
Chapter Two

Assembly Language Programming

Assembly Language Programming
§Assembly language programming is writing machine instructions in mnemonic
form, using an assembler to convert these mnemonics into actual processor
instructions and associated data.

§An assembly language is a low-level programming language for
microprocessors and other programmable devices.

Features of assembly language programming
§Assembly language is the most basic programming language available for any
processor.

§Assembly languages generally lack high-level conveniences such as variables
and functions.

§It has the same structures and set of commands as machine language, but it
allows a programmer to use names instead of numbers.

§This language is still useful for programmers when speed is necessary or when
they need to carry out an operation that is not possible in high-level languages.

Some important features of assembly language programming are:-
• Allows the programmer to use mnemonics when writing source code
programs, like ‘ADD’ (addition), ‘SUB’ (subtraction), JMP (jump) etc.
• Variables are represented by symbolic names, not as memory locations,
like MOV A, here ‘A’ is the variable.
• Symbolic code, and error checking,
• Changes can be quickly and easily incorporated with a re-assembly,
• Programming aids are included for relocation and expression evaluation.
Advantages of assembly language programming
• Easy to understand and use
• Easy to locate and correct errors
• Easy to modify
• No worry to address.
• Efficient than machine language programming

Disadvantages of assembly language programming
• The programmer requires knowledge of the processor architecture and
instruction set.
• Machine language coding
• Many instructions are required to achieve small tasks
• Source programs tend to be large and difficult to follow

• In general, programming of a microprocessor usually takes
several iterations before the right sequence of machine code
instructions is written.

• The process, however, is facilitated using a special program
called an “Assembler”.

• The Assembler allows the user to write alphanumeric
instructions, or mnemonics, called Assembly Language
instructions.

• The Assembler, in turn, generates the desired machine
instructions from the Assembly Language instructions.

5Compiled by Yonas A. and Hailemariam M.
[2010]

ASSEMBLER DIRECTIVES
§ Assembler directives are the commands to the assembler that direct the assembly

process.
§ They indicate how an operand is treated by the assembler and how assembler handles

the program.
§ They also direct the assembler how program and data should arrange in the memory.
ALP’s are composed of two type of statements.
(i) The instructions which are translated to machine codes by assembler.
(ii) The directives that direct the assembler during assembly process, for which no

machine code is generated.
1. ASSUME: Assume logical segment name.
The ASSUME directive is used to inform the assembler the names of the logical segments

to be assumed for different segments used in the program .In the ALP each segment
is given name.

Syntax: ASSUME segreg: segname,… segreg: segname
Ex: ASSUME CS:CODE
ASSUME CS:CODE,DS:DATA,SS:STACK
UNIT-2 8086 ASSEMBLY LANGUAGE PROGRAMMING ECE DEPARTMENT

6Compiled by Yonas A. and Hailemariam M.
[2010]

2. DB: Define Byte
The DB directive is used to reserve byte or bytes of memory locations in the available

memory.
Syntax: Name of variable DB initialization value.
Ex: MARKS DB 35H,30H,35H,40H
NAME DB “VARDHAMAN”
3. DW: Define Word
The DW directive serves the same puposes as the DB directive,but it now makes the

assembler reserve the number of memory words(16-bit) instead of bytes.
Syntax: variable name DW initialization values.
Ex: WORDS DW 1234H,4567H,2367H
WDATA DW 5 Dup(522h) (or) Dup(?)
4. DD: Define Double:
The directive DD is used to define a double word (4bytes) variable.
Syntax: variablename DD 12345678H
Ex: Data1 DD 12345678H

7Compiled by Yonas A. and Hailemariam M.
[2010]

5. DQ: Define Quad Word
• This directive is used to direct the assembler to reserve 4 words (8 bytes) of memory

for the specified variable and may initialize it with the specified values.
Syntax: Name of variable DQ initialize values.
Ex: Data1 DQ 123456789ABCDEF2H
6. DT: Define Ten Bytes
The DT directive directs the assembler to define the specified variable requiring 10 bytes

for its storage and initialize the 10-bytes with the specified values.
Syntax: Name of variable DT initialize values.
Ex: Data1 DT 123456789ABCDEF34567H
7. END: End of Program
The END directive marks the end of an ALP. The statement after the directive END will

be ignored by the assembler.
8. ENDP: End of Procedure
The ENDP directive is used to indicate the end of procedure. In the AL programming the

subroutines are called procedures.
Ex: Procedure Start
• :
• Start ENDP

8Compiled by Yonas A. and Hailemariam M.
[2010]

