CHAPTER THREE
Design for fatigue strength

Cyclic loadings

Cyclic loading is the application of repeated or fluctuating stresses, strains, or stress intensities to
locations on structural components. The highest stress that a material can withstand for a given
number of cycles without breaking called also endurance strength. Since many of the machine
parts (such as axles, shafts, crankshafts, connecting rods, springs, pinion teeth etc.) are subjected
to variable or alternating loads (also known as fluctuating or fatigue loads), therefore we shall
discuss, in this chapter, the variable or alternating stresses.

Completely Reversed or Cyclic Stresses

Consider a rotating beam of circular cross-section and carrying a load W, as shown in Fig. 6.1.
This load induces stresses in the beam which are cyclic in nature. A little consideration will show
that the upper fibres of the beam (i.e. at point A) are under compressive stress and the lower
fibres (i.e. at point B) are under tensile stress. After half a revolution, the point B occupies the
position of point A and the point A occupies the position of point B. Thus the point B is now
under compressive stress and the point A under tensile stress. The speed of variation of these
stresses depends upon the speed of the beam. From above we see that for each revolution of the
beam, the stresses are reversed from compressive to tensile. The stresses which vary from one
value of compressive to the same value of tensile or vice versa, are known as completely
reversed or cyclic stresses.

Notes: 1. The stresses which vary from a minimum value to a maximum value of the same
nature, (i.e. tensile or compressive) are called fluctuating stresses.

2. The stresses which vary from zero to a certain maximum value are called repeated stresses.

3. The stresses which vary from a minimum value to a maximum value of the opposite nature
(i.e. from a certain minimum compressive to a certain maximum tensile or from a minimum
tensile to a maximum compressive) are called alternating stresses.
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Fatigue and Endurance Limit

It has been found experimentally that when a material is subjected to repeated stresses; it fails at
stresses below the yield point stresses. Such type of failure of a material is known as fatigue.
The failure is caused by means of a progressive crack formation which are usually fine and of
microscopic size. The failure may occur even without any prior indication. The fatigue of
material is effected by the size of the component, relative magnitude of static and fluctuating
loads and the number of load reversals.
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Fig. 6.2. Time-stress diagrams.

In order to study the effect of fatigue of a material, a rotating mirror beam method is used. In

this method, a standard mirror polished specimen, as shown in Fig. 6.2 (), is rotated in a fatigue
testing machine while the specimen is loaded in bending. As the specimen rotates, the bending
stress at the upper fibres varies from maximum compressive to maximum tensile while the
bending stress at the lower fibres varies from maximum tensile to maximum compressive. In
other words, the specimen is subjected to a completely reversed stress cycle. This is represented
by a time-stress diagram as shown in Fig. 6.2 (b). A record is kept of the number of cycles
required to produce failure at a given stress, and the results are plotted in stress-cycle curve as
shown in Fig.6.2 (c). A little consideration will show that if the stress is kept below a certain
value as shown by dotted line in Fig. 6.2 (c), the material will not fail whatever may be the
number of cycles. This stress, as represented by dotted line, is known as endurance or fatigue
limit (ce). It is defined as maximum value of the completely reversed bending stress which a
polished standard specimen can withstand without failure, for infinite number of cycles (usually
107 cycles). It may be noted that the term endurance limit is used for reversed bending only
while for other types of loading, the term endurance strength may be used when referring the
fatigue strength of the material. It may be defined as the safe maximum stress which can be
applied to the machine part working under actual conditions. We have seen that when a machine
member is subjected to a completely reversed stress, the maximum stress in tension is equal to
the maximum stress in compression as shown in Fig. 6.2 (b). In actual practice, many machine
members undergo different range of stress than the completely reversed stress. The stress verses
time diagram for fluctuating stress having values omin and omax is shown in Fig. 6.2 (e). The
variable stress, in general, may be considered as a combination of steady (or mean or average)
stress and a completely reversed stress component ov. The following relations are derived from

Fig. 6.2 (e):



1. Mean or average stress,

c = Gma.'r + Urrrr'n

m gl
2. Reversed stress component or alternating or variable stress.

G = Opaxr — O

v g

Note: For repeated loading, the stress varies from maximum to zero (i.e. G,,;, = 0) in each cycle as shown m Fig.

