whether  is a reflection or glid-reflection, find the equation of the reflecting 

line using any of the points and its respective image. 

 If all the points are reflected on the same line, then is a reflection,  

otherwise it is glide-rflection. 

 

 

 

PQR ''' RQP 





',',' RRQQPP ''' RRQQPP  



PQR ''' RQP 




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Example: Suppose  is an isometry which maps into where the  

vertices of the triangles are   

    .  

Determine whether  is a translation, rotation, glide reflection or reflection 

and find its equation. Based on the type of , find the translator vector, center 

and angle of rotation or line of reflection. 

Solution: To apply the above test, first determine the orientation of and 

.The orientation of is determined from where  

.Hence, has positive orientation.  

Similarly, the orientation of  is determined from  where  

 which shows that also has positive  

orientation. So, we have got that and have the same orientation.  

As a result,  is orientation preserving isometry. Therefore, is either a 

translation or a rotation. Now, to determine whether  is a translation or a 

rotation, find the vectors .  

Here, . But   

So,  is not a translation. As a result, the only option for  to be is a rotation. 

Now, determine the equation of . We know that rotation is an even isometry. 

So, we can determine the equation of  from the general equations of even 

isometries  where . 

So, using , we get  
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Collecting equations with like terms gives 

             

Multiplying equation by and equation by yields 

            

Substituting these values of and gives . 

Therefore, the equation of becomes where . 

Since is a rotation, our last task is to find the center and angle of the rotation. 

But, in the general equation of isometry, we know that  

where  is the angle of rotation. Thus, . Besides, the 

center of rotation is given by  

. 

As a result, is a rotation with center and angle of rotation 2/  . 

 

 

 

 

 

 

 

 

 

 

 

)..(........................................334
02

342

)........(..............................443
32

124

iiba
dba

dba

iba
cba

cba



















)(i 3 )(ii 4

1,0025
121216

12129









baa

ba

ba

a b 1,1  dc

 

















'

'

y

x

y

x










1'

1'

xy

yx



 sin,cos  ba


2

1sin,0cos  

),( khC 

0
2

1

2

1

tan22
,1

2

1

2

1

tan22
22




rd
k

dc
h

 )0,1(C



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  174 
 

Problem Set 3.9                                                                                                                                       

1. Suppose ,CR is a counterclockwise rotation with center ),( khC  whose  

equations are given by 








30'

10'

xy

yx
. Find the angle and center of this rotation.     

                                                                             )10,20(),(: khAnswer                              

2. If 34143'2  yxx  and 3683'2  yxy  are equations of a 

CCW rotation, then find the center and angle of the rotation.            

                                                                                   30),6,4(:  CAnswer  

3. Suppose 









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
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
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5
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5
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y

x
  is an odd isometry.Then,  find the value (s) of 

 the constant  a .                                                  10/3: aAnswer                    

4. If 























yx

ypx

y

x

13
12

13
5

13
53

  is an isometry, find the value (s) of the  constant p .            

                                                                           13/4: pAnswer          

5. If  and  are equations for a reflection , then find  

equation of line .                                                  

6. Suppose is an isometry that maps the three non-collinear points 

)5,1(),1,2(),1,1(  CBA  into the points )3,1('),1,4('),1,1('  CBA . 

Determine whether   is a translation, rotation, glide reflection or reflection 

and find its equation.  

7. Suppose  )
13

38

13

5

13

12
,

13

31

13

12

13

5
(),(  yxyxyxg is the equations of a 

glide reflection g .                                                         0232::  yxlAnswer                                                  

8. Suppose  where  and where  

. Show that   is an odd isometry. 
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yx
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m yxm 2:: Answer

)','(),( yxyx  cbyaxx ' daybxy '
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Review Problems On Chapter-3 

1. Given the lines 04:,06:  yxmyxl . Find the center P  of a half 

turn PH such that Plm HSS  .                             )1,5(: PAnswer  

2. Given a line 032:  yxm . Find two possible equations for a  line l  such 

that lPllSm  )5,1(with)( . 0112:Or  032::  yxlyxlAnswer           

3. Let and  Then find the image of the point  

by the composite reflection  

4. Let  and Show that for any point ,  

 where  

5. Let and If the angle measured from to  

is , then where   

6. Let  and  . If , calculate .  

                                                                                        

7. True or False? If and , then and .               

                                                                                Answer: False 

8. Let and  . Then, find a translation with 

translator vector such that .                                                                                                                                    

9. Given two lines and intersecting at . Suppose .  

Then  find the acute angle measured from to .                                                                   

10. Let and be lines intersecting at  If , then find the  

equation of line when . 

0132:  yxl .0564:  yxm

)3,1( lm SS 

132:  xyl .
3

2

33
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:  xym ),( yx

)','(),( yxyxSS lm 


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
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
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





13

34
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3
'

13

34
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3

2
'

yxy

y
x

x

0,:  aaxyl .0,:  bbxym l m

 )','(),( yxyxSS lm  











2cos2sin'

2sin2cos'

yxy

yxx

0:  yaxl 0:  ycxm 1ac )12,10( lm SS 

)12,10(: Answer

mn SSf  tl SSf  ln  tm 

203:  xyl 103:  xym T

v vlm TSS  )3,9(: vAnswer

l m )2,1( )4,2()5,3( lm SS 

l m
4

:


 Answer

m n ).1,2(C
3

,Cnm RSS 

n 1:  xym
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11. Let g be a glide reflection with  axis 1:  xyl and glide vector )1,1(v
 

Then, find the image of the point )2,3( .            )5,2(:Answer                                                   

12. Let g be a glide reflection with  axis 06:  yxl and glide vector 

)2,2(v . Then, find  the general equation of g  and calculate the image of the 

point )0,0( .                                                     )8,4(),(:  xyyxgAnswer
 

13. Let g be a glide reflection with  axis 03:  yxl and glide vector 

)4,4(v . Then, find  the general equation of g  and calculate the image of the 

point )0,0( .             )7,1()0,0(),7,1(),(:  gxyyxgAnswer
 

14*. Let and be parallel lines a part. A point is  and  

from line and respectively. Suppose is reflected across line , and then 

its image is reflected across line  to create a second image .    

                                                                     

a) Draw the diagram showing the position of and find the distance 

between and .   b) If the order of reflection is changed, repeat the 

problem of part (a).  

 How do the answers to part (a) and (b) differ? 

15. Suppose and are two distinct lines. Then, show that  

. 

16. Let and be any two lines. Prove that  

17. Let and be lines intersecting at . Show that if and are fixed 

lines under an isometry , then . 

18. Given two lines and intersecting at a point and  . 

Suppose . Find the acute angle measured from to .   

19. If and , then show that . 

20*. Let be interior angles at the vertices respectively of 

(oriented counter clockwise). Show that  

 

m n cm13 A cm4 cm17

m n A m

'A n ''A

cmd 26: Answer

'',', AAA

A ''A

m n

nmPPPSS mn )(

l m mlSSSS lmml  

m n P m n

 PP )(

l m )2,1( 1:  xyl

)4,2()5,3( lmRR l m

lk // mk  mklklm SSSSSS  )()( 

 ,, CBA ,, ABC

.2,2,2, iRRR CBA  
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21. Show that non-identity rotations with different centers do not commute. 

22. What must be true of two rotations and if their product 

is a translation? 

23. Show that the composition of any two rotations is either a rotation or a 

translation. 

24. Let and be rotations. Then show that is a translation. 

25. Prove that  

a) The set of all isometries forms a transformation group. 

b) The set of all rotation with fixed center forms abelian group of  

transformations. 

26. Suppose intersects the lines and so that alternate interior angles are  

congruent. Then, using the concept of isometry, prove that and are 

parallel. 

27. Show that the set of all rotations, all reflections, or all half turns does not 

form a transformation group. State the reasons clearly in each case. 

28. Suppose the lines and passes through the origin in  make angles 

and respectively with the positive axis. Show that . Where 

is a reflection on followed by a reflection on and is a rotation 

by angle about the origin. 
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CHAPTER-4 

SIMILARITY TRANSFORMATIONS 

4.1 Introduction 

Consider a right angle triangle with right angle at and hypotenuse  

as in the figure 4.1. 

