WOLLO UNIVERSITY KOMBOLCHA INSTITUTE OF TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING

Course Title: Structural Design **Program:** Regular (Year V, sem I)

Course Code: CEng5123 Instructors: Henok A. Dawit Z. **Prerequisite:** CEng 3112

Academic year: 2011 E.C (2018/2019)

Credit: 3 CrH (5 CP)

COURSE OUTLINE

CHAPTER 1

Yield Line Analysis for Slabs

- 1.1 Introduction
- 1.2 Method of Yield Line

Analysis

CHAPTER 2

Strip Method for Slabs

- 2.1 Introduction
- 2.2 Strip Method for Slabs

-----Assignment I----

----Semester Project Begins---

CHAPTER 3

Loads and Load Effects

- 3.1 Classification of Loads
- 3.2 Wind Load
- 3.3 Earthquake Load

-----Assignment II-----

CHAPTER 4

Lateral Force Resisting Systems

- 4.1 Introduction
- 4.2 Lateral Force Resisting Systems

CHAPTER 5

Plastic Analysis in Framed Structures

CHAPTER 6

Introduction to Composite Steel –

Concrete Structures

--Semester Project Submission---

Mode of delivery

- Lecture
- Tutorials
- Assignments
- Semester project

Mode of assessment:

• (Continuous Assessment-	50%
	Tests	10%
	Semester projec	t30%
	Assignments	10%
_	Final Evam	500/

• Final Exam-----50%

<u>Total-----100%</u>

Reference:

- 1. Arthur H Nelson, Design of concrete structures, McGraw-Hill, 14th Edition, 2010.
- 2. James Macgregor, Reinforced Concrete Mechanics and Design, 6th Edition, 2012.
- 3. W.H. Mosley, R. Hulse, J.H Bungey, Reinforced Concrete Design, Palgrave Macmillan, 2007.
- 4. Jack C. McCormac, Design of Reinforced Concrete, McGraw-Hill, 2005.
- 5. EBCS EN 1, 2, 3 and 8, 2015.

- 2.0 Introduction
- 2.1 Bearing Failure Modes
- 2.2 Ultimate Bearing Capacity Equations
 - 2.2.1 Terzaghi's Bearing Capacity equation
 - 2.2.2 Meyerhof's Bearing Capacity equation
 - 2.2.3 Hansen's Bearing Capacity Equation
 - 2.2.4 A comparative summary of the three bearing capacity equations
 - 2.2.5 Allowable bearing capacity and factor of safety
 - 2.2.6 Eccentric Loads
 - 2.3 Field Tests
 - 2.3.1 Plate Loading Test
 - 2.3.2 Standard Penetration Test

Mode of delivery

- Lecture
- Tutorials
- Group Discussion
- Home Works
- Laboratory

Mode of assessment:

Continuous Assessment-----50%
 Tests------20%
 Laboratory-----20%
 Quizzes-----10%
 Assignments-----10%

 Final Exam-----50%
 Total------100%

CHAPTER 3: Lateral Earth Pressure

- 4 Introduction
- 4.1 Definitions of Key Terms
- 4.2 Lateral Earth Pressure at Rest
- 4.3 Active and Passive Lateral Earth Pressures
- 4.4 Rankine Active and Passive Earth Pressures
- 4.5 Lateral Earth Pressure due to Surcharge
- 4.6 Lateral Earth Pressure When Groundwater is Present
- 4.7 Summary of Rankine Lateral Earth Pressure Theory
- 4.8 Rankine Active & Passive Earth Pressure for Inclined Granular Backfill
- 4.9 Coulomb's Earth Pressure Theory

CHAPTER 4: Slope Stability

- 5 Introduction
- 5.1 Definitions of Key Terms
- 5.2 Types of Slope Failure
- 5.3 Some Causes of Slope Failure
- 5.4 Two-Dimensional Slope Stability Analysis
- 5.5 Stability Analysis of Infinite Slopes
- 5.6 Rotational Slope Failure

Reference:

- 1. Das, Braja, Principles of Geotechnical Engineering, 5th ed., Brooks/Cole, 2002.
- 2. Budhu M. (2000), Soil Mechanics and Foundations, Wiley and Sons.
- 3. Lambe, T. W., Whitman, R. V. (1999), Soil Mechanics, John Wiley & Sons Inc.
- 4. Teferra, A. & Mesfin, L., Soil Mechanics, AAU
- 5. Craig, R.F. (2004), Craig's Soil Mechanics, 7th edition, Taylor & Francis.