UNIT-2 8086 ASSEMBLY LANGUAGE PROGRAMMING ECE
DEPARTMENT

9. ENDS: End of segment
The ENDS directive is used to indicate the end of segment.
Ex: DATA SEGMENT
:
DATA ENDS
10. OFFSET: offset of a label
• When the assembler comes across the OFFSET operator along with a

label, it first computing the 16-bit offset address
• of a particular label and replace the string ‘OFFSET LABEL’ by the

computed offset address.
• Ex : MOV SI, offset list

9Compiled by Yonas A. and Hailemariam M.
[2010]

PROC: Procedure
• The PROC directive marks the start of a named procedure in the

statement.
Ex: RESULT PROC NEAR
ROUTINE PROC FAR

10Compiled by Yonas A. and Hailemariam M.
[2010]

Laboratory requirements

• For the entire lab session, we will use the following
software
– Linux OS(Linux Mint)
– Netwide Assembler NASM (8086_Assembler)

11Compiled by Yonas A. and Hailemariam M.
[2010]

Steps to execute an assembly program
1. Write the code on any text editor
2. Save the file as file_name.asm and set the type to All files.

• Make sure that you are in the same directory as where you saved
your program

3. Assemble by typing: nasm -f elf file_name.asm
• If there is any error, you will be prompted about that at this stage.

Otherwise, an object file of your program named file_name.o will be
created.

4. To link the object file and create an executable file:
• ld -m elf_i386 -s -o file_name file_name.o

5. Execute by typing: ./file_name

12
Compiled by Yonas A. and

Hailemariam M. [2010]

Assembling the program:
• The assembler is used to convert the assembly language

instructions to machine code.
• It is used immediately after writing the Assembly Language

program.
• It starts by checking the syntax, or validity of the structure, of

each instruction in the source file.
• If any errors are found, the assembler displays a report on these

errors along with a brief explanation of their nature.
• However, if the program does not contain any errors, the

assembler produces an object file that has the same name as the
original file but with the “o” extension

13Compiled by Yonas A. and Hailemariam M.
[2010]

linking

• The linker is used to convert the object file to an
executable file.

• The executable file is the final set of machine code
instructions that can directly be executed by the
microprocessor.

• An object file may represent one segment of a long
program.
– This segment cannot operate by itself, and must be

integrated with other object files representing the rest
of the program, in order to produce the final self-
contained executable file. 14Compiled by Yonas A. and Hailemariam M.

[2010]

Executing the program
• The executable file contains the machine language code.

• It can be loaded in the RAM and be executed by the microprocessor

simply by typing, from the DOS prompt, the name of the file

followed by the Carriage Return Key (Enter Key).

• If the program produces an output on the screen, or a sequence of

control signals to control a piece of hardware, the effect should be

noticed almost immediately.

• However, if the program manipulates data in memory, nothing

would seem to have happened as a result of executing the program.

15Compiled by Yonas A. and Hailemariam M.
[2010]

Structure of an Assembly Language Program

• An assembly language program is written according the following
structure and includes the following assembler directives:
– The data section
– The bss section
– The text section

• The data Section
– The data section is used for declaring initialized data or constants.
– This data does not change at runtime.
– You can declare various constant values, file names or buffer size etc.

in this section.
– The syntax for declaring data section is:

• section .data

16Compiled by Yonas A. and Hailemariam M.
[2010]

Program Structure
• The bss Section

– The bss section is used for declaring variables.
– The syntax for declaring bss section is:

• section .bss
• The text section

– The text section is used for keeping the actual code.
– This section must begin with the declaration global main or

global _start which tells the kernel where the program execution
begins.

– The syntax for declaring text section is:

• section .text
• global main/ _start
• main:/_start

17Compiled by Yonas A. and
Hailemariam M. [2010]

Comments

• Assembly language comment begins with a semicolon (;).

• It may contain any printable character including blank.

• It can appear on a line by itself, like:

• ; This program displays a message on screen

• or, on the same line along with an instruction, like:

• add eax ,ebx ; adds ebx to eax

18Compiled by Yonas A. and
Hailemariam M. [2010]

Assembly Language Statements
• Assembly language programs consist of three types of statements:

– Executable instructions or instructions
– Assembler directives or pseudo-ops
– Macros

• The executable instructions or simply instructions tell the processor what to do. Each
instruction consists of an operation code (opcode). Each executable instruction
generates one machine language instruction.