 

If the altitude is constructed, we get three similar triangles 

. Then, using similarity of these triangles we see that there is 

proportion of the segments of the hypotenuse  and the altitude  

given by .   

If we assign the lengths of these segments as   in the figure, we get 

.  

In this explanation, even though the lengths, areas in general sizes of the figure 

are different we see that they do have the same shape and the ratio of their sides 

remains constant as well.  

Such geometric figures which have the same shape and their sides proportional 

are said to be similar figures and a transformation which maps one figure in to 

a similar figure is known as similarity transformation. 

 

ABC C AB

CD

CDBACBADC ,,

DBAD, CD
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Definition: A transformation of the plane is said to be a similarity 

transformation if there exists a positive number such that for all points and 

of the plane and their images and , we have  That is 

.  The constant is called the coefficient or factor or 

ratio of the similarity. 

Examples: Determine whether the following transformations are similarity  

transformation or not. 

a) given by  

b) given by  

c) given by  

Solution: 

a) Clearly, is a transformation. Now, let and be any two 

points in the plane  Then,  

   2for ,''2''

)22,22(''''

)62,52(')(),62,52(')(







kkABBAABBA

bdacABBA

dcBBbaAA 

       

Hence, is a similarity transformation with ratio  

b) Similar calculation here also yields    

So, is a similarity transformation with ratio    

c) In this case, .   

It means there is no positive constant  for which So, is not a  

similarity transformation. 

 

 

 

 

 

 



k A

B 'A 'B .'' kABBA 

kABBABA  '')()(  k

22: RR  )62,52(),(  yxyx

22: RR  )3,1(),(  yxyx

22: RR  )53,32(),(  yxyx

 ),( baA  ),( dcB 

.2R

 .2k

.1,''''  kforkABBAABBA

 .1k

RkkABBAbdacABbdacBA  ,''),(),22,33(''

k .'' kABBA  
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4.2 Properties of Similarity Transformations 

Proposition 4.1: The product of any two similarities is again a similarity. 

Proof: Let and be any two similarities with ratios and respectively. 

For any two points,  and , let .  

Then, and  

Since  is a similarity with ratio , it follows that   

Again, as  is a similarity with ratio , it follows that   

So, Thus, is a similarity with ratio . 

Proposition 4.2: The inverse of a similarity is again a similarity. 

Proof: Let be a similarity with ratio .Then, for any two points, and ,  

where .  But, is a transformation (Definition 

of similarity) implies Thus,  

  

But for any positive constant , is also defined and positive. Hence,  is a  

similarity transformation with ratio whenever is  a similarity with ratio .  

Therefore, for any similarity  with ratio , if and only if 

 if and only if  is a similarity transformation with ratio . 

Proposition 4.3: A similarity maps triangles in to similar triangles. 

Proof:  Let be a similarity with ratio and let be the image of 

under .  We need to show that , where  

                                             

 

 

  k t

A B ')(,')( BBAA  

'')'())(()( AAAA    '')'())(()( BBBB   

 t '.'"" BtABA 

 k .'' kABBA 

.)(''"" tkABkABtBtABA    tk

 k A B

kABBA '' ')(,')( BBAA   

.)'(,)'(')(,')( 11 BBAABBAA   

'.'
1

''
1

)'()'()'()'('''' 1111 BA
k

ABBA
k

BABAkBAkABBA   

k
k

1 1

k

1
 k

 k kABBA ''

''
1

BA
k

AB  1
k

1

 k ''' CBA

ABC  ABCCBA  ~'''

'.)(,')(,')( CCBBAA  
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Since is a similarity with ratio , it follows that  

                                       

This shows that the three sides of the two triangles are proportional. Hence, by 

Side-Side-Side similarity theorem, we get .    

Here, in turn enables us to infer that the three interior angles of 

are congruent to the three interior angles of (Because 

corresponding angles of similar triangles are congruent).  

So, the three interior angles of are preserved and this will enable us to 

state the following immediate corollary. 

Proposition 4.4: Any similarity preserves angles. 

Proof: Immediate from proposition 4.3. 

Proposition 4.5: Any similarity preserves co-linearity, between ness and mid 

point. 

Proof: Let be a similarity with ratio and let be three collinear 

points where is between and . Then,  since is between 

and . Now, whenever , we have that  

As a result, 

 

But, this is true if and only if the image points are collinear and is  

between and  Besides, if is the mid point of and , then  

which implies is the mid point of and  

'.C This result tells us that the images of any three or more collinear points are 

again collinear. If we consider, the proposition in detail, it further implies that 

any similarity is a collineation.   

 k

.
''''''

''
''

''
''

''
''

k
BC

CB

AC

CA

AB

BA

k
BC

CB
kBCCB

k
AC

CA
kACCA

k
AB

BA
kABBA























ABCCBA  ~'''

ABCCBA  ~'''

ABC ''' CBA

ABC

 k CBA ,,

B A C ACBCAB  B

A C ')(,')(,')( CCBBAA  

.'','','' kACCAkBCCBkABBA 

'''''''')('''' CACBBACAkACBCABkkBCkABCBBA 

',',' CBA 'B

'A '.C B A C

'''' CBkBCkABBABCAB  'B 'A
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Because if are the images of the points on a line ,then for any 

other point on , is on a line determined by the image points (As 

similarity preserves co linearity and between ness). Thus, one can use those 

ideas together in order to conclude that the image of a line under a similarity is 

again a line. 

Theorem 4.1: A similarity with at least two fixed points is an isometry. 

Proof: Let be a similarity with ratio such that  By  

definition of similarity, for any two distinct points and , . Then, 

it follows that .This shows that for any other 

points,  and , . (Any given similarity has 

exactly one ratio). Hence, is an isometry.  

Corollary 4.1: A similarity with ratio of is an isometry. 

4.3 Common Types of Similarity Transformations 

4.3.1 Isometries 

Since for any isometry , for every pair of points and , it  

shows that every isometry is a similarity transformation. 

a) Translations 

b) Reflections 

c) Rotations 

d) Glide reflections 

All these isometries transformations are similarity transformations. 

 

 

',' BA BA, l

P l 'P ',' BA

 k .)(,)( BBAA  

A B kABBA ''

1''  kkABABkABBA
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

1k

f ABBfAf )()( A B
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4.3.2 Homothety (Homothetic Transformations) 

Definition: A transformation is said to be homothety transformation if and 

only if for a scalar and a fixed point it maps every point to such 

that .  

Here, the fixed point  is called center of the homothety and the scalar 

is called ratio or factor of the homothety.  

Such a transformation is denoted by . Thus,  

 

Therefore, for any point , . 

If and , then is given by  

where   

Hence, all such types of transformations are named as homothety and they are  

similarity transformations. Such type of similarity transformations are usually 

called homothetic similarities. 

Examples: 

1. Find the equation of a homothety with center and factor  and 

calculate the image of the point  

Solution:  

For any point , where  

                  where  

. In particular,  
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2. A homothety takes the point to and the point to Find 

the equation of this homothety. 

Solution: Let be a homothety with center and factor . Then,                               

       

Hence,  

Proposition 4.6: Every homothety is a similarity transformation. 

Proof: Let be a homothety. Then, for any two points and ,  

                  

So,  for any two points and where .  

Hence, any homothety is a similarity. 

4.4 Representation of Similarity Transformations 

Theorem 4.2: Every similarity is the product of an isometry and a homothety. 

Proof: Let be a similarity with ratio and consider a homothety  with 

center C and factor . From proposition 4.1 and 4.2, is a similarity 

with ratio . But, a similarity with ratio of  is an isometry. Thus, let this 

isometry be . So,  

                    

This means that any similarity with ratio  is the product of a homothety with 

ratio and any isometry. 
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Definition: A transformation that maps each vector in to a vector parallel to 

itself is known as dilation. That means is a dilation if and only if for all 

and , where  

Example: Show that 22: RR   given by )23,43(),(  yxyx  is dilation. 

Solution: Let ),(),,( dcBbaA  be arbitrary points. Then,  

ABBAABbdacbdacBA

dcBBbaAA

//''3),(3)33,33(''

)23,43()('),23,43()('



 

 

Hence, the given transformation is dilation. 

Proposition 4.7: Every dilation is a similarity. 

Proof:  Let  be dilation with factor .  

Then, , for all points . But from vector analysis, for any two 

vectors and , for any scalar . 