6.2 (d).
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Gmax
3. Stressratio, R= — . For completely reversed stresses. R =— 1 and for repeated stresses,
min

R = 0. It may be noted that R cannot be greater than unity.
4. The following relation between endurance limit and stress ratio may be used

30,
SRR
where o'e = Endurance limit for any stress range represented by R.
oe = Endurance limit for completely reversed stresses, and
R = Stress ratio.
Effect of Loading on Endurance Limit—Load Factor
The endurance limit (ce) of a material as determined by the rotating beam method is for reversed
bending load. There are many machine members which are subjected to loads other than
reversed bending loads. Thus the endurance limit will also be different for different types of
loading. The endurance limit depending upon the type of loading may be modified as discussed
below:

Let K, = Load correction factor for the
reversed or rotating bending load.
Its value is usually taken as unity.

K = Load correction factor for the
reversed axial load. Its value may
be taken as 0.8.

K = Load correction factor for the
reversed torsional or shear load. Its
value may be taken as 0.55 for
ductile materials and 0.8 for brittle
materials.

~ Endurance limit for reversed bending load, oeb=ce.Kb=oce ..(QKb=1)
Endurance limit for reversed axial load, oea = oe.Ka and

Endurance limit for reversed torsional or shear load, te =oce.Ks

Effect of Surface Finish on Endurance Limit—Surface Finish Factor

When a machine member is subjected to variable loads, the endurance limit of the material for
that member depends upon the surface conditions. Fig. 6.3 shows the values of surface finish
factor for the various surface conditions and ultimate tensile strength.
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Fig. 6.3. Surface finish factor for various surface conditions.

When the surface finish factor is known, then the endurance limit for the material of the machine
member may be obtained by multiplying the endurance limit and the surface finish factor. We
see that for a mirror polished material, the surface finish factor is unity. In other words, the
endurance limit for mirror polished material is maximum and it goes on reducing due to surface
condition.

Let K_ . = Surface finish factor.
Endurance limit,
Gel = Geb'sz': Ge'Kb'sz' = Ge'Kqu' - -l" Kb = 1)
...(For reversed bending load)
= GQG.KM, = GQ.KH.KSM ..(For reversed axial load)
=T Ez.K =0 g.K S.Kn - __(For reversed torsional or shear load)

Note : The surface finish factor for non-ferrous metals may be taken as umty.

Effect of Size on Endurance Limit—Size Factor
A little consideration will show that if the size of the standard specimen as shown in Fig. 6.2 (a)
is increased, then the endurance limit of the material will decrease. This is due to the fact that a

longer specimen will have more defects than a smaller one.
Let K _ = Size factor.

. Endurance limit,

G, =0, *K_ ...{(Considering surface finish factor also)
= Geb'sz"Ks: = Ge'Kb'sz"Ks: = 0-ez'JK_ﬂu'"}:s: (.“‘ Kb = 1)
=0,,K, K =0.K K K_ ...(For reversed axial load)
= Tg.Km,.KS__ = GE.KS.KSW:KS__ ... (For reversed torsional or shear load)

Notes:

1. The value of size factor is taken as unity for the standard specimen having nominal diameter
of 7.657 mm.

2. When the nominal diameter of the specimen is more than 7.657 mm but less than 50 mm, the
value of size factor may be taken as 0.85.

3. When the nominal diameter of the specimen is more than 50 mm, then the value of size factor
may be taken as 0.75.

Effect of Miscellaneous Factors on Endurance Limit

In addition to the surface finish factor (Ksur), size factor (Ksz) and load factors Kb, Ka and Ks,
there are many other factors such as reliability factor (Kr), temperature factor (Kt), impact factor



(Ki) etc. which has effect on the endurance limit of a material. Considering all these factors, the
endurance limit may be determined by using the following expressions :
1. For the reversed bending load, endurance limit,
0'e = Oeb-Ksur. Kez. K. Kt. K
2. For the reversed axial load, endurance limit,
0'e = Oea. Ksur. Kez. Kr. Kt K
3. For the reversed torsional or shear load, endurance limit,
0'e = Te. Kour. Kez. K. K. K
In solving problems, if the value of any of the above factors is not known, it may be taken as
unity.