• The assembler directives or pseudo-ops tell the assembler about the various aspects of
the assembly process.

• These are non-executable and do not generate machine language instructions.
• Macros are basically a text substitution mechanism.
• Syntax of Assembly Language Statements
• Assembly language statements are entered one statement per line. Each statement

follows the following format:
– [label] mnemonic [operands] [; comment]

• The fields in the square brackets are optional.
• A basic instruction has two parts, the first one is the name of the instruction (or the

mnemonic) which is to be executed, and the second are the operands or the
parameters of the command.

Compiled by Yonas A. and
Hailemariam M. [2010] 19

Symbols
• A symbolic name consists of a sequence of letters, digits, and special

characters, with the following restrictions:
• A symbol cannot begin with a numeric digit.
• A name can have any combination of upper and lower case alphabetic

characters.
– The assembler treats upper and lower case equivalently.

• A symbol may contain any number of characters, however only the
first 31 are used.
– The assembler ignores all characters beyond the 31st.

• The _, $, ?, and @ symbols may appear anywhere within a symbol.
– However, $ and ? are special symbols; you cannot create a symbol

made up solely of these two characters.
• A symbol cannot match any name that is a reserved symbol

20
Compiled by Yonas A. and

Hailemariam M. [2010]

Symbols
• Some examples of valid symbols include:

– L1 Bletch RightHere

– Right_Here Item1 __Special $1234
– @Home $_@1 Dollar$
– WhereAmI? @1234

• Some examples of illegal symbols include:
– 1TooMany - Begins with a digit.
– Hello.There - Contains a period in the middle of the symbol.
– $ - Cannot have $ or ? by itself.
– LABEL - Assembler reserved word.
– Right Here - Symbols cannot contain spaces.
– Hi,There - or other special symbols besides _, ?, $, and @.

21Compiled by Yonas A. and Hailemariam M.
[2010]

Variables

• Here we will simply use the 8086 registers as the
variables in our programs.

• Registers have predefined names and do not need to
be declared.

22Compiled by Yonas A. and Hailemariam M.
[2010]

Variable Declaration

Directive Purpose Storage Space

DB Define Byte allocates 1 byte

DW Define Word allocates 2 bytes

DD Define Doubleword allocates 4 bytes

DQ Define Quadword allocates 8 bytes

DT Define Ten Bytes allocates 10 bytes

Compiled by Yonas A. and Hailemariam M.
[2010] 23

•NASM provides various define directives for reserving storage space for variables. The
define assembler directive is used for allocation of storage space.
•It can be used to reserve as well as initialize one or more bytes.

Allocating Storage Space for Initialized Data
•The syntax for storage allocation statement for initialized data is:
[variable-name] define-directive initial-value [, initial-value] ...
•Where, variable-name is the identifier for each storage space. The assembler associates
an offset value for each variable name defined in the data segment.
•There are five basic forms of the define directive:

VARIABLE DECLARATION
• Each variable has a type and assigned a memory address.

• Example

• Byte Variables

– Assembler directive format assigning a byte
variable
• Syntax: Name DB initial value

– A question mark (“?”) place in initial value leaves variable
uninitialized

• L DB 4 ;define variable L with initial value 4

• J DB ? ;Define variable J with uninitialized value

• Name DB "Course" ;allocate 6 bytes for name

• K DB 5, 3,-1 ;allocate 3 bytes
24

Compiled by Yonas A. and
Hailemariam M. [2010]

VARIABLE DECLARATION
• L1 db 0 ; byte labeled L1 with initial value 0
• L2 dw 1000 ; word labeled L2 with initial value 1000
• L3 db 110101b ; byte initialized to binary 110101
• L4 db 12h ; byte initialized to hex 12 (18 in decimal)
• L5 db 17o ; byte initialized to octal 17 (15 in decimal)
• L6 dd 1A92h ; double word initialized to hex 1A92
• L7 resb 1 ; 1 uninitialized byte
• L8 db "A" ; byte initialized to ASCII code for A (65)
• Double quotes and single quotes are treated the same. Consecutive data

definitions are stored sequentially in memory. That is, the word L2 is
stored immediately after L1 in memory. Sequences of memory may also be
defined.