Thus,  

But, is a condition for similarity if  Hence, is a similarity. 

Be careful! The converse of this theorem need not be true. 

Let be a transformation given by  Take any 

two points. and . Then,  

 

Thus, is a similarity. On the other hand,  

. 

This means and are not parallel. Thus, is not a dilation.  

Hence, from this observation is a similarity but not a dilation which shows 

that the converse of the theorem is not true. 
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 0k

ABkBA '' BA,

v u ukvkuv  k

.'''''''' ABkBAABkBAABkBAABkBA 

ABkBA '' .0k 

22: RR  ).1,3(),(  xyyx

),( baA  ),( dcB 

.1,''),(),(''''

)1,3(')(),1,3(')(
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'' BA AB 


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Theorem 4.4 (The Classification Theorem ): 

This theorem is useful in classifying whether a given dilation is a translation or 

a homothety. That is why it is named as classification theorem. 

Let be a dilation. Then, (constant) for all in   

Furthermore, if then is a homothety with ratio of itself and if 

then is a translation. 

Proof: Assume that  is not a line. Let  be a dilation such that 

as shown in figure 4.3. 

 

Now, suppose the points  are not collinear.  Take any point  not 

on with . As  is a dilation,  and .  

Thus, by Desagrues Theorem,  Since is arbitrary, 

 for all points in  Furthermore, if (refer figure 4.3), then  

still by Desagrues Theorem, the lines 

 and  are concurrent at a point with  

 
As a result,  
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But, is an equation of a homothety with center and 

factor . On the other hand if (refer figure 4.3), then

. But,          

               

Thus,  for any point  where  which shows that  is a  

translation. 

Corollary 4.2: Every dilation is either a translation or a homothety. 

Proof : ( Use the classification theorem) 

Example: A dilation takes the point to and the point to 

 Determine whether this dilation is a translation or a homothety and 

write its equation. 

Solution: Let be a dilation. Then, by the classification theorem, for 

all .  In particular, it is true for and . 

Thus,   

Hence, is a homothety with factor by the classification theorem.  

So, This is true for all  

In particular, it is true for , so  

                       

Therefore, the equation of is given by  
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Corollary 4.3: Every dilation is a product of a homothety and an isometry. 

Proof:  The proof of this theorem follows from proposition 4.7 ( every dilation 

is a similarity)and from theorem 4.2, every similarity is a product of a 

homothety and an isometry. Hence, every dilation is a product of a homothety 

and an isometry. This theorem explains that for any dilation , there exist a 

homothety , and an isometry such that  

Theorem 4.5: If then there is a unique dilation for which  

 

Proof: Left as an exercise. 

From this theorem, we are assured that the dilation that takes to  

respectively exists and is unique whenever . But, the main point is not 

only to assure its existence but also how to find its equation.   Now, the main 

question is for a given similarity , how can we find the homothety , and 

the isometry such that  To find and explicitly, from 

,  let’s proceed case by case as follow: 

Case I: When the similarity is dilation:  

Suppose is a dilation where such that (The 

line through is parallel to the line through ). Thus, by theorem 4.5, 

there is a unique dilation that takes to and to .To find such dilation 

follow the following procedures: 

Step-1: Find a translation  that takes to and calculate the image of 

under  . say  

Step-2: Write the formula for a homothety with center and factor , say

. 

Step-3: Solve the equation for . 

Step-4: Write the equations of  and using any object point .  

Hence, these are the required homothety and isometry for which  
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Example: Let be a dilation where and Find a  

homothety and an isometry such that . 

Solution:  From the given,  

Clearly, because the line through and the line through 

have the same slope  So, to find the decompositions of as a 

homothety and an isometry such that , proceed as follow 

using the above steps. 

Step-1: Let’s find a translation  that takes to and calculate the image of 

under . If is a translation that takes to , then .  

Hence, for any point , and . 

Step-2: A homothety with center and factor is given by 

. 

Step-3: Equating , yields  

Step-4: For any object point ,  

                                              

Hence, these are the required homothety and isometry for which      

Case II: When the similarity is not dilation:  

Note that from the example above, we could not generalize that the isometry 

part is always a translation rather we must investigate the case when 

and are not parallel so as to make generalization. This follows with similar 

procedures as above with a little modification and it is left to the readers to 

develop the procedures. 
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4. 5 Equations of Similarity Transformations in Coordinates 

So far we discussed about the classes of similarities. Now, we are going to see 

the equation of similarities in details using coordinates. First let’s consider 

special cases which help us to drive the general equations of similarities. 

I) Equations of isometric similarities 

We have already discussed that the equations of any isometry is given by 

where  

Expanding the equations gives  where  

                                 

This can be generalized as .1,
)('

'
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Since any isometry is a similarity, this is one form of equations of similarities. 

II) Equations of Homothetic Similarities 

The equation of a any homothety with factor and center is   

where  

III) General Equations of  Similarities 

The general equations of similarities are derived from the above results using 

the fact that any similarity is a homothety followed by an isometry. That is for 

any similarity 

 , where is a homothety with ratio ,  center and is an  

isometry. Thus, using the results in I and II above, we get  

where  

Here and are real numbers.  

Now, by letting , for , we state the 

general equations of similarities as follows. 
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Theorem 4.6[The Generalized Equation Theorem for Similarities]: 

Any similarity in a plane has equations of the form where  

                   

Conversely, any equations of this form are equations of a similarity. 

4.6 Direct and Opposite Similarities 

i) Direct Similarities 

Definition: A similarity is said to be direct similarity if and only if is the  

product of a homothety about any point followed by an even isometry.  Thus, 

from the equation of even isometry, the equation of a direct similarity  

becomes    

ii) Opposite Similarities 

Definition: A similarity is said to be opposite similarity if and only if is 

the product of a homothety about any point followed by an odd isometry.  

Thus, from the equation of odd isometry, the equation of an odd similarity  

becomes      

Therefore, in the general equation of similarity we discussed above, the plus 

sign applies to direct similarities where as the minus sign is taken for opposite 

similarities.   

Note that a similarity is either direct or opposite but can not be both. 

Theorem 4.7: The product of any two direct or any two opposite similarities is 

direct similarity while the product of a direct and opposite similarities is 

opposite similarity. 
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Proof:  Let and  be any two direct similarities given by the following 

equations. where     

where  

We need to show that the product is also a direct similarity.  

For any point , where  

                     

Now, these equations to be a similarity, we are left to show that .  

But, 

              

Hence, where  

But by, these are equations of a similarity obtained by applying the plus sign in 

the general equation of similarities. Hence, is a direct similarity whenever 

and  are direct. Similarly, show that the product of any two opposite 

similarities is a direct similarity. Now, let’s proof the last part.  

The product of a direct and opposite similarities is opposite similarity. 
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Let  be a direct similarity given by  where  

                

Let be opposite similarity given by where 

              

We need to show that the product is opposite similarity.  

For any point ,we have where  

             

Where the constants are as given in the first part. Besides, we showed 

above that . 

Thus, we got where  

So, these are equations of a similarity obtained by applying the minus sign in 

the general equations of similarities. Hence, is an opposite similarity 

whenever  and  are direct and opposite similarities. 

Example: Let  be a transformation given by where 

                   . 

Show that is a similarity and find the ratio of this similarity. Finally, 

determine whether it is direct or opposite similarity. 

Solution:  To show that is a similarity, it suffices to show for 

any two arbitrary points  and for some positive constant . 
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 Let . Then,  where and  

 where . 

Thus,                      

 

This implies that is a similarity with ratio .  

Now, we are left to determine whether it is direct or opposite similarity .  From 

the general similarity equation, we have where    

. 

Equating the equation of with this gives us  

Here, from the firs equation we get,  

 From the  

second we have .  If 

we apply the plus sign and equate corresponding coefficients, we get  

which is not possible. 

Again by applying the minus sign,  . 

Thus, with the values , where 

                  . 

This shows that is an opposite similarity. 
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Review Problems on Chapter-4 

1. If  and  are the equations of a similarity, then find 

the value of .                                                                  5: tAnswer  

2. Let be a homothety with factor  and center . For what value of , 

will be a half turn about ?                                                                                                         

3. If for a similarity , then find

 

4. Let be a dilation with center and factor If , 

where  find                                                cm5:Answer                                                                   

5. A dilation maps the point to and the point  to . Is it a  

homothety or a translation?  Write the formula for this dilation. 