Relation Between Endurance Limit and Ultimate Tensile Strength

It has been found experimentally that endurance limit (c€) of a material subjected to fatigue
loading is a function of ultimate tensile strength (cu). Fig. 6.4 shows the endurance limit of steel
corresponding to ultimate tensile strength for different surface conditions. Following are some
empirical relations commonly used in practice :
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Fig. 6.4. Endurance limit of steel corresponding to ultimate tensile strength.
For steel, oe=0.50U;
For cast steel, oe=040U;
For cast iron, ce=0.350U;

For non-ferrous metals and alloys, oe=10.3 cu
Factor of Safety for Fatigue Loading
When a component is subjected to fatigue loading, the endurance limit is the criterion for faliure.

Therefore, the factor of safety should be based on endurance limit. Mathematically,
Endurance limit stress G,

Factor of safety (F.S.) = - - =—
Design or working stress Gy,

Note: For steel, g,=081t09 G},
where 0, = Endurance limit stress for completely reversed stress cycle, and

0, = Yield point stress.



Example Determine the design stress for a piston rod where the load is completely reversed. The
surface of the rod is ground and the surface finish factor is 0.9. There is no stress concentration.
The load is predictable and the factor of safety is 2.
Solution. Given : Ksur = 0.9 ; F.S. = 2 The piston rod is subjected to reversed axial loading. We
know that for reversed axial loading, the load correction factor (Ka) is 0.8

If ¢, is the endurance limit for reversed bending load, then endurance limit for reversed axial

load.

0,=0,7K <K, =0,708x09=0720,

We know that design stress,

J

' 0.72
0,= 2 2729 _360,Ans.
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Fatigue Stress Concentration Factor

When a machine member is subjected to cyclic or fatigue loading, the value of fatigue stress
concentration factor shall be applied instead of theoretical stress concentration factor. Since the
determination of fatigue stress concentration factor is not an easy task, therefore from
experimental tests it is defined as

Fatigue stress concentration factor,
Endurance limit without stress concentration

S Endurance limit with stress concentration

Notch Sensitivity
In cyclic loading, the effect of the notch or the fillet is usually less than predicted by the use of
the theoretical factors as discussed before. The difference depends upon the stress gradient in the
region of the stress concentration and on the hardness of the material. The term notch sensitivity
is applied to this behaviour. It may be defined as the degree to which the theoretical effect of
stress concentration is actually reached. The stress gradient depends mainly on the radius of the
notch, hole or fillet and on the grain size of the material. Since the extensive data for estimating
the notch sensitivity factor (q) is not available, therefore the curves, as shown in Fig. 6.14, may
be used for determining the values of q for two steels.
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When the notch sensitivity factor g is used in cyclic loading. then fatigue stress concentration

factor may be obtained from the following relations:

K, -1
or Kf =l+g(K -1) ...[For tensile or bending stress]
and Kfs =l1+q(K_-1) _..[For shear stress]

Where Kt = Theoretical stress concentration factor for axial or bending loading, and
Kts = Theoretical stress concentration factor for torsional or shear loading.

Combined Steady and Variable Stress
The failure points from fatigue tests made with different steels and combinations of mean and

variable stresses are plotted in Fig. 6.15 as functions of variable stress (oVv) and mean stress (cm).
The most significant observation is that, in general, the failure point is little related to the mean

stress when it is compressive but is very much a function of the mean stress when it is tensile. In
practice, this means that fatigue failures are rare when the mean stress is compressive (or
negative).Therefore, the greater emphasis must be given to the combination of a variable stress

and a steady (or mean) tensile stress.
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Fig. 6.15. Combined mean and variable stress.

There are several ways in which problems involving this combination of stresses may be solved,
but the following are important from the subject point of view :

1. Gerber method,

2. Goodman method, and

3. Soderberg method.
We shall now discuss these methods, in detail, in the following pages.

1. Gerber Method for Combination of Stresses
The relationship between variable stress (ov) and mean stress (om) for axial and bending loading
for ductile materials are shown in Fig. 6.15. The point ce represents the fatigue strength
corresponding to the case of complete reversal (cm = Q) and the point ou represents the static



ultimate strength corresponding to ov = 0. A parabolic curve drawn between the endurance limit
(o€) and ultimate tensile strength (cu) was proposed by Gerber in 1874. Generally, the test data
for ductile material fall closer to Gerber parabola as shown in Fig. 6.15, but because of scatter in
the test points, a straight line relationship (i.e.Goodman line and Soderberg line) is usually
preferred in designing machine parts.

