
Page 1 of 23

CHAPTER ONE
Concepts for object oriented database

Introduction

Database systems that were based on the object data model were known originally as object-

oriented databases (OODBs). But, are now referred to as object databases (ODBs).Traditional

data models and systems, such as network, hierarchical, and relational have been quite successful

in developing the database technologies required for many traditional business database

applications. However, they have certain shortcomings when more complex database

applications must be designed and implemented like databases for engineering design and

manufacturing, biological and other sciences, telecommunications, geographic information

systems, and multimedia. These ODBs were developed for applications that have requirements

requiring more complex structures for stored objects. A key feature of object databases is the

power they give the designer to specify both the structure of complex objects and the operations

that can be applied to these objects.

Another reason for the creation of object-oriented databases is the vast increase in the use of

object-oriented programming languages for developing software applications. Databases are

fundamental components in many software systems, and traditional databases are sometimes

difficult to use with software applications that are developed in an object-oriented programming

language such as C++ or Java. Object databases are designed so they can be directly or

seamlessly integrated with software that is developed using object-oriented programming

languages.

Overview of object oriented concepts

The term object-oriented abbreviated OO or O-O has its origins in OO programming languages

(OOPLs). Today OO concepts are applied in the areas of databases, software engineering,

knowledge bases, artificial intelligence, and computer systems in general.

An object in relational database concept is a data structure used to either store or reference data.

Example: table (most commonly used), indexes, stored procedures, sequences, views.

An object typically has two components: these are:

Page 2 of 23

1. state (value) and

2. Behavior (operations).

It can have a complex data structure as well as specific operations defined by the

programmer. Objects in an OOPL exist only during program execution. Therefore, they are

called transient objects.

An OO database can extend the existence of objects. So that they are stored permanently in a

database, and hence the objects become persistent objects that exist beyond program

termination and can be retrieved later and shared by other programs. In other words, OO

databases store persistent objects permanently in secondary storage and allow the sharing of

these objects among multiple programs and applications. This requires the incorporation of

other well-known features of database management systems, such as:

 Indexing mechanisms: to efficiently locate the objects.

 Concurrency control: to allow object sharing among concurrent programs, and

 Recovery from failures.

An OO database system will typically interface with one or more OO programming

languages to provide persistent and shared object capabilities.

Object identity, object structure, and type constructors

One goal of an ODB is to maintain a direct correspondence between real-world and database

objects so that objects do not lose their integrity and identity and can easily be identified and

operated upon. Hence, a unique identity is assigned to each independent object stored in the

database. This unique identity is typically implemented via a unique, system-generated

object identifier (OID). The value of an OID may not be visible to the external user but is

used internally by the system to identify each object uniquely and to create and manage inter

object references. The OID can be assigned to program variables of the appropriate type

when needed.

The main property required of an OID is that

A. It be immutable: that is the OID value of a particular object should not change. This

preserves the identity of the real-world object being represented. Hence, an ODMS must

have some mechanism for generating OIDs and preserving the immutability property.

Page 3 of 23

B. It is also desirable that each OID be used only once; that is, even if an object is removed

from the database, its OID should not be assigned to another object.

These two properties imply that the OID should not depend on any attribute values of the

object, since the value of an attribute may be changed or corrected. We can compare this with

the relational model, where each relation must have a primary key attribute whose value

identifies each tuple uniquely. If the value of the primary key is changed, the tuple will have

a new identity, even though it may still represent the same real world object. Alternatively, a

real-world object may have different names for key attributes in different relations, making it

difficult to ascertain that the keys represent the same real-world object.

Example: using the Emp_id of an EMPLOYEE in one relation and the Ssn in another.

It is also inappropriate to base the OID on the physical address of the object in storage since the

physical address can change after a physical reorganization of the database. However, some early

ODMSs have used the physical address as the OID to increase the efficiency of object retrieval.

If the physical address of the object changes, an indirect pointer can be placed at the former

address, which gives the new physical location of the object. It is more common to use long

integers as OIDs and then to use some form of hash table to map the OID value to the current

physical address of the object in storage.

Another feature of ODBs is that objects may have a type structure of arbitrary complexity in

order to contain all of the necessary information that describes the object. In contrast, in

traditional database systems, information about a complex object is often scattered over many

relations or records, leading to loss of direct correspondence between a real-world object and its

database representation.