                               )197,17(),(by  given homothety A :  yxyxHAnswer  

6.  *Consider the line 172:  xyL such that RLf : is given by  

Lyxxyxf  ),(,5),( . Show that f  is a transformation and conclude that it 

is a similarity. Finally, find a point P if 57)( Pf .          )3,7(: PAnswer                                                                                
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H kP . Then give the ratio k and the center 

P of this homothety.               )5,4(Center ,3/1Ratio:  CkAnswer                                    

8. Let 
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  be a similarity with ratio 5k .  
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 , then find the value of  the constants  qp, and r .    

                                 9,6,3:  rqpAnswer        

9. Show that a mapping BmXXf )(  is  

     a) A translation if  

    b) A homothety with factor  and center 
m
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 if . 

253'  yxx ytxy 3' 

t

H k c k H

c 1: kAnswer

)6,1()2,2(),2,2()0,1(),0,1()0,0(   

)6,1(

 )3,2(C .3k cmPCd 15)',( 

,')( PP  ).,( PCd

)4,1( )9,6(  )1,0( )12,1(

1m

m 1m
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10. Given a line  and a homothety  

. Find  the image ,the  factor k  and center C  of the 

homothety. 

)
4

1
,

2

3
()1,6(

4

1

51

)1,6(
center   and 5isfactor   the7, problemBy : 




 CkAnswer

11. Let the mapping  be defined by  

. Then find     

     a) The formula for if is a homothety with factor and center  

     b) The formula for if is a half turn at .      

                                                                )2,9(
2

1
),():  yxyxhaAnswer  

12. Give an example of similarity with one fixed point but not isometry. 

13. Let be a homothety and be any line. Show that . 

14. Let be a similarity. Find a homothety  and an  

isometry such that  

15. Consider a dilatation with Find a vector and a linear 

map such that .                               

16. If  the transformation   with equations 








45'

275'

ytxy

yxx
 is an opposite 

similarity, then find the value of the constant  t .    7: tAnswer                             

17. If a homothety )23,63(),(, tyxyxH kC  fixes the line 0934:  yxl , 

find the value of the constant t .(Hint: Use problem 13).           7: tAnswer                                                             

18. If a half turn ),6(),( ykxyxHP  fixes the line 0934:  yxl , find the  

value of the constant k .                                                    14: kAnswer                                                             

19. Let be homothety about the origin and let be any similarity with 

factor . Show that is an isometry. 

)5,2()3,1(),(:  ryx

)1,6(),(5),(  yxyxf )(lf

),)((),( yxghyxf 

)2,6(),(),(  yxyxf

),( yxg h 2 )2,3(

),( yxh g )1,1( 

kCH , l lCllH kC )(,

)32,12(),(  yxyx kCH ,

 .,  kCH

rC , ).1,1(,3  Cr v

  vrC T, )3,3(),(),2,2(: yxyxv  Answer

koH , 

k

1
koHU ,
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20. If 
k

P
H 1

,
 and kQH ,  are any two homotheties, then show that

PR
k

P
kQ THH 1

,
,   

for some point R .  

21. Given )4,2('),4,2(),1,2(  ABA and )13,14(' B . Find a dilation 

such that ')( AA   and ')( BB  . 

22. Let   be a transformation given by )','(),( yxyx  where








234'

243'

yxy

yxx
. 

Show that  is a similarity and find the ratio k of this similarity. Finally, 

determine whether it is direct or opposite similarity. 

23. A dilation  maps the point )4,1( to )9,6(  and the point )1,0(  to )12,1( .  

a) Is it a homothety or a translation?   

b) Write the formula for the dilation. 

c) Find a homothety kCH , and an isometry  such that  kCH , . 

24. Show that  

a) The ratio of every similarity is unique. 

b)  The image of a vector under a homothety is a parallel vector. 

c)  Any similarity is a collineation.  

d)  The product of two homotheties with common center is commutative 

e) If a dilatation fixes two points, then it is an identity transformation. 

25. Let  be the medial triangle of . Prove that there exists a 

dilation which maps to . Find the center and scaling factor. 

 

 

 

 

 

 

 

''' CBA ABC

 ABC ''' CBA
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CHAPTER-5 

AFFINE TRANSFORMATIONS 

5.1 Introduction 

In affine space, any three points are said to be  

collinear if and only if  

Consider two mappings in a plane  

Let . Are these points collinear? 

0
42

21

142

121

100

1

1

1










C

B

A

. Hence are collinear.  

On the other hand, consider the two given mappings above.  

Under ,  and  

      . Thus, are not collinear. 

Again, using instead of , we have  

     and  

      .  

Thus, are collinear. Such transformations like which maps 

collinear points into collinear points are said to be affine transformations, but 

mappings like are not considered as affine transformation. 

),(),,(),,( vuCwzByxA 

0

1

1

1

1

1

1



vu

wz

yx

C

B

A

).2,1(),(),1,(),( 3  xyyxgyxyxf

)4,2(),2,1(),0,0(  CBA

CBA ,,

f )3,8()('),3,1()('),0,0()('  CfCBfBAfA

021
38

31

138

131

100

1'

1'

1'









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B

A

',',' CBA

g f

)2,3()('),4,0()('),2,1()('  CgCBgBAgA

01266
23
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2
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1'
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1'


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
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
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Definition: Let be a transformation. Then, is said to be affine  

transformation if and only if it preserves co-linearity. (It maps any collinear 

points into collinear points). 

Example: Let be given by Show that is 

affine transformation. 

Solution: Clearly is a transformation.  

Let  be any collinear points.  

Then,  

Now, consider their images under  

.  

Thus,   .  

           (Here we used properties of determinants) 

Thus, are collinear. This means the three collinear points are  

mapped into collinear points under . So is affine transformation. 

Coordinate definition of affine transformation: A mapping 22: RRg   is 

said to be affine transformation if and only if it is of the form  

.0  where, 




















bcad

fdycx

ebyax

y

x
g  This definition is equivalent to the  

definition we stated first. In this book, we mainly follow this definition. 

Consider the two mappings in a plane that we saw above  

Here, g is of the form given in this  

definition and thus it is affine transformation but f  is not of the form given in 

the definition because the power of x is 3 and thus it is not affine 

transformation.  

WWg : g

22: RRg  ).,(),( yxyxyxg  g

g

),(),,(),,( vuCwzByxA 

0

1

1

1

1

1

1



vu

wz

yx

C

B
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,g

),()('),,()('),,()(' vuvuCgCwzwzBgByxyxAgA 

0

1

1

1

1

1

1

1

1

1

1'
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




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yxx

vuvu

wzwz
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',',' CBA CBA ,,
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5.2 Basic Properties of Affine Transformations 

1.Any affine transformation maps lines into lines. 

Proof: Let be any line and  be any affine transformation. Suppose 

are collinear points on .  

Since preserves co-linearity, are also collinear. 

Hence, are all on the same line say . Now for any point  

P  on  collinear with ,  is collinear with  and found on . 

Otherwise, if for at least one point on , is not on , will be 

non-collinear with  which means  maps three collinear points 

into non-collinear points . But this is a contradiction with the 

definition of affine transformation (as is supposed to be affine  

transformation) 

2. An affine transformation maps parallel lines into parallel lines. 

Proof: Let and be any two distinct parallel lines and  be an affine  

transformation such that . We need to show that .  

Suppose they are not parallel. Then there exist at least one common point . 

But,   

Because is one to one. This means, But 

this is not possible as the lines and are parallel and distinct. Consequently, 

 whenever . 

3. The image of a plane under affine transformation is again a plane. 

Proof: Let  be any plane. If and are any two intersecting or parallel 

lines on , then from above properties their images are intersecting or 

parallel under a given affine transformation. But any two intersecting or 

parallel lines determine a plane. 

4. An affine transformation preserves „betweeness‟: If is any point between 

and , then is a point between and . 

l g CBA ,,

l

g )('),('),(' CgCBgBAgA 

',',' CBA 'l

l BA, )(' PgP  ',' BA 'l

Q l )(' QgQ  'l 'Q

',' BA g QBA ,,

',',' QBA

g

m n g

)('),(' ngnmgm  '//' nm

'P

.)()(')(,')(,,''' QPQgPgPQgPPgnQmPnmP 

g '.)(,''' PPgnmPnmP 

m n

'//' nm nm //

 m n



P

A B )(Pg )(Ag )(Bg
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5. An affine transformation preserves mid-point: If is the mid-point of 

and , then is the mid-point of and . 