According to Gerber, variable stress,

] iﬁ \2
_s |——|2| Fs.
% =% | Fs. [ .

2

1 (o) g, .
or _zl_mJ F.S + % (1)
F.5. L Oy O,
where FE.S. = Factor of safety.

0, = Mean stress (tensile or compressive).
o, = Ultimate stress (tensile or compressive). and
0, = Endurance limit for reversal loading.
Considering the fatigue stress
concentration factor (K. the equation (i) may ANS
be written as

Goodman line
(Failure stress line)

Safe stress line

6.20 Goodman Method for
Combination of Stresses

A straight line connecting the endurance
limit (¢,) and the ultimate strength (G ). as
shown by line 4B in Fig. 6.16, follows the
suggestion of Goodman. A Goodman line is
used when the design is based on ultimate
strength and may be used for ductile or brittle

Variable stress (-:ij —

materials. —— Mean stress (g,) ——

In Fig. 6.16. line AB connecting ¢ and
N - e Fig. 6.16. Goodman method.

oy Is called Goodman's failure stress line. If a suitable factor of safety (F.S.) is applied to
endurance limit and ultimate strength, a safe stress line CD may be drawn parallel to the line AB.
Let us consider a design point P on the line CD. Now from similar triangles COD and PQD,

P D OD -0
PQ_OD _0OD-09 _, o9 (~ OD=0D-00)

co oD oD oD
O, _,__  On
c,/ F.§5 g,/ F.S.
_ 9 Om _ 1 O
O, = | — Vg -
F.s o,/ F.5. F.s G,
1 _0,, 0 -

or Fs. o, o,



This expression does not include the effect of stress concentration. It may be noted that for
ductile materials, the stress concentration may be ignored under steady loads. Since many
machine and structural parts that are subjected to fatigue loads contain regions of high stress
concentration, therefore equation (i) must be altered to include this effect. In such cases, the
fatigue stress concentration factor (Kf) is used to multiply the variable stress (o). The equation
(i) may now be written as

1 - G_m + M (ff)

o

FS. @

i -]

1
where FE.S. = Factor of safety.
C,, = Mean stress,
o, = Ultimate stress.
O, = Variable stress.
0, = Endurance limit for reversed loading. and
K. = Fatigue stress concentration factor.
Considering the load factor. surface finish factor and size factor. the equation (ii) may be
Written as

1 G, & Ky _Ow , o, X Ky (i)
FS. o, O,XK, XK. ©, O0,xKy XK, xK_
G N g, X Kf .
= 6, ©0,xK, XK. (v 0,=0,%xKyand K, =1)
where K, = Load factor for reversed bending load.
K = Swrface finish factor. and

Sy
K_ = Size factor.

* Here we have assumed the same factor of safety (£5.) for the ultimate tensile strength (UH) and endurance
limit (@,). In case the factor of safety relating to both these stresses 1s different, then the following relation
may be used, :

Oy 11— Om
Og "H(F-S-}e Oy I(F-S-jn
where (F.S.), = Factor of safety relating to endurance limit, and
(E:S.), = Factor of safety relating to ultimate tensile strength.
Notes : 1. The equation (iii) is applicable to ductile materials subjected to reversed bending loads
(tensile or compressive). For brittle materials, the theoretical stress concentration factor (Kt)
should be applied to the mean stress and fatigue stress concentration factor (Kf) to the variable
stress. Thus for brittle materials, the equation (iii) may be written as
L:GHJXKI_,_ G"XKf
F.5. Oy Ggp X Ksm' X Ks:
2. When a machine component is subjected to a load other than reversed bending, then the
endurance limit for that type of loading should be taken into consideration. Thus for reversed
axial loading (tensile or compressive), the equations (iii) and (iv) may be written as

..(1V)




O, x K . .
1 _Om + ki S __(For ductile materials)
_ FS Oy OgXKgp XKy
1 _{:i,}qxlif“r Oy X Ky
and F.S. Oy, Oy XKy ¥ K.

Sinularly, for reversed torsional or shear loading,

_..(For brittle materials)

__(For ductile materials)

FS T TpXKgy XK
I _ T XKy, B Ky
F.5. T X K

52
where suffix “s’denotes for shear.