In ODBs, a complex type may be constructed from other types by

nesting of type constructors. The three most basic constructors are:

1. One type (atom) constructor: This includes the basic built-in data types of the object

model, which are similar to the basic types in many

programming languages: integers, strings, floating-point numbers, enumerated types,

Booleans, and so on. These basic data types are called single valued or atomic types,

since each value of the type is considered an atomic (indivisible) single value.

Page 4 of 23

2. Struct (tuple) constructor: This can create standard structured types, such as the tuples

(record types) in the basic relational model. A structured type is made up of several

components and is also sometimes referred to as a compound or composite type. More

accurately, the struct constructor is not considered to be a type, but rather a type

generator, because many different structured types can be created.

For example: two different structured types that can be created are: struct Name<FirstName:

string, MiddleInitial: char, LastName: string>, and

struct CollegeDegree<Major: string, Degree: string, Year: date>.

Notice that the type constructors’ atom and struct are the only ones available in the original

(basic) relational model.

3. Collection (or multivalued) type constructors: include the set (T), list (T),

bag (T), array (T), and dictionary (K, T) type constructors. These allow part

of an object or literal value to include a collection of other objects or values

when needed. These constructors are also considered to be type generators

because many different types can be created.

For example: set (string), set (integer), and set (Employee) are three different types that can

be created from the set type constructor. All the elements in a particular collection value must

be of the same type. For example, all values in a collection of type set (string) must be string

values.

Encapsulation of operations, methods, and persistence

Encapsulation of Operations: The concept of encapsulation is one of the main

characteristics of OO languages and systems. It is also related to the concepts of abstract data

types and information hiding in programming languages. In traditional database models and

systems this concept was not applied, since it is customary to make the structure of database

objects visible to users and external programs. In these traditional models, a number of

generic database operations are applicable to objects of all types.

For example: in the relational model, the operations for selecting, inserting, deleting, and

modifying tuples are generic and may be applied to any relation in the database. The relation and

Page 5 of 23

its attributes are visible to users and to external programs that access the relation by using these

operations. The concept of encapsulation is applied to database objects in ODBs by defining the

behavior of a type of object based on the operations that can be externally applied to objects of

that type. Some operations may be used to create (insert) or destroy (delete) objects; other

operations may update the object state; and others may be used to retrieve parts of the object

state or to apply some calculations. Still other operations may perform a combination of retrieval,

calculation, and update. In general, the implementation of an operation can be specified in a

general-purpose programming language that provides flexibility and power in defining the

operations.

Type hierarchies and inheritance

Inheritance allows the definition of new types based on other predefined types, leading to a type

(class) hierarchy.

A type is defined by assigning it a type name and then defining a number of attributes (instance

variables) and operations (methods) for the class. In the simplified model we use in this section,

the attributes and operations are together called functions, since attributes resemble functions

with zero arguments. A function name can be used to refer to the value of an attribute or to refer

to the resulting value of an operation (method). We use the term function to refer to both

attributes and operations, since they are treated similarly in a basic introduction to inheritance.

A class in its simplest form has a class name and a list of visible (public) functions. When

specifying a class in this section, we use the following format, which does not specify arguments

of functions, to simplify the discussion: CLASS_NAME: function, function, … , function

Example: a class that describes characteristics of a PERSON may be defined as follows:

PERSON: Name, Address, Birth_date, Age, Ssn In the PERSON type, the Name, Address, Ssn,

and Birth_date functions can be implemented as stored attributes, whereas the Age function can

be implemented as an operation that calculates the Age from the value of the Birth_date attribute

and the current date. The concept of subtype is useful when the designer or user must create a

new type that is similar but not identical to an already defined type. The subtype then inherits all

the functions of the predefined type, which is referred to as the super type.

Page 6 of 23

Example: suppose that we want to define two new types EMPLOYEE and STUDENT as

follows: EMPLOYEE: Name, Address, Birth_date, Age, Ssn, Salary, Hire_date, Seniority

STUDENT: Name, Address, Birth_date, Age, Ssn, Major, Gpa Since both STUDENT and

EMPLOYEE include all the functions defined for PERSON plus some additional functions of

their own, we can declare them to be subtypes of PERSON. Each will inherit the previously

defined functions of PERSON—namely, Name, Address, Birth_date, Age, and Ssn. For

STUDENT, it is only necessary to define the new (local) functions Major and Gpa, which are not

inherited. Presumably, Major can be defined as a stored attribute, whereas Gpa may be

implemented as an operation that calculates the student’s grade point average by accessing the

Grade values that are internally stored (hidden) within each STUDENT object as hidden

attributes. For EMPLOYEE, the Salary and Hire_date functions may be stored attributes,

whereas Seniority may be an operation that calculates Seniority from the value of Hire_date.