6. An affine transformation preserves length ratio of line segments lying along 

a line. If are collinear points, then it is always true that  

 

7. The image of a triangle under affine transformation is another triangle. 

8. The image of a parallelogram under affine transformation is another  

parallelogram. 

9. An affine transformation preserves cenroid of a triangle. 

10. An affine transformation preserves bay centric coordinates or center of 

mass. 

11. The image of an ellipse under affine transformations is another ellipse. 

Geometric Properties that are not preserved under AT 

As there are preserved properties of geometric figures under affine 

transformations, there are also properties which are not preserved under affine 

transformations. 

1. Lengths of line segments (Distances) are not preserved under affine  

transformations. 

Example: Let be affine transformation given by . 

Take any two points . Then, .  

But,  

                

 

2. Circles are not preserved under affine transformations. Under affine  

transformations, generally circles are mapped into ellipses. 

Example: Let be affine transformation given by . 

Find the image of the circle . 

M A

B )(Mg )(Ag )(Bg

CBA ,,
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Solution: Let be any point on the given circle. Then, .  

Solving this equation for and in terms of the images and yields,  

.  

Now put  these values in the equation of the circle to find the required image. 

                  

Thus, the image is an ellipse. 

3. The norm of a vector is not preserved under affine transformations. 

4. Angle measures are not preserved under affine transformations. 

5. Area and volume are not preserved under affine transformations. 

6. Affine transformations do not preserve orientation of plane figures. 

7. Right, Isosceles and equilateral triangles are not preserved under affine 

transformations. 

8. Rectangles are not preserved under affine transformations.  

9. Generally, affine transformations do not preserve shape and size. 

Proposition 5.1: Let  be an affine transformation that fixes two distinct 

points . Then fixes the whole line through point wise. 

Proof: Given . We need to show that for any point 

on a line through . Let be any point on a line through . Then, 

are collinear so that . On the other hand as preserves co 

linearity, are also collinear. So, . But implies

. Thus combining and , gives  

 

Hence, fixes the whole line through point wise. 
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5.3 Types of Affine Transformations 

5.3.1 Line (Skew)-Reflections 

Definition: Let and   be two intersecting lines in a plane.  Then, line 

refection is a reflection on line k in the direction of line  that maps every point 

 to the point  such that the line through   and  is parallel to the line  

and the midpoint of  lies on the line of reflection . 

 

Notation: Let be line reflection on  in the direction of .  

Then,      

Here, the line is called axis of reflection and the line is called direction of  

reflection. 

Example: Find the image of the point by a reflection on a line 

in the direction of the line . 

Solution: Let the image of the point be . Then, the line through 

and is parallel to the direction line .  As any two parallel lines 

have the same slope, we get 

    

On the other hand the mid point of and lies on the axis of 

reflection , hence it satisfies the equation of line . 
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Combining and , we get the following system of linear equations 

               

Therefore, the image of the point  by a reflection on the line 

in the direction of the line is . 

Remarks:  

1. In reflection problems, the line through a point and its image is 

perpendicular to the line of reflection, but in skew or line reflection, this is not 

necessarily true. For instance, in the above example the line through the point 

and its image is not perpendicular to the line 

.This is because their slopes are and such that

, but the product of the slope of  

two non- vertical and perpendicular lines must be -1. 

2. If the direction line of reflection is perpendicular to the line of reflection, 

then the line through and its image is also perpendicular to the line of 

reflection or axis of reflection. In this case, it becomes the normal or the usual 

reflection that we know it before. It is simply called orthogonal reflection. That 

means, every reflection is line reflection but every line reflection is not 

orthogonal reflection. 
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5.3.2 Compressions 

Definition: Let and   be two intersecting lines in a plane.  Then, a 

compression on line k in the direction of line with factor is a transformation 

that maps every point P  to the point  such that the line through   and  is 

parallel to the line  where  is a point on line . 

Notation: Let be a compression on  in the direction of . Then,  

                                                                                             

 
Here, the line is called axis of compression, the line is called direction of  

compression, the scalar is called factor of the compression and the point is 

called the critical point. 

Example: Find the image of the point by a compression on the line  

in the direction of the line with factor  

Solution: Let be the critical point on line such that the line is  

parallel to . Since parallel lines have the same slope, we have   

. On the other hand is on line  means it satisfies 

the equation . Thus, . Collecting these two 

equations yields  

But from the definition of compression, we have  

 

Note that to solve compression problems, the first task is to identify the axis of  

compression and the direction line, then to find the critical point and finally 

to find the image using  where is factor of the compression. 
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5.3.3 Shears 

Definitions: 

a) Horizontal Shears: 

 Shears in the direction with factor that sends each point ),( yx parallel to 

the axis by an amount of to the point ),(),( ykyxyxS x  are known as 

horizontal shears.  

Under a horizontal shear points on the axis are invariant or unmoved 

because on the axis so that .  

But when we move away from the axis, the magnitude of increases, so 

that points farther from the axis moves a greater distance than which are 

closer to or on the axis. 

b) Vertical Shears:  

Shears in the direction with factor that sends each point ),( yx parallel to 

the axis by an amount of to the point ),(),( tyyxyxS y   are known as 

vertical shears.  

Under such types of shears points on the axis are invariant or fixed and 

points farther from the  axis moves a greater distance than closer points to 

the axis. 

c) Total Shears (Simply called shears):  

A total shear or simply a shear with factors  and is a transformation that 

maps any point to the point ),(),( txykyxyxS  . 

Examples: Find the equation of a shear that maps  

    )2,8(to)6,2())0,3(to)1,3())3,8(to)3,2()  cba  

Solution: To find the equations, first identify the type of the shear from the 

images. 

a) Here, the x-coordinate is changed and the y-coordinate is fixed. Hence, the 

shear is horizontal. 

x k

x ky

x

x 0y xxkyx  0

x y

x

x

y t

y tx

y

y

y

k t

),( yx
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),2(),(2

)3,8()3,32(

)3,32()3,2(),(),( So,

yyxyxSk

k

kSykyxyxS

x

xx







 

b) Here, the y-coordinate is changed and the x-coordinate is fixed.  

Hence, the shear is vertical.  

So,  

)
3

1
,(),(

3

1
)0,3()31,3(

)31,3()1,3(),(),(

xyxyxStt

tStxyxyxS

y

yy





 

c) Here, both coordinates are changed and thus it is a total shear. 

So,  

)4,(),(

4,1)2,8()62,62(

)62,62()6,2(),(),(

xyyxyxS

tktk

tkStxykyxyxS






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5.3.4 Sililarities  

All isometries are affine transformations.Generally, all similarities  

(Homothety and or Dilations) are affine transformations. All isometries are 

similarities. But there are similarities that are not isometries. For instance, 

homotheties are similarities but not isometries.  All similarities are affine 

transformations but there are affine transformations which are not similarities. 

For instance, shears, line reflections and compressions are affine 

transformations but not similarities. 

Theorem 5.1(Characterization): Let be affine transformation 

where  Then,  

I. is a similarity if and only if . 

II. is an isometry if and only if  

Proof: Let be vertices of .Then,  

For the first part, is a similarity if and only if where,  

          

From these relations, 

            

Thus, is a similarity if and only if . 

Finally, is an isometry if and only if . 
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Problem Set 5.1  

1. If is an affine transformation given by , find 

all values of .  

2. Show that the mapping given by where is a shear. 

3. Determine whether the set of shears forms a group of transformation with  

composition or not. 

4. If the image of under a compression on a line in the 

direction of the line is the point , find the image of the 

line .  

5. Prove that any affine transformation maps two intersecting lines into 

intersecting lines. (Affine transformation preserves point of concurrency). 

Preserves ratio of the areas of triangles. 

6. Show that the inverse of a horizontal (Vertical) shear is again a horizontal 

(vertical) shear with opposite factor. 

7. Let and be perpendicular vectors in . Define a mapping  

by  for all  in . Show that   a)  is a linear transformation. 

b)  is a shear parallel to a line spanned by . 

c) If and , find where . 