1 _T_m+ ‘EvXKﬁ

and ...(For brittle materials)

T, X K,

u Sur

For reversed torsional or shear loading, the values of ultimate shear strength (t,) and endurance shear
strength (T,) may be taken as follows:
T, =080,,andT,=080,
Soderberg Method for Combination of Stresses
A straight line connecting the endurance limit (c€) and the yield strength (oY), as shown by the
line AB in Fig. 6.17, follows the suggestion of Soderberg line. This line is used when the design

is based on yield strength.
Pl‘c-ceedmg in the same way as discussed

in Art 6.20, the line 4B connecting 6_and G, as o, (A
shown in Fig. 6.17.is called Soderberg’s failure
stress line. If a suitable factor of safety (F.S.) is
applied to the endurance limit and yield strength.
a safe stress line CD may be drawn parallel to
the line AB. Let us consider a design point P on
the line CD. Now from similar triangles COD

Soderberg line
(Failure stress line)

Safe stress line

Variable stress (G,) —

and POD. c,
PO _OD _OD-00Q Es R~ |
co 0D oD I
- 1— (%Y |
oD ! B
(- 0D = 0D - 00) O 6 Q | S
~ Es "
L =1 Om N
G./F.S. 6,/ F.S. — Mean stress (g,,) —
' Fig. 6.17. Soderberg method.
4] 8] 1 g
or 0, =—=|1- m =0,| —--—2
FS.| o©,/FS. FS. o,
1
FS © g

For machine parts subje'cted to fatigue loading, the fatigue stress concentration factor (Kf) should
be applied to only variable stress (o). Thus the equations (i) may be written as



1 _%_FG‘,XKJF
Fs. o, O,

Considering the load factor. surface finish factor and size factor. the equation (i/) may be
written as

..(i)

XK
1 %, XA ...(ii)

F.§5. Gy Ogp XKy XK

Since 6, =0, % K, and K, = 1 for reversed bending load, therefore G, = G, may be substituted
in the above equation.

Notes: 1. The Soderberg method is particularly used for ductile materials. The equation (777) is applicable fo
ductile materials subjected to reversed bending load (tensile or compressive).

2. When a machine component 1s subjected to reversed axial loading, then the equation (/7)) may be
written as
1 _ow, XK
FS5 0, 0,4%xK, xK;
3. When a machine component is subjected to reversed shear loading, then equation (i77/) may be
written as
L T, WXKp
FS. 1, 1,xK,xK.
where K 1o 1s the fatigue stress concentration factor for reversed shear loading. The yield strength in shear (T;J
may be taken as one-half the yield strength in reversed bending (GJ.).

Example . A machine component is subjected to a flexural stress which fluctuates between +
300 MN/m2 and — 150 MN/m2. Determine the value of minimum ultimate strength according to
1. Gerber relation; 2. Modified Goodman relation; and 3. Soderberg relation. Take yield strength
= 0.55 Ultimate strength; Endurance strength = 0.5 Ultimate strength; and factor of safety = 2.
Solution. Given : 61 =300 MN/m2 ;
02=—150 MN/m2 ; cy=0.55cU;ce=0.50u;F.S.=2

Let 0, = Minimum ultimate strength in MN/m’.

We know that the mean or average stress,

0, +0, 300+ (—150) _
2 2

0, =0, _300-(=150) _ o oo o

75 MN/m’

and variable stress, 0, = N )

1. According to Gerber relation
We know that according to Gerber relation,

2

R ‘&"‘ Fs o O
FS L Gu Ge
1 (75 \2 225 11250 450 11250+ 4500,
- ‘ 2 ‘ 24 == - T
2 \ Gu 0'5011 (G“) Gu (Uu)
(6,)* = 22500+ 9000,

or (6,)?—900 6, -22500 =0

900 + {/(900)? + 4X1X 22500 _ 900 + 948.7
w 2x1 - 2
= 024.35 MN/m? Ans. ..(Taking +ve sign)




2. According to modified Goodman relation
We know that according to modified Goodman relation.
1 g, O

FS. 0, O,
75 225 525
= — + = —
G
0, = 2 x 525=1050 MN/m’ Ans.

3. According to Soderberg relation

1
or B

u

We know that according to Soderberg relation,
1 _%, 0
F.s. 0, G,
1 75 255 586.36
or 5 + -
2 0550, 050, o

u

G, =2x586.36=1172.72 MN/m? Ans.