Therefore, we can declare EMPLOYEE and STUDENT as follows: EMPLOYEE subtype-of

PERSON: Salary, Hire_date, Seniority STUDENT subtype-of PERSON: Major, Gpa In general,

a subtype includes all of the functions that are defined for its super type plus some additional

functions that are specific only to the subtype. Hence, it is possible to generate a type hierarchy

to show the supertype/subtype relationships among all the types declared in the system.

Page 7 of 23

CHAPTER TWO

Query Processing and Optimization
Introduction

Query optimization: The process of choosing a suitable execution strategy for processing a

query.

• A query typically has many possible execution strategies, and the process of choosing a

suitable one for the processing a query is known as query optimization

• Query optimization is an activity conducted by a query optimizer in a DBMS to select the

best available strategy for executing the query

• High-level query languages like SQL (for RDBMS) are more declarative in nature

because they specifies what the intended results of the query are, rather than identifying

the details of how the result should be obtained.

• SQL queries are translated into corresponding relational algebra for the optimization.

Page 8 of 23

Two internal representations of a query:

 Query Tree

 Query Graph

Code can be:

 Executed directly (interpreted mode)
 Stored and executed later whenever needed (compiled mode).

Page 9 of 23

Translating SQL queries into Relational Algebra

An SQL query block contains a single SELECT-FROM-WHERE expression, as well as GROUP
BY and HAVING clauses if these are part of the block.

Nested queries within a query are identified as separate query blocks.

Inner blocks could be:

• uncorrelated nested query- the inner block needs to be evaluated only once

• correlated nested query-a tuple variable from the outer block appears in the
WHERE-clause of the inner block

SQL queries are decomposed into query blocks, which form the basic units that can be translated
into the algebraic operators and optimized.

The query optimizer would then choose an execution plan for each block.

Page 10 of 23

SQL query is translated to an equivalent extended relational algebra expression, represented as a
query tree data structure that is then optimized.

Example

Represent Relational Algebra by Query Tree

A query tree is a tree data structure that corresponds to an extended relational algebra

expression. It represents the input relations of the query as leaf nodes of the tree, and it

represents the relational algebra operations as internal nodes.

An execution of the query tree consists of executing an internal node operation whenever its

operands are available and then replacing that internal node by the relation that results from

executing the operation. The order of execution of operations starts at the leaf nodes, which

represents the input database relations for the query, and ends at the root node, which represents

the final operation of the query. The execution terminates when the root node operation is

executed and produces the result relation for the query.

Using Heuristic in Query Optimization
Process for heuristics optimization:

1. The parser of a high-level query generates an initial internal representation;

Page 11 of 23

2. Apply heuristics rules to optimize the internal representation.

3. A query execution plan is generated to execute groups of operations based on the

access paths available on the files involved in the query.

The main heuristic is to apply first the operations that reduce the size of intermediate results.

Example: Apply SELECT and PROJECT operations before applying the JOIN or other binary

operations.

Query tree: A tree data structure that corresponds to a relational algebra expression. It

represents the input relations of the query as leaf nodes of the tree, and represents the relational

algebra operations as internal nodes.

An execution of the query tree consists of executing an internal node operation whenever its

operands are available and then replacing that internal node by the relation that results from

executing the operation.

Query graph: A graph data structure that corresponds to a relational calculus expression. It does

not indicate an order on which operations to perform first. There is only a single graph

corresponding to each query.

Example: Query "Find the last names of employees born after 1957 who work on a project

named ‘Aquarius’."

SQL

SELECT LNAME

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE PNAME=‘Aquarius’ AND PNUMBER=PNO AND ESSN=SSN AND BDATE.‘1957-

12-31’;

RA: try you?

There are five different alternative query trees for this SQL in the next page.

Page 12 of 23

Page 13 of 23

Page 14 of 23

Page 15 of 23

Page 16 of 23

General Transformation Rules for Relational Algebra Operations:

1. Cascade of s: A conjunctive selection condition can be broken up into a cascade

(sequence) of individual s operations:

s c1 AND c2 AND ... AND cn(R) = sc1 (sc2 (...(scn(R))...))