• L9 db 0, 1, 2, 3 ; defines 4 bytes
• L10 db "w", "o", "r", ’d’, 0 ; defines a C string = "word"
• L11 db ’word’, 0 ; same as L10

25Compiled by Yonas A. and
Hailemariam M. [2010]

Allocating Storage Space for Uninitialized Data

Directive Purpose

RESB Reserve a Byte

RESW Reserve a Word

RESD Reserve a Doubleword

RESQ Reserve a Quadword

REST Reserve a Ten Bytes

Compiled by Yonas A. and Hailemariam M.
[2010] 26

• The reserve directives are used for reserving space for uninitialized
data.

• The reserve directives take a single operand that specifies the number
of units of space to be reserved.

• Each define directive has a related reserve directive.
• There are five basic forms of the reserve directive:

Allocating Storage Space for Uninitialized Data

• Multiple Definitions
– You can have multiple data definition statements in a program. For

example:
• choice DB 'Y' ;ASCII of y = 79H
• number1 DW 12345 ;12345D = 3039H
• number2 DD 12345679 ;123456789D = 75BCD15H

• The assembler allocates contiguous memory for multiple
variable definitions.

• Multiple Initializations
• The TIMES directive allows multiple initializations to the same

value.
• For example, an array named marks of size 9 can be defined

and initialized to zero using the following statement:
– marks TIMES 9 DW 0

• The TIMES directive is useful in defining arrays and tables.

Compiled by Yonas A. and Hailemariam M.
[2010] 27

CONSTANTS
• There are several directives provided by NASM that define constants. Some of them

are :
– EQU
– %assign
– %define

• The EQU Directive
– The EQU directive is used for defining constants.
– The syntax of the EQU directive is as follows:

• CONSTANT_NAME EQU expression
– For example, TOTAL_STUDENTS equ 50
– You can then use this constant value in your code, like:

• mov ecx, TOTAL_STUDENTS
• cmp eax, TOTAL_STUDENTS

• The operand of an EQU statement can be an expression:
• LENGTH equ 20
• WIDTH equ 10
• AREA equ length * width Above code segment would define AREA as 200.

CONSTANTS
• The %assign Directive

– The %assign directive can be used to define numeric constants like the EQU
directive. This directive allows redefinition.

– For example, you may define the constant TOTAL as:
• %assign TOTAL 10
• Later in the code, you can redefine it as:
• %assign TOTAL 20

– This directive is case-sensitive.

• The %define Directive

– The %define directive allows defining both numeric and string constants. This
directive is similar to the #define in C.

– For example, you may define the constant PTR as:
• %define PTR [EBP+4]

– The above code replaces PTR by [EBP+4].
– This directive also allows redefinition and it is case-sensitive.

29

Linux System Calls
• System calls are APIs for the interface between the user space and the

kernel space.
• You can make use of Linux system calls in your assembly programs. You

need to take the following steps for using Linux system calls in your
program:
– Put the system call number in the EAX register.
– Store the arguments to the system call in the registers EBX, ECX, etc.
– Call the relevant interrupt (80h).
– The result is usually returned in the EAX register.

• There are six registers that store the arguments of the system call used.
These are the EBX, ECX, EDX, ESI, EDI, and EBP. These registers take the
consecutive arguments, starting with the EBX register.

• The following code snippet shows the use of the system call sys_exit:
– mov eax,1; system call number (sys_exit)
– int 0x80 ; call kernel

Compiled by Yonas A. and Hailemariam M.
[2010] 30

Linux System Calls

No Func Name Description
1 exit terminate the current process
2 fork create a child process
3 read read from a file descriptor
4 write write to a file descriptor
5 open open a file or device
6 close close a file descriptor
7 waitpid wait for process termination

Compiled by Yonas A. and
Hailemariam M. [2010]

31

here are some of system calls commonly used

• The following code snippet shows the use of the system call sys_write:
mov edx,4 ; message length
mov ecx,msg ; message to write
mov ebx,1 ; file descriptor (stdout)
mov eax,4 ; system call number (sys_write)
int 0x80 ; call kernel(interrupt)

Some practical Examples

Compiled by Yonas A. and
Hailemariam M. [2010]

32

Important!!!
1. To display a message/value

1. place the address of the message/value to be displayed to ecx (e.g. mov
ecx,msg)

2. place the length of the message/value to be displayed to edx register (e.g.
mov edx,length)

3. Place the Sys_write call number to eax (e.g. mov eax,4)
4. Place the standard output device to ebx(e.g. mov ebx,1)
5. Call for interrupt (int 0x80)