8. Let be a shear parallel to a line in . Show that  

a)  for all on              b)  for all  in . 

9. Find the image of the point (2,3) and the line  

       a) By a reflection on the line in the direction of the line  

          

      b) By a compression  on the line in the direction of the                 

line  with factor .         c) By a shear with factor 2.   

10. Let  be a reflection on the line in the direction of the 

line  . Give at least three fixed points and three fixed line of . 

22: RR  
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5.4 Affine Transformations and Linear Mappings 

Definition: Linear transformations are any transformations from a plane onto a 

plane given by where  

Notation: From now onwards we use the notation instead of for 

simplicity.  

Using this notation, the above linear transformation becomes  

                  

Examples:  

a) Reflection on the axis and axis are linear. 

Let be a reflection on axis. Then, .   

Hence, is linear.  

b) Rotations about the origin are linear. 

Let  be a rotation by an angle   about the origin.  

Then, for any point 








y

x
, 

             


























cossin

sincos

yx

yx

y

x
. 

c) given by is linear. 

d) given by is not linear. 

 

 

 

)','(),( yxyx  0,,,,,
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
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5.5 Matrix Representation of Affine Transformations 

So far we have seen that any linear transformation is given by the formula  

. This formula can be equivalently expressed as 

. Now, denote the first matrix by and  

the second by .Thus any linear transformation is given by 

. This is known as matrix Representation (formula) of linear 

transformation and is called the standard matrix of .  

From now onwards, we use the notation , but to use this formula 

we have  to see the method how to find the matrix . 

The formula  is true for a unique and 

for any point .  In particular, this formula works for   

So,  

This means the first column of is obtained by calculating and the 

second by calculating  so that .  

Examples:  

a) Let be given by . Find the standard matrix 

of  and write its matrix representation.                     

Solution:  Let be the standard matrix of . Then, from the above  

relation, . 

b) Let  be a rotation by an angle  about the origin. Find the matrix of   

f
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Solution: For any point 



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In conclusion, for any linear transformation , there is a unique matrix 

whose first and second columns are the images of and respectively.  

Conversely, to each invertible matrix there corresponds a unique linear  

transformation whose formula is obtained by multiplying any point by 

the matrix as .   

For instance, for , the formula of the corresponding linear  

transformation is . 

Rules of Thumb! 

i. To obtain the standard matrix of a linear transformation whose formula is 

given, simply take the coefficients of and . Then, form the matrix by 

putting the coefficients of in the first column and the coefficients of as 

second column. For instance, let be a linear transformation given 

by  Here, the coefficients of are and that of are .  

So, putting the coefficients of in the first column and the coefficients of as  

second column yields a invertible matrix . 
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ii. To find the formula of a linear transformation, whose standard matrix is 

given, simply multiply by the column vector .  

For instance, let be a linear transformation whose standard matrix 

is . Then, the formula of will be  

. 

At this point, we are equipped with enough concepts that are useful to find the 

matrix representation of any affine transformations. 

Theorem 5.2 (Representation Theorem): Let be any affine transformation. 

Then, can be represented uniquely as a product of linear transformation 

and a translation with translation vector as bXfXg  )()( . 

Proof: Consider the general coordinate definitions of affine transformation that 

we discussed at the beginning of  this Chapter,   
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e
gb

dycx

byax

y

x
fXf

0

0
,)( , we get that bXfXg  )()( . 

Besides, 

















0

0

0

0
f which shows that f is linear transformation. 

The uniqueness follows from the uniqueness of b  which is 









0

0
gb  and from 

the uniqueness of  the coefficients in the formula of  the image of 








y

x
f . (Note 

that if either  the image of 








0

0
or the coefficients are not unique, the map g will 

not be bijective. That is why we used these facts). 

M

M 








y

x

22: RRf 













12

30
M f

















































yx

y

y

x

y

x
M

y

x
f

2

3

12

30

g

g f

b



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  214 
 

Example: Represent the transformation 





















252

3

yx

yx

y

x
g as  

bXfXg  )()( . 

Solution: Using 







































yx

yx

y

x
fgb

52
,

2

3

0

0
, we get bXfXg  )()( . 

Theorem 5.3 (Matrix Representation Theorem (MRT) of Affine  

Transformations): Let be any affine transformation. Then, there 

exist a unique matrix  and a unique vector such that bMXXg )( . This 

representation is said to be matrix representation of g . 

Proof: From theorem 5.2, for any affine transformation , there is a unique 

linear transformation and a unique vector such that bXfXg  )()( . Again 

from the above discussions, to each linear transformation , there is a unique 

matrix such that MXXf )( .   

Consequently, we get that bMXbXfXg  )()( . Our next task will be 

determining the matrix associated with a given affine transformation . 

How to determine from ?  

Here we need to investigate how to find the standard matrix associated with 

a given affine transformation.  

From , since any linear transformation preserves the origin  

 and .   

But from the previous observations we have seen that the standard matrix of 

any linear transformation is completely determined from the images of and 

as so that .  

22: RRg 

M b

g

f b

f

M

g

M bMXXg )(

M

b
y

x
f

y

x
g 


















bbfg 

















0

0

0

0
b

y

x
g

y

x
f 


















M










0

1










1

0



































1

0
,

0

1
f

d

b
f

c

a










dc

ba
M
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Thus, from , 

 so that . 

Example: Let be affine given by . Find the 

standard matrix of and give its matrix representation. 

Solution: Let the matrix representation be b
y

x

dc

ba
bMXXg 
















)( . 

Now, find from the formula of ,that is  .  

Besides, from the above relations,   

 

Consequently, the standard matrix is found to be . 

Therefore, the matrix representation is given by  


























 



















7

3

32

11

y

x
b

y

x
M

y

x
g . 

How can we determine affine transformations from their images? 

In our discussion of isometries, we have seen that any isometry is uniquely  

determined from its effect on three non-collinear points. Likewise, any affine 

transformation is uniquely determined from the images of three non-collinear 

points. That means there is a unique affine transformation that sends three non-

collinear points into three non-collinear points. In other words, for any three 

non- collinear points , and any two affine transformations and  if 

, then   

Therefore, to determine the formula of any affine transformation , it suffices 

to know the images of any three non- collinear points .  

This basic and important concept is illustrated by the following example. 

 

b
y

x
g

y

x
f 


















bgf
d

b
bgf

c

a























































1

0

1

0
,

0

1

0

1










dc

ba
M

22: RRg  





















732

3

yx

yx

y

x
g

g










0

0
g g 





















7

3

0

0
gb










































































































3

1

7

3

4

2

1

0

1

0
,

2

1

7

3

5

4

0

1
bgf

d

b
bg

c

a








 











32

11

dc

ba
M

CBA ,, f g

)()(),()(),()( CfCgBfBgAfAg  .fg 

g

CBA ,,
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Example: Let be affine transformation with  

 and . Then, determine the formula of 

and calculate  

Solution: Since the points are non-collinear, there is 

a unique affine transformation given by , where 

and so that . Thus,  

     





















































































17

13

54

54

5

4
)()()(.

7

16

52

52

5

2
)()()(.

dc

ba

dc

ba
BgCgBCMii

dc

ba

dc

ba
AgBgABMi

 

Equating components and collecting like terms from and , we get  

              

Hence, .  

Now using one of the given points or , we obtain the vector as 

follow: 















































 











8

5

8

1

0

6

0

2

4

3

0

2
)()(

5
1

2
1

gMAAgbbMAAg  

Therefore, for any ,  gives  






























































 










8

5

0

0
  and,

84

53

8

5

4

3

5
1

2
1

5
1

2
1

g
yx

yx

y

x

y

x
g . 

22: RRg 








































7

10

5

0
,

0

6

0

2
gg 


















10

23

10

4
g

g .
0

0








g





























10

4
,

5

0
,

0

2
CBA

g bMXXg )( 









dc

ba
M











f

e
b bMCCgbMBBgbMAAg  )(,)(,)(

)(i )(ii

5
1

2
1

,4246
1754

752

3,36
1354

1652



















dcc
dc

dc

baa
ba

ba










 











5
1

2
1

4

3

dc

ba
M

BA, C b











y

x
X bMXXg )(
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5.6 Orientation and Affine Transformations (Revisited) 

Definitions: Let g  be any affine transformation. Then, ee say that g preserves  

orientation if and only if for any positively oriented vectors X andY , their 

images )('),(' YgYXgX  are again positively oriented vectors. In this case, 

g is said to be orientation preserving affine transformation. In general, if the 

pair ),( YX and the pair ))(),(( YgXg have the same orientation, then g preserves 

orientation. But, if they have opposite orientation, then g reverses (changes) 

orientation. In this case, g is said to be orientation reversing (changing) affine 

transformation. 