2. Commutativity of s: The s operation is commutative:

sc1 (sc2(R)) = sc2 (sc1(R))

3. Cascade of p: In a cascade (sequence) of p operations, all but the last one can be ignored:

pList1 (pList2 (... (pListn(R))...)) = pList1(R)

4. Commuting s with p: If the selection condition c involves only the attributes A1, ..., An in

the projection list, the two operations can be commuted:

pA1, A2... An (sc (R)) = sc (pA1, A2... An (R))

(Other transformation rules are reading assignment for you)

Basic Algorithms for Executing Query Operations

Page 17 of 23

It is all about algorithms that implements the relational algebra operations. These are:

 External sorting

 Select

 Join

 Project

 Set operation

External sorting: refers to sorting algorithms that are suitable for large files of records stored on

disk that do not fit entirely in main memory, such as most database files.

The typical external sorting algorithm uses a sort-merge strategy, which starts by sorting small

subfiles called runs of the main file and then merges the stored runs, creating larger sorted

subfiles that are merged in turn.

The basic sort-merge algorithm consists of two phases. These are:

 Sorting phase and

 Merging phase

In the sorting phase, runs (portions or pieces) of the file that can fit in the available buffer space

are read into main memory, sorted using an internal sorting algorithm, and written back to disk

as temporary sorted subfiles (or runs). The size of a run and number of initial runs is dictated

by the number of file blocks (b) and the available buffer space.

For example: if = 5 blocks and the size of the file b = 1024 blocks, then =, or 205 initial runs

each of size 5 blocks (except the last run which will have 4 blocks). Hence, after the sort phase,

205 sorted runs are stored as temporary subfiles on disk.

In the merging phase, the sorted runs are merged during one or more passes. The degree of

merging is the number of runs that can be merged together in each pass. In each pass, one buffer

block is needed to hold one block from each of the runs being merged, and one block is needed

for containing one block of the merge result.

Implementing Select Operation
Search methods for selection

 Linear search

 Binary search

 Using a primary index

Page 18 of 23

 Using a primary index to retrieve multiple records

 Using a clustering index to retrieve multiple records

 Using a secondary index on an equality comparison

 Conjunctive selection using an individual index

 Conjunctive selection using a composite index

 Conjunctive selection by intersection of record pointers

When the optimizer is choosing between multiple simple conditions in a conjunctive select

condition, it typically considers the selectivity of each condition.

Selectivity (S): the ratio of the number of records that satisfy the condition to the total number of

records in the relation.

For example, for an equality condition on a key attribute of relation r(R), s= 1/r(R).

For an equality condition on an attribute with I distinct values, s is estimated by (|r(R)|/i) /r(R) or

1/i.

The number of records satisfying a selection condition with selectivity s is estimated to be| r(R)|

* s. The smaller this estimate is, the higher the desirability of using that condition first to retrieve

records.

Implementing Join Operation
Our focus is in EQUIJOIN and NATURAL JOIN.

We base on the join operation R A=BS for the discussion of the algorithms of join.

Where R and S are the relations to be joined and A and B are domain-compatible attributes of R

and S respectively.

Methods for Implementing Joins:

 Nested-loop join

 Single-loop join

 Sort-merge join

 Hash join

Nested-loop Join: For each record t in R (outer loop), retrieve every records from S (inner loop)

and test whether the two records satisfy the join condition t[A] = s[B].

Single-loop join (using an access structure to retrieve the matching records):If an index exists

for one of the two join attributes –say, B of S- retrieve each record t in R, one at a time (single

Page 19 of 23

loop), and then use the access structure to retrieve directly all matching records s from S that

satisfy s[B] = t[A].

Sort-merge join: The records of R and S need to be sorted by value of the join attributes (or

external sorting needs to be applied) before applying this algorithm. (Assuming A or B or both

are key attributes).Pairs of file blocks are copied into memory buffers in order and the records of

each file are scanned only once each for matching with the other file.

Hash join: The records of files R and S are both hashed to the same hash file, using the same

hashing function on the join attributes A of R and B of S as hash keys. This algorithm assumes

that the smaller of the two files fits entirely into memory buckets after the first phase.

First, a single pass through the file with fewer records (say, R) hashes its records to the hash file

buckets; this is called the partitioning phase since the records of R are partitioned into the hash

buckets.