2. To read data from keyboard
1. Place the sys_read call number to eax (e.g. mov eax, 3)
2. Place the standard input device no to ebx (e.g.mov ebx, 2)
3. Place the address of the data to ecx (e.g. mov ecx, num)
4. Place the size of the data to edx (e.g. mov edx, 5)
5. Call for interrupt (int 80h)

Some practical Examples

Compiled by Yonas A. and
Hailemariam M. [2010]

33

1. section.data
2. msg db 'Hello World!', 0Ah; assign msg variable with your message

string
3. SECTION .text
4. global _start
5. _start:
6. mov edx, 13 ; number of bytes to write - one for each letter plus 0Ah

(line feed character)
7. mov ecx, msg ; move the memory address of our message string into

ecx
8. mov ebx, 1 ; write to the STDOUT file
9. mov eax, 4 ; invoke SYS_WRITE (kernel opcode 4)
10. int 80h ; intrrupt

Some practical Examples

Compiled by Yonas A. and
Hailemariam M. [2010]

34

section .data
SYS_EXIT equ 1
SYS_READ equ 3
SYS_WRITE equ 4
STDIN equ 0
STDOUT equ 1
msg1 db "Enter Your Name", 0xA,0xD
len1 equ $- msg1
msg2 db "Hello! "
len2 equ $- msg2
segment .bss
name resb 20;reserving a memory for name

Some practical Examples

Compiled by Yonas A. and
Hailemariam M. [2010]

35

section .text
global _start ;must be declared for using gcc
 _start: ;tell linker entry point
;prompting for message 1
mov eax, SYS_WRITE
mov ebx, STDOUT
mov ecx, msg1
mov edx, len1
int 0x80
;reading name
mov eax, SYS_READ
mov ebx, STDIN
mov ecx, name
mov edx, 20
int 0x80

Some practical Examples

Compiled by Yonas A. and
Hailemariam M. [2010]

36

;displaying the message
mov eax, SYS_WRITE
mov ebx, STDOUT
mov ecx, msg2
mov edx, len2
int 0x80
; print the Message
mov eax, SYS_WRITE
mov ebx, STDOUT
mov ecx, name
mov edx, 20
int 0x80
;exit:
mov eax, SYS_EXIT
int 0x80

Some practical Examples

Compiled by Yonas A. and
Hailemariam M. [2010]

37

section .data ;Data segment
;Ask the user to enter a number
msg1 db 'Please enter a number: '
len1 equ $-msg1 ;The length of the message
 msg2 db 'The Entered number is: '
 len2 equ $-msg2
 section .bss
num resb 5 ;Uninitialized data

Some practical Examples

Compiled by Yonas A. and
Hailemariam M. [2010]

38

section .text ;Code Segment
 global _start
_start:
 ;User prompt
 mov eax, 4 ;sys_write
 mov ebx, 1
 mov ecx, msg1
 mov edx, len1
 int 80h
;Read and store the user input
 mov eax, 3 ;sys_read
 mov ebx, 2 ;STDIN
 mov ecx, num
 mov edx, 5 ;5 bytes of that information
 int 80h

Some practical Examples

Compiled by Yonas A. and
Hailemariam M. [2010]

39

;Output the message 'The entered number is: '
 mov eax, 4
 mov ebx, 1
 mov ecx, msg2
 mov edx, len2
 int 80h
 ;Output the number entered
 mov eax, 4
 mov ebx, 1
 mov ecx, num
 mov edx, 5
 int 80h
; Exit code
 mov eax, 1
 mov ebx, 0
 int 80h

Some practical Examples

Compiled by Yonas A. and
Hailemariam M. [2010]

40

section .text
global _start
_start:
mov eax,'2‘
sub eax,'0' ;to connvert to ASCII
mov ebx,'4‘
sub ebx,'0';to convert to ASCII
add eax,ebx
add eax,'0' ;to convert to Decimal
mov [sum],eax ;copying the result to sum
mov ecx,msg ; placing the address of the message to ecx
mov edx,len ;placing the length of the message to edx
mov ebx,1 ;stdout
mov eax,4 ;sys_write
int 0x80 ;call for interrupt

4. Aprogram to add two integers

Some practical Examples

Compiled by Yonas A. and
Hailemariam M. [2010]

41

mov ecx,sum ;
mov edx,10 ; size of the sum
mov ebx,1 ; stdout
mov eax,4 ;sys_write
int 0x80

section .data
msg db "The sum is:",0xA,0xD
len equ $-msg
section .bss
sum resb 10

4. Aprogram to add two integers