Theorem 5.4 (Orientation Characterization Theorem): 

Let WWg : be any affine transformation given by bMXXg )( . Then,  

a) g preserves orientation if and only if .0det M  

b) g reverses (changes) orientation if and only if .0det M  

Proof:  Whether a given transformation g preserves or reverses orientation is  

determined from its effect on the orientation of a triangle. This means if g

preserves the orientation of any triangle ABC , then it is orientateon preserving 

and if g reverses the orientation of ABC , then it is orientation reversing affine 

transformation. 

Now, having this fact as basis, let’s prove our theorem. Let ABC be arbitrary 

triangle. Then its orientation is determined from the orientation of the vectors 

AB and AC . Suppose ABC has positive orientation. That means 0),det( ACAB   

On the other hand, let ''' CBA be the image of ABC under g . Then, the 

orientation of ''' CBA is determined from the orientation of the pair )'',''( CABA .  

But from bMXXg )( ,         

                              
)(''),(''

)(',)(',)('

ACMCAABMBA

bMCCgCbMBBgBbMAAgA




.  
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Thus,  

                    
),det(.det)],(det[

)],(det[)](),(det[)'',''det(

ACABMACABM

ACABMACMABMCABA




 

Hence, g preserves orientation if and only if 

0det0),det(.det0)'',''det(  MACABMCABA because 0),det( ACAB

from our assumption. Similarly, g reverses orientation if and only if  

0det0),det(.det0)'',''det(  MACABMCABA . 

Note that since any affine transformation g  is bijective, it is invertible and so is 

its standard matrix M and hence Mdet can not be zero.  

So, any affine transformation g is either orientation preserving or orientation 

reversing but cannot be both. 

Examples: Determine whether the following affine transformations are 

orientation preserving or orientation reversing. 

      22:) RRga  given by 





















115

723

yx

yx

y

x
g       

      22:) RRb   given by 





















11

1

y

x

y

x
  

Solution: 

017det
51

23

11

7

51

23

11

7

5

23

115

723
  Here, a)








 




























 















































MM

y

x

yx

yx

yx

yx

y

x
g

 

Hence, by the above theorem g preserves orientation. 

     

01det
10

01

2

1

10

01

2

1

2

1
 Similarly, b)



















































































MM

y

x

y

x

y

x

y

x


 

Hence, by the above theorem  reverses orientation. 
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Theorem 5.5: The inverse of orientation-preserving affine transformation is 

again orientation-preserving. The inverse of orientation-reversing affine 

transformation is again orientation-reversing.  

Proof: Let bMXXg )( be orientation-preserving affine transformation.  

Then, we need to show that 1g is also orientation-preserving. Since g is 

orientation-preserving, 0det M . Besides, from bMXXg )( , by Inverse 

Characterization Theorem, bMXMXg 111 )(   which gives us the standard 

matrix of 1g is 1M . 

Thus, 0det,0
det

1
)det( 1  M

M
M .  

Hence, bMXMXg 111 )(   is also orientation-preserving whenever  

bMXXg )( is orientation -preserving. Similarly, if bMXXg )( is 

orientation –reversing, then 0det M . So, 0det,0
det

1
)det( 1  M

M
M . 

Theorem 5.6: The composition of two orientation-preserving affine 

transformations is orientation-preserving. The composition of two orientation-

reversing affine transformations is orientation-preserving. The composition of 

an orientation-preserving and an orientation-reversing affine transformation is 

orientation-reversing.  

Proof:  Let bMXXg )(  and cNXXh )( be any affine transformations. In  

section 6.6, we have seen that the matrix of the composition hg   is the product 

of the matrices of g and h .Thus, the standard matrix of hg   is MN .  

Now, suppose g and h are orientation-preserving.  

That means, 0det,0det  NM .So,  0det.det)det(  NMMN . On the other 

hand, if g and h are orientation-reversing, 0det,0det  NM gives 

0det.det)det(  NMMN .  

Thus, in either cases, hg  is orientation-preserving. 

Finally, if g is orientation preserving and h is orientation reversing, we will 

have .0det.detdet0det,0det  NMMNNM  

Hence, if g and h have opposite effect on orientation, then their composition 

hg  will be orientation reversing. 
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5.7 Area and Affine Transformations  

Let be a parallelogram whose adjacent sides are given by the vectors 

and as shown in the figure 5.3 below.  For simplicity of 

calculation, assume one of the vertices to be the origin and ,  

to be positively oriented vectors. That means . 

 

Now let’s calculate the area of the parallelogram denoted by .  

 That is where is the base of the parallelogram given by  

and is the altitude from the vertex to the base . Here, how to 

find  will need a little algebraic calculation as follow. From Pythagoras 

Theorem,  
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Hence, the area of the parallelogram is computed by 

wy

zx
yzxw

yx

yzxw
yxhba 




 ))((.)(

22

22  

Notice: The first bar is to indicate absolute value and the second is to indicate  

determinant in the above area formula. From this area of a parallelogram, if we 

are interested on the area of the triangle with adjacent sides the vectors 

and , we simply multiply by half. .  

In general, for arbitrary parallelogram with vertices  

, the area of  is given by 

. For arbitrary triangle with vertices 

, we have  

(The derivations of these formulas are similar as we did above). The plus sign 

of the determinant is obtained when the triangle has positive orientation where 

as the minus sign is taken when the triangle has negative orientation.  Notation 

from now onwards, we use the following notations.  

For vertices , the pair is a matrix formed by  

putting the coordinates of as first column and the coordinates of as the  

second column as follow: .  

Let  denotes determinant of so that we can write 

 . Hence,  

. 

Now let be any affine transformation. We need to investigate the effect of 

on the area of . Let be the image of under where 
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Since is affine transformation, there is a unique matrix  and a vector 

such that for all points in the plane. Thus, 

  

Hence, from the above area formula, 

)(),det(,det)(det),det(
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This relation in general is given by the following theorem. 

Theorem 5.7 (Area Relation Theorem, ART):   

Let  be any affine transformation given by . Then, 

where is the image of . 

Examples:  

1. Given with vertices  Let  be affine  

transformation given by . If is the image of 

under , compute . 

Solution: First find the area of so that to apply the area relation theorem. 

In ,  Thus, 
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Now from the formula of , its standard matrix is given by such 

that  . Therefore, from area relation theorem,  

            

2. Suppose a certain affine transformation takes into such that   

 .If takes into where 

calculate . 

Solution: For an affine transformation , if is the image of 

under , then  . But we are given that, 

3
1

3
1

3
1

3
1 detdet)(det)()()'''(  MMABCaMABCaABCaCBAa

 

Thus, 

 

Definition: Equi-affine transformation is an affine transformation that 

preserves area.  

An affine transformation preserves area of if . 

Corollary:  

An affine transformation is equi affine if and only if  

Proof: Suppose is equi affine transformation. Thus, for any , 

. But from area relation theorem, 
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Theorem 5.8: Let be any affine transformation where  

  Then, is equi affine if and only if . 

Proof: Let be vertices of . 

Then, so that   

. 