In the second phase, called the probing phase, a single pass through the other file (S) then hashes

each of its records to probe the appropriate bucket, and that record is combined with all matching

records from R in that bucket.

Implement Project Operation
Let us consider the A PROJECT operation P<attribute list> (R).

If <attribute list> includes a key of relation R, implementation of the above PROJECT is

straightforward.

The result of the operation will have the same number of tuples as R, but with only the values for

the attributes in <attribute list> in each tuple.

If <attribute list> does not include a key of R, duplicate tuples must be eliminated.

Duplicates can be eliminated either by sorting the result and eliminate duplicate tuples that

appear consecutively after sorting or using hashing.

Recall that in SQL queries, the default is not to eliminate duplicates and we are supposed to use

the keyword DISTINCT to eliminate duplicate records.

Implementing Set Operation
Set operations include UNION, INTERSECTION, SET DIFFERENCE and CARTESIAN

PRODUCT.

These operations are sometimes expensive to implement. The CARTESIAN PRODUCT R X S

(R with n records and j attributes; S with m records and k attributes), for example, results in n *

Page 20 of 23

m records and j + k attributes. Hence it is important to avoid this operation and to substitute other

equivalent operations during query optimization.

The three set operation (UNION, INTERSECTION and SET DIFFERENCE) apply only to

union-compatible relations.

• Relations that have the same number of attributes and the same attribute domains.

• Can be implemented by using a variation of sort-merge techniques or by using

hashing.

Implementation of UNION: R D S
Using sort-merge technique:

• Sort the two relations on the same attributes.

• Scan and merge both sorted files concurrently.

• Whenever the same tuple exits in both relations, keep only one of the tuple.

Using hashing:

• First hash (partition) the records of R.

• Then, hash (probe) the records of S, but do not insert duplicate records in the

buckers.

Implementation of INTERSECTION: R C S
Using sort-merge technique:

• Sort the two relations on the same attributes.

• Scan both sorted files concurrently.

• Whenever the same tuple exits in both relations, keep the tuple.

Using hashing:

• First hash (partition) the records of R to the hash table.

• Then, while hashing each record of S, probe to check if an identical record from R

is found in the bucket, and if so add the record to the result file.

Implementation of SET DIFFERENCE: R – S
Using sort-merge technique:

• Sort the two relations on the same attributes.

• Scan both sorted files concurrently and.

• Add the tuples that are available only in R.

Using hashing:

Page 21 of 23

• First hash (partition) the records of R to the hash table.

• Then, while hashing each record of S, probe to check if an identical record from R

is found in the bucket, and if so remove that record from the bucket.

Implementing Aggregate Operations
COUNT, AVERAGE, SUM

Dense index (if there is an index entry for every record in the main file).

• Index search can be used.

• The associated computation would be applied to the values in the index.

Non-dense index: The actual number of records associated with each index entry must be used

for a correct computation (except for COUNT DISTINCT, where the number of distinct values

can be counted from the index itself).

When a GROUP BY clause is used in a query, the aggregate operator must be applied separately

to each group of tuples.

The table must first be partitioned into subsets of tuples, where each partition (group) has the

same value for the grouping attributes.

The aggregate operators are MIN, MAX, COUNT, AVERAGE and SUM

Either full table scan or index search could be used.

MAX: SELECT MAX (Salary) FROM Employee;

If an (ascending) index on Salary exists for the Employee relation, then the optimizer can decide

on using the index to search for the largest value by following the rightmost pointer in each

index node from the root to the rightmost leaf.

The MIN aggregate can be handled in a similar manner, except that the leftmost pointer is

followed from the root to the leftmost leaf.

Implementing Outer Join
Consider the following SQL query that is based on LEFT OUTER JOIN.

SELECT name, departmentName

FROM (Employee LEFT OUTER JOIN DEPARTMENT ON Dno = Dnumber);

OUTER JOIN can be implemented either by: executing a combination of relational algebra

operators. For example, the left outer join operation shown above is equivalent to the following

sequence of relational operations:

Page 22 of 23

1. Compute the (inner) JOIN of the Employee and Department tables.

2. Find the Employee tuples that do not appear in the inner JOIN result.

3. Pad each tuple in the #2 with a null Dname field.

4. Apply the UNION operation to #1 and #2 to produce the LEFT OUTER JOIN result.

Page 23 of 23

	CHAPTER ONE
	CHAPTER TWO
	Query Processing and Optimization