On the other hand, let be the image of under , then            

   

Hence, using the general area formula for the image , we have  

 

Hence, is equi affine if and only if  

1)()()()'''(  bcadABCabcadABCaABCaCBAa  



















'

'

y

x

y

x
g

.0,
'

'









bcad

kdycxy

hbyaxx
g 1bcad





























v

u
C

w

z
B

y

x
A ,, ABC




























xv

xu
AC

yw

xz
AB ,















yvyw

xuxz
ACABABCa det),det()(

2
1

2
1

''' CBA ABC g




































































)()(

)()(
'',

)()(

)()(
''

)(',)(',)('

yvdxuc

yvbxua
CA

ywdxzc

ywbxza
BA

kdvcu

hbvau
CgC

kdwcz

hbwaz
BgB

kdycx

hbyax
AgA

''' CBA

))()'''()(

detdet

detdet

det

)()()()(

)()()()(
det

)'',''det()'''(

2
1

2
1

2
1

2
1

2
1

bcadABCaCBAabcadABCa

dc

ba

yvyw

xuxz

yvyw

xuxz

dc

ba

yvyw

xuxz

dc

ba

yvdxucywdxzc

yvbxuaywbxza

CABACBAa





























































































g



Text Book of Transformation Geometry  by Begashaw M. For your comments, use -0938836262 

Prepared by Begashaw M.  225 
 

5.8 Inverse of Affine Transformations 

Let and be any two affine transformations. Then,  

their composition is given by  

          

In either case, the matrix of the composition is the product of the matrices of 

the individual affine transformations. 

Definition: Any two affine transformations and are said to be inverse of 

each other if and only if for all in the 

domain. For instance in , and are inverses of each 

other because  Now our aim is to find the 

inverse of an affine transformation whose formula is given. Consider any two 

affine transformations and . Then,  

 

Thus, from these two cases, for all in the 

given space. Hence, the given affine transformations and are inverse of 

each other. This observation is generalized by the following theorem. 

Theorem 5.9 (Inverse Characterization Theorem, ICT):  

Let be affine transformation. Then, the inverse of is given by

 

Notice: To find the inverse of any given affine transformation  

given by ,  it is advisable to remember the following steps: 
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Step-2: Calculate using  

Step-3: Compute using inverse characterization theorem.  

                    

Example: Find the inverse of an affine transformation given by  

                    

Solution: To find the inverse of , the first task is to identify its standard 

matrix so that to apply theorem 5.9.  

Let where .  Hence,  and  

 

Thus, .   Now calculate .  

For any invertible matrix , its inverse is given by  

           .  

So, for , . 
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




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






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







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



















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











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



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







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49
M 1M

22x 









dc

ba
M



















ac

bd
M

bcad
11















12

49
M 






























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Review Problems on Chapter-5 

1. Suppose T is an affine transformation given by  





















yx

yx

y

x
T

2

2
.Then, find  

a) the image of the y -axis under T
 

b) the image of the line  1 yx under T  

c) the image of the circle  122  yx under T  

16)()(4)043)): 22  xyyxcyxbxyaAnswer                                           

2. Find the image of the circle 1622  yx  under affine transformation  



















y

x

y

x
g

2

2
.                                                          64: 22  yxAnswer  

3. Find the image of the ellipse under affine transformation 

  

                                                                                                            

4. Suppose   is  a linear transformation with standard matrix 









12

13
M . 

Find the image of the line 12:  xyl under  .    0154:  yxAnswer                                     

5*. Suppose g  is  an affine transformation with standard matrix 











01

22
M .  

If 

















2

4

0

0
g , find the image of xyl 3:  under g .  0208:  yxAnswer                              

6. Let lS  and mS be a reflections on lines  a long the vectors )1,1(u and 

)2,1(v . Then, find the equations of ml SS   and give its standard matrix. 

                      











5/45/3

5/35/4
),

5

4

5

3
,

5

3

5

4
(),(: MyxyxyxSS ml Answer  

 

1
94

22


yx





















9

6

y

x

y

x
g

9/1: 22  yxAnswer
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7. Let 22: RRT  be defined by 
3 2

4 3

x x y
T

y x y

   
   

   
.  

a)  Find the matrix representation ofT .                                                                                  

b) Determine whether T preserves or changes orientation.                                                   

c) Find the formula for 1T .                                                                                                   

d) If '''' DCBA is the image of the parallelogram ABCD  underT  where a  

)3,1(),3,4(),1,4(),1,1( DCBA ,   calculate the area of '''' DCBA .   

8. Let g  be a reflection on the line 02:1  yxl in the direction of the line 

02312:2  yxl . If 053:  ytxl is the fixed line of g , then find t  

9. Let   S  be a shear which takes the point )6,2( to )6,5( . Then find )2,3(1 S  

10. Let  22: RRT   be a one to one linear transformation. Then, 

      a) If 






















0

0

93

62

y

x
T , then find the point 









y

x
      

      b) If 2 3

3 5
T

   
   

   

, then find the image 









 24

16
T  

11. Let  be affine transformation. If is a reflection on the line  

 in the direction of the line . Then, 

a) Find the formula for the linear mapping associated with  

b) Find the matrix representation of  

c) Give at least three fixed points of  

d) Is the line  a fixed line of ? 

12. If the image of the )3,1( under a compression C on a line 32:  xyk in the 

direction of the line 022:  yxl is the point ),('
2
7

4
3P , find the image of the 

line 01:  yxm under this compression. 

13. Let be linear transformation such that  and  

. Find the formula for  and the image of  under . 

22: RRg  g

01 yx xy 2

)(xf )(xg

)(xg

g

01236:  yxl g

22: RR 


















0

1

3

2
























1

0

1

1
  25  xy 
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14. Let   be a shear such that )11,7()4,1(  . Then, find the equations of   . 

                                                                     )7,2(),(: xyyxyx Answer                             

15. Suppose is an orientation-reversing similarity. Prove that is either  

dilation or a translation. 

16. Suppose 





















aybx

byax

y

x
g  is an equi-affine transformation. Then, prove that 

122 ba .       

17. Given the affine mapping 























2

6

13

03
)( xxg .   

a) Is g orientation preserving or orientation changing?     

b)  Is g isometric mapping?  

18. Given the affine mapping 
5 3

6 4

x x
g

y y

     
      

     
 and triangle ABC with vertices 

A(0,1), B(2,1), C(2,5). Find the area of the image triangle ''' CBA  under g . 

19. Let ( )g x MX b   be affine tansformation. If ( )g x  preserves area , then 

prove that det( ) 1M   .    

20. Prove that any homothety preserves orientation. 

21. Determine the effects of shears on area and orientation. 

22. Let be a reflection where is a line through the origin that makes an 

angle of  with the positive axis.  

    a) Show that the standard matrix of is given by . 

     b) Using part (a), conclude that preserves area but changes orientation. 

23. Every affine transformation given by  is a similarity if and 

only if  there exists  such that  for all vectors  in . 

 

f ff 

lS l

 x

lS 















2cos2sin

2sin2cos
M

lS

b
y

x
M

y

x
f 


















0k 

















y

x
k

y

x
M 









y

x
2R
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24. In the cell of the following table, put “   ” if the geometric concept will 

be preserved or  if it will be changed under the given type of 

transformations in general.                                            

 

25. Produce an example of similarity but not an isometry 

a) That preserves area but not orientation. 

b) That preserves orientation but not area. 

c) That preserves both area and orientation. 

26. Let k be a mapping for 0k given by )','(),( yxyxk  where








yy

kxx

'

'
 

    a) Show that k is affine transformation.   Can k be a similarity? 

    b) Determine whether k is equi-affine or not. Is it orientation preserving? 

27. Let be defined by , where and are non zero 

constants. Show that is affine transformation and find the formula for . 

Let  be a plane with area 
16

1
A  . Give  the area of ?  Is T equi-affine? 

Is T orientation preserving or reversing? 

28. Determine the orientation of whose vertices are given as follow  

 

 

22: RRT  





















bby

aax

y

x
T

3

2
a b

T
1T

 )(T

ABC

































3

1
,

1

1
,

1

4
CBA
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29. Given    

a) Show that is an affine transformation  

 b) Show that is a similarity      

c) Find a dilation , a rotation and a translation  

vT such that        

d) Is orientation preserving? 

30. Classify the following affine transformations as orientation preserving and  

orientation changing. 

a. Dilation 

b. Line reflection 

c. Shears 

d. Compression 

31. Show that the ellipse is the image of the circle under  

some affine transformation. 

32. If  and  are equations of a rotation, then 

find the center and angle of the rotation. 

33. Let  be an isometry with )1,5()3,2(),0,1()1,1(),1,2()0,0(   .Then 

find the equations of . Determine whether  even or odd isometry? 

 

  

 

 

 

 

 

 

 























134

243

yx

yx

y

x
f

f

f

 R

 RTf v 

f

1
2

2

2

2


b

y

a

x
122  yx

23'2  yxx 13'2  yxy
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